
Building a Laboratory Information System around a 
C++-Based Object-Oriented DBMS* 

Nathan Goodman Steve Rozen 
{nat,steve,lstein}Qgenome.wi.mit.edu 

Whitehead Institute for Biomedical Research 
One Kendall Square 

Cambridge MA 02139 
USA 

Lincoln Stein 

ture, and we analyze its strengths and weak- 
nesses. 

Abstract 

MapBase is a laboratory information system 
that has been supporting a high-throughput 
genome-mapping operation for the last three 
years. We chose to build MapBase around 
a C++-based OODBMS because, like CAD, 
CASE, and GIS applications, MapBase must 
be able to represent complex data and opera- 
tions while providing fast response. 

However, MapBase also turned out to share 
many characteristics of classical information 
systems: it provides a central repository of 
carefully administered, mission-critical data 
used by clients written in many languages and 
running on a variety of hardware. In addition, 
our laboratory emphasizes continuous process 
re-engineering, with the result that MapBase’s 
schema must evolve rapidly in order to reflect 
the current experimental workflow. 

We discuss how the technical characteristics 
of our OODBMS interacted with our require- 
ments to form MapBase’s current architec- 

*This work was supported by funds from the National Institutes 
of Health, National Center for Human Genome Research, grant 
number P50 HG00098. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made OT distributed for 
direct commewial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT to republish, Tequires a fee 
and/as special permission from the Endowment. 

Proceedings of the 20th VLDB Conference 
Santiago, Chile, 1994 

1 Introduction 

A high-throughput laboratory project is characterized 
by large numbers of similar experiments organized into 
a production line. For example, the genome-mapping 
projects at the Whitehead Institute/MIT Center for 
Genome Research require millions of experiments to 
determine the location of short DNA sequences, called 
markers, on the chromosomes of an organism. As 
another example, [12] describes a high-throughput 
project to find partial DNA sequences of expressed 
genes, so-called expressed sequence tags. This project 
reads the DNA sequences of approximately 2000 ex- 
pressed sequence tags per month, and hopes to in- 
crease this rate by an order of magnitude. 

Such high-throughput laboratory projects require 
a laboratory information system to manage labora- 
tory work&w and experimental results. MapBase 
is the database component of a laboratory informa- 
tion system that has been supporting the genome- 
mapping operations of Whitehead Institute/MIT Cen- 
ter for Genome Research (Genome Center). In this 
paper we focus on MapBase; please see [24] for a de- 
scription of the information system as whole. 

The Genome Center’s genome-mapping efforts re- 
semble a factory production line, in that a short piece 
of DNA, s, is found to be a marker by performing on 
it a sequence of steps, such as 

l determining the DNA sequence of s, 

l checking to see that the Genome Center has not 
already worked with s, 

722 



l determining and purchasing appropriate chemi- 
cals for further experiments on s, 

and so forth. Some steps are performed by computer, 
and MapBase records the results from each step. 

However, there are differences from a real fac- 
tory production line. Some of the experimental steps 
require highly-trained scientists to interpret results. 
Many of the steps are inherently error-prone and some- 
times must be re-done, which causes cycles in the 
workflow. Also, fewer than half of the potential mark- 
ers that the Genome Center examines actually turn 
out to be suitable as markers. 

In addition to managing experimental data, Map- 
Base also stores analyzed results and makes them 
available to researchers in laboratories throughout the 
world.’ 

We began work on MapBase in January of 1991, and 
put it into production in September of that year. At 
the beginning of our work on MapBase, we could not 
formulate a complete set of requirements because no 
one had ever developed a database to support this kind 
of genome-mapping operation. However, after three 
years of developing and operating MapBase, we have 
formed a clear idea of MapBase’s role in our genome- 
mapping production lines and of the kinds of support 
MapBase requires from a database management sys- 
tem (DBMS). 

We divide MapBase’s DBMS requirements into 
three main groups: 

Modeling Expressiveness and Performance 
MapBase needs to model complex objects such 
as DNA sequences, genome maps, and exper- 
imental workflow, while still providing accept- 
able response time. In this requirement Map- 
Base resembles applications such as computer- 
aided design, computer-aided software engi- 
neering, and geographic information systems- 
applications that are collectively dubbed “CAz 
applications” in [20]. 

Integrative Role Like classical information systems, 
MapBase must provide a central repository of 
carefully administered, mission-critical data. This 
data helps integrate the operations of many pro- 
grams and human activities. The requirement 
that MapBase fill an integrative role implies an 
additional need: multi-lingual access from dis- 
parate hardware. Section 3 discusses this need 
in more detail. 

Schema Evolution The Genome Center is engaged 
in continual process m-engineering as it refines its 

‘For some of the biological results to which MapBase’s use 
contributed please see [S]. 

experimental protocols. Consequently, MapBase 
requires a schema change (i.e. a change to the set 
of C++ classes stored in the database) at least ev- 
ery two months. In addition, the Genome Center 
from time to time embarks on new projects. For 
example, until recently the Genome Center’s ma- 
jor project involved producing a certain type of 
genome map called a genetic-linkage map. How- 
ever, the Genome Center is now beginning to work 
on another type of map, called a physical map, 
the construction of which uses different experi- 
mental protocols and consequently different kinds 
of data.2 

In the sequel we discuss these requirements in more 
detail, and show how they shaped MapBase’s design. 

2 Why a C++-based OODBMS? 

It was MapBase’s requirement to model complex data 
that led us to select an object-oriented database man- 
agement system (OODBMS). Once we had decided on 
an OODBMS we considered Gemstone [6], 02 [16], 
ObjectStore [13, 20, 171, ONTOS [19], and VER- 
SANT [28]. W e eci e on a C++-based OODBMS d d d 
(that is, one of ObjectStore, ONTOS, or VERSANT) 
for the following reasons: 

The expressiveness and performance require- 
ments that MapBase displayed resembled those 
of the CAz application for which the C++-based 
OODBMSs were designed. We also knew that we 
would not be storing huge amounts of data-the 
Genome Center’s largest instance of MapBase re- 
quires about 60 Megabytes of disk space-so we 
hoped to be able to keep much of the database 
in physical memory. We expected C++-based 
databases to perform well under these circum- 
stances. 

C++ was becoming the most widely used object- 
oriented language, which suggested that st least 
some of the C++-based OODBMSs would suc- 
ceed in the marketplace. 

We did not want to become locked into any par- 
ticular vendor (especially in light of the fact that, 
in early 1991, object-oriented databases were very 
new). We had several C++-based OODBMSs to 
choose from, and believed that, if necessary, we 

21n its need to accommodate frequent changes in experimen- 
tal protocols, MapBase differs from some other, well-known, 
molecular biology databases, such as GenBank [5], the PIR- 
International Protein Sequence Database [lo], and many oth- 
ers, which act as central repositories of published results from 
mnnerous laboratories. 

723 



would be able to port MapBase between C++- 
based OODBMSs. 

We chose ObjectStore because we judged it to be the 
most robust of the C++-based OODBMSs at the time 
the choice was made. 

Although, as we discuss below, the facilities of Ob- 
jectStore do not ideally match MapBase’s DBMS re- 
quirements, we continue to believe that our choice of 
a C++-based OODBMS was sound. Examples below 
illustrate the importance to MapBase of the model- 
ing expressiveness of an OODBMS. In addition, ex- 
perience suggests that for some applications relational 
databases cannot be tuned to deliver adequate perfor- 
mance; in one case with which we are familiar whole 
tables had to be moved out of the DBMS to achieve 
the necessary performance [21]. This is not to say that 
developing a laboratory information system around 
a relational DBMS is impossible; the expressed se- 
quence tag project mentioned in section 1 built its lab- 
oratory information system, ESTDB (Expressed Se- 
quence Tag Data Base), around the Sybase relational 
DBMS [15]. S UC a c h h oice involves trade-offs, however: 
well-defined design methodologies and strong support 
for the database’s integrative role in exchange for less 
modeling expressiveness and less opportunity to tune 
performance by modifying data representations. 

3 MapBase System Architecture 

We initially hoped to use a system architecture similar 
to the one represented in figure 1, in which a number of 
ObjectStore clients executing on various computers in 
a network would interact concurrently with MapBase. 
Some clients would provide data entry and interaction 
with lab personnel, others would perform automatic 
data analysis needed as part of the experimental pro- 
tocol, and still others would disseminate analyzed re- 
sults to biologists in other laboratories. 

In this architecture, the ObjectStore server and its 
clients communicate by sending pages of binary data 
to each other. 

Several considerations made the architecture of fig- 
ure 1 impractical: 

1. Although ObjectStore provides atomic transac- 
tions, it provides no roll-forward recovery proce- 
dure whereby a snapshot backup can be brought 
up to date by applying logs of transactions com- 
mitted since the backup.* Consequently we had 
to provide our own logging. 

3This diagram suppress some detail. In particular, in ad- 
dition to the ObjectStore server, other ObjectStore processes 
manage paging files on machines running ObjectStore clients. 

*&&forward recovery is planned for ObjectStore Re- 
lease 4 [18] 

Figure 1: Initial System Architecture for MapBase. 

We also had to provide our own logging because 
the first version of ObjectStore that we used pro- 
vided no support for schema evolution. Whenever 
we modified the storage layout of a C++ class we 
had to re-load the database. (The current version 
of ObjectStore supports schema evolution, but, 
because we had already developed our own pro- 
cedures for schema evolution, we have not used 
ObjectStore schema-evolution facilities.) 

We were unable to achieve multi-user performance 
on MapBase’s workload that satisfied our require- 
ments, probably due to concurrency hot spots in 
low-level storage allocation routines. (We under- 
stand that this problem will be fixed in the next 
release of ObjectStore.) 

Most programs that we use cannot be written in 
C++ as ObjectStore clients, for a variety of rea- 
sons: 

0 Some users need a particular interface. For 
example, most of the Genome Center’s bi- 
ologists and lab technicians are already fa- 
miliar with Macintoshes and Microsoft Ex- 
cel spreadsheets. Consequently, to minimize 
learning time and maximize user acceptance, 
the Genome Center uses Excel running on 
Macintoshes for much data entry. In fact, we 
initially provided special-purpose data-entry 
application programs. However, biologists 
and lab technicians preferred to first enter 
their lab data into spreadsheets, and then re- 
enter their results into MapBase only when 
absolutely necessary for their data to be an- 
alyzed by programs connected to MapBase. 
Another example is distribution of data to 

124 



researchers in other laboratories. E-mail is 
a least common denominator: virtually all 
researchers have access to it. Therefore we 
provide an Email server whereby researchers 
in other laboratories can retrieve data from 
MapBase. 

l Some programs were written at another lab- 
oratory or even run at remote sites. An ex- 
ample is BLAST, which is used to search for 
similarities between MapBase’s marker se- 
quences and sequences in the worldwide se- 
quence database, GenBank [l, 51. BLAST 
runs as a an Internet-accessible compute 
server on a National Center for Biotech- 
nology Information computer. We use this 
server because it is fast and has access to ex- 
tremely current versions of GenBank data. 

l Some programs were written at the Genome 
Center, but must have an interface that al- 
lows them to be used at other laboratories, 
and not just with MapBase. An example 
is MAPMAKER, one of the programs the 
Genome Center uses to assemble markers 
into a genome map [14]. 

l Some programs are less demanding or are 
exploratory, and can be written in a lan- 
guage, such as LISP or Perl, that is terser 
than C++. Programs for “data dredging” 
or “data mining” [26] fall into this category. 
An example would be a program to analyze 
workflow loops due to reworked experimental 
steps. 

In addition to these three main considerations, an an- 
cillary consideration was the fact that, in and of ia- 
self, the architecture of figure 1 offers no application 
program interface at a logical level. C++ per se is not 
really a data modeling language, and it can be difficult 
for application programmers to understand how to use 
the data in MapBase. (In contrast, for users of rela- 
tional DBMSs the logical schema, together with writ- 
ten documentation about database semantics, usually 
projects a relatively well-defined and succinct inter- 
face for application programs.) Perhaps what is re- 
quired is better class design and better documentation, 
but those seeking to adopt the architecture of figure 1 
should be careful to provide a clean, documented in- 
terface to database information. Use of C++ by itself 
will not necessarily coax developers in that direction 
as standard relational database design methodology 
would. 

5ESTDB [12] also depends heavily on off-the-shelfsoftware- 
in this case Macintosh HyperCard-for user interfaces. 

Figure 2: MapBase System Architecture. 

Related to this ancillary consideration is the fact 
that in the architecture of figure 1 there is no “fire 
wall” between applications and the database. Thus an 
applications programmer could, for example, inadver- 
tently store unreachable objects or dangling pointers 
in the database. 

Because of these considerations we adopted the sys- 
tem architecture represented in figure 2. In this archi- 
tecture, the only ObjectStore client is the MapBase 
server, which receives requests from its clients in the 
form of text queries posed in a special-purpose query 
language. The MapBase server also returns results to 
clients in textual form.6 

A special-purpose query language is necessary be- 
cause ObjectStore provides essentially no interactive 
query language.7 We did not want to have to add a 
unique interface for each application that could not 
be tightly integrated with the MapBase server, so we 
constructed a query language. 

The architecture depicted m figure 2 addresses all 
of the considerations enumerated above. 

6Queries and results are transmitted over TCP/IP sockets. 
‘The ObjectStore query expressions described in [ZO] (and 

referred to as ObjectStore DML in [lfl) must be embedded in 
C++ and compiled. In the programma tic interface, a WEEkE 
clause can be supplied at run time, but it can invoke only a 
restricted class of functions (containing only booleancomparison 
operators such as >) . The WERE clause cannot, in general, invoke 
the operations associated with abstract data types stored in the 
database. 

725 



The MapBase server writes all updates to a logical 
log, which can be reread if roll-forward recovery 
is necessary. We have confidence in this scheme 
because 

l we reload the database from these logs when 
the set of C++ classes stored in the database 
changes, and 

l we have reloaded the database to correct 
coding errors and to recover from corruption 
in the stored data structures. 

Multi-user performance is not an issue, because 
the MapBase server is the only ObjectStore client, 
and MapBase enjoys the benefits of ObjectStore’s 
excellent single-user performance. 

Programs written in any language can communi- 
cate with the MapBase server using the special- 
purpose query language. 

In addition, the query language and its documentation 
provide a well-defined application program interface. 
I-t is worth noting that our experiences with MapBase 
strongly support two of propositions of the Third Gen- 
eration Database System Manifesto [25]: Proposition 
P.l-the importance of a high-level query language- 
and Proposition 3.1-the importance of multi-lingual 
access. 

Like all designs, the one in figure 2 is a compromise, 
and there are costs associated with it: 

l The MapBase server is fairly complex, because it 
must maintain connections with all clients, and 
buffer partial queries until they are complete. 
Furthermore, it has to implement a parser and in- 
terpreter for the special-purpose query language. 

l Each client must parse the query results it re- 
ceives from the MapBase server. However, we 
have Per1 routines for parsing query results, and 
most of the Genome Center applications are con- 
nected to MapBase via Per1 scripts. For example, 
when an Excel spreadsheet sends data to Map- 
Base, it is first received by a Per1 script which 
generates the appropriate update statements in 
the special-purpose query language. Similarly, the 
Email server is written in Perl. 

l Clients written in C or C++ cannot benefit from 
the type information in the MapBase database. 
(However, in the current state of the art, Ex- 
cel spreadsheets and E-mail readers could not use 
type information anyway.) More generally, much 
of the data-modeling expressiveness for which we 
originally chose an OODBMS cannot be transmit- 
ted to clients. 

Lack of a general, interactive query language is proba- 
bly the most severe limitation of MapBase’s current 
architecture, because we have tended to make only 
those schema changes to which our special-purpose 
language can be easily adapted, with deleterious ef- 
fect on MapBase’s class design. The special-purpose 
query language depends heavily on the idea of markers 
and histories of experimental steps on single markers, 
so it has been hard to accommodate new laboratory 
protocols that do not involve markers or that involve 
steps producing results for more than one marker. Sec- 
tion 6 discusses how we hope to remove this limitation, 
as well as others. 

4 MapBase’s Data Model 

The Genome Center runs several instances of Map- 
Base: two for mouse genetic mapping projects, one for 
a human physical mapping project, three for various 
other projects, and a few for testing. The data model 
and schema in each are basically the same. There are 
some C++ classes that are stored in the database, 
and others that are used only during the execution 
of the MapBase server. The mouse database stores 
approximately 100 different classes (not counting sepa- 
rately numerous parameterized collection classes), and 
the MapBase server uses approximately 40 additional 
classes. 

Many of the classes stored in the database repre- 
sent specialized scalar types: for example there is a 
class Cent imorgan (derived from Float), which is used 
to represent distances between markers. Other classes 
represent more complex objects such as text strings 
and DNA sequences. Probably the most complex class 
in the mouse database is the one that represents as- 
sembled genome maps-the result of analyzing all the 
experimental data in the mouse database. 

The representation of complex objects with com- 
plex, user-defined operations is a notable strength of 
C++-based OODBMSs such as ObjectStore. With 
the full power of the C++ class system we were able 
to define classes that store DNA sequences of arbi- 
trary length, and that provide operations that would 
not be available in today’s relational DBMSs. For ex- 
ample, MapBase represents DNA sequences as strings 
of the letters A, C, G, T, representing the nucleotide 
bases adenine, cytosine, guanine, and thymine, with 
the letter N used to indicate that the base at that PO- 
sition could not be experimentally determined.s For 
all practical purposes, DNA sequences can be arbitrar- 
ily long, making it important to avoid length limits in 
their database representation. The longest DNA se 

8For a high-level introduction to molecular genetic% see 121, 
which references more detailed treatments. 

726 



quence in MapBase contains over 3000 bases, several 
times the maximum length we expected when we be- 
gan development. 

An example of a user-defined operation imple- 
mented in MapBase is reverse complementation. To 
obtain the reverse complement of a DNA sequence, 
one reverses its order, and then substitutes the nu- 
cleotides according to the Watson-Crick base-pairing 
rules: G+C and T-A. For example, the reverse com- 
plement of GATTCCGGG is CCCGGAATC. Reverse 
complementation is an important operation because, 
when DNA molecules occur in their usual double- 
stranded form, each strand is the reverse complement 
of the other. 

An additional, important advantage of a C++- 
based OODBMS is the ability to use custom repre- 
sentations to tune performance. Consider the follow- 
ing example. A great deal of MapBase’s storage space 
is devoted to storing DNA sequences, and MapBase’s 
performance depends on keeping as much of the data 
in main memory as possible. If we needed to econ- 
omize on space we could store DNA sequences using 
only 3 bits to encode each base rather than the 8 bits 
we use in the current implementation. If we have done 
our job right in designing the DNA sequence class, its 
clients would be oblivious to this change of represen- 
tation. 

5 Workflow Data and Schema Evolu- 
tion 

As discussed above, one of MapBase’s key responsibil- 
ities is to track the experimental steps performed on 
each potential marker. In so doing, MapBase records 
the user that entered each experimental result and the 
approximate time the step was performed, because 
sometimes experiments must be re-done. Normally, 
only the most recent experimental result is of interest. 
About a quarter of the classes in the mouse database 
are derived from a single base class, ProcessStep. 
Each instance of one of these ProcessStep ckwes 
records the results of a particular experimental step, 
using step-specific attributes whose values are usually 
instances of a MapBase scalar class (e.g. Centimorgan) 
or a string or DNA sequence class. In the C++ imple- 
mentation, each marker is associated with an array of 
pointers to objects each of whose class is derived from 
ProcessStep. This implementation allows MapBase 
to quickly find the most recent experimental results as- 
sociated with particular markers using a linear search 
of each marker’s experimental steps in reverse chrono- 
logical order. 

It is the recording of experimental steps that leads 
to MapBase’s need for frequent schema evolution, be- 

cause of two characteristics of the Genome Center’s 
mapping operations: 

1. continual process re-engineering and 

2. occasional deployment of new processes. 

Following are examples of the kinds of changes Map- 
Base must accommodate in response to process re- 
engineering: 

In one of the Genome Center mapping operations, 
we determine the location of the markers on a map 
baaed on the length of the marker in 46 individual 
mice. The process of determining the length of a 
potential marker in those mice is called “gene 
typing”. We recently added a new error-checking 
procedure when a lab technician enters genotyp- 
ing data: when the lab technician cannot resolve 
an apparent genotyping error (which is detected 
by a “sanity-checking” routine in the MapBase 
server), then the associated marker must be re- 
viewed by a scientist. The scientist then either 

(a) changes the genotyping information, 

(b) certifies that the genotyping is in fact cor- 
rect, 

(c) requests a new genotyping experiment, or 

(d) declares the marker to be useless. 

This new checking step required the addition of a 
new, special-case query to the MapBase server. 

The first step in trying to find markers is to 
construct a “small-insert library”-a large set of 
small DNA fragments (i.e. no longer than a few 
thousand bases), each of which can be checked to 
see if it could serve as a marker. In an initial 
analysis we concluded that if we found a poten- 
tial marker in the small-insert library, then there 
would be only about a 0.1% chance that we had 
previously examined that fragment as a poten- 
tial marker. However, because of an unantici- 
pated experimental artifact, we found that the ac- 
tual chance of a potential marker already having 
been examined can be as high as 40%. When 
we discovered this we very quickly had to add 
a duplicate-checking workflow step, because our 
mapping project was essentially stalled until we 
could screen for duplicates. This new step was im- 
plemented as a class derived from ProcessStep. 

Workflow refinements, like the first example, are a reg- 
ularoccurrence. And because the Genome Center is 
using new technology we must compensate for occa- 
sional, inevitable missteps such as the problem with 
duplicates in the second example. 

727 



6 Discussion 

MapBase constitutes a successful application of 
OODBMS technology to an information system with 
challenging requirements. However, we would like to 
improve on the current design of MapBase by provid- 
ing 

1. a more general query language, and 

2. more convenient support for schema evolution. 

We discussed above the importance of the MapBase 
query language in integrating programs written in 
many languages and running on a variety of hard- 
ware, and we also discussed some of its limitations. 
We actively sought a better query language [ll]. 
However, promising object query languages such as 
C&L++ [9] and O&L [7] do not yet have inter- 
preted implementations.g We also considered rewrit- 
ing MapBase for VERSANT, which does offer an in- 
terpreted query language [27] that is almost identical 
to OQL[C++] (the language used in the OpenOODB 
project) [3, 41. SQL3 [23] also shows promise as a 
solution to MapBase’s query and data-modeling re- 
quirements. SQL3 permits extension through user- 
defined classes (“abstract data types” in SQL3 ter- 
minology) with inheritance and object identity, and 
through user-defined functions coded in another pro- 
gramming language. Presumably SQL3 databases will 
inherit from their relational parents an emphasis on 
query languages, application program interfaces, and 
industrial-strength data administration facilities. We 
expect, in the future, to consider SQL3 databases for 
laboratory information systems. 

After examining options for providing a more gen- 
eral query language for MapBase we concluded that, 
because of the substantial experience the Genome Cen- 
ter has accumulated in developing and maintaining 
ObjectStore databases, we would use ObjectStore to 
implement a successor to MapBase--one with a much 
more general query language. We are currently deploy- 
ing this successor, which we call LabBase [22]. Lab- 
Base was to some extent inspired by CAz applications. 
Just as the user of, for example, a CAD database, does 
not usually create C++ classes to represent a new type 
of gasket or pose queries about it, we would like the 
user of a laboratory information system to be able to 

gThere are two reasons why MapBase requires interpreted 
query execution rather than run-time compilation and loading 
because (i) it takes too long to compile even a short .C iYe 
(e.g. around 25 seconds on a Spare 10, for a 73-line file plus 
headem), which is unacceptable in terms of MapBase’s response 
requirements, and (ii) an error.in a dyecally loaded .o file 
can crash the MapBase server. (It is unacceptable that a coding 
error in a single, ad hoc query make the database unavailable 
to all clients during recovery.) 

represent a new kind of experimental step and pose 
queries about it without having to create C++ classes. 

LabBase’s query language-non-recursive datalog 
with aggregates-is more general than MapBase’s. 
LabBase also provides a data dictionary in which 
users can define new kinds of experimental steps and 
new step attributes without modifying the C++-code 
in which LabBase is written. LabBase supports a 
data model that generalizes MapBase’s: the central 
concepts are material (a generalization of MapBase’s 
“marker”) and experimental step. Various predicates 
in the LabBase query language allow queries over all 
materials of a particular kind, and provide access to 
either the most recent steps or to all the steps associ- 
ated with particular materials. In MapBase, schema 
evolution requires modification to the MapBase server 
(entailing m-compilation and re-linking), and some- 
times modification of the roll-forward logs (either man- 
ually or by means of some kind of script). In Lab- 
Base, most schema changes (those not requiring a new 
built-in primitive type) can be accomplished by adding 
new kinds of materials, experimental steps, or step at- 
tributes to the data dictionary. Finally, a sufficiently 
knowledgeable user could add new primitive types and 
operations to a LabBase server by linking in appropri- 
ate C++ class and function definitions. Therefore we 
hope we have retained some of the advantages of C++ 
in terms of modeling expressiveness and user-defined 
representations. 

References 

PI 

PI 

[31 

[41 

151 

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, 
and D. J. Lipman. Basic local alignment search 
tool. J. Mol. Biol. (England), 215(3):403-410, 
Oct. 1990. 

P. Berg and M. Singer. Dealing with Genes. Uni- 
versity Science Books, 1992. 

J. A. Blakeley. OQL[C++]: Extending C++ with 
an object query capability. In W. Kim, editor, 
Modern Database Systems: The Object Model, In- 
teroperability, and Beyond. ACM Press/Addison- 
Wesley, 1994. 

J. A. Blakeley, W. J. McKenna, and G. Graefe. 
Experiences building the Open OODB query op- 
timzier. In P. Buneman and S. Jajodia, editors, 
Proc. of the 1999 ACM SIGMOD Int ‘1. Conf. on 
Mgmt. of Data, 287-296, June 1993. 

C. Bulks, M. Cassidy, M. J. Cinkosky, K. E. 
Cumella, P. Gilna, J. E.-D. Hayden, G. M. Keen, 
T. A. Kelley, M. Kelly, D. Krsitofferson, and 

728 



PI 

PI 

PI 

PI 

PO1 

IllI 

P21 

[I31 

P41 

J. Ryals. GenBank. Nucleic Acids Research, 
2221-2225, 1991. 

P. Butterworth, A. Otis, and J. Stein. The 
Gemstone object database management system. 
CACM, 34(10):65-77, Oct. 1991. 

R. Cattell, T. Atwood, J. Duhl, G. Ferran, 
M. Loomis, and D. Wade. The Oject Database 
Standard: ODMG-99. Morgan Kaufman, 1994. 

N. G. Copeland, N. A. Jenkins, D. J. Gilbert, 
J. T. Eppig, L. J. Maltais, J. C. Miller, W. F. 
Dietrich, A. Weaver, S. E. Lincoln, R. G. Steen, 
L. D. Stein, J. H. Nadeau, and E. S. Lander. A 
genetic linkage map of the mouse: Current appli- 
cations and future prospects. Science, 262:57-66, 
Oct. 1993. 

S. Dar, N. H. Gehani, and H. V. Jagadish. A 
SQL for a C++ based object-oriented DBMS. In 
Proc. of the Int’l. Conf. on Extending Database 
Technology, Mar. 1992. 

D. G. George. PIR-International Protein Se- 
quence Database (PSD): The Protein Sequence 
Component Version CO%6.2. National Biomed- 
ical Research Foundation, 3900 Reservoir Road, 
NW, Washington DC 20007, USA, May 1993. 

N. Goodman, S. Rozen, and L. Stein. Require- 
ments for a deductive query language in the 
MapBase genome-mapping database. In R. Ra- 
makrishnan, editor, Proc. of the Workshop on 
Programming with Logic Databases In Conjunc- 
tion with ILPS, Vancouver, B.C., 18-32, Oct. 
1993. Available as Tech. Report #1183, Com- 
puter Sciences Department, University of Wiscon- 
sin, Madison WI 53706, USA. 

A. R. Kerlavage, M. D. Adams, J. C. Kelly, 
M. Dubnick, J. Powell, P. Shanmugam, J. C. 
Venter, and C. Fields. Analysis and manage- 
ment of data from high-throughput expressed se- 
quence tag projects. In T. N.Mudge, V. Miluti- 
novic, and L. Hunter, editors, Proc. of the 26th 
Annual Hawaii Int’l. Conf on System Sciences, 
vol. 1, 585-594. IEEE Computer Society Press, 
Jan. 1993. 

C. Lamb, G. Landis, J. Orenstein, and D. Wein- 
reb. The ObjectStore database system. CACM, 
34(10):50-63, Oct. 1991. 

E. S. Lander, P. Green, J. Abrahamson, A. Bar- 
low, M. J. Daly, S. E. Lincoln, and L. Newberg. 
MAPMAKER: an interactive computer package 

P51 

P61 

P71 

[181 

P91 

PO1 

WI 

P21 

P31 

P41 

P51 

I261 

1271 

[281 

for constructing genetic linkage maps. Genomics, 
1(1):174-181, Oct. 1987. 

D. McGoveran and C. J. Date. A Guide to Sybase 
and SQL Server. Addison-Wesley, 1992. 

0. Deux et al. The 02 system. CACM, 34(10):34- 
48, Oct. 1991. 

Object Design, Inc., 25 Burlington Mall Rd., 
Burlington MA 01803-4194, USA. Manual set for 
ObjectStore Release 3.0 for UNIX Systems, Dec. 
1993. 

P. O’Brien. R3 & R4 product directions overview, 
Mar. 1994. Talk presented at ObjectStore North- 
east users group meeting. 

ONTOS, Inc., Three Burlington Woods, Burling- 
ton MA 01803, USA. ONTOS DB 2.2 Developer’s 
Guide, Feb. 1992. 

J. Orenstein, S. Haradhvala, B. Margulies, and 
D. Sakahara. Query processing in the ObjectStore 
database system. In M. Stonebraker, editor, Proc. 
of the 1992 ACM SIGMOD Int’l. Conf on Mgmt. 
of Data, 403-412, June 1992. 

S. Rozen and D. Shasha. Using a relational system 
on Wall Street: The good, the bad, the ugly, and 
the ideal. CACM, 32(8):988-994, Aug. 1989. 

S. Rozen, L. Stein, and N. Goodman. Construct- 
ing a domain-specific DBMS using a persistent 
object system. In Sixth Int’l. Workshop on Per- 
sisten Object Systems, Sept. 1994. 

IS0 and ANSI SQL3 working draft, Feb. 1993. 

L. Stein, A. Marquis, E. Dredge, M. P. Reeve, 
M. Daly, S. Rozen, and N. Goodman. Splic- 
ing UNIX into a genome mapping laboratory. In 
USENIX, 1994. 

The Committee for Advanced DBMS Func- 
tion. Third-generation database system mani- 
festo. SIGMOD Record, 19(3):31-44, Sept. 1990. 

S. Tsur. Data dredging. Data Engineering, 13(4), 
Dec. 1990. 

Versant Object Technology Corp., 4500 Bohan- 
non Dr., Menlo Park CA 94025, USA. VER- 
SANT C++ Application ToolSet Version 2.9, 
VERSANT Object SQL, June 1993. 

Versant Object Technology Corp., 4500 Bohan- 
non Dr., Menlo Park CA 94025, USA. VERSANT 
Object Database Management System Release 9 
System Manual, July 1993. Part 1003-0793. 

729 


