
A Multidatabase System for Tracking and Retrieval of
Financial Data

Munir Cochinwala John Bradley
Vertek Software Independent Consultant

Summit, NJ 07901 NY, NY 10016

Dow Jones Teleratet

Abstract

We have built a multidatabase system to sup-
port a financial application that stores histor-
ical data used by traders to identify trends
in the market. The application has an up-
date rate (append-only) of 500 inserts per sec-
ond and also has sub-second response require-
ments for queries. A typical query requests
between 100-1000 records. In this paper we
define the characteristics of the application,
the multidatabase system we used to support
the applications and the extensions we made
in t.he application to achieve the required func-
tionality and performance.

1 Introduction

Financial applications require access to both real-time
and historical data. Historical data is defined over an
interval. The data in an interval can be all of the real-
time data over that interval or a summary of the data
over the interval. Historical data is used by traders in
analysis and charting to identify trends in the market.

The real-time data concerning equities, bonds, op-
tions, mutual funds and currencies originates at var-
ious stock exchanges and brokerage houses. It is
sent over multiple real-time feeds, MarketFeed [6] and

t Work was performed when both authors were at Dow
Jones Telerate.

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

Ticker [7] that can deliver data in compressed form
at the rate of 56 Kilobits per second (Kbps) or 19.2
Kbps. The data is sent is on per instrument basis. An
instrument is identified as an entity that has a price
and is capable of being traded. All issues on exchanges
are identified as instruments. The data for an instru-
ment that is sent over a real-time feed could be the
price of the instrument, bid or ask for the instrument,
option price for the instrument or an actual trade for
an instrument.

We have implemented a multidatabase system [13,
5, 1, 4, 3, 8, lo] that supports tracking and retrieval
of historical data. The system is part of a larger
project, the Platform [2], that provides access to real-
time data, historical data and value-added calculations
(user-defined or programmed) over the different types
of data.

Storage and retrieval of historical data poses inter-
esting database problems: most of the data is append-
only, the arrival rate of the data is very high (greater
than 500 ticks per second), there is a burst of data at
every endpoint of any interval that is being tracked,
consistency of the data is serializability on <time,
instrument> pair, retrieval is typically for greater than
100 records and for the most recent intervals, distribu-
tion of data per database is based on load balancing,
and most queries are simple selects.

The diversity of our requirements precluded use of
any proposed or existing multidatabase. We did not
need ACID properties for our applications. We used
main memory to improve performance when durabil-
ity was not needed. We did not require global serializ-
ability and in some cases, did not even need local seri-
alizability. Our consistency criteria were application-
defined.

This application incorporated fundamentally differ-
ent DBMS’s into a multidatabase to exploit the unique
attributes of each DBMS, while presenting the ap-
pearance of a single entity to users. The application

714

benefited from the strengths of each DBMS, as each
DBMS’s traded performance for functionality to a dif-
ferent extent. For instance, we used a main memory
DBMS for performance and an Indexed Sequential File
Manager for persistent storage in the presence of rare
updates. Our multidatabase system ‘cooperated’ with
the application to meet the performance and consis-
tency requirements of the application.

The rest of this paper is organized as follows: Sec-
tion 2 describes the model and requirements. Section
3 describes the application architecture including the
functionality implemented by the application and the
multidatabase system. In the next section, we describe
how we met application requirements by using both
the multidatabase system and the application compo-
nents. The last section is the conclusion.

2 Model and Requirements

The fundamental architecture of the Platform uses the
producer/consumer model. A producer is a generator
and exporter of data feeds, and a consumer is an im-
porter and user of data feeds. A process or a set of
processes may be a producer or a consumer or be both
a consumer and producer. The historical data appli-
cation (History Engine) is both a consumer and pro-
ducer. It consumes data from the real-time feeds and
delivers data over an interval to consumers (traders)
or other producer/consumers.

An individual Platform may have one or several
sites. The history engine and the multidatabase sys-
tem may be distributed across several sites of the Plat-
form. In Figure 1, we show the architecture of the
Platform. The real-time feeds can deliver compressed
data at the rate of 56 Kilobits per second (Kbps) or
19.2 Kbps. Data coming from the real-time feeds are
ticks, baselines, or correction. A tick is either a trade
of an instrument, a bid for an instrument or a ask for
an instrument. A baseline is a message received when
a significant event such as an exchange open or close
occurs. It is the image of an instrument that consists
of the instrument name, type and current price. A cor-
rection is a message to correct an erroneous tick. The
Platform is currently capable of handling 500 ticks a
second.

715

The History Engine is also required to handle 500
ticks a second. The universe of instruments consists
of 500,000 instruments. The updates for instruments
generally follow a 90-10 rule. 10% of the instruments
are ‘hot’, i.e., 90% of the updates are for 10% of the
instruments. The History Engine tracks data over the
following interval: ticks, 1 minute, 5 minutes, 1 hour,
daily, weekly, monthly and annually. The data for ticks
is simply price and volume coming off the real-time
feeds. This is true for both trades and quotes. For

any other interval besides ticks, the data is a sum-
mary consisting of

open, close, high, low, volume, tickcount

for that interval. The summary data is calculated from
the ticks that come off the feeds. Users can request
data based on a particular interval or a summary over
a particular interval.

User requests are not restricted to the intervals that
are tracked. A user request can be for any interval. To
request historical data, a user requests by instrument
name, interval, start time and end time. There is a
utility program that allows ending times to be in the
future. Users can request inventory of available histor-
ical data or the actual historical data. The inventory
table of available data is replicated in a memory res-
ident database for fast access. The inventory table is
replicated across all the sites of the History Engine.

Users can also request creation of historical data
based on patterns. The request with patterns can be
for instruments that match the pattern both in the
present and in the future. For instance, a user can
request (for present and in the future) that historical
data for an instrument with the pattern ‘IBM%’ be
created . Subsequently, when a new option on IBM is
created ’ the History Engine should ‘track’ it.

A stock split specifies a ratio that determine the
equivalent value of the stock. For instance, a stock
split of 2 for 1 means that 2 new shares are equal to
1 old share. In other words, the price of the stock is
halved. The History Engine is also required to keep
track of any stock splits and return data to users ad-
justed or unadjusted for stock splits.

2.1 Transaction Types and Consistency

In the History Engine, two types of update transac-
tions that which have different properties and need
different notions of consistency.

Distributed Transaction

In the History Engine, the distributed transaction
updates a replicated table: the inventory table.
These transactions have to be serialized. For the
inventory table, we use distributed certification as
in [l]. Distributed certification ensures that the
local orders are compatible with a global serial
order [lo].

Append Only

For each instrument, appends have to be serial-
izable in <instrument, timestamp> order. The

1 All options based on IBM have ‘IBM’ as the prefix.

MarketFeed Ticker
\ \

\ \

e +
Platform

~1 ~1 -1
Site1 : : Site2 I

I Site3

T”“‘----‘T’---““” i-----------,----------, LAN

cl cl rl r-l r-l
User Workstations

Figure 1: Platform Architecture

timestamp is generated by the source, the ex-
changes. These transactions are dependent only
on instrument and timestamp for that instrument.
Transactions for different instruments are commu-
tative.

To maintain the serializability in <instrument,
timestamp>, we guarantee that a single instru-
ment will reside in a single database and insert
a new batch of ticks after the previous batch has
been committed to the database. An optimiza-
tion for both insertion and retrieval is given in a
later section.

3 Application Architecture

The functionality of storing and retrieving financial
data is divided between the Database Access Layer
(DBAL) and History Engine components. DBAL
implements relational, multidatabase semantics using
several types of commercial DBMS’s and provides lo-
cation transparency for all Platform data, a uniform
API to all DBMS’s, atomic commitment of distributed
transactions and enforcement of global consistency.
The History Engine performs extensions and perfor-
mance optimizations based upon the unique semantics

of managing historical data.

3.1 Multidatabase F’unctionality

DBAL enables access to several different databases via
a uniform API: a relational database (InterBase)TM

a main memory database (Smallbase) [14], and an
~SAM file system (C-Tree) TM . The ISAM file system
provides a subset of database semantics. Each DBMS
offers a different mix of functionality versus perfor-
mance. All database operations are syntactically de-
fined via a SQL-like language, although the semantics
of each operation is limited by the functionality of the
target DBMS. For example, an application would view
an ISAM file as a relation via DBAL. However, com-
plex relational operations, such as a join, would fail on
ISAM files, because the operation is not supported by
the file system. For our application, we do not need
joins across databases and we did not implement a
distributed join. The following data manipulation op-
erations are defined: select, update, insert and delete.
Data definition operations are create database, delete
database, create table, delete table. Transaction man-

T”InterBase is a trademark of Borland International.
T”C-aee is a trademark of FairCorn.

716

agement functions are start transaction, commit and
abort.

Data is exchanged between DBAL and the applica-
tion in attribute/value pair format (ie. attribute-name
= value). For example, a tuple from the history
inventory relation would be represented as “Instru-
mentName=‘IBMEquity’, Start=1/1/70, Interval=‘1
Day’ ” .

Location transparency is provided by a single global
namespace encompassing all sites and databases.
Since we require that a relation name be unique across
the entire Platform, an application can query a table
without knowing the site or database in which it is lo-
cated. A transaction can span multiple databases on
different sites; two phase commit is used to guarantee
atomicity.

In addition, DBAL supports user defined triggers.
A trigger is a rule that consists of event, condition and
action. Triggers in databases often are expressed by
rules [ll, 15, 121 defined using languages such as rela-
tional query languages and object-oriented languages
[ll]. Supported events are changes (insert, update,
delete) to particular attributes of a relation. The con-
dition consists of a conjunction of one or more equality
expressions or a NULL expression that is always eval-
uated as true. DBAL supports user notification of the
detected event. We do not support database opera-
tions as triggered actions.

3.2 History Engine Implementation

The History Engine isolates the application from the
particulars of the database model used to store histor-
ical data by defining the concept of a history track.
A track is identified by instrument name, time of the
first and last stored interval, and the duration of each
interval. The History Engine maps from track schema
to the relational schema that it created in DBAL and
vice versa. Applications access historical data exclu-
sively by reference to track definition.

The History Engine is organized into the following
discrete components to perform the task of accumu-
lating summary data and interfacing with applications
and the database. In Figure 2, we show the architec-
ture of the History Engine.

l Tracker

The Tracker provides the interface between the
real time feeds and the history engine. Upon sys-
tem startup, the Tracker will register for delivery
of real time data for each of the instruments that
are currently tracked.

l Time/Data Compression (TDC)

The TDC library incorporates data from the real
time data feeds (via the Tracker) into the interval

summaries for the current time interval. Upon
completion of an interval, the summary will be
written to the database and supplied as input to
larger time intervals. For example, a five minute
interval will be formed from the data in the ip-
eluded one minute intervals.

Data Manager (DM)

The DM library interfaces with DBAL to read and
write tracks and inventory and performs transla-
tion from the History Engine schema to database
schema and vice versa. DM provides a level of
abstraction from the specifics of the particular
DBMS being used.

Local History Server (LHS)

LHS accepts requests for history tracks and inven-
tory stored on the local Platform. LHS forwards
requests to DM and returns data to the applica-
tion.

Remote History Server (RHS)

FU-IS provides an interface to history servers that
may be accessed via wide-area networks.

Only a single instance of the following component
resides on a Platform:

b

3.3

Global Tracking Manager (GTM)

GTM selects a Tracker to accept ticks for a partic-
ular instrument based on dual criteria: load bal-
ancing across all Platform sites and maintaining
consistency of all tracks for the instrument being
placed.

DBAL Implementation

The implementation of DBAL uses several different
types of processes (Client, Agent and Server) interact-
ing within and across Platform sites. Client processes
can access the databases by calling functions in the
DBAL run-time library, which forward database re-
quests to Agent processes to be executed. A single
Server process performs resource allocation on each
site. In Figure 3, we show the DBAL architecture.

l Agent

Agents execute database operations on behalf of
Clients. Each Agent is linked to the run-time li-
brary of a particular DBMS and only executes re-
quests for that DBMS. A fixed number of Agent
processes are forked during system startup and
are assigned to one Client at a time on a need
basis.

717

DBAL

Figure 2: History Engine Architecture

When a Client requests access to a particular
database, UNIXTM Inter-Process Communica-
tions will be used to link the Client and Agent pro-
cess. Each Client’s request is translated into the
particular syntax of the target DBMS and DBMS
output is translated to attribute/value pair for-
mat.

An individual Agent performs transaction man-
agement for local transactions and interacts with
the coordinator as part of the two-phase commit
protocol for transactions across multiple DBMS%.

0 Server

One Server process resides on each site. The
Server forks the Agent processes during system
startup, manages the assignment of Agents to
Clients and maintains DBAL meta-data.

The meta-data consists of relations describing
each Platform database, relation, client and au-
thorization. Each server stores a persistent copy
of meta-data for local data; when a remote server
is restarted, the meta-data is transferred to that
site. Any changes to the meta-data is broadcast
to all servers. The meta-data is used to authorize
all Clients’ requests and locate an agent process
to execute the request. If a local agent is required,
the Server will notify the selected Agent to con-
nect to the Client. When the necessary Client is
remote, a message is sent to the Server on that
site to request assignment of the Agent.

0 Client

Clients may transparently access multiple, dis-
tributed databases via a uniform API by call-
ing the DBAL run-time library. The library does

T”UNIX is a trademark of XOPEN.

not access any database directly, but it forwards
database requests to Agent processes. In addition,
the library interacts with the Server to authorize
Client’s requests and locate Agents for those re-
quest.

The library coordinates transactions across multi-
ple databases using two-phase commit. Coordina-
tion requires interacting with all Agents partici-
pating in the distributed transaction to guarantee
that all local transaction conclude consistently.

The DBAL library supports multiple threads, us-
ing the DCE threads package. Therefore, several
client threads may access the database concur-
rently by individual DBAL connections. Each
thread executes a separate transaction and is as-
signed a different agent process.

0 Triggers

Triggers are implemented by a Trigger Handling
Daemon located on each site. Each handler main-
tains persistent data defining each trigger and
each client registered to receive notification that
the trigger fired. Upon startup, this data is read
and kept in main storage.

Each change to the database is forwarded to the
Trigger Daemon from the Agent executing the
change. Agents also forward the completion sta-
tus of each transaction: commit or abort. If the
change matches one of the defined rules, a noti-
fication message will be queued until the trans-
action commits. If the transaction aborts, the
message will be discarded. Since a trigger con-
dition cannot span multiple sites, no coordination
between Daemons is required.

Trigger definitions are structured to minimize
evaluation time. Rules are organized in a hier-

718

Platform

(go@ @a..
.i : . .

0 ‘C 0 C

0 c *.-*
Site1

0 C

p..
i .
. .

‘0 C

. . 0 S

0 i
0 s ::

0 C

0 i

Site2

C = Client

S = Server

i= InterBase Agent
c = C-Tree Agent
s = Smallbase Agent

Figure 3: DBAL Architecture

archy of modification type, table name, condi-
tional expression and trigger identifier. Within
each level of the hierarchy, data is maintained in
collating sequence. Therefore, changes that will
not fire a trigger may be discarded at the earli-
est possible time. When a particular expression
is used to define multiple triggers, that expression
need only be evaluated once for all triggers.

4 Problem Resolution and Extensions 2. Insert Batching

The multidatabase system aided us in building the ap-
plication. However, we had to add extensions both to
the multidatabase system and the application to ade-
quat,ely meet functionality and performance.

To handle the heavy update rate, 500 updates (in-
serts) a second and to have the ability to retrieve
1000 points of an instrument with sub-second re-
sponse, we had to put intelligence in the applica-
tion to aid the DBMS in placement of the data.
Recall, that each update (insert) may be for a dif-
ferent instrument.

1. Consistency using Load Balancing

Global serializability for the append-only transac-
tions is not needed because of our algorithm for
load balancing and insertion order. Our notion of
correctness for an instrument is serializability on
<instrument, timestamp> pair. We ensure this
consistency is maintained by always inserting in-
struments in timestamp order.

We also guarantee that a single instrument will
not be spread across multiple databases. We
achieve this by requiring creation of a history
track to follow a protocol. A particular track is

sent to a specific tracker and database based on
the following rules:

(a) If a tracker has an existing track for the in-
strument in the request, then assign that
tracker to ‘track’ the new request.

(b) If no tracker has an existing track for the
instrument in the request, then choose a
tracker with the least load.

If the DBMS clustered indices and wrote in place,
then the update rate may be too slow since the
DBMS may have to write to 500 distinct blocks. If
the DBMS buffered the ticks and wrote blocks to
disk, then the retrieval rate may be too slow since
the DBMS may have to access many blocks. If the
DBMS wrote to a write-ahead log and applied the
ticks to the appropriate disk block, then it is pos-
sible that spikes may occur in the read/write rate
since in the financial environment, a slow update
rate may not occur for a whole day.

719

As the ticks arrive, we buffer them in memory. We
actually insert the ticks in the memory resident
database. The ticks are written to disk based on
two rules.

(4 The tick count of an instrument reaches a
pre-determined value. All records for this in-
strument are written to the disk as a trans-
action to place them on a few disk blocks.
This mechanism is used for instruments that
are ‘hot’. Recall that a ‘hot’ instrument is in
the 10% of instruments for which 90% of the
updates occur.

(b) A timer expires. All instruments that have
not been written to disk since the last timer
expiration are written to disk. This mecha-
nism is used for instruments that have few
ticks.

The application will execute all queries for an
instrument both against the memory resident
database and the disk database.

3. Triggers for Future Patterns

Users can request creation of a track by giving
patterns for instrument names. The request can
be for all instruments that currently match the
pattern or all instruments that match the pattern
now or in the future. Patterns can consist of a
wildcard suffix. A typical example is a request for
instruments that match the pattern ‘IBM%’ now
and in the future. All options that are based on
IBM have ‘IBM’ as the prefix.

To accomplish creation of inventory on future pat-
terns, a trigger as implemented in DBAL is de-
fined. When a new instrument is created match-
ing the the pattern, a notification is sent to GTM
which in turn creates the track.2

4. InterDay versus IntraDay

To achieve performance gains by reducing con-
flicts on instrument and disk or database re-
sources, we separate interday data from intraday
data. At the end of a trading day, we move the
data for that day to a separate database that is
within the scope of DBAL. This database will be
used mostly for reads since all inserts are done for
a particular day.

Updates can be applied to the previous day’s
database since corrections can occur but correc-
tions for a previous day are quite infrequent.

2All instruments are listed in a separate database that is part
of DBAL but beyond the scope of this paper.

5.

5

We

Time versus Space Tradeoff

Most requests are for standard intervals like ticks,
1 minute, 5 minute hourly, daily and so on. We
support creation of tracks only for the standard
intervals. We have defined tables for these stan-
dard intervals and can access them directly.

However, users can request any intervals when
they query the data. We have routines that can
build a track for any requested for any requested
interval from the standard intervals. Requests for
non-standard intervals like 7.5 minutes have to
calculated by going through a filter when the re-
quest is executed.

Conclusion

have built a multidatabase system to support an
application that has requirements for sub-second re-
sponse requirements for queries that require 100-1000
points of data and had an update rate (append-only)
of 500 inserts per second. The update rate peaks at
the endpoints of intervals. We have also incorporated
a memory-resident database for performance.

We had two different notions of consistency both
defined by the application requirements. One was
for the replicated table and another was for instru-
ments. We used the knowledge of the application for
the data in the instrument table (via load balancing)
and distributed certification for the replicated table.
Although distributed certification may be slow, we
only need it when an inventory track is created or
deleted. It is not needed for the append-only updates
or large datasets for queries. These are restricted to a
single database and in some cases, the request can be
satisfied from the memory-resident database.

Currently, the system is operational on a UNIX
environment supporting two disk-resident databases,
InterBase and C-tree. We also have Smallbase as
a memory-resident database in DBAL. The DBAL
server, DBAL agents and the history processes are
UNIX processes. The history processes are threaded
and make multiple connections to DBAL. The pro
cesses communicate via shared memory on the same
site and via sockets across sites.

The requirements for performance optimization
emerged during the development cycle. Initially, we
were under the assumption that load balancing may
be enough to solve the performance problem since data
was distributed across multiple sites. However, if we
wrote a single transaction to disk every second with
500 inserts within the transaction and each insert be-
longing to a unique instrument, then a retrieval for
1000 points of an instrument may have to access 1000
blocks. We had to use clustering in memory to opti-

720

mize the placement of updates. We have to analyze
the performance of our clustering algorithm.

We found triggers to be extremely useful in creation
of tracks for future inventories. Without triggers, we
would have to implement a process that monitored in-
strument creation and did pattern matching. In the
future, we need to be able to allow users to create
inventory baaed on predicates. We also need to ex-
plore the use of triggers to do automatic roll-ups from
smaller to larger intervals.

We need to evaluate the performance of the whole
system. This includes the cost of a transaction in
memory, the cost of distributed certification and the
cost of a query going across multiple sites because of
the load balancing we used. We need to also look into
the notion of synthetic securities, i.e. a security com-
posed of multiple securities and analyze how load bal-
ancing and consistency are effected.

Aside from performance, we need to introduce re-
covery for the entire system. Currently, we recover
from a tick log that is maintained both by Platform
processes and the originating Exchanges. We need to
explore the correctness of the database and the histori-
cal data when the real-time feeds are down, a database
crashes or a particular site is unavailable. We also need
to explore dynamic load balancing of history tracks
(when a tracker or site goes down) and its effect on
correctness as well as performance.

Acknowledgements

We would like to thank John Sui for his support of the
project and giving valuable insight for performance
enhancements. We would also like to thank Ashwin
Bhatt for his continual guidance and support. We
would also like to thank the other implementors of
the system, Lloyd Fernandes, Bruce Holenstein, Ram
Tanamy and Raghu Subramanian. Finally, we would
like to thank John Bopp, Rick Busdiecker and Jeff
Carvalho for multiple discussions that improved the
system and application.

References

[l] M. Cochinwala, K.C. Lee, W. Mansfield, Jr., and
M,Yu. A Distributed Transaction Monitor. Proc.
of RIDE-MS 1993, April 1993.

[2] Munir Cochinwala, John Bradley, Ram Tanamy
and Raghu Subramanian. A Multidatabase Solu-
tion for a Financial Application. Proc. of Appli-
cations of Databases, June 1994.

[3] P. P. Chrysanthis and K. Ramamritham. A For-
malism for Extended Transaction Models. Proc.
of the 17th International Conference on VLDB,
September 1991.

[4] U. Dayal, M. Hsu, and R. Ladin. Organiz-
ing Long-Running Activities with Triggers and
Transactions. Proc. of the ACM SIGMOD, 1990.

[5] A. K. Elmagarmid, Y. Leu, W. Litwin, and
M. Rusinkiewicz. A Multidatabase Transaction
Model for InterBase. Proc. of the 16th VLDB,
1990.

[6] MarketFeed The Telerate Consolidated Feed.
Technical Specifications, August 1993.

[7] Telerate Ticker Feed Specification. Technical
Specifications, August 1993.

[8] I. Greif and S. S arin. Data Sharing in Group
Work. Computer-Supported Cooperative Work,
ed. Irene Greif, Morgan Kaufman Publishers,
1988.

[9] J. Pons and J. Vilarem. Mixed Concurrency Con-
trol: Dealing with Heterogeneity in Distributed
Database Systems. Proc. of the Fourteenth Con-
ference on VLDB, Los Angeles, 1988.

[lo] Calton Pu. Superdatabases for Composition of
Heterogeneous Databases. Proc. of the Fourth
International Conference on Data Engineering,
Los Angeles, 1988.

[ll] Tore Risch. Monitoring Database Objects. Proc.
of the Fifteenth Conference on VLDB, 1989.

[12] A. Rosenthal, S. Chakravarthy, B. Blaustein,
and J. Blakeley. Situation Monitoring for Active
Databases. Proc. of the 14th VLDB, 1989.

[13] Yuri Breibart, Hector Garcia-Molina and Avi Sil-
berschatz. Overview of Multidatabase Transac-
tion Management. Stanford Technical Report No.
STAN-CS-92-143, May 1992.

[14] Michael Heytens, Sheralyn Listgarten, Marie-
Anne Neimat and Kevin Wilkinson. Smallbase:
A Main-Memory DBMS for High-Performance
Applications. Unpublished Draft , October 1993.

[15] M. Stonebraker, A. Jhingran, J. Goh, and S.
Potamianos. On Rules, Procedures, Caching and
Views in Database Systems. Proc. of the ACM
SIGMOD, 1990.

721

