
A Performance Evaluation of OID Mapping Techniques

Andr6 Eickler* Csrsten A. Gerlhof” Donald Kossmannt

“Universitat Passau tuniversity of Maryland
Fakultat fur Mathematik und Informatik Department of Computer Science
Lchrstuhl fur Dialogorientierte Systeme

D-94030 Passau, Germany
[eickler] yerlhof]i~db.frni.urli-passau.de

Abstract

In this paper, three techniques to implement logical
OIDs are thoroughly evaluated: hashing, B-trees
and a technique called direct mapping. Among
these three techniques, direct mapping is the most
robust; it induces at most one page fault to map
an OID, and it scales very well to large, rapidly
growing databases. Furthermore, the clustering of
handles that are used to map logical OIDs is stud-
ied. In particular, the performance of B-trees and
direct mapping can improve significantly if the han-
dles of objects that are frequently accessed by the
same methods are clustered. For direct mapping,
two placement policies arc compared: linear and
matrix clustering.

1 Introduction
The full support of object identity is one of the most
important features of object-oriented database sys-
tcms [KM94]. T o improve rcfcrcntial integrity, an ob-
ject base system allocates an object identifier (OID)
to every object at the time the object is created. The
OID is used to identify the object uniquely and to im-
plement inter-object references. It is independent of
the state of the object, and it is not changed during
the whole life-time of the object [KC86, AK89]. In ad-
dition, most systems guarantee that even if an object
is deleted, the OID generated for the object will never
be used again to identify another object; i.e., OIDs of
deleted objects are not reclaimed. To this end, OIDs
are usually at least 8 bytes long, and the database
system must support a 64-bit or even larger address
space.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the Zlst VLDB Conference
Zurich, Switzerland, 1995

College Park, MD -20742 USA
I;ossmnnnQcs.umd.edu

Basically, there are two kinds of OIDs: physical and
logical OIDs. Both can be found in existing systems.
A physical OID is constructed in such a way that it
contains the permanent address of the object it refers
to (i.e., the id of the disk, the page number and the
slot). An object can directly be loaded from disk on
the basis of a physical OID. On the negative side,
the reorganization and reclustering of the database is
difficult because an object cannot simply be moved to
another page or another disk if physical OIDs are used.
To move an object, a placeholder (i.e., a forward) must
be established; but, these placeholders annihilate the
advantage of physical OIDs as often two page faults are
required to read an object on the basis of a physical
OID and the placeholder, and the storage utilization is
reduced as the placcholdcrs of moved objects fragment
the data pages.

This work makes a strong point for logical OIDs
(also called surrogates). Logical OIDs are more flexi-
ble than physical OIDs, since they do not contain the
permanent address of the objects they reference. Ob-
jects can, therefore, be moved freely, and thus, the
database can well bc reorganized if logical OIDs are
used [GKKM93]. I II addition, logical OIDs support
object replication in a distributed system, object frag-
mentation, access to different versions of objects, and
dynamic schema evolution more effectively than phys-
ical OIDs. The flexibility, however, must be paid for:
before an object can be loaded from disk, its logical
OID must bc mapped to determine the permanent ad-
dress of the object; i.e.. the handle that contains the
address of the object must be obtained. The mapping
of logical OIDs can require additional page faults and
reduce the performance of a system significantly if it
is not implemented carefully.

To investigate the price of logical OIDs, three altcr-
native mapping techniques are thoroughly evaluated in
this paper: hashing. B-trees and a technique referred
to as direct mapping. All three techniques fully sup-
port logical OIDs as defined in [KC86); i.e., OIDs that
arc distinct, and independent of the state, location,
structure and behavior of the referenced objects. The
performance experiments indicated that direct map-
ping outperforms both hashing and B-trees in every

18

case. Direct mapping guarantees that at most one
page fault is required to carry out the mapping, and
it scales very well, even if the database grows rapidly.
In addition, concurrency control and recovery is easy
to implement, and no transactions are blocked if new
mappings must be recorded when new objects are cre-
ated, or mappings must be modified when objects are
moved. Whereas hash tables and B-trees are general-
purpose index structures, direct mapping was specifi-
cally designed to implement logical OIDs. Direct map-
ping exploits that OIDs are generated by the system
(rather than being user defined) and encodes the loca-
tion of the handle of an object into the logical OID of
an object.

The performance experiments, furthermore, showed
that the overhead to map logical OIDs is often very
low. In particular, if the handles of logically related
objects are clustered, logical OIDs have comparable
retrieval performance to physical OIDs; i.e., the over-
head to map logical OIDs is only marginal. To im-
prove the clustering of handles using direct mapping,
two placement policies for handles were devised and
compared in detail: linear and matrix placement.

The remainder of this paper is organized as follows:
Section 2 outlines alternative configurations of name
servers. The name servers are the processes that gen-
erate OIDs, maintain the bindings of OIDs to objects
and carry out the mapping of OIDs. Section 3 de-
scribes the three mapping techniques. In addition,
this section discusses related work; i.e., how logical
OIDs were implemented in a couple of sample systems.
Section 4 proposes OID generation algorithms for the
three mapping techniques and shows how handles are
placed into handle pages. Section 5 defines the bench-
mark environment, and Section 6 summarizes the re-
sults of the performance experiments. Section 7 con-
cludes this paper.

2 Name Server Configurations
As stated above, a name server generates OIDs and
maintains the mappings between OIDs and objects.
This section discusses how a name server can interact
with clients and data servers, and it outlines how sev-
eral name servers can coexist in a distributed system.
The remainder of this paper, then, is focused to study
alternative mapping techniques.

2.1 Separation of the Name Server

While there are only few approaches known so far
to enhance name management in database systems
[KW94], p t d se ara e name servers are widely accepted
in the area of operating systems [Watsl]. Here, many
different forms of named objects coexist (such as files,
environment variables and hosts) and it is useful to
handle them in a uniform way.

Many database systems, however, integrate the
name service in the data server. Though naming in
databases is more uniform than in operating systems,

it is, nevertheless, reasonable to separate the name
server from the data server. Naming of objects is a
very important task and needs to be as flexible as pos-
sible. In particular it should be tailored to the specific
application. Open OODB [WB94], for example, pro-
vides facilities to select a suitable implementation for
naming on a per-object basis. It could also be prof-
itable to assign resources, such as disk drives or pro-
cessors, specifically to the name service.

The configuration of a name server has two dimen-
sions. The first dimension is the mapping technique
used, which we are mainly concerned with in this pa-
per. The second dimension is the coupling of clients,
data servers and name servers. Possible solutions are
depicted in Figure 1. (For simplicity, Figure 1 depicts
only the situation where one name server is used in a
client-server architecture.)

Figure la) shows a classical operating-system archi-
tecture: the clients directly communicate with both
the name and the data server. A client gets a han-
dle from the name server and passes it to the data
server to retrieve the required object. A handle can
be thought of as a “pointer” to the data. An example
of this procedure can be found in the implementation
of a file system. A name service is attached to every
directory and is used to obtain the handle of every file
located in the directory. The file server, then, pro-
vides the functionality to read a file on the basis of its
handle.

Recent architectures, as found in the distributed op-
erating system Spring [MGHf94], do not give any han-
dles or low-level identifiers to the client. To avoid po-
tential security leaks, they directly return (a copy of)
the requested object, as depicted in Figure lb). Addi-
tionally, this architecture avoids race conditions that
might occur in architecture la), for example, when
one client obtains the handle of an object while an-
other tries to move it. There is no connection between
clients and data servers, and, therefore, a client is not
aware which data server provides an object.

In database systems, however, clients must always
be able to communicate with the data server. It is
not reasonable to pass all information needed (e.g.,
for transaction management) through the name server.
Therefore, the architecture sketched in Figure 1~) was
used in this work. The name and the data server can
run on the same workstation as indicated in Figure lc)
to avoid network communication; but, they can just as
well run on different workstations.

2.2 Distributed Name Services

In general, several name servers can coexist to make
objects accessible in a distributed environment. Many
name services (like the ones used in DNS [Moc87],
NIS+ [Sun93], Conch [KW94] and SHORE [CDF+94])
use a hierarchically structured name space. Spring
uses a general naming graph in which name servers
can be arbitrarily connected.

19

I Client I

Like the coupling of name servers to clients and data
servers described in the previous section, the distribu-
tion architecture is independent of the mapping tech-
nique used by an individual name server. The mapping
techniques described in the remainder of this paper can
be used for any coupling and distribution architecture.

3 Mapping Techniques for Logical
OIDs

In this section, various mapping techniques for logical
OIDs are reviewed and discussed. The mapping func-
tion f : OID ti Handle determines for a given logical
object identifier the physical address (i.e., the handle)
of an object. In the following, two indexed-based map-
ping techniques and the direct mapping technique are
discussed.

3.1 Index-Based Mapping

3.1.1 Hashing

At first glance, hashing seems to be the most attrac-
tive mapping technique since it has a constant ac-
cess time independent of the number of entries in
the hash table. Much work has been done in de-
veloping good hashing techniques, see [ED881 for an
overview. Directory-based hashing techniques like
[FNPS79] need two disk accesses in the worst case: one
for the directory and one for the bucket. Directory-less
hashing techniques like [Lar88b, Ahn93] try to retrieve
entries with at most one disk access by compressing
the split history in such a way that it can be kept in
main memory. Other techniques like those described in
[Lit80, Lar88a] avoid directories by temporary chain-
ing overflow buckets which can be split at a later time.

An important tuning factor is the hash function.
A good hash function ensures a uniform distribution
which is crucial for every hashing technique devised so
far. To map OIDs, a good hash function can easily be
defined because all OIDs are generated by the name
server. The performance of a hash function, however,
can decrease if many objects are deleted.

In the following, we discuss the scalability, storage
utilization, concurrency control, recovery, and replica-
tion of hashing-based mapping techniques. To make
the cornpa?ison more comprehensive, all the mapping
techniques will be discussed considering theses criteri-

Figure 1: Configurations of Name Servers

ons. An important aspect which is not explained here,
but crucially affects the performance is the clustering
of handles into pages. This topic is discussed in detail
in Section 4.

l Scalability. The most serious problem with hash
tables is that they do not scale very well. If the size of
a hash table can be estimated in advance, the hash ta-
ble can be tuned so that overflows of buckets are rare.
In database systems, however, the size of the database
often grows in a short period of time. In this case, a
hash table degrades fast with the number of bucket
splits resulting in expensive reorganizations. Using
techniques which compress the split history, CPU pro-
cessing becomes a dominant factor when many splits
occur. In conclusion, the initial size of a hash table is
an important (and rather difficult) tuning factor.

l Storage Utilization. The analysis of several dy-
namic hashing schemes has indicated that in an av-
erage case, 69% of the capacity of the buckets is
used [ED88]. If objects are rarely deleted and the hash
table is tuned given the precise size of the object base,
the storage utilization of an OID-mapping hash table is
usually much higher because the dedicated hash func-
tion and the key generation algorithm fill the buckets
uniformly.

l Concurrency Control and Recovery. Only little
has been reported on concurrency control and recovery
techniques for hash tables and how they affect the per-
formance of the system [GR93]. It is not clear if simple
value logging is sufficient, or if sophisticated but more
complicated techniques like [Moh92] are needed for a
mapping technique based on hashing.

l Replication. In an architecture with more than one
name server (e.g., a peer-to-peer architecture), handles
can be replicated on several name servers. A logical
OID and the corresponding handle can be recorded by
every name server using hashing regardless of where
the logical OID was generated. When an object is
deleted or moved to another location, all the name
servers that keep a replica of the handle of the object
are informed.

Versant and Itasca are examples of commercial sys-
tems that use hash tables to map OIDs. Itasca [Ita93]
provides a hash table for every object class separately.
Itasca’s way of mapping OIDs is, thus, carried out in

20

two steps: first, the class name--which is encoded in
the OID-is hashed to get the appropriate hash ta-
ble, and then, the per-class hash table is consulted to
get the object’s handle. Since the number of classes
is usually relatively small, the whole class-name hash
table can be kept in main memory.

3.1.2 B-Tree

The initial size of a hash table is an important tuning
parameter. B-trees [BM72, Corn791 have no such tun-
ing parameter and are, therefore, much simpler to use
in practice. At first glance, it appears that they can-
not compete with the retrieval performance of hashing,
since the whole path from the root down to the leaf
nodes must be read to map an OID. In a Bf-tree of
height three, however, several million OIDs and their
corresponding handles can be stored, and a B+-tree
of height four contains the mapping information of al-
most one billion objects. If the first two levels can
be cached in main memory by the name server, at
most two disk accesses are required to retrieve a han-
dle [COL92].

For the purpose of mapping OIDs, a specially tuned
implementation of B-trees was used. The performance
of a general-purpose B-tree is at its worst if keys are
inserted in an ascending order: splits occur often and
50% of the storage space are wasted (Figure 2a). Logi-
cal OIDs, however, are often allocated in an ascending
order; for example the first OID generated could have
the number “0,” the second the number “1” and so
forth. Therefore, the method shown in Figure 2b) was
used. Rather than moving half of the entries of an
over-full node into the new node, only the last entry is
moved. Insertion

A”’ “‘A

a) Split of a General- b) Tuned Split for
Purpose B-Tree OID Mapping

Figure 2: Splitting of a Leaf Page in a B-Tree

In the following, we discuss some aspects of the B-
tree-based mapping technique in more detail:

l Scalability. B-trees have logarithmic properties.
Due to the uniform way in which mappings are in-
serted, B-trees scale much better than most hashing
schemes in large, growing databases.

0 Storage Utilization. Using the tuned split
method, a B-tree for mapping OIDs can have almost
100% storage utilization if no objects are deleted. In
addition, prefix compression can be exploited so that

more mappings can be recorded in the leaf of a B+-tree
than in the bucket of a hash table. Obviously storage
utilization decreases if many objects are deleted from
the object base and the corresponding mappings must
be destroyed. In rare cases, the prefix compression of
OIDs can then be counterproductive.

l Concurrency Control and Recovery. Index
structures like B-trees have proved to be a serious
bottleneck of the system if they are updated. Sev-
eral techniques to improve concurrency and recovery
have been proposed [ML92, SO92]. Nevertheless, the
implementation of these algorithms is difficult and fre-
quent modifications can reduce the performance of the
system significantly in any case.

l Replication. The replication of mappings can easily
be carried out - in the same way as using hash tables.

B-trees are used in Gemstone [MS871 and in
SHORE [CDF+94] t o implement logical OIDs.

3.2 Direct Mapping

Index-based mapping techniques usually find handles
by comparing OIDs. In this section, we discuss a tech-
nique that encodes the address of the handle into the
logical OID. The rational behind this approach is that
handles can be directly accessed without the help of an
additional index structure-therefore, this technique is
referred to as direct mapping.

To support direct mapping, the handles are orga-
nized in extensible arrays, so-called handle segments.
A handle segment is a list of handle pages, and every
handle page contains slots with a handle and a unique
field each. Using direct mapping, an OID has the fol-
lowing layout: creation site (two bytes), handle page
number (four bytes), slot number (two bytes), and a
unique field (four bytes). The creation site, page and
slot numbers are used to find the handle of an object.
The unique field is used to detect dangling references;
for a valid OID it must match the unique field of the
corresponding slot in the handle page. If an object
is removed from the database, the name server incre-
ments the unique field of the slot in the handle segment
and, thus, implicitly invalidates all the dangling refer-
ences to that object. The name server can, then, safely
re-use the slot to record the mapping of a new object.

Figure 3 shows a handle segment with a page capac-
ity of five handles and an object segment with pages
containing two objects. Handles are represented by
pointers to emphasize the fact that handles are phys-
ical addresses. Empty slots of a handle segment are
recorded in a free space bitmap. Upon deletion of an
object, the slot of its handle is marked as free in the
bitmap, and upon creation of a new object, a free han-
dle slot is allocated from the bitmap.l

Note that direct mapping fully supports logical
OIDs: for example, a data segment can be reorganized,

1In our prototype, the bitmap keeps a bit per slot; the bitmap
could, however, also record handle pages with free slots.

21

Free Space Bitmap

Handle ,
Segment - I

l - 0 -

v ‘I
Wect & d2

y

Segment 03 04 05 06

Page 0 Page 1 Page 2

Figure 3: The Handle Segment in the Direct Mapping
Technique

and objects can be moved by updating the handles of
objects only. In comparison to the index-based tech-
niques, the main characteristics of direct mapping are
listed in the following:

l Scalability. Handle segments can easily be ex-
tended without any reorganization costs. Therefore,
allocation costs are independent of the number of ob-
jects stored in the database. In addition, an OID can
be mapped with at most one page fault independent
of the size of the database.

l Storage Utilization. Handle pages can be filled so
that almost 100% storage utilization can be achieved.
If an object is deleted, the corresponding empty slot
in the handle segment can be re-used using the free
space bitmap. Using direct mapping, only the handle
and the unique identifier of the object (rather than
the whole OID) must be recorded in a handle segment.
Therefore, more OIDs can be mapped using a single
handle page than with a B-tree or a hash table.

l Concurrency Control and Recovery. No direc-
tory structures are needed to map OIDs. Thus, no spe-
cial concurrency control and recovery is required. Any
fine-grained recovery technique like ARIES [MHL+92]
can be used, and the creation of new objects does not
block active transactions that only read and modify
existing objects.

l Replication. Handle pages can be replicated in a
distributed system in the same way as ordinary data
pages. Whereas replication is fine-grained using hash-
ing or B-trees (i.e., the handles of individual objects
are replicated), it appears that handle pages are the
most favorable unit of replication for direct mapping.

Techniques similar to direct mapping have been
used in a couple of research prototypes [HZ87, BR90,
WW90]; but, we know of no commercial system that
exploits direct mapping.

4 Clustering of Handles

In this section, the clustering of handles is discussed.
That is, how the handles of objects are placed into disk
pages at the time of creation so that page faults for
mapping logical OIDs are reduced in a name server.
For example, handles of objects whose logical OIDs
must frequently be mapped should be placed into the
same pages. In addition, it is discussed why the reor-
ganization and reclustering of handle segments must
be precluded regardless of which mapping technique
is used so that the initial placement of the handles is
the only opportunity to achieve good clustering per-
formance.

4.1 Placing Handles into Handle Pages

4.1.1 Index-Based Mapping

Exploiting clustering is very difficult using hash tables
because the hash function determines in which buckets
to place handles. To place the handles of logically re-
lated objects into the same bucket, an order-preserving
hash function, e.g., tries [Lit88, Oto88, Chu92], and
a special key generation algorithm is required. Such
an approach was used in the design of the database
system GRAS [KSW92]. Given the OID of a related
object, the key generation algorithm tries to generate
a new OID whose mapping is recorded in the same
bucket. At the same time, the mappings of related ob-
jects should still be stored in the same bucket after a
split has occured. Unfortunately, such an approach is
not viable in large databases with many objects: the
hash tables tend to degenerate because some buckets
must frequently be split whereas other buckets are not
used. Therefore, only hash functions that spread the
handles among the available buckets as uniformly as
possible were used in this study. OIDs were generated
in an incremental manner (e.g., if object 1065 was just
created, the logical OID of the next object that will
be created will be 1066). In this approach, clustering
cannot be exploited; but, the hash tables can easily be
tuned if the size of the database is known.

As opposed to hashing, clustering can well be ex-
ploited in a B-tree using a sophisticated key generation
algorithm. Given a “near” hint, i.e., the OID of a re-
lated object, the leaf page that records the mapping
of the related object is looked up, and the OID of the
new object is generated so that the handle of the new
object is recorded in the leaf page. If the favored leaf
page is full, the new mapping is recorded in a new (log-
ically) adjacent leaf page according to the tuned split
policy described in Section 3.1.2.

4.1.2 Direct Mapping

Using direct mapping, a name server has the flexibility
to place the handle of a new object on a new, empty
handle page or on any existing handle page that still
has a free slot. In particular, just like with B-trees,
the handles can be clustered into handle pages taking

22

Data Pages

Handle Pages

Figure 4: Linear Placement of Handles

slot=1

slot=2

slot=3

Figure 5: Matrix Placement of Handles (Handles refer
to the data pages shown in Figure 4.)

into account how the corresponding objects are placed
into data pages. The handles of logically related ob-
jects that were placed into the same partition of the
database can, therefore, be clustered together, and a
large set of objects can be read inducing only a few
additional page faults to map their logical OIDs.

Two different approaches to place handles into han-
dle pages were investigated in this work: handles were
either clustered linearly or following a matrix scheme.
Ideal linear clustering of handles is shown in Figure 4.
Handles are placed into handle pages in the same order
as the corresponding objects are placed into the data
pages. As a consequence, the handles of objects that
are located in the same data page are located in the
same or an adjacent handle page.

If a page-server is used to ship data to the clients,
the linear placement of handles can often be improved
because subsequent requests to handles referring to ob-
jects that are located in the same page are very seldom.
When an application requests the handle of an object
from the name server to read the object, it will get
the handles of all the other objects located in the page
by the page-server “for free” without asking the name
server [CDF+94].

To avoid handles of objects located in the same data
page of being placed into the same handle page, the
matrix scheme depicted in Figure 5 was devised. The
handle pages are organized in logical files. The handle
of the first object of every data page (i.e., the object
stored in the first slot) is placed into a handle page of
the first file; the handle of the second object of a page
is placed into a page of the second file; and so on.

Matrix placement significantly outperforms linear
placement if objects are read sequentially. For exam-
ple, if the objects 01 to 09 are read sequentially, and

only the OIDs 01, 04 and 07 must be mapped, the
name server accesses only one handle page if matrix
placement is used (cf. Figure 5) as compared to two
handle pages with linear placement (cf. Figure 4). On
the other hand, linear placement outperforms matrix
placement if the OIDs of objects located in a few data
pages and in different slots must be mapped. For ex-
ample, if the OIDs 06 and 07 must be mapped, the
name server accesses one handle page with linear place-
ment and two handle pages with matrix placement.

Both the linear and the matrix placement of han-
dles rely like the B-tree on the quality of the initial
placement of objects into data pages. Of course, the
handles will not be clustered very well if the corre-
sponding objects are not clustered well. But, taking
the placement of objects into account is definitely the
best bet to cluster handles.

4.2 Reorganization

The handle pages cannot be reorganized to improve
clustering regardless of whether hashing, B-trees or
direct mapping is used in a name server. In particu-
lar, handle segments cannot be reorganized if the cor-
responding data segments are reorganized. If direct
mapping is used, a handle must be stored in the page
in which it was placed at time of creation until the
corresponding object is deleted from the object base,
since references to the object (logical OIDs) directly
refer to the handle in that page. As a consequence, the
clustering properties of a handle segment described in
the previous section (e.g., linearity) are not preserved
if the corresponding data segment is reorganized. If
the data segments are fairly small, however, a handle
page will, nevertheless, contain many handles of log-
ically related objects after a reorganization of a data
segment.

Using hashing, the hash function determines in
which bucket (handle page) a handle is stored. It is,
in general, impossible to find a (new) hash function
that places handles that are requested by the same
methods into the same buckets. If a B-tree is used
to map logical OIDs, the handles of adjacent logical
OIDs are stored in the same leaf page of the B-tree;
the re-ordering of entries and, thus, the allocation of a
new OID for an object, must be precluded like in the
other mapping techniques.

5 Benchmark Environment

5.1 Software Used

The performance of an isolated, centralized name
server was analyzed in a client/page-server system; i.e.,
there was only one name server running, and this name
server was separated from the page-server. At page-
fault time, the clients passed the logical OID of an
object to the page-server. The page-server called the
name server which was run on the same workstation
to map the OID and determine the home page of the

23

number of size of the size of the mapping file
objects database LH BT DM

small 200,000 40 MB 13 MB 9MB 5MB
large 5,000,000 1 GB 252 MB 204 MB 118 MB

Table 1: Characteristics of the Small and the Large Database

Pages per module (n)
Reference pattern
Number of hot modules

Sequential Random Hot
5,000 50 500
scan select, T = 5 select, r = 500
0% 0% 5%

Probability of choosing a hot module 0% 0% 80%

Table 2: Workload Parameters
requested object. Then, the page-server shipped the
home page of the requested object together with the
handles of all the other objects located in the page to
the client.

Three different mapping techniques were studied:

(1) Linear Hashing. For the performance experi-
ments, linear dynamic hashing was used in the same
way as described in [Lit80]. The hash table was tuned
for every object base individually given the (a-priori)
knowledge of how many OIDs had to be recorded. As
a consequence, the storage utilization of the hash table
was almost 100% in all the experiments; no overflow
buckets were required; and an OID could be mapped
with at most one page fault. A bucket of the hash
table contained at most 80 entries.

scan. An application read sequentially all the
objects of a module. In this operation, the name
server was called n times, once for the first object
of every page; the handles of the other objects lo-
cated in the page were provided by the page-server
when the page was shipped to the application.

select r. An application read r different random
pages of the module and accessed an arbitrary
object of every page. In all, the name server was
called T times for every module.

(2) B-Tree. Bf-trees were used [BM72]. A leaf of
the B+-tree always held more than 80 entries (usually
about loo), since prefix compression was enabled and
the tuned split policy devised in Section 3.1.2 was used.
The height was three for the large database and two
for the small one (the small and the large database are
described in the following section).

Table 2 defines the three different workloads that
were studied. In every workload, transactions were
submitted serially to the system. Every transaction
operated on one module and carried out either a scan
or a select on the module-depending on the workload.
The number of page faults per request caused by the
name server was recorded depending on the number
of main-memory buffer frames that were available to
cache handles.

(3) Direct Mapping. Using direct mapping, a han-
dle page contained at most 170 entries because only the
handles and unique fields of objects had to be stored.

In the Sequential and Random workloads every
module was used by a transaction with the same prob-
ability. The Sequential workload scanned large mod-
ules, while Random navigated in small modules. The
third workload, Hot, measured the influence of local-
ity in the access profile. 5% of the modules were “hot”
and used by 80% of the transactions.

Regardless of which mapping technique was used, all For each workload, the following placements of han-
the logical OIDs were 12 bytes long. dles were considered:

5.2 Benchmark Used

To verify the scalability of the mapping techniques,
the experiments were carried out against a large ob-
ject base with 5 million objects and a small object base
with 200,000 objects. The size of a page was 4K and
every page contained 20 objects. Thus, the large ob-
ject base had 250,000 pages (1 GB) and the small one
10,000 (40 MB). Table 1 summarizes the characteris-
tics of the small and the large database.

Linear Hashing. In the case of Linear Hash-
ing (LH), the placement was dictated by the hash
function, which distributed the handles uniformly
over the buckets.

B-Tree. The handles were placed according to
the object placement (cBT) and randomly (rBT).

The databases were divided into m modules. Ev-
ery module consisted of n = p/m pages and n * 20
objects with p = 250,000 for the large database and
p = 10,000 for the small database, respectively. Two
different reference patterns were taken into account:

Direct Mapping. Linear (clDM) and matrix
clustering (cmDM) were used as described in Sec-
tion 4, as well as a random placement (rDM).

The benchmark is illustrated in Figure 6. Figure 6a)
shows the clustered placement of handles, which is the
best case that can be achieved. Figure 6b) shows the
random placement, where the handles have a worst

24

Scan Select Scan Select
I H I H

Database I----- --m Database (-------)

Handles

a) Clustered Placement
Figure 6: Illustration

case clustering. This worst case clustering occurs, for
example, when the object base has been severely reor-
ganized.

6 Performance Analysis

The performance analysis was divided into three parts.
First, the retrieval performance of all the mapping
techniques was compared using the three workloads
described in the previous section. Second, the two
placement policies for direct mapping were analyzed.
Third, the recording of new mappings, i.e., the cre-
ation of new objects, was investigated.

6.1 Comparison of the Mapping Techniques

The results using the Sequential workload are pre-
sented in Figure 7. The left plot, Figure 7a), was
obtained using a small database; the right one, Fig-
ure 7b), using a large database. In both figures, the
number of buffer frames used by the name server is
plotted against the X-axis. For the large database, the
range was from 500 pages (2 MB) to 3000 pages (12
MB). In proportion to the size of the mapping files,
the same range of buffer sizes were studied with the
small and with the large database.

Linear Hashing had almost constant retrieval per-
formance regardless of how much buffer was available.
The accesses were evenly distributed over the hash ta-
ble, which had about 63,000 pages in the large data-
base. The effect of buffering on the performance was
not significant because only a small fraction of the
total table could be cached (e.g., 5% if 3,000 buffer
frames were available). The B+-tree with randomly
clustered handles (rBT), on the other hand, took ad-
vantage of an increasing number of buffer frames by
caching more internal nodes of the first levels. If the
buffer was very small compared to the size of the Bf-
tree, however, the Bc-tree was outperformed by the
hash table. If the handles were clustered randomly,
direct mapping performed a little better than both
hashing and the B+-tree because it used significantly
less disk space (about 30,000 pages).

If the handles were clustered, the strength of B-
trees and direct mapping was exhibited. Not all
the inner nodes of the B+-tree had to be cached to
achieve good performance in this case, since only a
single, narrow path from the root to the leaves had
to be descended for each module. The leaves occu-

The graphs obtained from the Hot workload (Fig-
ure 9a) and Figure 9b) have almost the same shape as
the graphs obtained from the previous two workloads.
This workload demonstrated an important property:
long-term caching of handles that are used by many
applications is often neglect-able. The performance of
a mapping technique is completely dominated by the
effect of clustering and the effort to loud handle pages
to serve a single application. If the handles are not
Elustered well, it is not possible to buffer the handles
>f a small subset of the database with a reasonable
amount of buffer space. In the Hot workload, even the
1 handles of the 5% hot objects could not be cached.
Furthermore, direct mapping and the B-trees had al-

Handles c

b) Random Placement
of the Benchmark

pied about 1,000 pages per module, which resulted
in 1,000 page faults/5,000 requests per module = 0.2
page faults per request. Analogously, direct map-
ping with linear placement (clDM) occupied about 600
pages per module and had therefore about 0.12 page
faults per request (600/5,000 = 0.12). The best per-
formance was achieved by using direct mapping with
a matrix placement of handles. Here, all the relevant
handles of a module that were required in the scan op-
eration were clustered together into 30 handle pages.

The plots for the small and the large database are
almost identical. No anomalies could be observed for
the large database. This observation was also made
for the Random and Hot workload.

In the Random workload, it was significantly more
difficult to take advantage of the clustering of an ob-
ject base. Therefore, the performance of direct map-
ping and B-trees with clustered handles decreased as
compared to their performance in the Sequential work-
load. Nevertheless, direct mapping and B-trees prof-
ited from clustering, since the handles for a single mod-
ule occupied only few adjacent pages. The results for
the Random workload are shown in Figure 8a) (small
database) and Figure 8b) (large database). Note that
direct mapping with a matrix placement performed
worse than with a linear placement of handles. This
phenomenon is examined in detail in the next section.

The possibility to cache the inner nodes of a B-tree
was more important in the Random than in the Se-
quential workload. This is documented by the slight
bend in the curve for the clustered B-tree at the point
where a significant portion of the inner nodes could be
cached. The hash table had almost the same perfor-
mance as in the Sequential workload.

25

1.6
a) Small, Sequential

0.6 .

0.6 -

0.4 -

0.2 _ + + + + +__... + &-r _

,_*.. _*_. *.*.” ,.,DM

o- -
. cmDM

20 40
B%r Sire

100
FrYpages]

120 140

b) Large, Sequential

+ 3 + ..___....._... t__. t t CB-r

m _._ . + _._ _. t... .._ .._ _ . . _ _ _. _. - c,DM

a _ cmDM

00 loo0 1500 2000 2500 3000
Buffer Size [in pages]

Figure 7: The Sequential Workload

a) Small, Random b) Large, Random

0.2 - 0.2 .

0 0
20 40 60 60 100 120 140 500 1000 1500 2000 2500 3000

Buffer Size [in pages] Buffer Size [in pages]

Figure 8: The Random Workload

most the same performance as in the Sequential work- ule. 1,000 Pages main-memory buffer space were used
load, although the reference pattern was completely by the name server to cache handles. Figure 10 sum-
different. marizes the results.

The sharp bends for the clustered B-tree and di-
rect mapping in Figure 9a) show the point at which
the handles of the objects of one module could com-
pletely be buffered by the name server. When a mod-
ule was loaded by an application, no additional page
faults were required to re-access a handle page.

In summary, direct mapping outperformed the
other two techniques in all cases. No clear winner
could be identified between Bf-trees and linear hash-
ing: if there was only little buffer space available and
the handles were not clustered well, hashing performed
better. Otherwise, the Bf-trees had less page faults
per request. Here, we must keep in mind that the
hash tables were perfectly tuned; the initial size was
determined individually for the small and the large
database.

If the handles were placed randomly into the handle
pages (the rDM curves), a little less than one page fault
per request was required independent of the module
size and the reference pattern. If the handles of a
module were clustered (the clDM and cmDM curves),
the performance of direct mapping improved with the
size of a module. This effect will be illustrated by the
following example.

6.2 Clustering Performance of Direct Map-
ping

The 100 handles corresponding to a module with
5 pages and 100 objects were located in one or two
handle pages with a capacity of 170 handles using the
linear placement policy. Approximately, 1.5/5 page
faults per request could, therefore, be observed when
an application loaded a module (see the clDM curves).
On the other hand, to load a module with 1,000 pages
and 20,000 objects, 20,000/170 = 118 handle pages
had to be read and only 118/1,000 page faults per
request could be observed.

To compare the linear and matrix placement policies,
a second set of experiments was carried out using di-
rect mapping only. The Sequential and Random work-
loads were run against the large database (i.e., 5 mil-
lion objects) with a varying number of pages per mod-

Working with large modules was more important if
the handles of a module were clustered and the matrix
placement policy was used in the Random workload.
The handles of a module with 5 pages were placed into
20 handle pages to avoid that the handles of objects
that were located in the same data page were located

26

a) Small, Hot
1.6 2 1.6 ,

b) Large, Hot

i :f : \ t ...~ LH :
lx

*;r-z-I -... *;;_; ,_..C -._..._.._

8

j ‘I’ ‘km I
---*---.--.s. ...-.-...)..,..---I rBT

1 _ *-: z;-.:-&!-., .~ Ir-.&y-y -... _._ _. . .

rDM
2

Il.- -.. . . .* rDM

32
0.6-

*x1_
.. . .._._ 0.6 .

2
&>.5,

-4. e

0.6 -
El

‘.k::.
-..._

.-ye. 1 0.6 _
‘“, , x.

2 0.4 - “.>‘> ‘l..
i%

%. ‘... 2 0.4 -

0.2 - ‘1%.
‘r...

%.
L,.

“k --________
0.2 -

I::,
+------- + .__._____.__

0 4
~::-.x.:;;.“+p. ““-,‘,p-.~:~.::~-.~;~ 9-.;‘:1---=,-ow.~.~,.,.~ ,.__ “~ ,,,.. _ --+-------.-------+___._.___.____........ -t g$ b M

0.8
,_,_,_ “_ ,.,_ “_ ,... ~ _,-, c,DM

20 40 100
BBr Size {fpages]

120 140 500 1000 1500 2000 2500 3000
Buffer Size [in pages]

Figure 9: The Hot Workload

a) Large, Sequential b) Large, Random

1 - rDM 1 - rDM , ._____._.....___ + _..... * . . + . . . -..+ +.----_- . ..____ + +-.----r--.------~

si 0.6 - ‘:,..,, si
J J
s B
IL

0.6- ::..
cc

$ B
e 2

2 0.4 - z

% zi
0” p”

clDM 0.. . . 0 ~ .._......_ B ._..... % 0 1

cmDM
O-------,..’ T ,...., - 0 ” “““‘I ““‘8 “-

1 10
Module Size ${n Pages)

1030 1 10 100 loo0
Module Size (n) [in pages]

Figure 10: Linear vs. Matrix Placement

in the same handle page. Usually at least 4 of these
5 handle pages had to be accessed to carry out the
select operation on a module, and more than 415 page
faults per request could be observed. If the modules
were large, however, the handles of a module could be
placed into a small number of handle pages, and the
property of matrix placement could be achieved at the
same time.

Unlike the linear placement policy, matrix place-
ment profited from the particular reference pattern of
the scan operation. The performance of direct map-
ping with a linear placement of handles was indepen-
dent of the reference pattern in which the objects of a
module were accessed. The performance of the matrix
placement policy, on the other hand, improved if the
OIDs of objects located in some particular slots of the
data pages must be mapped very often. In the scan
operation, only the OIDs of the objects located in the
first slot of a data page were mapped, and thus, direct
mapping with linear placement showed up to 25 times
as many page faults per request than direct mapping
with matrix placement in the Sequential workload with
large modules. Skew in the retrieval of objects from
certain slots can also be observed if not all the objects
have the same size and some quite large objects exist
as well. In this case, objects will also more often be re-
trieved from the first slot of a page than from the tenth

slot because many pages do not contain 10 objects.

6.3 Recording New Mappings

Table 3 studies the performance of a name server when
new objects are created, and thus, new mappings must
be recorded. New objects were placed into new data
pages of the large database; again, a new data page
contained exactly 20 objects before another data page
was allocated to hold new objects. After the creation
of an object, a large number of random retrieval oper-
ations was carried out using a buffer with 1000 pages.

Method Faults/New Object
Direct Mapping 0.006
B-Tree 0.01
Linear Hashing 1
LH (after first split) 2.2

Table 3: Creating New Objects

For the B-tree, the OIDs were generated in an as-
cending order. The leaf page into which a new map-
ping was recorded last was kept main-memory resi-
dent. In addition, the buffer was large enough to keep
the relevant inner nodes while the retrievals were car-
ried out. Since the tuned split policy described in Sec-
tion 3.1.2 was used and approximately 100 mappings
could be recorded in a leaf page, one new leaf page per

27

100 new objects had to be allocated (considered as a
page fault in Table 3), and no additional page faults
to read nodes of the B-tree were required.

Analogously, the last 20 pages used to record new
handles were kept main-memory resident using direct
mapping with the matrix placement policy. Since
170 handles could be placed into a handle page,
l/170=0.006 page faults per new object could be ob-
served.

For linear dynamic hashing, the hash function tried
to place the mappings of the new objects uniformly
into the existing buckets. As a consequence, approxi-
mately one page fault could be observed if no overflows
occured, just as in the retrieval benchmarks. After the
first overflow was generated and the hash table was
split using Litwin’s original criterion [Lit80], 2.2 page
faults were required on an average to record a new
mapping.

7 Conclusions and Future Work
In this work, three techniques to implement logical
OIDs were investigated. Of these three techniques,
direct mapping is the most robust. Direct mapping
scales well in large object bases, and at most one page
fault is required to map an OID; recording a new map-
ping is very cheap and seldomly induces a page fault.
In addition, no applications are blocked by the name
server if new objects are created or existing objects
are moved. If separated and given enough resources
(for example, a disk drive could be reserved to store
the mapping information), a name server using direct
mapping, therefore, is usually not the bottleneck of a
system. For example, a disk drive could be reserved
to store the mapping information.

Between hashing and B-trees, no clear winner can
be identified. If much main-memory buffer space is
available for the name server, a B-tree has the same
or better performance than a hash table. If only little
buffer is available, the B-tree is often outperformed by
a tuned hash table.

The performance of B-trees and direct mapping im-
proves dramatically when the handles of logically re-
lated objects are clustered. For direct mapping, two
placement policies were devised and compared:

l linear clustering: the handles are placed into
handle pages in the same order as the correspond-
ing objects are placed into the data pages;

l matrix clustering: the handles of objects that
are located in the same data page are never placed
into the same handle page.

In a system that uses a page-server to ship data,
much of the potential of clustering handles is wasted
using the linear placement policy. Matrix clustering
has at least the same performance as linear clustering if
the locality sets accessed in the object base were fairly
large. For particular reference patterns, it significantly
outperforms linear clustering.

In future work, we intend to investigate the bulk
loading of objects and the bulk allocation of new OIDs
in detail. If OIDs are recorded and mapped in bulk-
instead of one by one--additional tuning can be ef-
fected regardless of which mapping technique is used.

Acknowledgments. We would like to thank Alfons
Kemper for his continuous support and his comments
on a draft of this paper. Stefan Augustin implemented
the B+-tree with prefix compression, bulk-loading and
other important features. Uwe RGhm implemented
and tuned linear dynamic hashing. We would also like
to thank Jeff Galarneau from Itasca Systems, Inc., for
giving us details on the mapping technique used in
Itasca. This work was supported by the German Re-
search Council DFG under contract Ke 401/6-2 and
by the Humboldt-Stiftung.

References
[Ahn93]

[AK891

[BM72]

[BR90]

[CDF+94]

[Chu92]

[COL92]

[Corn791

[DSZSO]

I. Ahn. Filtered hashing. In Proc. of the
Id. Conf. on Foundations of Data Organiza-
tion and Algorithms (FODO), volume 730 of
Lecture Notes in Computer Science (LNCS),
pages 85-100, Chicago, IL, October 1993.
Springer.

S. Abiteboul and P. C. Kanellakis. Object
identity as a query language primitive. In
Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 159-173, Portland, OR,
USA, May 1989.

R. Bayer and E. M. McCreight. Organization
and maintenance of large ordered indices. Acta
Informatica, 1(3):173-189, 1972.

A. Brown and J. Rosenberg. Persistent ob-
ject stores: An implementation technique. In
Dearle et al. [DSZSO], pages 199-212.

M. J. Carey, D. J. Dewitt, M. J. F’ranklin,
N. E. Hall, M. L. McAuliffe, J. F. Naughton,
D. T. Schuh, M. H. Solomon, C. K. Tan, 0. G.
Tsataios, S. J. White, and M. J. Zwilling.
Shoring up persistent applications. In Proc. of
the ACM SIGMOD Conf. on Management of
Data, pages 383-394, Minneapolis, MI, USA,
May 1994.

S. M. Chung. Indexed extendible hashing. In-
formation Processing Letters, 44(1):1-6, 1992.

C. Y. Chan, B. C. Ooi, and H. Lu. Extensi-
ble buffer management of indexes. In Proc. of
the Conf. on Very Large Data Bases (VLDB),
pages 444454, Vancouver, Canada, 1992.

D. Comer. The ubiquitous B-tree. ACM Com-
puting Surveys, 11(2):121-137,1979.

A. Dearle, G. Shaw, and S. Zdonik, editors.
Implementing Persistent Object Bases, Prin-
ciples and Practice, Proc. of the 4th Inter-
national Workshop on Persistent Object Sys-
tems, Their Design, Implementation and Use,
Martha’s Vineyard, September 1990. Morgan
Kaufmann.

28

[ED881

[FNPS79]

[GKKM93]

[GR93]

[HZ871

[Ita93]

[KC861

[KM941

[KSW92]

[KW94]

[Lar88a]

[Lar88b]

[Lit801

[Lit881

R. J. Enbody and H. C. Du. Dynamic hashing
schemes. ACM Computing Surveys, 20(2):85-
113, June 1988.
R. Fagin, J. Nievergelt, J. Pippenger, and
H. Strong. Extendible hashing-A fast access
method for dynamic files. ACM Trans. on Da-
tabase Systems, 4(3):315-344,1979.

C. Gerlhof, A. Kemper, C. Kilger, and G. Mo-
erkotte. Partition-based clustering in object
bases: From theory to practice. In Proc. of the
Intl. Conf. on Foundations of Data Organiza-
tion and Algorithms (FODO), volume 730 of
Lecture Notes in Computer Science (LNCS),
pages 301-316, Chicago, IL, October 1993.
Springer.
J. Gray and A. neuter. Transaction Pro-
cessing: Concepts and Techniques. Morgan-
Kaufmann Publ. Co., San Mateo, CA, USA,
1993.
M. Hornick and S. Zdonik. A shared, seg-
mented memory system for an object-oriented
database. ACM Bans. Ofice In. Syst.,
5(1):70-95, January 1987.

Itasca Systems Inc. Technical summary for
release 2.2, 1993. Itasca Systems, Inc., 7850
Metro Drive, Mineapolis, MN 55425, USA.

S. N. KhoshaSan and G. P. Copeland. Object
identity. In Proc. of the ACM Conf. on Object-
Oriented Programming Systems and Lan-

guages (OOPSLA), pages 408-416, November
1986.
A. Kemper and G. Moerkotte. Object-Oriented
Database Management: Applications in Engi-
neering and Computer Science. Prentice Hall,
Englewood Cliffs, NJ, USA, 1994.

N. Kiesel, A. Schiirr, and B. Westfechtel. De-
sign and evaluation of GRAS, a graph-oriented
database system for engineering applications.
Technical Report 92-44, RWTH Aachen, D-
52056 Aachen, 1992.
A. Kaplan and J. C. Wileden. Conch: Ex-
perimenting with enhanced name management
for persistent object systems. In Proc. of
the Intl. Workshop on Persistent Object Sys-
tems (POS), Workshops in Computing, pages
318-331, Tarascon, France, September 1994.
Springer.

P.-A. Larson. Dynamic hash tables. Commu-
nications of the ACM, 31(4):446457,1988.

P.-A. Larson. Linear hashing with
separators-A dynamic hashing scheme
achieving one-access retrieval. ACM Trans.
on Database Systems, 13(3):366-388, Septem-
ber 1988.
W. Litwin. Linear hashing: A new tool for file
and table addressing. In Proc. of the Conf. on
Very Large Data Bases (VLDB), 1980.

W. Litwin. Trie hashing. In Proc. of
the ACM SIGMOD Conf. on Management of
Data, pages 19-29, Chicago, IL, USA, May
1988.

[MGH+94] J. Mitchell, J. Gibbons, G. Hamilton,
P. Kessler, Y. Khalidi, P. Kougiouris,
P. Madany, M. Nelson, M. Powell, and S. Ra-
dia. An overview of the Spring system, 1994.

[MHL+92] C. Mohan, D. Haderle, B. Lindsay, H. Pira-

[ML921

[Moc87]

[Moh92]

[MS871

[Oto88]

[SO921

[Sun931

[Wats11

[WB94]

[WW90]

hesh, and P. Schwarz. ARIES: A transaction
recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead
logging. ACM Trans. on Database Systems,
17(l), March 1992.

C. Mohan and F. Levine. ARIESfIM: An effi-
cient and high concurrency index management
method using write-ahead logging. In Proc. of
the ACM SIGMOD Conf. on Management of
Data, pages 371-380, San Diego, USA, June
1992.

P. Mockapetris. Domain names - concepts and
facilities. RFC 1034, USC/Information Sci-
ences Institute, November 1987.

C. Mohan. ARIES/LHS: A concurrency con-
trol and recovery method using write-ahead
logging for linear hashing with separators.
Technical Report RJ8682, IBM Almaden Re-
search Center, March 1992.

D. Maier and J. Stein. Development and im-
plementation of an object-oriented DBMS. In
B. Shriver and P. Wegner, editors, Research
Directions in Object-Oriented Programming,
pages 355-392, Cambridge, MA, 1987. MIT
Press.

E. J. Otoo. Linearizing the directory growth in
order preserving extendible hashing. In Proc.
IEEE Conf. on Data Engineering, pages 580-
588, Los Angeles, CA, USA, 1988.

M. Sullivan and M. Olson. An index im-
plementation supporting fast recovery for the
POSTGRES storage system. In Proc. IEEE
Conf. on Data Engineering, pages 293-300,
Tempe, AR, February 1992.

SunSoft. NIS to NIS+ transition guide. Man-
ual, December 1993.

R. W. Watson. Identifiers (naming) in dis-
tributed systems, volume 105 of Lecture Notes
in Computer Science (LNCS), chapter 9, pages
191-210. Springer, 1981.

D. L. Wells and J.A. Blakeley. Distribution
and persistence in the open object-oriented da-
tabase system. In T. Ozsu, U. DayaI, and
P. Valduriez, editors, Distributed Object Man-
agement, San Mateo, CA, USA, May 1994.
Morgan-Kaufmann Publ. Co.

I. Williams and M. Wolczko. An object-based
memory architecture. In Dearle et al. [DSZSO],
pages 114-130.

29

