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Abstract 

In this paper, three techniques to implement logical 
OIDs are thoroughly evaluated: hashing, B-trees 
and a technique called direct mapping. Among 
these three techniques, direct mapping is the most 
robust; it induces at most one page fault to map 
an OID, and it scales very well to large, rapidly 
growing databases. Furthermore, the clustering of 
handles that are used to map logical OIDs is stud- 
ied. In particular, the performance of B-trees and 
direct mapping can improve significantly if the han- 
dles of objects that are frequently accessed by the 
same methods are clustered. For direct mapping, 
two placement policies arc compared: linear and 
matrix clustering. 

1 Introduction 
The full support of object identity is one of the most 
important features of object-oriented database sys- 
tcms [KM94]. T o improve rcfcrcntial integrity, an ob- 
ject base system allocates an object identifier (OID) 
to every object at the time the object is created. The 
OID is used to identify the object uniquely and to im- 
plement inter-object references. It is independent of 
the state of the object, and it is not changed during 
the whole life-time of the object [KC86, AK89]. In ad- 
dition, most systems guarantee that even if an object 
is deleted, the OID generated for the object will never 
be used again to identify another object; i.e., OIDs of 
deleted objects are not reclaimed. To this end, OIDs 
are usually at least 8 bytes long, and the database 
system must support a 64-bit or even larger address 
space. 
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Basically, there are two kinds of OIDs: physical and 
logical OIDs. Both can be found in existing systems. 
A physical OID is constructed in such a way that it 
contains the permanent address of the object it refers 
to (i.e., the id of the disk, the page number and the 
slot). An object can directly be loaded from disk on 
the basis of a physical OID. On the negative side, 
the reorganization and reclustering of the database is 
difficult because an object cannot simply be moved to 
another page or another disk if physical OIDs are used. 
To move an object, a placeholder (i.e., a forward) must 
be established; but, these placeholders annihilate the 
advantage of physical OIDs as often two page faults are 
required to read an object on the basis of a physical 
OID and the placeholder, and the storage utilization is 
reduced as the placcholdcrs of moved objects fragment 
the data pages. 

This work makes a strong point for logical OIDs 
(also called surrogates). Logical OIDs are more flexi- 
ble than physical OIDs, since they do not contain the 
permanent address of the objects they reference. Ob- 
jects can, therefore, be moved freely, and thus, the 
database can well bc reorganized if logical OIDs are 
used [GKKM93]. I II addition, logical OIDs support 
object replication in a distributed system, object frag- 
mentation, access to different versions of objects, and 
dynamic schema evolution more effectively than phys- 
ical OIDs. The flexibility, however, must be paid for: 
before an object can be loaded from disk, its logical 
OID must bc mapped to determine the permanent ad- 
dress of the object; i.e.. the handle that contains the 
address of the object must be obtained. The mapping 
of logical OIDs can require additional page faults and 
reduce the performance of a system significantly if it 
is not implemented carefully. 

To investigate the price of logical OIDs, three altcr- 
native mapping techniques are thoroughly evaluated in 
this paper: hashing. B-trees and a technique referred 
to as direct mapping. All three techniques fully sup- 
port logical OIDs as defined in [KC86); i.e., OIDs that 
arc distinct, and independent of the state, location, 
structure and behavior of the referenced objects. The 
performance experiments indicated that direct map- 
ping outperforms both hashing and B-trees in every 
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case. Direct mapping guarantees that at most one 
page fault is required to carry out the mapping, and 
it scales very well, even if the database grows rapidly. 
In addition, concurrency control and recovery is easy 
to implement, and no transactions are blocked if new 
mappings must be recorded when new objects are cre- 
ated, or mappings must be modified when objects are 
moved. Whereas hash tables and B-trees are general- 
purpose index structures, direct mapping was specifi- 
cally designed to implement logical OIDs. Direct map- 
ping exploits that OIDs are generated by the system 
(rather than being user defined) and encodes the loca- 
tion of the handle of an object into the logical OID of 
an object. 

The performance experiments, furthermore, showed 
that the overhead to map logical OIDs is often very 
low. In particular, if the handles of logically related 
objects are clustered, logical OIDs have comparable 
retrieval performance to physical OIDs; i.e., the over- 
head to map logical OIDs is only marginal. To im- 
prove the clustering of handles using direct mapping, 
two placement policies for handles were devised and 
compared in detail: linear and matrix placement. 

The remainder of this paper is organized as follows: 
Section 2 outlines alternative configurations of name 
servers. The name servers are the processes that gen- 
erate OIDs, maintain the bindings of OIDs to objects 
and carry out the mapping of OIDs. Section 3 de- 
scribes the three mapping techniques. In addition, 
this section discusses related work; i.e., how logical 
OIDs were implemented in a couple of sample systems. 
Section 4 proposes OID generation algorithms for the 
three mapping techniques and shows how handles are 
placed into handle pages. Section 5 defines the bench- 
mark environment, and Section 6 summarizes the re- 
sults of the performance experiments. Section 7 con- 
cludes this paper. 

2 Name Server Configurations 
As stated above, a name server generates OIDs and 
maintains the mappings between OIDs and objects. 
This section discusses how a name server can interact 
with clients and data servers, and it outlines how sev- 
eral name servers can coexist in a distributed system. 
The remainder of this paper, then, is focused to study 
alternative mapping techniques. 

2.1 Separation of the Name Server 

While there are only few approaches known so far 
to enhance name management in database systems 
[KW94], p t d se ara e name servers are widely accepted 
in the area of operating systems [Watsl]. Here, many 
different forms of named objects coexist (such as files, 
environment variables and hosts) and it is useful to 
handle them in a uniform way. 

Many database systems, however, integrate the 
name service in the data server. Though naming in 
databases is more uniform than in operating systems, 

it is, nevertheless, reasonable to separate the name 
server from the data server. Naming of objects is a 
very important task and needs to be as flexible as pos- 
sible. In particular it should be tailored to the specific 
application. Open OODB [WB94], for example, pro- 
vides facilities to select a suitable implementation for 
naming on a per-object basis. It could also be prof- 
itable to assign resources, such as disk drives or pro- 
cessors, specifically to the name service. 

The configuration of a name server has two dimen- 
sions. The first dimension is the mapping technique 
used, which we are mainly concerned with in this pa- 
per. The second dimension is the coupling of clients, 
data servers and name servers. Possible solutions are 
depicted in Figure 1. (For simplicity, Figure 1 depicts 
only the situation where one name server is used in a 
client-server architecture.) 

Figure la) shows a classical operating-system archi- 
tecture: the clients directly communicate with both 
the name and the data server. A client gets a han- 
dle from the name server and passes it to the data 
server to retrieve the required object. A handle can 
be thought of as a “pointer” to the data. An example 
of this procedure can be found in the implementation 
of a file system. A name service is attached to every 
directory and is used to obtain the handle of every file 
located in the directory. The file server, then, pro- 
vides the functionality to read a file on the basis of its 
handle. 

Recent architectures, as found in the distributed op- 
erating system Spring [MGHf94], do not give any han- 
dles or low-level identifiers to the client. To avoid po- 
tential security leaks, they directly return (a copy of) 
the requested object, as depicted in Figure lb). Addi- 
tionally, this architecture avoids race conditions that 
might occur in architecture la), for example, when 
one client obtains the handle of an object while an- 
other tries to move it. There is no connection between 
clients and data servers, and, therefore, a client is not 
aware which data server provides an object. 

In database systems, however, clients must always 
be able to communicate with the data server. It is 
not reasonable to pass all information needed (e.g., 
for transaction management) through the name server. 
Therefore, the architecture sketched in Figure 1~) was 
used in this work. The name and the data server can 
run on the same workstation as indicated in Figure lc) 
to avoid network communication; but, they can just as 
well run on different workstations. 

2.2 Distributed Name Services 

In general, several name servers can coexist to make 
objects accessible in a distributed environment. Many 
name services (like the ones used in DNS [Moc87], 
NIS+ [Sun93], Conch [KW94] and SHORE [CDF+94]) 
use a hierarchically structured name space. Spring 
uses a general naming graph in which name servers 
can be arbitrarily connected. 
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Like the coupling of name servers to clients and data 
servers described in the previous section, the distribu- 
tion architecture is independent of the mapping tech- 
nique used by an individual name server. The mapping 
techniques described in the remainder of this paper can 
be used for any coupling and distribution architecture. 

3 Mapping Techniques for Logical 
OIDs 

In this section, various mapping techniques for logical 
OIDs are reviewed and discussed. The mapping func- 
tion f : OID ti Handle determines for a given logical 
object identifier the physical address (i.e., the handle) 
of an object. In the following, two indexed-based map- 
ping techniques and the direct mapping technique are 
discussed. 

3.1 Index-Based Mapping 

3.1.1 Hashing 

At first glance, hashing seems to be the most attrac- 
tive mapping technique since it has a constant ac- 
cess time independent of the number of entries in 
the hash table. Much work has been done in de- 
veloping good hashing techniques, see [ED881 for an 
overview. Directory-based hashing techniques like 
[FNPS79] need two disk accesses in the worst case: one 
for the directory and one for the bucket. Directory-less 
hashing techniques like [Lar88b, Ahn93] try to retrieve 
entries with at most one disk access by compressing 
the split history in such a way that it can be kept in 
main memory. Other techniques like those described in 
[Lit80, Lar88a] avoid directories by temporary chain- 
ing overflow buckets which can be split at a later time. 

An important tuning factor is the hash function. 
A good hash function ensures a uniform distribution 
which is crucial for every hashing technique devised so 
far. To map OIDs, a good hash function can easily be 
defined because all OIDs are generated by the name 
server. The performance of a hash function, however, 
can decrease if many objects are deleted. 

In the following, we discuss the scalability, storage 
utilization, concurrency control, recovery, and replica- 
tion of hashing-based mapping techniques. To make 
the cornpa?ison more comprehensive, all the mapping 
techniques will be discussed considering theses criteri- 

Figure 1: Configurations of Name Servers 

ons. An important aspect which is not explained here, 
but crucially affects the performance is the clustering 
of handles into pages. This topic is discussed in detail 
in Section 4. 

l Scalability. The most serious problem with hash 
tables is that they do not scale very well. If the size of 
a hash table can be estimated in advance, the hash ta- 
ble can be tuned so that overflows of buckets are rare. 
In database systems, however, the size of the database 
often grows in a short period of time. In this case, a 
hash table degrades fast with the number of bucket 
splits resulting in expensive reorganizations. Using 
techniques which compress the split history, CPU pro- 
cessing becomes a dominant factor when many splits 
occur. In conclusion, the initial size of a hash table is 
an important (and rather difficult) tuning factor. 

l Storage Utilization. The analysis of several dy- 
namic hashing schemes has indicated that in an av- 
erage case, 69% of the capacity of the buckets is 
used [ED88]. If objects are rarely deleted and the hash 
table is tuned given the precise size of the object base, 
the storage utilization of an OID-mapping hash table is 
usually much higher because the dedicated hash func- 
tion and the key generation algorithm fill the buckets 
uniformly. 

l Concurrency Control and Recovery. Only little 
has been reported on concurrency control and recovery 
techniques for hash tables and how they affect the per- 
formance of the system [GR93]. It is not clear if simple 
value logging is sufficient, or if sophisticated but more 
complicated techniques like [Moh92] are needed for a 
mapping technique based on hashing. 

l Replication. In an architecture with more than one 
name server (e.g., a peer-to-peer architecture), handles 
can be replicated on several name servers. A logical 
OID and the corresponding handle can be recorded by 
every name server using hashing regardless of where 
the logical OID was generated. When an object is 
deleted or moved to another location, all the name 
servers that keep a replica of the handle of the object 
are informed. 

Versant and Itasca are examples of commercial sys- 
tems that use hash tables to map OIDs. Itasca [Ita93] 
provides a hash table for every object class separately. 
Itasca’s way of mapping OIDs is, thus, carried out in 
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two steps: first, the class name--which is encoded in 
the OID-is hashed to get the appropriate hash ta- 
ble, and then, the per-class hash table is consulted to 
get the object’s handle. Since the number of classes 
is usually relatively small, the whole class-name hash 
table can be kept in main memory. 

3.1.2 B-Tree 

The initial size of a hash table is an important tuning 
parameter. B-trees [BM72, Corn791 have no such tun- 
ing parameter and are, therefore, much simpler to use 
in practice. At first glance, it appears that they can- 
not compete with the retrieval performance of hashing, 
since the whole path from the root down to the leaf 
nodes must be read to map an OID. In a Bf-tree of 
height three, however, several million OIDs and their 
corresponding handles can be stored, and a B+-tree 
of height four contains the mapping information of al- 
most one billion objects. If the first two levels can 
be cached in main memory by the name server, at 
most two disk accesses are required to retrieve a han- 
dle [COL92]. 

For the purpose of mapping OIDs, a specially tuned 
implementation of B-trees was used. The performance 
of a general-purpose B-tree is at its worst if keys are 
inserted in an ascending order: splits occur often and 
50% of the storage space are wasted (Figure 2a). Logi- 
cal OIDs, however, are often allocated in an ascending 
order; for example the first OID generated could have 
the number “0,” the second the number “1” and so 
forth. Therefore, the method shown in Figure 2b) was 
used. Rather than moving half of the entries of an 
over-full node into the new node, only the last entry is 
moved. Insertion 

A”’ “‘A 

a) Split of a General- b) Tuned Split for 
Purpose B-Tree OID Mapping 

Figure 2: Splitting of a Leaf Page in a B-Tree 

In the following, we discuss some aspects of the B- 
tree-based mapping technique in more detail: 

l Scalability. B-trees have logarithmic properties. 
Due to the uniform way in which mappings are in- 
serted, B-trees scale much better than most hashing 
schemes in large, growing databases. 

0 Storage Utilization. Using the tuned split 
method, a B-tree for mapping OIDs can have almost 
100% storage utilization if no objects are deleted. In 
addition, prefix compression can be exploited so that 

more mappings can be recorded in the leaf of a B+-tree 
than in the bucket of a hash table. Obviously storage 
utilization decreases if many objects are deleted from 
the object base and the corresponding mappings must 
be destroyed. In rare cases, the prefix compression of 
OIDs can then be counterproductive. 

l Concurrency Control and Recovery. Index 
structures like B-trees have proved to be a serious 
bottleneck of the system if they are updated. Sev- 
eral techniques to improve concurrency and recovery 
have been proposed [ML92, SO92]. Nevertheless, the 
implementation of these algorithms is difficult and fre- 
quent modifications can reduce the performance of the 
system significantly in any case. 

l Replication. The replication of mappings can easily 
be carried out - in the same way as using hash tables. 

B-trees are used in Gemstone [MS871 and in 
SHORE [CDF+94] t o implement logical OIDs. 

3.2 Direct Mapping 

Index-based mapping techniques usually find handles 
by comparing OIDs. In this section, we discuss a tech- 
nique that encodes the address of the handle into the 
logical OID. The rational behind this approach is that 
handles can be directly accessed without the help of an 
additional index structure-therefore, this technique is 
referred to as direct mapping. 

To support direct mapping, the handles are orga- 
nized in extensible arrays, so-called handle segments. 
A handle segment is a list of handle pages, and every 
handle page contains slots with a handle and a unique 
field each. Using direct mapping, an OID has the fol- 
lowing layout: creation site (two bytes), handle page 
number (four bytes), slot number (two bytes), and a 
unique field (four bytes). The creation site, page and 
slot numbers are used to find the handle of an object. 
The unique field is used to detect dangling references; 
for a valid OID it must match the unique field of the 
corresponding slot in the handle page. If an object 
is removed from the database, the name server incre- 
ments the unique field of the slot in the handle segment 
and, thus, implicitly invalidates all the dangling refer- 
ences to that object. The name server can, then, safely 
re-use the slot to record the mapping of a new object. 

Figure 3 shows a handle segment with a page capac- 
ity of five handles and an object segment with pages 
containing two objects. Handles are represented by 
pointers to emphasize the fact that handles are phys- 
ical addresses. Empty slots of a handle segment are 
recorded in a free space bitmap. Upon deletion of an 
object, the slot of its handle is marked as free in the 
bitmap, and upon creation of a new object, a free han- 
dle slot is allocated from the bitmap.l 

Note that direct mapping fully supports logical 
OIDs: for example, a data segment can be reorganized, 

1In our prototype, the bitmap keeps a bit per slot; the bitmap 
could, however, also record handle pages with free slots. 
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Figure 3: The Handle Segment in the Direct Mapping 
Technique 

and objects can be moved by updating the handles of 
objects only. In comparison to the index-based tech- 
niques, the main characteristics of direct mapping are 
listed in the following: 

l Scalability. Handle segments can easily be ex- 
tended without any reorganization costs. Therefore, 
allocation costs are independent of the number of ob- 
jects stored in the database. In addition, an OID can 
be mapped with at most one page fault independent 
of the size of the database. 

l Storage Utilization. Handle pages can be filled so 
that almost 100% storage utilization can be achieved. 
If an object is deleted, the corresponding empty slot 
in the handle segment can be re-used using the free 
space bitmap. Using direct mapping, only the handle 
and the unique identifier of the object (rather than 
the whole OID) must be recorded in a handle segment. 
Therefore, more OIDs can be mapped using a single 
handle page than with a B-tree or a hash table. 

l Concurrency Control and Recovery. No direc- 
tory structures are needed to map OIDs. Thus, no spe- 
cial concurrency control and recovery is required. Any 
fine-grained recovery technique like ARIES [MHL+92] 
can be used, and the creation of new objects does not 
block active transactions that only read and modify 
existing objects. 

l Replication. Handle pages can be replicated in a 
distributed system in the same way as ordinary data 
pages. Whereas replication is fine-grained using hash- 
ing or B-trees (i.e., the handles of individual objects 
are replicated), it appears that handle pages are the 
most favorable unit of replication for direct mapping. 

Techniques similar to direct mapping have been 
used in a couple of research prototypes [HZ87, BR90, 
WW90]; but, we know of no commercial system that 
exploits direct mapping. 

4 Clustering of Handles 

In this section, the clustering of handles is discussed. 
That is, how the handles of objects are placed into disk 
pages at the time of creation so that page faults for 
mapping logical OIDs are reduced in a name server. 
For example, handles of objects whose logical OIDs 
must frequently be mapped should be placed into the 
same pages. In addition, it is discussed why the reor- 
ganization and reclustering of handle segments must 
be precluded regardless of which mapping technique 
is used so that the initial placement of the handles is 
the only opportunity to achieve good clustering per- 
formance. 

4.1 Placing Handles into Handle Pages 

4.1.1 Index-Based Mapping 

Exploiting clustering is very difficult using hash tables 
because the hash function determines in which buckets 
to place handles. To place the handles of logically re- 
lated objects into the same bucket, an order-preserving 
hash function, e.g., tries [Lit88, Oto88, Chu92], and 
a special key generation algorithm is required. Such 
an approach was used in the design of the database 
system GRAS [KSW92]. Given the OID of a related 
object, the key generation algorithm tries to generate 
a new OID whose mapping is recorded in the same 
bucket. At the same time, the mappings of related ob- 
jects should still be stored in the same bucket after a 
split has occured. Unfortunately, such an approach is 
not viable in large databases with many objects: the 
hash tables tend to degenerate because some buckets 
must frequently be split whereas other buckets are not 
used. Therefore, only hash functions that spread the 
handles among the available buckets as uniformly as 
possible were used in this study. OIDs were generated 
in an incremental manner (e.g., if object 1065 was just 
created, the logical OID of the next object that will 
be created will be 1066). In this approach, clustering 
cannot be exploited; but, the hash tables can easily be 
tuned if the size of the database is known. 

As opposed to hashing, clustering can well be ex- 
ploited in a B-tree using a sophisticated key generation 
algorithm. Given a “near” hint, i.e., the OID of a re- 
lated object, the leaf page that records the mapping 
of the related object is looked up, and the OID of the 
new object is generated so that the handle of the new 
object is recorded in the leaf page. If the favored leaf 
page is full, the new mapping is recorded in a new (log- 
ically) adjacent leaf page according to the tuned split 
policy described in Section 3.1.2. 

4.1.2 Direct Mapping 

Using direct mapping, a name server has the flexibility 
to place the handle of a new object on a new, empty 
handle page or on any existing handle page that still 
has a free slot. In particular, just like with B-trees, 
the handles can be clustered into handle pages taking 
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Figure 4: Linear Placement of Handles 
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Figure 5: Matrix Placement of Handles (Handles refer 
to the data pages shown in Figure 4.) 

into account how the corresponding objects are placed 
into data pages. The handles of logically related ob- 
jects that were placed into the same partition of the 
database can, therefore, be clustered together, and a 
large set of objects can be read inducing only a few 
additional page faults to map their logical OIDs. 

Two different approaches to place handles into han- 
dle pages were investigated in this work: handles were 
either clustered linearly or following a matrix scheme. 
Ideal linear clustering of handles is shown in Figure 4. 
Handles are placed into handle pages in the same order 
as the corresponding objects are placed into the data 
pages. As a consequence, the handles of objects that 
are located in the same data page are located in the 
same or an adjacent handle page. 

If a page-server is used to ship data to the clients, 
the linear placement of handles can often be improved 
because subsequent requests to handles referring to ob- 
jects that are located in the same page are very seldom. 
When an application requests the handle of an object 
from the name server to read the object, it will get 
the handles of all the other objects located in the page 
by the page-server “for free” without asking the name 
server [CDF+94]. 

To avoid handles of objects located in the same data 
page of being placed into the same handle page, the 
matrix scheme depicted in Figure 5 was devised. The 
handle pages are organized in logical files. The handle 
of the first object of every data page (i.e., the object 
stored in the first slot) is placed into a handle page of 
the first file; the handle of the second object of a page 
is placed into a page of the second file; and so on. 

Matrix placement significantly outperforms linear 
placement if objects are read sequentially. For exam- 
ple, if the objects 01 to 09 are read sequentially, and 

only the OIDs 01, 04 and 07 must be mapped, the 
name server accesses only one handle page if matrix 
placement is used (cf. Figure 5) as compared to two 
handle pages with linear placement (cf. Figure 4). On 
the other hand, linear placement outperforms matrix 
placement if the OIDs of objects located in a few data 
pages and in different slots must be mapped. For ex- 
ample, if the OIDs 06 and 07 must be mapped, the 
name server accesses one handle page with linear place- 
ment and two handle pages with matrix placement. 

Both the linear and the matrix placement of han- 
dles rely like the B-tree on the quality of the initial 
placement of objects into data pages. Of course, the 
handles will not be clustered very well if the corre- 
sponding objects are not clustered well. But, taking 
the placement of objects into account is definitely the 
best bet to cluster handles. 

4.2 Reorganization 

The handle pages cannot be reorganized to improve 
clustering regardless of whether hashing, B-trees or 
direct mapping is used in a name server. In particu- 
lar, handle segments cannot be reorganized if the cor- 
responding data segments are reorganized. If direct 
mapping is used, a handle must be stored in the page 
in which it was placed at time of creation until the 
corresponding object is deleted from the object base, 
since references to the object (logical OIDs) directly 
refer to the handle in that page. As a consequence, the 
clustering properties of a handle segment described in 
the previous section (e.g., linearity) are not preserved 
if the corresponding data segment is reorganized. If 
the data segments are fairly small, however, a handle 
page will, nevertheless, contain many handles of log- 
ically related objects after a reorganization of a data 
segment. 

Using hashing, the hash function determines in 
which bucket (handle page) a handle is stored. It is, 
in general, impossible to find a (new) hash function 
that places handles that are requested by the same 
methods into the same buckets. If a B-tree is used 
to map logical OIDs, the handles of adjacent logical 
OIDs are stored in the same leaf page of the B-tree; 
the re-ordering of entries and, thus, the allocation of a 
new OID for an object, must be precluded like in the 
other mapping techniques. 

5 Benchmark Environment 

5.1 Software Used 

The performance of an isolated, centralized name 
server was analyzed in a client/page-server system; i.e., 
there was only one name server running, and this name 
server was separated from the page-server. At page- 
fault time, the clients passed the logical OID of an 
object to the page-server. The page-server called the 
name server which was run on the same workstation 
to map the OID and determine the home page of the 
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number of size of the size of the mapping file 
objects database LH BT DM 

small 200,000 40 MB 13 MB 9MB 5MB 
large 5,000,000 1 GB 252 MB 204 MB 118 MB 

Table 1: Characteristics of the Small and the Large Database 

Pages per module (n) 
Reference pattern 
Number of hot modules 

Sequential Random Hot 
5,000 50 500 
scan select, T = 5 select, r = 500 
0% 0% 5% 

Probability of choosing a hot module 0% 0% 80% 

Table 2: Workload Parameters 
requested object. Then, the page-server shipped the 
home page of the requested object together with the 
handles of all the other objects located in the page to 
the client. 

Three different mapping techniques were studied: 

(1) Linear Hashing. For the performance experi- 
ments, linear dynamic hashing was used in the same 
way as described in [Lit80]. The hash table was tuned 
for every object base individually given the (a-priori) 
knowledge of how many OIDs had to be recorded. As 
a consequence, the storage utilization of the hash table 
was almost 100% in all the experiments; no overflow 
buckets were required; and an OID could be mapped 
with at most one page fault. A bucket of the hash 
table contained at most 80 entries. 

scan. An application read sequentially all the 
objects of a module. In this operation, the name 
server was called n times, once for the first object 
of every page; the handles of the other objects lo- 
cated in the page were provided by the page-server 
when the page was shipped to the application. 

select r. An application read r different random 
pages of the module and accessed an arbitrary 
object of every page. In all, the name server was 
called T times for every module. 

(2) B-Tree. Bf-trees were used [BM72]. A leaf of 
the B+-tree always held more than 80 entries (usually 
about loo), since prefix compression was enabled and 
the tuned split policy devised in Section 3.1.2 was used. 
The height was three for the large database and two 
for the small one (the small and the large database are 
described in the following section). 

Table 2 defines the three different workloads that 
were studied. In every workload, transactions were 
submitted serially to the system. Every transaction 
operated on one module and carried out either a scan 
or a select on the module-depending on the workload. 
The number of page faults per request caused by the 
name server was recorded depending on the number 
of main-memory buffer frames that were available to 
cache handles. 

(3) Direct Mapping. Using direct mapping, a han- 
dle page contained at most 170 entries because only the 
handles and unique fields of objects had to be stored. 

In the Sequential and Random workloads every 
module was used by a transaction with the same prob- 
ability. The Sequential workload scanned large mod- 
ules, while Random navigated in small modules. The 
third workload, Hot, measured the influence of local- 
ity in the access profile. 5% of the modules were “hot” 
and used by 80% of the transactions. 

Regardless of which mapping technique was used, all For each workload, the following placements of han- 
the logical OIDs were 12 bytes long. dles were considered: 

5.2 Benchmark Used 

To verify the scalability of the mapping techniques, 
the experiments were carried out against a large ob- 
ject base with 5 million objects and a small object base 
with 200,000 objects. The size of a page was 4K and 
every page contained 20 objects. Thus, the large ob- 
ject base had 250,000 pages (1 GB) and the small one 
10,000 (40 MB). Table 1 summarizes the characteris- 
tics of the small and the large database. 

Linear Hashing. In the case of Linear Hash- 
ing (LH), the placement was dictated by the hash 
function, which distributed the handles uniformly 
over the buckets. 

B-Tree. The handles were placed according to 
the object placement (cBT) and randomly (rBT). 

The databases were divided into m modules. Ev- 
ery module consisted of n = p/m pages and n * 20 
objects with p = 250,000 for the large database and 
p = 10,000 for the small database, respectively. Two 
different reference patterns were taken into account: 

Direct Mapping. Linear (clDM) and matrix 
clustering (cmDM) were used as described in Sec- 
tion 4, as well as a random placement (rDM). 

The benchmark is illustrated in Figure 6. Figure 6a) 
shows the clustered placement of handles, which is the 
best case that can be achieved. Figure 6b) shows the 
random placement, where the handles have a worst 
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Figure 6: Illustration 

case clustering. This worst case clustering occurs, for 
example, when the object base has been severely reor- 
ganized. 

6 Performance Analysis 

The performance analysis was divided into three parts. 
First, the retrieval performance of all the mapping 
techniques was compared using the three workloads 
described in the previous section. Second, the two 
placement policies for direct mapping were analyzed. 
Third, the recording of new mappings, i.e., the cre- 
ation of new objects, was investigated. 

6.1 Comparison of the Mapping Techniques 

The results using the Sequential workload are pre- 
sented in Figure 7. The left plot, Figure 7a), was 
obtained using a small database; the right one, Fig- 
ure 7b), using a large database. In both figures, the 
number of buffer frames used by the name server is 
plotted against the X-axis. For the large database, the 
range was from 500 pages (2 MB) to 3000 pages (12 
MB). In proportion to the size of the mapping files, 
the same range of buffer sizes were studied with the 
small and with the large database. 

Linear Hashing had almost constant retrieval per- 
formance regardless of how much buffer was available. 
The accesses were evenly distributed over the hash ta- 
ble, which had about 63,000 pages in the large data- 
base. The effect of buffering on the performance was 
not significant because only a small fraction of the 
total table could be cached (e.g., 5% if 3,000 buffer 
frames were available). The B+-tree with randomly 
clustered handles (rBT), on the other hand, took ad- 
vantage of an increasing number of buffer frames by 
caching more internal nodes of the first levels. If the 
buffer was very small compared to the size of the Bf- 
tree, however, the Bc-tree was outperformed by the 
hash table. If the handles were clustered randomly, 
direct mapping performed a little better than both 
hashing and the B+-tree because it used significantly 
less disk space (about 30,000 pages). 

If the handles were clustered, the strength of B- 
trees and direct mapping was exhibited. Not all 
the inner nodes of the B+-tree had to be cached to 
achieve good performance in this case, since only a 
single, narrow path from the root to the leaves had 
to be descended for each module. The leaves occu- 

The graphs obtained from the Hot workload (Fig- 
ure 9a) and Figure 9b) have almost the same shape as 
the graphs obtained from the previous two workloads. 
This workload demonstrated an important property: 
long-term caching of handles that are used by many 
applications is often neglect-able. The performance of 
a mapping technique is completely dominated by the 
effect of clustering and the effort to loud handle pages 
to serve a single application. If the handles are not 
Elustered well, it is not possible to buffer the handles 
>f a small subset of the database with a reasonable 
amount of buffer space. In the Hot workload, even the 
1 handles of the 5% hot objects could not be cached. 
Furthermore, direct mapping and the B-trees had al- 

Handles c 

b) Random Placement 
of the Benchmark 

pied about 1,000 pages per module, which resulted 
in 1,000 page faults/5,000 requests per module = 0.2 
page faults per request. Analogously, direct map- 
ping with linear placement (clDM) occupied about 600 
pages per module and had therefore about 0.12 page 
faults per request (600/5,000 = 0.12). The best per- 
formance was achieved by using direct mapping with 
a matrix placement of handles. Here, all the relevant 
handles of a module that were required in the scan op- 
eration were clustered together into 30 handle pages. 

The plots for the small and the large database are 
almost identical. No anomalies could be observed for 
the large database. This observation was also made 
for the Random and Hot workload. 

In the Random workload, it was significantly more 
difficult to take advantage of the clustering of an ob- 
ject base. Therefore, the performance of direct map- 
ping and B-trees with clustered handles decreased as 
compared to their performance in the Sequential work- 
load. Nevertheless, direct mapping and B-trees prof- 
ited from clustering, since the handles for a single mod- 
ule occupied only few adjacent pages. The results for 
the Random workload are shown in Figure 8a) (small 
database) and Figure 8b) (large database). Note that 
direct mapping with a matrix placement performed 
worse than with a linear placement of handles. This 
phenomenon is examined in detail in the next section. 

The possibility to cache the inner nodes of a B-tree 
was more important in the Random than in the Se- 
quential workload. This is documented by the slight 
bend in the curve for the clustered B-tree at the point 
where a significant portion of the inner nodes could be 
cached. The hash table had almost the same perfor- 
mance as in the Sequential workload. 
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most the same performance as in the Sequential work- ule. 1,000 Pages main-memory buffer space were used 
load, although the reference pattern was completely by the name server to cache handles. Figure 10 sum- 
different. marizes the results. 

The sharp bends for the clustered B-tree and di- 
rect mapping in Figure 9a) show the point at which 
the handles of the objects of one module could com- 
pletely be buffered by the name server. When a mod- 
ule was loaded by an application, no additional page 
faults were required to re-access a handle page. 

In summary, direct mapping outperformed the 
other two techniques in all cases. No clear winner 
could be identified between Bf-trees and linear hash- 
ing: if there was only little buffer space available and 
the handles were not clustered well, hashing performed 
better. Otherwise, the Bf-trees had less page faults 
per request. Here, we must keep in mind that the 
hash tables were perfectly tuned; the initial size was 
determined individually for the small and the large 
database. 

If the handles were placed randomly into the handle 
pages (the rDM curves), a little less than one page fault 
per request was required independent of the module 
size and the reference pattern. If the handles of a 
module were clustered (the clDM and cmDM curves), 
the performance of direct mapping improved with the 
size of a module. This effect will be illustrated by the 
following example. 

6.2 Clustering Performance of Direct Map- 
ping 

The 100 handles corresponding to a module with 
5 pages and 100 objects were located in one or two 
handle pages with a capacity of 170 handles using the 
linear placement policy. Approximately, 1.5/5 page 
faults per request could, therefore, be observed when 
an application loaded a module (see the clDM curves). 
On the other hand, to load a module with 1,000 pages 
and 20,000 objects, 20,000/170 = 118 handle pages 
had to be read and only 118/1,000 page faults per 
request could be observed. 

To compare the linear and matrix placement policies, 
a second set of experiments was carried out using di- 
rect mapping only. The Sequential and Random work- 
loads were run against the large database (i.e., 5 mil- 
lion objects) with a varying number of pages per mod- 

Working with large modules was more important if 
the handles of a module were clustered and the matrix 
placement policy was used in the Random workload. 
The handles of a module with 5 pages were placed into 
20 handle pages to avoid that the handles of objects 
that were located in the same data page were located 
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in the same handle page. Usually at least 4 of these 
5 handle pages had to be accessed to carry out the 
select operation on a module, and more than 415 page 
faults per request could be observed. If the modules 
were large, however, the handles of a module could be 
placed into a small number of handle pages, and the 
property of matrix placement could be achieved at the 
same time. 

Unlike the linear placement policy, matrix place- 
ment profited from the particular reference pattern of 
the scan operation. The performance of direct map- 
ping with a linear placement of handles was indepen- 
dent of the reference pattern in which the objects of a 
module were accessed. The performance of the matrix 
placement policy, on the other hand, improved if the 
OIDs of objects located in some particular slots of the 
data pages must be mapped very often. In the scan 
operation, only the OIDs of the objects located in the 
first slot of a data page were mapped, and thus, direct 
mapping with linear placement showed up to 25 times 
as many page faults per request than direct mapping 
with matrix placement in the Sequential workload with 
large modules. Skew in the retrieval of objects from 
certain slots can also be observed if not all the objects 
have the same size and some quite large objects exist 
as well. In this case, objects will also more often be re- 
trieved from the first slot of a page than from the tenth 

slot because many pages do not contain 10 objects. 

6.3 Recording New Mappings 

Table 3 studies the performance of a name server when 
new objects are created, and thus, new mappings must 
be recorded. New objects were placed into new data 
pages of the large database; again, a new data page 
contained exactly 20 objects before another data page 
was allocated to hold new objects. After the creation 
of an object, a large number of random retrieval oper- 
ations was carried out using a buffer with 1000 pages. 

Method Faults/New Object 
Direct Mapping 0.006 
B-Tree 0.01 
Linear Hashing 1 
LH (after first split) 2.2 

Table 3: Creating New Objects 

For the B-tree, the OIDs were generated in an as- 
cending order. The leaf page into which a new map- 
ping was recorded last was kept main-memory resi- 
dent. In addition, the buffer was large enough to keep 
the relevant inner nodes while the retrievals were car- 
ried out. Since the tuned split policy described in Sec- 
tion 3.1.2 was used and approximately 100 mappings 
could be recorded in a leaf page, one new leaf page per 
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100 new objects had to be allocated (considered as a 
page fault in Table 3), and no additional page faults 
to read nodes of the B-tree were required. 

Analogously, the last 20 pages used to record new 
handles were kept main-memory resident using direct 
mapping with the matrix placement policy. Since 
170 handles could be placed into a handle page, 
l/170=0.006 page faults per new object could be ob- 
served. 

For linear dynamic hashing, the hash function tried 
to place the mappings of the new objects uniformly 
into the existing buckets. As a consequence, approxi- 
mately one page fault could be observed if no overflows 
occured, just as in the retrieval benchmarks. After the 
first overflow was generated and the hash table was 
split using Litwin’s original criterion [Lit80], 2.2 page 
faults were required on an average to record a new 
mapping. 

7 Conclusions and Future Work 
In this work, three techniques to implement logical 
OIDs were investigated. Of these three techniques, 
direct mapping is the most robust. Direct mapping 
scales well in large object bases, and at most one page 
fault is required to map an OID; recording a new map- 
ping is very cheap and seldomly induces a page fault. 
In addition, no applications are blocked by the name 
server if new objects are created or existing objects 
are moved. If separated and given enough resources 
(for example, a disk drive could be reserved to store 
the mapping information), a name server using direct 
mapping, therefore, is usually not the bottleneck of a 
system. For example, a disk drive could be reserved 
to store the mapping information. 

Between hashing and B-trees, no clear winner can 
be identified. If much main-memory buffer space is 
available for the name server, a B-tree has the same 
or better performance than a hash table. If only little 
buffer is available, the B-tree is often outperformed by 
a tuned hash table. 

The performance of B-trees and direct mapping im- 
proves dramatically when the handles of logically re- 
lated objects are clustered. For direct mapping, two 
placement policies were devised and compared: 

l linear clustering: the handles are placed into 
handle pages in the same order as the correspond- 
ing objects are placed into the data pages; 

l matrix clustering: the handles of objects that 
are located in the same data page are never placed 
into the same handle page. 

In a system that uses a page-server to ship data, 
much of the potential of clustering handles is wasted 
using the linear placement policy. Matrix clustering 
has at least the same performance as linear clustering if 
the locality sets accessed in the object base were fairly 
large. For particular reference patterns, it significantly 
outperforms linear clustering. 

In future work, we intend to investigate the bulk 
loading of objects and the bulk allocation of new OIDs 
in detail. If OIDs are recorded and mapped in bulk- 
instead of one by one--additional tuning can be ef- 
fected regardless of which mapping technique is used. 

Acknowledgments. We would like to thank Alfons 
Kemper for his continuous support and his comments 
on a draft of this paper. Stefan Augustin implemented 
the B+-tree with prefix compression, bulk-loading and 
other important features. Uwe RGhm implemented 
and tuned linear dynamic hashing. We would also like 
to thank Jeff Galarneau from Itasca Systems, Inc., for 
giving us details on the mapping technique used in 
Itasca. This work was supported by the German Re- 
search Council DFG under contract Ke 401/6-2 and 
by the Humboldt-Stiftung. 

References 
[Ahn93] 

[AK891 

[BM72] 

[BR90] 

[CDF+94] 

[Chu92] 

[COL92] 

[Corn791 

[DSZSO] 

I. Ahn. Filtered hashing. In Proc. of the 
Id. Conf. on Foundations of Data Organiza- 
tion and Algorithms (FODO), volume 730 of 
Lecture Notes in Computer Science (LNCS), 
pages 85-100, Chicago, IL, October 1993. 
Springer. 

S. Abiteboul and P. C. Kanellakis. Object 
identity as a query language primitive. In 
Proc. of the ACM SIGMOD Conf. on Manage- 
ment of Data, pages 159-173, Portland, OR, 
USA, May 1989. 

R. Bayer and E. M. McCreight. Organization 
and maintenance of large ordered indices. Acta 
Informatica, 1(3):173-189, 1972. 

A. Brown and J. Rosenberg. Persistent ob- 
ject stores: An implementation technique. In 
Dearle et al. [DSZSO], pages 199-212. 

M. J. Carey, D. J. Dewitt, M. J. F’ranklin, 
N. E. Hall, M. L. McAuliffe, J. F. Naughton, 
D. T. Schuh, M. H. Solomon, C. K. Tan, 0. G. 
Tsataios, S. J. White, and M. J. Zwilling. 
Shoring up persistent applications. In Proc. of 
the ACM SIGMOD Conf. on Management of 
Data, pages 383-394, Minneapolis, MI, USA, 
May 1994. 

S. M. Chung. Indexed extendible hashing. In- 
formation Processing Letters, 44(1):1-6, 1992. 

C. Y. Chan, B. C. Ooi, and H. Lu. Extensi- 
ble buffer management of indexes. In Proc. of 
the Conf. on Very Large Data Bases (VLDB), 
pages 444454, Vancouver, Canada, 1992. 

D. Comer. The ubiquitous B-tree. ACM Com- 
puting Surveys, 11(2):121-137,1979. 

A. Dearle, G. Shaw, and S. Zdonik, editors. 
Implementing Persistent Object Bases, Prin- 
ciples and Practice, Proc. of the 4th Inter- 
national Workshop on Persistent Object Sys- 
tems, Their Design, Implementation and Use, 
Martha’s Vineyard, September 1990. Morgan 
Kaufmann. 

28 



[ED881 

[FNPS79] 

[GKKM93] 

[GR93] 

[HZ871 

[Ita93] 

[KC861 

[KM941 

[KSW92] 

[KW94] 

[Lar88a] 

[Lar88b] 

[Lit801 

[Lit881 

R. J. Enbody and H. C. Du. Dynamic hashing 
schemes. ACM Computing Surveys, 20(2):85- 
113, June 1988. 
R. Fagin, J. Nievergelt, J. Pippenger, and 
H. Strong. Extendible hashing-A fast access 
method for dynamic files. ACM Trans. on Da- 
tabase Systems, 4(3):315-344,1979. 

C. Gerlhof, A. Kemper, C. Kilger, and G. Mo- 
erkotte. Partition-based clustering in object 
bases: From theory to practice. In Proc. of the 
Intl. Conf. on Foundations of Data Organiza- 
tion and Algorithms (FODO), volume 730 of 
Lecture Notes in Computer Science (LNCS), 
pages 301-316, Chicago, IL, October 1993. 
Springer. 
J. Gray and A. neuter. Transaction Pro- 
cessing: Concepts and Techniques. Morgan- 
Kaufmann Publ. Co., San Mateo, CA, USA, 
1993. 
M. Hornick and S. Zdonik. A shared, seg- 
mented memory system for an object-oriented 
database. ACM Bans. Ofice In. Syst., 
5(1):70-95, January 1987. 

Itasca Systems Inc. Technical summary for 
release 2.2, 1993. Itasca Systems, Inc., 7850 
Metro Drive, Mineapolis, MN 55425, USA. 

S. N. KhoshaSan and G. P. Copeland. Object 
identity. In Proc. of the ACM Conf. on Object- 
Oriented Programming Systems and Lan- 

guages (OOPSLA), pages 408-416, November 
1986. 
A. Kemper and G. Moerkotte. Object-Oriented 
Database Management: Applications in Engi- 
neering and Computer Science. Prentice Hall, 
Englewood Cliffs, NJ, USA, 1994. 

N. Kiesel, A. Schiirr, and B. Westfechtel. De- 
sign and evaluation of GRAS, a graph-oriented 
database system for engineering applications. 
Technical Report 92-44, RWTH Aachen, D- 
52056 Aachen, 1992. 
A. Kaplan and J. C. Wileden. Conch: Ex- 
perimenting with enhanced name management 
for persistent object systems. In Proc. of 
the Intl. Workshop on Persistent Object Sys- 
tems (POS), Workshops in Computing, pages 
318-331, Tarascon, France, September 1994. 
Springer. 

P.-A. Larson. Dynamic hash tables. Commu- 
nications of the ACM, 31(4):446457,1988. 

P.-A. Larson. Linear hashing with 
separators-A dynamic hashing scheme 
achieving one-access retrieval. ACM Trans. 
on Database Systems, 13(3):366-388, Septem- 
ber 1988. 
W. Litwin. Linear hashing: A new tool for file 
and table addressing. In Proc. of the Conf. on 
Very Large Data Bases (VLDB), 1980. 

W. Litwin. Trie hashing. In Proc. of 
the ACM SIGMOD Conf. on Management of 
Data, pages 19-29, Chicago, IL, USA, May 
1988. 

[MGH+94] J. Mitchell, J. Gibbons, G. Hamilton, 
P. Kessler, Y. Khalidi, P. Kougiouris, 
P. Madany, M. Nelson, M. Powell, and S. Ra- 
dia. An overview of the Spring system, 1994. 

[MHL+92] C. Mohan, D. Haderle, B. Lindsay, H. Pira- 

[ML921 

[Moc87] 

[Moh92] 

[MS871 

[Oto88] 

[SO921 

[Sun931 

[Wats11 

[WB94] 

[WW90] 

hesh, and P. Schwarz. ARIES: A transaction 
recovery method supporting fine-granularity 
locking and partial rollbacks using write-ahead 
logging. ACM Trans. on Database Systems, 
17(l), March 1992. 

C. Mohan and F. Levine. ARIESfIM: An effi- 
cient and high concurrency index management 
method using write-ahead logging. In Proc. of 
the ACM SIGMOD Conf. on Management of 
Data, pages 371-380, San Diego, USA, June 
1992. 

P. Mockapetris. Domain names - concepts and 
facilities. RFC 1034, USC/Information Sci- 
ences Institute, November 1987. 

C. Mohan. ARIES/LHS: A concurrency con- 
trol and recovery method using write-ahead 
logging for linear hashing with separators. 
Technical Report RJ8682, IBM Almaden Re- 
search Center, March 1992. 

D. Maier and J. Stein. Development and im- 
plementation of an object-oriented DBMS. In 
B. Shriver and P. Wegner, editors, Research 
Directions in Object-Oriented Programming, 
pages 355-392, Cambridge, MA, 1987. MIT 
Press. 

E. J. Otoo. Linearizing the directory growth in 
order preserving extendible hashing. In Proc. 
IEEE Conf. on Data Engineering, pages 580- 
588, Los Angeles, CA, USA, 1988. 

M. Sullivan and M. Olson. An index im- 
plementation supporting fast recovery for the 
POSTGRES storage system. In Proc. IEEE 
Conf. on Data Engineering, pages 293-300, 
Tempe, AR, February 1992. 

SunSoft. NIS to NIS+ transition guide. Man- 
ual, December 1993. 

R. W. Watson. Identifiers (naming) in dis- 
tributed systems, volume 105 of Lecture Notes 
in Computer Science (LNCS), chapter 9, pages 
191-210. Springer, 1981. 

D. L. Wells and J.A. Blakeley. Distribution 
and persistence in the open object-oriented da- 
tabase system. In T. Ozsu, U. DayaI, and 
P. Valduriez, editors, Distributed Object Man- 
agement, San Mateo, CA, USA, May 1994. 
Morgan-Kaufmann Publ. Co. 

I. Williams and M. Wolczko. An object-based 
memory architecture. In Dearle et al. [DSZSO], 
pages 114-130. 

29 


