
Relating Distributed Objects

Bruce E. Martin
sunsof~ Inc.

2550 Garcia Avenue
Motmtain View, California 94043 USA

BruceE.Marti@eng.stm.com

Abstract
Many relational and object-oriented database sys-
tems provide referential integrity and compotmd
operations on related objects using relationship
mechanisms. Distributed object systems are
emerging to support applications that access
objects across distributed, heterogeneous system
boundaries. Because the fundamental assump
tions of distributed, heterogeneous, federated
computing systems differ from database systems,
supporting object relationships in such an envi-
ronment requims different approaches to the rep-
resentation and manipulation of relationships
than those traditionally used in database systems.
This paper describes the Relationship Service for
SunSoft’s Distributed Object Environment
(DGE). We describe the fundamental assump-
tions of distributed object systems and motivate
our design in that wntext.

Keywords: relationships, object-oriented sys-
tems, complex objects, distributed computing.

1.0 Introduction

Relationships are a fundamental and useful data modeling
wnstrnct in a wide variety of data aud object mauagemem
systems. Their imporumce to database systems was under-
scored in both the relational model and entity-relationship
modeling extensions [3]. In this first section. we examine

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its a&e appear. and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
andior special permission from the Endowr?zent.

proceedings of the 20th VLDB Conference
!i&mtiago, Chile, 1994

R.G.G. Cattell
sunsoft, Inc.

2550 Garcia Avenue
Mountain View, California 94043 USA

Rick.Cattell@eng.suu.com

some basic properties of relationships. We then proceed to
look at distributed object systems and the use and realiza-
tion of relationships in that context.

1.1 Entity-Relationship Model
Relationships are associations between logical entities
[lo]. A system may automate the representation. mainte-
nance, aud use of relationships in a variety of ways:

It may provide identifiers to use in creating mlation-
ships, e.g., primary keys in the relational model or
object IDS in au object-oriented model, and it may
allow bidirectional traversals as well as more complex
queries of relationships based on the entities involved.

It may provide a mechanism to define, examine, and
modify relationships. This may include constraining
the roles of a relationship according to the types of
entities that may be related.

It may provide referential integrity constraints. Refer-
ential integrity may be defined with varying levels of
sophistication; for example, a system may simple
avoid dangling references or it may manage the exist-
ence of objects based on relationships.

It may support more advanced relationship constraints,
e.g. to define the carahdity of relationship roles.

The most sophisticated systems allow selective propa-
gation of operations such as copy and delete through
relationships between entities (sometimes called com-
pound or composite objectN91

Some of the early relational DBMS products had little or
no support for relationship constraints and referential
integrity, but the industry has moved steadily in this direc-
tion with user demand. Object-oriented DBMS vendors
have recognized the importauce of good relationship sup-
port[ll[21. Relationships can also be useful in program-
* languages.

1.2 Relationships in Distributed Object Systems
The topic of this paper is relatiaaships in distributed
object systems. The mechanisms aud implementation of

730

FIGURE 1. A distributed object system allows objects to request the services of other objects, possibly across
heterogeneous system boundaries. On the left, an object requests the services of another object in the same system. On
the right, an object requests the service of au object in another system by way of a surrogate object.

relationships in the context of distributed objects are quite
different than in database systems. It is not possible to
make the same assumptions as in the case of a monolithic
database system from one vendor, where a data schema
can be consulted for information about all the relationships
one could happen upon, and the entities and relationships
are always accessible.
We now proceed with au overview of distributed object
systems. We then describe how SunSoft’s Relationship
Service provides relationships in a distributed object sys-
tem. We will motivate our design based on the fundamen-
tals of distributed object systems.

2.0 Distributed Object Systems

Distributed object systems[41161 are emerging to support
applications that access objects across distributed, possi-
bly heterogeneous system boundaries. Such systems
deline a distributed object model that is mapped appropri-
ately to native concepts in a wide variety of systems. Sys-
tems beii bridged include database systems. 6le systems
and persistent programming languages.

Distributed object systems embody the following princi-
ples:

l All entities are modeled as objects.

l Interfaces. not implementations, define objects.

l Distribution is inherent.

l There are no predefined universal scopes.

l Distributed object systems are open.

After discussing these principles in more detail, we
describe and motivate our design for providing relation-
ships in a distributed object system.

All entities HIT modeled as objects
In a distributed object system all entities are modeled as
objects. Although the systems being bridged by a distrib-
uted object system may include entities that are not
objects, they are not available across system boundaries
unlas they can be presented as objects.

Objects are accessed by clients using object references.
Object references can be passed from one object to
another. A client object holding an object reference for a
target object can make a request for its services. The
request may be local or it may cross heterogeneous system
and administrative boundaries. It is the distributed object
system’s job to mask the differences from the client
object.

Fii 1 illustrates a client object requesting the services
of another object in the same system.The figure also illus-
trates a client object issuing a request on an object in a dif-
ferent system via a surrogate object. The surrogate object
represents the remote object locally. The client object can-
not distinguish the surrogate object from the remote
object.

Interfaces, not implementations, define objects
In a distributed object system, objects are defined by their
inter-ices. An interface spedes a set of operations that
defines the behavior of the object. The implementation of
an object is separate and invisible; clients cannot depend
al implementation properties, such as programming lan-
guage, transient representation or persistent storage of the
object. There can be multiple implementations of an inter-
face. An interface does not imply any particular imple-
mentation(s), and a new implementation of any type of
object may be added at any time.

This independence from implementation greatly simpli-
fies object interaction, especially across heterogeneous
system boundaries. (See 151. 1111 for more discussion of
separating interfaces fiom implementations.)

731

The independence from implementation also implies that
there can be no distributed object system functionality that
depends on implemematiian properties. In a database sys-
tem, it is possible to provide “behind the scenes” function-
ality. For example, a database system cau manipulate disk
pages holding object state. In a distributed object system,
there can be no such assumptions about the implementa-
tion of an object; all services must be expressed using
interfaceS.

Distribution is inherent
Distributed object systems are federated systems. Exist-
ing, disconnected heterogeneous systems am connected
and made to interoperate. Gateways mask differences
between systems by implementing mappings between con-
cepts in each system, including interfaces, object models,
object references and name spaces.

Distributed object systems have the potential of connect-
ing large numbers of objects across system and adminis-
trative boundaries. There should be no limit to this; that is.
the system should scale.

Federation and scalability lead to truly distributed system
objects. Services that depend on a single, centrally admin-
istered repository of information are not acceptable. In
particular, there is no authority, even a distributed one, that
has information about all objects or even part of the infor-
mation about all objects of one type. Instead, federated
services are connectedtootheriustancesofthesameser-
vice to widen their scope of discourse.

There are no predekwd universal scopes.
In a distributed object system, it is not possible to get to all
instances of a type; in contrast, you can 8.nd all the tuples
in a relation in a DBMS. It is not possible to query the
“known universe” - only explicitly maim&ed sets or
other scopes may be queried. For the same reasons, them
are no universal object identifiers: any identifier must be
relative to some explicit scope.

Distributed object systems are open
Heterogeneous systems consist of uxn<nents that typi-
cally come fran a variety of suppliers. In order fcr the
components to interoperate. the interfaces between the
components need to be standam. Implementations of the
components, however, need not be stamkud. Diierent sup
pliers can each provide implementations of a service sup
porting a standard interface.

Because the interfaces am standard, the services can be
federated and interoperate. Customers can construct the
best data management sohrticn for their needs from vari-
ous o&the-shelf interoperable components. Portions of
that solution may be upgraded without “break@” the mst
of the system, because encapsulation separates implemen-
tations from interfaces. Customers may choose from mul-
tiple vendors for each component, and from each vendor
they may choose au implementation “quality of service”

for a component based on their needs, e.g. for speed ver-
sus guaranteed distributed data consistency.

2.1 The Object Management Group
The Object Management Group (OMG) is promoting
standards for distributed object systems among system
software vendors. The OMG has currently defined two
sets of standards, known as CORBA and COSS. CORBA
is the axe communication me&msm which all OMG
objects use: it enables objects to operate on each other.
COSS provides standard services that support the integra-
tion of distributed objects.

CORBA
The Common Object Request Broker Architecture
(CORBA) [71 defines an interface definition language
(IDL) for objects. The language allows designers to spec-
ify inter-f= as a set of operations and attributes. The lau-
guage supports subtyping of interfaces. A function can be
passed au object that supports a subtype of the interface
expectedbythefunction.

The CORBA defines object references. Object references
are typed by interfaces specified in IDL. Object references
unify access to objects. The client using the object caunot
tell if the object beii accessed is local or remote. who
implements the object, or how it is implemented.

The CGRBA also defines an interface repository. The
interface repository contains descriptions of IDL inter-
faces. Such descriptions can be accessed at run time to
implement type-safe interobject communication. Federat-
ing CORBA compliant systems requires cormlating the
interfaces in different interface repositories.

toss
The Common Object Services Specifications (COSS) [81
defmes a set of services for distributed object systems.
TheservicesarespecifiedinOMGIDLandateintended
to operate in CORBA envir~ents. For flexibility, COSS
defines functional components at a finer g-rain than com-
plete DBMS functionality. All dependencies between
components are explicitly defined as interfaces so that
components from different sources interoperate.

Currently, COSS defines a name service for mapping
human readable names to object references, a persistence
service for persistently representing object state, an event
service for decarplmg communication between objects
and an object life cycle service for creating, copying,
moving and removing objects. Future specifications
include transactions, cxmcumncy control, externalization
and object relationships.

3.0 The Relationship Service

The Relationship Service has been designed to provide the
relationship functionality, useful for database applica-

132

tions, but given the principles of distributed object systems
outlkd in the previous section The service is SunSoft’s
response to the OMG’s request for relationship technol-
ogy. Although the service is implemented in the context of
the CORRA and COSS standards, the model we describe
applies to other distributed object systems as well.

The Relationship Service supports the creation and manip-
ulation of one-to-one, one-to-many and many-to-many
bii relationships between typed objects. The Relation-
ship Service enforces type, cardinality and referential
integrity constraints al relationships. The relationships
cau be navigated and enumerated.
When objects are umuected together using the Relation-
ship Service, graphs of related objects are formed. The ser-
vice supports compound operations on graphs.

3.1 Basic architecture of the Relationship Service
The Relationship Service supports the explicit representa-
tion of relationships between distributed objects. The ser-
vice de&s au object that suppcrts the Role interface. A
role represents an object in a relationship. Objects partici-
pating in relationships are called related objects.

Figure 2 illustrates the representation of the containment
relationship between a document and a figure and a logo.
The document, the figure and the logo am related objects.
The document contains the figure and the logo. The figure
and the logo m contained in the document. Comaimuent
is an example of a relationship. The Relationship Service
is extensible; programmers can define other, application-
specific, relationships.

0 Related Object

ContainedInRole

FIGURE 2. A document in a one-to-many containment
relationship with a figure and a logo.

In Figure 2. the ContainsRole is an object that represents
the document’s role in containment. The Containedh-
Roles are objects that nqresent the. figu16s role in contain-
ment and the logo’s role in conkmnent, respectively.

Since the related objects and the roles are distributed
objects, there can be arbitrary distribution boundaries

between them. As such, contaimnent in our example is a
logical concept, but not necessarily a physical concept. An
object on one continent could contain an object on
another. There am no implementation assumptions that
the dated objects m stored together.

Fii 3 gives the Role interface supported by all roles.
The set-related-object operation establishes a role as a
representative for an object in a relationship. The
get-related-object operatic returns that object.

interface Role I
set related-object(

in RelatedObject obj)
raises(TypeError,
AlreadySet);

get-related-object(
out RelatedObject obj)
raises(NotSet);

create-relationshipt
in Role peer,
out RelationshipId id)
raises(TypeError,
MaxCardinalityExceeded,
NoRelatedObject);

destroy-relationshipt
in RelationshipId id);

get-relationships(out
sequence<RelationshipId> ids);

get other-related-object(
in RelationshipId id,
out RelatedObject
other-object);

get-propagation attribuest
out PropagationAttributes pa);

FIGURE 3. The Role Interface

Connected roles represent bii relationships. The
create relationship operation creates a bidirectional con-
necticii between two roles and returns an identifier for the
relationship. The destroy-relationship operation removes
a binary relationship. The get relationships operation
en-rates all of the relationships in which the role par-
ticipates.
The get-other-related-object operation navigates a rela-
tionship and returns an object reference for the other
object in the relationship. In Fii 2. the
get_other_reated-object operation executed at the docu-
ment’s GmtainsRole would return the figure. given the
identifier for the relationship between the document and
the figure; similarly, the get_other_related-object opera-

733

tion executed at the figure’s ContainedIuRole would return
the document.

The getgropagation-attributes operation is discussed in
detail in Section 3.3.2. Roles also support fink and unlink
operations that roles use to communicate with each other
when relationships are created and destroyed.

Roles and Related Objects are typed by theii lDL inter-
faces. For example, in Figure 2 the behavior of the docu-
ment, figure and logo objects are de&d by the
Document, Figure and Logo interfaces. The roles of spe-
cilic relationships are defined by subtypes of the Role
interface. Thus, the ContainsRole and Containe&Role
interfaces are subtypes of the basic Role interface.
Because they are subtypes, it is possible to pass them to
functions that generically operate on relationships, that is,
code that depends only on the Role interface.

Related objects that participate in multiple relationships
are represented by multiple roles: one for each role the
object plays in each relationship. Fii 4 illustrates this.
Besides participating in the containment relationship, the
document also participates in a reference relationship with
the dictionary; the document references the dictionary aud
the dictionary is referenced by the document. The Refer-
encesRole represents the document’s role in the refetence
relationship while the ReferencedByRole represents the
dictionary’s role.

0 Related Object
l ContainsRole

0 ContainedInRole

ReferencesRole

ReferencedByRole

FIGURE 4. The document is also in a reference
relationship with a dictionary.

In the entity-relationship modelD1. the related objects are
“entities” and the role objects are the roles. An instance of
a relationship is represented by the identifier returned by a

role when a connection is made. The relationship type is
represented by the interfaces of the roles, as stored in the
CORBA interface repository. Relationship attributes are
represented as operations on roles, parameter&d by the
identitkr.

3.1.1 Rationale
The basic architecture of the Relationship Service has sev-
eral desirable properties for distributed object systems.
Roles do not iutroduce performance or availability bottle-
necks when navigating a relationship between distributed
objects. The configuration of related objects and roles can
be optimized appropriately for navigation or query func-
tionality. Finally, the service is scalable.

We discuss each of these in more detail.

Performance and Availability
A role represents a related object in a relationship. An
alternate approach introduces an object for each mlation-
ship, rather than roles. Our example of Fii 2 would
instead be represented by the ContainmentRelationship
objects of Figute 5.

1 Related Object

ContainmentRelationship

FIGURE 5. An alternate approach: relationship
objects rather than roles.

Ibis approach can introduce performance and availability
bottlenecks when navigating a relationship between dis-
tributed objects. In a distributed object system, the cost of
accessing a remote object is far greater thau the cost of
accessing a local object. Furthermore, remote objects can
fail independently and thus be availability bottlenecks. In
short, distribution boundaries are sign&ant.

Consider the example. If the relationship object is iso-
lated, that is it is not clustered with either the document or
the figure, navigating the relationship from the document
to the figure necessarily involves a remote request to the
relationship object. Furthermore, the relationship object
must be available. It effectively decreases the availability
of navigating from the document to the figure because it
introduces a new point of failure.

734

Rather than isolating the relationship object, we could
cluster the relationship object with either the document or
the figure. While this would improve the navigation per-
formance in one direction, it would still require a remote
request in the other direction.

We rejected the relationship object approach in favor of
roles. When related objects are clustered with their roles,
navigating a relationship between distributed objects does
not illtmdm performance or availability bottlenecks.
Figure 6 illustrates our example con@red this way.

Navigating the relationship from the document to the fig-
ure does not require a remote request. Fmthermore, since
an related object and its roles am clustered, they fail
together; the roles do not introduce availability bottle-
lledcs.

Related Object
ContaiusRole
ContaiuedIuRole
distribution boundary

FIGURE 6. Clustexing roles with the related objects

Flexible Configuration
Figum 6 ilhrstrates a configuration of related objects and
roles that is optimixed for applications that navigate dis-
tributed objects. However, for applications that require
efficient querying of relationships, clustering roles is a
more appropriate con@uration. Figure 7 illustrates the
roles for several conknment relationships clustered
together.
The Relationship Service depends only on the Role inter-
face. It does not depend on how the implementations of
roles and related objects are clustered. Several ccnfigura-
tions. including those of Fii 6 and Fii 7, ate possi-
ble.

Scalable
Roles can be created independently, anywhere an iustat~~
of the Relaticatship Service exists. Since them is no single
authority manag& all roles, the service scales; creating a
new role does not incur an additional distributed system-
wide overhead. The Relationship Service is a federated
service. Roles implemented by one instance of the service
can be connected to roles implemented elsewhere.

B doalments

0 Related Object
ContainsRole
ContaiuedIuRole -
distribution boundary

FIGURE 7. Clustering roles enables efficient
querying of relationships

Because them is no single administrative authority, it is
not possible to enumerate or query all of the relationships
of the universe. As shown in Fii 7. however, it is pos-
sible to efficiently enumerate or query all of the relation-
ships for some well-defined scope.

3.2 Relationship Constraints
The Relationship Service enforces several constraints on
the relationships between objects. In particular, the service
allows type, cardinality and referential integrity con-
straints to be expressed and enforced.

Relationships are constrained by the types of the partici-
pants. For example, employment is a relationship between
companies and people and not between fruit trees and
frogs. Such type ccmstraints am implemented using
CORIMDL typing mechanisms.

Since the types of Roles and Related Objects ate
expressed as IDL interfaces, representations of the inter-
faces are stored in the interface repository. These type rep-
mentations can be manipulated at run time. Using the
type representations, the Role create-relationship opera-
tion enforces the type constraints of the relationship. If the
type constraints are violated, the operation fails aud raises
a TypeError exception.

Cardinality
Relationships are also constrained by the number of
objects that can participate in each role. For example, tra-
ditional marriage is a one-toone relationship between
people. Similarly, containment is a one-to-many mIation-
ship and employment is a many-to-many relationship.

735

ContainedInRole
ReferencesRole
ReferencedByRole

FIGURE 8. An example graph of related objects. The folder contains the document the document
dictionary and contains the figme and the logo: the figme refereslces the logo.

As with type constraints, the Role create~refutionship
operation enforces tk cardiulity constraints of the rela-
tionship. If the cardinality constraints are violated, the
operation fails and raises the MaxCardinalityExceeded
exceptim.

Referential Integrity
When roles am connected, they form bidirectional uxmec-
tions that can be navigated in either dkction. Referential
integrity implies that object A is cormected to object B. if
andonlyifobjectBisccamectedtoobjectA.Ifralesare
conuecti under the control of transacti~, referential
integrity is gllamed.

Existential integrity, object A exists if and only if object B
exists, is supported as well and is explained in more detail
in Section 3.3.2.

3.3 Graphs of Related Objects
When objects are related using the Relationship Service,
graphs of related objects 81~: created. After describing the
basic cum-nts of a graph, we describe the Relationship
Service’s support for applying compound operations to a
graph of related objects.

Graphs anz defined by nodes and edges. The related
objectarrrethenode.softhegraphandtherelationshipsare
the edges of the graph. Traversal objedts navigate graphs
of related objects.

references the

In Figure 8. the folder, the documat. the dictionary, the
figure and the logo a~ nodes. The containment relation-
ships and the Rfereuze relationships are the typed edges
of the graph. The folder contains the document; the doc-
ument is contained in the folder. The document contains
the figure; the figure is contained in the document. The
document contains the logo and the logo is contained in
the document. On the other hand. the document refer-
ences the dictionary; the dictionary is referenced by the
document. Finally, the figme references the logo; the
logo is referenced by the figure.

3.3.1 Nodes
The Relationship Service delines a Node interface for
n&ted objects. In Figme 8. the folder, the document, the
dictionary, the figme ad the logo all support the Node
intexfxe. The Node interface enables a client to traverse a
graph of related objects in a standard way. In parkular the
Node interface defines an operation and an attribute for
related objects to reveal their roles. Figue 9 gives the IDL
declaration for the Node interface.

Using the roles of node attribute, clients visit nodes.
learn about the n&l& roles and navigate the relationships
to visit adjacent nodes. The roles of type operation can - -
be used to navigate particular types of relationships.

736

to the Conta&dInRole but is shallow when navigating in
the other direction.

interface Node {

readonly attribute
sequence<Role> roles of node; - -

Roles roles-of_type(
in COMA:: InterfaceDef role-type)

1;

FIGURE 9. The Node interface

3.3.2 Propagation Attributes
The roles in the graph have propagation attributes.[9]
Propagation attributes define the rules for propagating
operations from one node to another through the con-
nected roles. A propagation attribute is a pair (operation,
propagation value). The value is either deep, shallow, none
or inhibit.

Deep means that the operation is also applied to the rela-
tionship and to the neighboring node.

Shallow means that the operation is also applied to the
relationship, butnot to the neighboring node.

None means that the operation has no effect on the rela-
tionship and no effect on the neighboring node.

Inhibit is meaniqful for the delete operation. If a node has
a role with a propagation attribute (delete, inhibit), the
node cannot be deleted if the node is related to another.
The relationship ensures the node’s existence.

Figure 10 illustrates the propagation attributes for the con-
tainment relationship. Since the propagation attribute for
copy, as defined by the ContainsRole. is deep, the copy
operation is applied to the document and to the figure it
contains. On the other hand, since the propagation
attribute for delete, as defined by the ContainedInRole, is
shallow, the delete operation is applied to the figure. to the
relationship between the figure and the document but not
to the document.

=PY, d-p copy, shallow
delete, deep delete, shallow
externalize, deep externalize, none

FIGURE 10. Propagation attributes for the
contaimnent relationship

Notice that propagation attributes ate dim&d. The delete
operation is deep when navigating from the ContainsRole

3.3.3 ‘Ikaversal Object
The Relationship Service defines an object that supports
the Traversal interface. The Truversul interface de&s
generic traverse operation that given a starting node and

an operation produces a finite set of nodes and roles
affected by the operation The traversal object uses the
Node interface to determk a node’s roles. Baaed on the
propagation attributes of each role, the traversal deter-
mines the set of involved nodes and roles.

As the traversal object visits nodes and navigates roles, it
may revisit a node due to cycles in the graph. The tra-
versal object detects the cycles and represents them in the
set of nodes and roles.

The traversal object does not actually apply an operation
to the graph; the implementation of a compound operation
can use the output of the generic traverse operation and
apply the operation to the involved nodes and roles. Alter-
natively, a compound operation can be implemented
dimtly by traversing the graph and applying the opera-
tion in a single pass.

3.3.4 Compound Operations
The Relationship Service defines a small set of compound
operations that implement object life cycle operations. In
particular, the service deG.nes copy, move, externalize and
delete operations. The service is extensible; application
programmers can implement other compound operations
on a graph of related objects.

An example
Copy is m example of a compound operation; it does not
apply to a single object in the graph but to several objects,
depending an the semantics of the relationships between
the objects.

We apply the copy operation to the graph of related
objects in Figure 8. The ccanpound copy operation starts
at the folder and proceeds as follows.The folder reveals its
ContainsRole. The ContainsRole indicates that the propa-
gation value for copy is deep. As such, the document also
needs to be copied. The docmnent reveals that it has three
roles, a ContainsRole cam&d tothefigureandthelogo,
a ContainedMole connected to the folder and a Referenc-
esRole came&d to the dicti~.

The ReferencesRole indicates that the propagation value
for copy is shallow. As such, copy is not applied to the
dictionary, it’s roles are not considered and the new docu-
ment will be txmnected to the old dictionary.
The ContainsRole mnmcting the document to the figure
and the logo indicates that the propagation value for copy
isdeep.Assuch,thefigureand~logoneedtobecopied.
The figm nxals its ReferencesRole and its ContainedIn

737

0 Related Object
ContainsRole
ContainedInRole
ReferencesRole
ReferencedByRole

FIGURE 11. The result of applying copy to the graph, starting at the folder.

Role. The logo reveals its ContainedInRole and its Refer-
encedByRole.

When propagating a copy operation to a node that partici-
pates in relationships with different propagation seman-
tics, it is possible that the propagation value for copy is
deep by one relationship and shallow by another relation-
ship. If a node is copied, then the shallow comnztions to it
sre promoted to deep.

This happens in several places in the example. The Con-
tainedtnRoles connecting the document to the folder, the
fi~tothedocumentandtbelogotothedocumentare
promoted since the figure and the document were copied.
Similarly, the ReferencesRole between the figure and the
logo is promoted because the logo is copied. The copy of
the figure should not be unmected to the old logo.

Figure 11 illustrates the result of applying copy to the
graph, starting at the folder.

4.0 Experience

The Relationship Service was implemented using Sun-
Soft’s implementation of the CORRA specification. Appli-
cations that use the Relationship Service am typically
designed using the Entity-Relationship Model; the rela-
tionships are naturally mapped to the Relationship Ser-
vice. For example, a desktop of folders and documents
was implemented using the contaimnent aud reference
relationships illustrated here. Similarly, a distributed card
tradiug game used the Relationship Service to relate trad-
ing cards and game players.

Application designers must decide when to use the Rela-
tionship Service and when to use lower-level CORRA

object references. We have found that the Relationship
Service is appropriate to use when an appliiation needs to
navigate unmections between objects in both directions.
needs to extend conuections with attributes and opera-
tions, needs to dlow third parties to manipulate unmec-
tions or needs compound operations on graphs of related
objects. Those capabilities are not available with CORBA
object references.
Forumately, relationships cau be used heavily iu distrib-
uted applications without a significant performance degra-
dation over CORRA object references. When conQniq
objects with their roles, (see Figure 6) navigating a rela-
tionship between distributed objects has performance sim-
ilar to navigating object references to distributed objects.

5.0 Conclusions

We have described SunSoft’s Relationship Service and
motivated its design, given the fundamentals of distrib-
uted object systems.
As discussed iu Section2.0. distributed object systems
have different design goals than database systems. Dis-
tributed object systems am open, federated systems to
support applications that access objects across distributed,
heteqeneous system boundaries. All entities in a distrib-
uted object system are modeled as objects. Intelfaces. not
implementations, define objects.

In Section 3.0 we described the Relationship Service. The
service supports bii, bidirectional, one-to-one, one-to-
many, many-to-many relationships between objects. It
enfoms type, cardinality and referential integrity con-
straiuts on relationships between distributed objects. It

738

compound operations on graphs of related objects.

The Relationship Service is designed to work in a distrib-
uted object system. The service is defined by the Role,
Node and Traversal interfaces. Any system that can sup-
port the interfaces can participate in the service. There are
no assumptions about common implementation or storage
of objects. The service is federated and scales. There is no
single authority with knowledge of all relationships. Cre-
ating and manipulating a relationship does not have sys-
tem-wide cost.

defines the Role interface which provides operations for ill] Alan Snyder. “Encapsulation and Inheritance in
creating, deleting, emunerating and navigating relation-
ships, It supports flexible configuration of roles to opti-

Object-oriented Programming Languages”, In Pro-

mize navigation or query functionality. It supports
ceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications
\OOfSLA). Association of Computing Machinery,

6.0 References

HI

PI

131

141

151

161

171

El

[91

R. G. G. Cattell. Object Data Management, Addison-
Wesley, 1991, Revised 1994.

R. G. G. Cattell. The Object Database Standard:
ODMG-93, Morgan Kautuuum, 1993.

P. l? Chen, ‘The Entity-Relationship Model: Towards
a Unified View of Data,” ACM Transactions on
Database Systems, 1. 1. March 1976.

Bruce E. Martin Claus H. Pedersen and James Bed-
ford-Roberts, “An Object-Based Taxonomy of Dis-
tributed Computing Systems.” In Readings in
Distributed Computing Systems, published by IEEE
Computer Society Press. Also in IEEE Computer
special issue on distributed computing systems,
August, 1991.

Bruce E. Martin, ‘The Separation of Interface and
Implementation in Ctc.” In The Evolution of C++,
edited by Jii Waldo, published by MIT press. Also
in Proceedings of the 3rd USENIX C+ + Conference,
April, 1991, Washington, D.C.

John R. Nicol, C. Thomas Wilkes and Frank A.
Manola, “Object Orientation in Heterogeneous Dii-
tributed Computing Systems,” IEEE Computer, June,
1993.

Object Management Group, “The Common Object
Request Broker: Architecture and Specifkation”,
OMG Document Number 91.12.1. December, 1991.

Object Management Group, “The Common Object
Services Specification, Volume 1”. OMG Document
Number 94.1.1. January, 1994.

James Rumba@. “Controlling Propagation of Oper-
ations using Attributes on Relations.” OOPSLA I988
Proceedings. pg. 285296.

1101 James Rumbaugh. Object-Oriented Modeling and
Design, Prentice-Hall, 199 1.

739

