
An Overview of Repository Technology

Philip A. Bernstein’
Digital Equipment Corp.

Abstract

A repository is a shared database of information
about engineered artifacts. We define a repository
manager to be a database application that
suPports checkout/checkin, version and
configuration management, notification, context
management, and workflow control. Since the
main value of a repository is in the tools that use
it, we discuss technical issues of integrating tools
with repositories. We also discuss how to
implement a repository manager by layering it on
a DBMS, focusing especially on issues of
programming interface, performance, distribu- ,;
tion, and interoperability.

1 IntrGduction

Metadata management is a growing part of the database
business, driven by many trends in information
technology. For example,

Business process re-engineering has gotten the
attention of executives of most large enterprises. This
leads to the development of large process models and
information models, which are metadata and need to be
Itunaged.

Information technology departments are buying
computer-aided software engineering (CASE) tools
piecemeal, and are now finding it ditlicult to merge the
design data (metadata) developed with each of them.

Large enterprises are deploying “data warehouses” to
cache databases in user-oriented form. Tracking this
data and where it comes from is a metadata problem.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distiibuted for
direct commercial advantage, the KLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large data Base
Endowment. To copy otherwise, or to republish, requires a fee
andor special permission porn the Endowment.
Proceedings of the 20th VLDB Conference
Santiago Chile

Umeshwar Dayal
Hewlett-Packard Labs

Diverse database types, managed by heterogeneous
database systems (DBMSs), some not managed in a
DBMS at all, are being widely deployed. Their
descriptions need to be managed in an integrated
way.

Users want object-oriented (00) application
development. Many of the objects produced by 00
development are metadata, such as interface
descriptions and class hierarchies.

Manufacturing enterprises are alarmed by the high
cost lof information technology to introduce new
products, most of it just translating information
between different formats. They need to manage
these data formats and the data they describe, so that
all their&formation management, computer-aided
design (CAD), and product data management tools
can share on-line databases.

The technical requirement to support the above
activities is not just a fancier catalog for the customer’s
database. Nor is it just introducing an object-oriented
DBMS in place of a relational one. Rather, it’s
implementing a layer of control services on top of the
DBMS, called a repository manager, and integrating it
with many tools. The result of this integration is a
framework for metadata management, called a
repository Sysfem.

There is a small but rapidly-growing market for
repository systems. This market is led by vendors of data
dictionaries, CASE tools and CAD tools. Database
researchers have had little infhrence, except indirectly
via their OODB work. Conversely, the vendors have
made little use of what has been learned about
OODBMSs. This paper attempts to bridge this gap.

We propose a definition of repository (Section 2).
We then discuss what functions a repository manager
must support (Section 3), how to integrate tools with a
repository (Section 4), how to layer a repository system
on a DBMS (Section 5), and what technical problems
need to be addressed for this technology to move
forward (Section 6).

1 Current Address Microsol? Corp., One Microsoft Way, Redmond, WA 98052-6399. pbilbe@tmi~i?.com

2 Address: Hewlett-Packard Labs, 1501 Page Mill Road (lU-4). P.O. Box 10490, Palo Alto, CA 94303-0969. dayal@plabs.hp.com.

705

2 What’s a Repository?

A repository is a shared database of information about
engineered artifacts produced or used by an enterprise.
Examples of such artifacts include software, documents,
maps, information systems, and discrete manufactured
components and systems (e.g., electronic circuits,
airplanes, automobiles, industrial plants). The fact that
artifacts are “engineered” leads to a variety of
requirements for database structuring and access, which
we describe here and in Section 3.

Over the lifecycle of engineered artifacts, many
objects of many di@erent types are defined, created,
manipulated, and managed by a variety of tools that
need to share data. For example, software engineers use
design tools, language editors, compilers, builders, and
debuggers to create and test programs. Project
managers use planning, tracking, financial analysis, and
reporting tools to create and manage project plans,
spreadsheets, and reports. Technical writers use text
and graphics editors, hypertext and document
management tools to produce, manage, and manipulate
compound documents. System managers use
monitoring, reporting, diagnosis, and configuration tools
to monitor and reconfigure system components.

The objects themselves may be stored in a variety of
storage systems, such as file systems, database systems,
or hardapy filing cabinets. Descriptions of these
objects are stored in the repository. In addition, the
repository may store information about an object’s
location, its revision history, the tools and processes that
were used to build it, constraints that it satisfies, who is
authorized to access or modify it, who is responsible for
managing it, and its dependencies on other objects.

Storing this information in a common repository has
several benefits. First, since the repository provides
storage services, tool develc@ers need not create
tool-specific databases of the objects that tools or use.

Second, a common repository allows tools to share
information so they can work together. For example,
the repository can store meta-metadata (such as
allowable data formats for record and field definitions),
metadata (such as specific record and field definitions),
and data itself, which may be shared by tools such as
compilers and debuggers, database query processors,
forms managers, and report writers. Without a common
repository, special protocols would be needed for
exchanging information between tools. By conforming
to a common data model (i.e., allowable data formats)
and information model (i.e., schema expressed in the
data model), tools can share data and metadata without
being knowledgeable about the internals of other tools.
In this respect, a repository is like a data dictionary.
However, while data dictionaries typically only store
metadam (database schemes, record and field
definitions), a repository can store information about the
whole range of object types pertinent to an enterprise.

Third, the information in the repository is subject to
common control services, which makes sets of tools
easier to use. Since a repository is a database, it is
subject to database controls, such as integrity,
concurrency, and access control. However, in addition,
a repository system provides checkout/checkin, version
and configuration control, notification, context
management, and workflow. These services are
described in the next section. Of course, even in the
absence of tools sharing data, a single tool can benefit
from these repository services, though one would
probably not invest in building an independent set of
complete and robust repository services unless the
investment were amortized over many tools that would
use the services (even if they won’t share via the
repository).

By promoting data sharing through common data
and information models, and imposing a common set of
control services, a repository is the centerpiece of an
integrated environment in which a dynamic collection of
tools can work together.

3 Repository Manager Functions

3.1 Introduction

A repository manager provides services for modeling,
retrieving, and managing the objects in a repository. It
typically uses one or more storage managers to store the
objects. For example, a file object (e.g., a document,
circuit diagram, or source code program) may be stored
in a file system, while descriptive attributes of the file
object (e.g., how and when it was created, who owns it,
where to find it, lists of related objects) may be stored in
a DBMS. When a user asks to retrieve an object, the
repository manager looks up the object’s location
attribute and then copies the object into the user’s
workspace, such as a file directory or a private database.

A repository manager should provide the standard
amenities of a DBMS: a data model (to structure a
repository), queries (to browse a repository), views (to
enhance data independence of tools that access a
repo~tory), integrity control (to trap integrity
violations), access control (for secure access), and
transactions (for atomic multi-statement updates).
Managing metadata requires additional services beyond
those of a conventional DBMS. These services are the
main added value of a repository manager:
checkout/checkin, version control, configuration control,
notification, context management, and workllow
control. We define a repository manager to be a data
manager that offers these functions. Most repository
manager products offer these functions, though not
always in their full generality. We describe these
flmctions below.

706

3.2 Checkout/checkin
Activities that use a repository can be of long duration,
lasting days or months. Treating the entire activity as
one transaction is impractical. For example, a system
crash during such an activity could lose days of work.

Therefore, the repository manager must support
checkout and checkin of objects. The checkout operation
copies the object from the shared repository into the
user’s private workspace. Afler working on the object,
the user issues a checkin operation, which copies the
object from the private workspace into the shared
repository. Checkout and checkin execute as (separate)
short transactions. Essentially, checkout sets a persistent
lock on the object, which is released by checkin.
Checkout should support shared and exclusive modes.

3.3 Version control
Repository objects typically undergo a series of
revisions, which the repository manager represents as
versions. A version is a semantically meaninghtl
snapshot of an object at some point in its lifecycle. The
repository manager maintains each object’s version
history. A version history is a directed graph with one
node per version and an edge from version A to version
B if B was derived from A. Features of a version model
should include [71:

A mechanism for representing versions as objects in
the repository.

A version naming mechanism, preferably both with
default and user-supplied names.

An operation for deriving a new version from an old
one. The derivation operation specifies whether the
properties and behavior of the new version are
copied from the old version or are modified in some
way.

Constraints on the ‘version history. Some models
restrict the version history to a single path, but this is
too restrictive for most applications.

A mechanism for identifying a particular version to
be used in a given context.

The semantics of checkout and checkin of versioned
objects. Checkout in exclusive mode might
automatically create a new version, while checkout
in shared mode does not. On checkin, the model
might allow multiple branches, or might require that
concurrently created siblings be merged.

A semantics for relationships between versioned
objects. A new version of an object may inherit
relationships that were attached to the previous
version of the object.

An operation for declaring that two or more
independently-developed versions merge into one
version. The operation must specify how the

properties and behavior of the new version are
derived from those of the versions being merged
(inherit from only one of them, or perform some
semantically meaningful merge). Some version
models distinguish one path in the version history as
the “main” line of descent; other versions are
variants which are merged back into the main line
from time to time. While this main-line concept is
sometimes useful, a general version model is needed
that supports true alternatives that may never be
merged.

3.4 Configuration control
Some objects in a repository are hierarchical collections
of other objects, called composite objects. Both a
composite object and its components may be versioned.
A configuration is a binding between a version of a
composite object and a version of each of its (versioned)
components. Not all the components of a configuration
need to be versioned, e.g., the authors in a versioned
author list. Features of a configuration control model
should include:

A mechanism for representing a configuration.

A mechanism for identifying a configuration’s
component versions, either explicitly by name or
implicitly by context (e.g., John’s current
configuration of A includes the last checked-in
version of B and the last version of C created by
John).

Operations for attaching component versions to
ca~guratious and for detaching them.

Mechanisms to define and enforce constraints on
contigurations. One should avoid fixed constraints
on all configurations. E.g., a model might require
that a configuration contain only one version of each
component. This is useful for soflware systems,
where different versions of a component could
interfere with each other. But it’s inconvenient for
complex vehicles, which might contain more than
one version of a par& especially after being repaired
a few times.

The semantics of change propagation in
configurations. If one version of a component is
replaced by another version, does that automatically
result in a new configuration7 If so, then when a
versioned object is checked out, its composite
objects must also be checked out, reducing
concurrency. It can recursively proliferate
configurations up the composite object hierarchy;
e.g., replacing a version of a screw would cause a
new version of a vehicle to be created. Not all
applications want this behavior, so the model should
allow the configuration’s definer to specify the
desired semantics for each component: create a new
version, do not create a new version, or perform

707

some other action (e.g., notify a user or invoke a
tool).

3.5 Notification

Many objects in a repository are interrelated. When an
operation is applied to one object, operations may need
to be applied to related objects. For example, when a
source module is changed, rebuild dependent object
modules. When one representation of a design object is
changed, update the other representations. When a
checkout request is received for an already-checked-out
object, grant the request but notify the concurrent users
of the object.

These are all examples of notijication, where the
repository manager implements rules of the form “When
event E occurs, if condition C holds, then perform action
A.” The rules for change propagation, version control,
and configuration control might be “hardwired” into a
repository manager. However, a general facility for
users to define and implement rules would be more
flexible. It would allow customization of version and
configuration control. It would support integrity
control, access control, and propagation of operations to
related objects. It would also enable the definition of
enterprise-specific, domain-specific, or application-
specific policies. For example, release control might
define the rule “When the last signature on the approval
list is obtained, change the status of the object to
‘Released’.”

3.6 Context management

A context defines a view of the objects in the repositoq.
It is typically used to define the set of objects that an
engineer is manipulating for a particular task. It may
also include user preferences (e.g., language, editor,
display), and specific rules and constraints to be
enforced. One should be able to put arbitrary objects in a
context, not just files. Thus, a file directory is often an
inadequate mechanism for context management.

To carry out a task,’ a user opens a context and then
performs operations on objects visible in this context.
When the task is finished, the user closes the context. A
user can have many contexts open at a time (e.g., an edit
context and a compile context). Also, contexts can
remain open for a long time, and therefore should be
persistent. This allows a user to leave a task for awhile,
and the same ;or different user pick it up later.

3.7 workflow control

Engineered artifacts progress through phases of a
lifecycle, such as requirements, specification, design,
analysis, production, testing, and release. A repository
manager should support a wor@low control model to
track an object’s state relative to its lifecycle. A
promote or demote operation changes the state of the
object. It can either be invoked mantiy by a user or

automatically by a notification rule (e.g., because a test
ran successfully).

A more general workflow control model would
provide primitives for describing a long duration activity
as a collection of steps, the flow of control and data
among the steps, steps for handling exceptions, etc., and
a controller to drive executions of activities. Such a
model is of general value, not just to the design of
engineered artifacts, so it should be available separate
from a repository manager. However, it may use a
repository to hold its metadata.

4 Tool Integration

Some users just want a repository for its data modeling
capability, for example, to describe scientific data sets.
However, most users don’t really want just a repository
per se. Rather, they want tools, and the repository makes
those tools more valuable in some way.

Even when only one tool is of interest, users often
want (some of) the control services that a repository
manager provides. They’ll accept the database (i.e.,
repository) that comes along with it, if it’s explained
why they need it: to model objects and collections for
configuration management, to model relationships for
notification services, etc.

Most users quickly graduate to an environment
where multiple tools are used. For example, they might
want toolsets for business process modeling, application
design and analysis, DB design and analysis, application
programming, application reengineer@, product
release management, or computer systems management.
At this point, they want their toolset integrated. There
are a number of dimensions in which to, integrate a
toolset. One critical dimension is to have the tools share
data. Data sharing among tools requires a repository.

A minimal level of repository integration is tool
invocation. A tool is defined in the repository by its
interface and invocation method, so the repository
manager can invoke it and pass it objects of the correct
types. When invoking the tool, the repository manager
can exercise some control, such as triggering
notifications or updating worldlow state. At this level of
integration, though tools are known to the repository,
they may not be able to share data.

One way for tools to share data is via data exchange.
Data exported by one tool is translated into the impo$
format of another tool. With n tools, you need n
translators. One can do better by defining a canonical
format for data translation, and building two translators
for each tool, to translate the tool’s export format to
canonical form and to translate canonical form into the
tool’s import format. This reduces the problem to 2n
translators. The main technical problems are to have a
sufficiently rich data model to represent all shared data,
a complete and tool-neutral information model for

708

objects that tools want to share, and translators that
properly interpret the semantics of the data they
translate. Some examples of this data exchange witch
approach are the Express data interchange standard for
CAD data translation [12], and the Software One
Exchange product that moves data between CASE tools.
This is a state-of-the-practice solution in many fields
WI.

Although a data exchange switch can help tools
share data, it is not a database system. By using a
repository (i.e., database) to store data being shared by
tools, one gets some additional benefits:

you know where to look for objects. They’re in the
repository, not scattered around in files that are
independently maintained by different tools.

you only have one copy of each shared object,
thereby avoiding inconsistencies between copies of
the same object managed by different tools

you don’t lose information moving from one tool to
another. Even data that can’t be represented in the
canonical model can at least be stored in the
repository in tool-specific format and not simply lost
during data exchange.

you control all shared objects the same way, with the
same version model, configuration model, etc.

you can incrementally update shared data. By
comparison, data exchange is, by its nature, a batch
process.

you can query the data, e.g., to find the revision
history of an object or all dependent objects of an
object. ?

Integrating a tool with a repository can be the same . . ._ _ .- .
as integrating it with a data exchange switch: write
translators that move data from tool export format to
repository format and from repository format to tool
import format. As with a data exchange switch, this
requires that the repository have a rich canonical model
that can represent all shared data and that the translators
properly interpret the semantics of shared data. This
approach works well when a tool checks out all the data
it needs before executing, and checks in all the data it
used when it finishes.

Some tools need to access data interactively during
their execution (for example, a system builder, such as
“make”). The batch translator approach, which
imports and exports tools’ data, doesn’t work well in
this case. One could modify each tool to directly access
individual repository objects, as needed. However, this
requires extensive modification of each tool, to access

data in the repository’s format using the repository
manager’s interface, which is quite expensive. Also, it.
results in a tool that is completely dependent on the
repository manager, which limits the tool vendor’s
market to customers that use this repository manager.
Instead, one can leave the tool unchanged and use a
virtual repository interface, which traps all of the tool’s
data accesses (using whatever data access interface the
tool depends on) and translates them into accesses of
repository objects. This is a common way to integrate
unmodified UNIX tools with a repository; all UNIX
files operations are trapped and directed to the
repository [81.

Since tools are what give value to a repository, it
should be cheap and easy to integrate a tool with a
repository, so many tools can be integrated. The
state-of-the-art here is not very good and would benefit
from some serious research attention. Today, integrating
a tool with a repository is an art, requiring protracted
technical negotiation between the tool vendors who
want to share data and the repository vendor,

Tool integration work should be reusable, so a tool
vendor’s integration effort is portable to many repository
managers. This requires that all repositories support the
same application programming interface (API) and
canonical information model. In practice, this is hard to
do, since international standards are incomplete or
immature and there is no dominant vendor dictating a
standard. Still, there have been some successes. For
example, in the discrete mamifacturing area, there is a
canonical information model (STEP [111) which is
written in the standard data modeling language
(EXPRESS [13]), but the API for accessing such models
(SDAI [141) is immature and not yet widely supported.
In the CASE area, there is growing support for the
CASE Data Interchange Format (CDIF), which is an
information model for CASE data, but this model is
unrelated to the Portable Common Tools Environment
(PCTE) API standard for CASE frameworks [lo].
Moreover, PCTE is principally oriented toward version
and configuration control of coarse-grained objects, and
is unsuitable for fine-grained data sharing. Competing
CASE APIs are also being considered. For example,
ATIS (A Tool Integration Standard) is being discussed
in ANSI [5]. ATIS is an extensible object+riented
information model covering the basic repository
functions described in Section 3 plus an object-at-a-time
API to access repository objects. The existing IS0
standard for information resources is based on SQL, but
seems to have had little commercial impact’. Presented
with such a confusing picture, many tool vendors are
delaying their investment in repository integration until
the market stabilizes. Or, they have implemented their

‘Incidentally, all of the API standards mentioned above (SDAI, PCTE, ATIS) are throwbacks to a CODASYL-like
model. They offer record-at-a-time access will minimal content-based retrieval and no attempt at SQL compatibility.
They would benefit from attention by DBMS language experts.

709

own information model which at least ensures their own
tools can interoperate (e.g., Texas Instruments’
Information Engineering Facility (IEF)).

There’s a temptation to have the repository be the
tool’s native storage manager. While this is feasible in
principle, it is often undesirable, because high
performance may require that the tool use its private
repository format. Most tools manipulate objects in a
“main memory database” which they construct after
checking out the required files. A repository manager is
inherently slower, in many cases too slow for interactive
use.

Even if a tool T uses a repository manager as its
storage manager, integrating T is still an issue with tools
that don’t use this repository manager. To integrate T
with tool U, either U must integrate with Ts repository
manager or T’s and Vs repository managers must
interoperate (see Section 5.5).

5 Repository Manager Implementation

A repository manager is an application layered on a
DBMS. In this section we discuss some of the issues
involved in implementing this application.

5.1 Repository API
The API requirements for a repository manager are
essentially the same as those for DBMSs in support of
CAD. These requirements are met well by 00 AEIs [l],
which allow you to:

construct types for objects that support repository
control functions, such as versions, version histories,
configurations, contexts, and rules.

construct new atomic and complex types that
represent objects within their domain. You can also
construct bulk types of these objects, such as tuples,
sets, sequences, and lists.

represent relationships in a flexible and natural way.

use a inheritance hierarchy to share type information
across multiple types.

incorporate type-specific operations that encapsulate
tools (e.g., edit a document, approve a design).

navigate among objects, an object-at-a-time.

dynamically construct new objects.

Queries over col&ctions of objects in the repository
are needed in addition to object-at-a-time navrgatton.
Highly functional query languages are starting to be
developed for OODBMSs [2], but they are not yet
ubiquitous in OODBMS products.

Entity-relationship ApIs support the data modeling
requirements of repositories, but they don’t allow you to
add new operations. SQL has traditionally not supported

many of the above capabilities. However, with the
addition of abstract data type facilities in many relational
DBMSs, there may soon be little difference in functional
capability between 00 APIs and SQL beyond syntactic
sugar [3,9].

5.2 Database Engine Support

A repository manager is an application layered on a
database engine, which could be a file system, relational
DBMS @DBMS), or OODBMS.

Most repository managers use a file system to store
coarse-grained objects, such as program source, text,
and diagrams. Some repository managers also use files
to store objects that support their control functions, such
as versions and relationships. For example, classical
CASE repositories operate this way, such as CMS,
SCCS, rcs, MMS, and make. Although file systems are
light on functionality compared to DBMSs, they do
offer two advantages: they’re ubiquitous, so by relying
on a file system, a repository manager can easily be
ported to many operating systems; and they offer
excellent performance for sequential access.

Some repository managers are implemented on a
combination of RDBMS and file system. The RDBMS
tables store descriptions of objects, and files store
objects themselves. This allows one to use unmodified
tools that use files for object storage, while for
description data one gets the benefits of DBMS
amenities, such as transactions, referential integrity, and
queries. However, there are some problems with this
approach: Updates to descriptions of objects and objects
themselves cannot be grouped in the same transaction
(because file systems don’t support transactions).
Administration of objects and descriptions is hard to
coordinate (e.g., to coordinate backup and recovery so
that objects and descriptions can always be recovered to
a mutually consistent state). And one cannot build
indices on objects and execute queries on objects (unless
one replicates some of each object in its RDBMS
description, which creates potential consistency
problems).

The first two problems can be solved by storing
objects in the RDBMS as binary large objects (BLOBS).
The last requires that objects be decomposed into pieces
which are stored separately in the RDBMS. But this is
hard to do with conventional RDBMSs, which require
objects to be laid out in rigid table structures.

Ideally, a repository manager would map its “object
base” into labeled directed graphs, where objects are
mapped to nodes and relationships are mapped to edges.
Operations include object-at-a-time navigation,
following paths of objects, and taking transitive closures
of subgraphs. A growing number of RDBMSs are
supporting graph-type databases via 00 features, such
as user-defined data types, type constructors for
complex user-defined types (such as records and arrays),

710

and extensions to SQL for transitive-closure-type
operations. The SQL standard is also evolving to
support these features [9].

OODBMSs are a promising target for repository
manager implementation, because they can directly
implement graphs and graph operations. They have rich
facilities for user-defined types and type constructors.
They can lay out complex objects in contiguous memory
instead of splitting them into different tables. They can
execute type-specilic methods. They are optimized for
navigational operations; in some products, edge
traversal in the database graph only costs a pointer
dereference, either by directly mapping database pages
into main memory or by “swizzling” (mapping) disk
pointers into memory pointers when objects move to
memory. Also, since most OODBMSs target the CASE
and CAD markets, they provide limited forms of the
repository control functions (typically checkout/checkin,
versions, and configurations).

However, most OODBMSs are less mature than
RDBMSs. Many provide limited transaction facilities
(e.g. medium- or coarse-grained locking), limited
support for queries, views, constraints, and triggers, and
weak subsets of SQL with limited query optimization.

In summary, both RDBMSs with 00 features and
the best OODBMSs are promising targets for repository
manager implementation. Since both types of DBMS
products are immature and since experience in building
repository managers on such types of products is
limited, it is too soon to say which type will dominate in
the long term.

5.3 Performance

A critical problem of today’s repository managers is
poor performance. A checkout or checkin operation on a
complex design object can take tens of minutes, for
example, to traverse a large object base to find the
relevant versions of objects in a large configuration. A
design tool that accesses large parts of a repository can
take hours. Users find this barely acceptable. They often
work around the problem by storing a large set of
objects as one large object whose internal structure isn’t
visible to the repository manager and which is read and
written as a unit. Of course, this reduces the value of
many repository control services, since they are unable
to help manage the fine-granted components of a design.

One aspect of repository management performance
is cache management. Most RDBMSs implement a
record (i.e., object) server, and the client process (in this
case the repository manager) has an object cache that is
invalidated on every transaction commit. Thus, each
object access costs a client-server message, except when
the server sends multiple use&l objects in bulk (e.g., for
set-oriented access) or when the client’s transaction
accesses the same object multiple times. Most RDBMSs
support “stored procedures,” which are application

procedures that run in the object server. One client call
to a stored procedure can result, in many object accesses,
thereby reducing client-server traffic. .

Most QQDBMSs implement a page server and the
client process (the repository manager) has a page
cache. Since a page access brings many objects to the
client, if the client accesses many objects on a page
(e.g., navigating an object-at-a-time), client-server
traffic is lower than with an object server. Moreover, in
some OODBMSs, the client cache is not invalidated on
every transaction commit. Thus, when the client runs
many transactions, it can build up a useful cache that’s
continually reused, further reducing client-server trafllc.
This gives OODBMSs a performance advantage, at the
cost of protection between the repository manager’s and
OODBMS’s address space.

Many customers insist that the repository manager
be layered on the same DBMS they use for other
purposes, e.g., for easier administration and training.
This means the repository manager must be portable
across DBMSs, which makes it diflicult to get the full
performance benefit from certain DBMSs. We predict
that successful repository manager vendors will attain
this portability with high performance, but it entails
much engineering expense and therefore isn’t around the
comer.

OODB benchmarks are probably representative of
how repository managers use a DBMS [6], but we know
of no published workload analyses to substantiate this
intuition. Even less is known of how a repository
manager’s use of a DBMS affects performance. This
area would benefit greatly from systematic study.

5.4 Distribution Issues

A repository manager may offer transparent access to
distributed data. That is, a client application may issue a
location-transparent access, which the repository
manager translates to a local access on the appropriate
repository manager server. If the repository manager is
implemented on a DBMS that supports transparent
distribution, then it can trivially rely on the DBMS’s
capability. Otherwise, it must implement the capability
itself

In a distributed repository, objects in one repository
may reference objects in other repositories. Since each
repository manager needs the flexibility to move and
delete its own objects, these references should be
logical, not physical, and certain update operations need
to check the integrity of these references. For example,
if it is illegal to delete an object that participates in a
relationship, then a delete needs to check the validity of
relationships with objects in other repository managers.

Another form of integrity involves distributed
transactions. If an update transaction accesses two or
more repository managers, then those repository

711

managers must use two-phase commit to ensure that the
transaction is all-or-nothing. If the underlying DBMSs
do not support this capability, then the repository
manager needs a private workaround.

In a design environment such as CASE or CAD,
users normally operate on repository data for long
periods. Even if they use data managed by a remote
repository manager, they probably need a private
(replicated) copy of that data to get adequate
performance. Fully symmetric data replication is beyond
the state-of-the-art of distributed DBMSs. Therefore,
one needs to exploit application-specific behavior to
implement a replication scheme. For example, if
versions are immutable, and sharing over short periods
is rare, then copies of versions of popular objects can be
distributed to all servers, say overnight, so they can be
read locally on demand [15]. As another example, a
remote checkout operation with intent to update may
create a new locked version in the remote and local
repository. On checkin, the local copy is written to the
remote repository and deleted from the local repository.
This replication technique is used in Digital’s
CDDLRepository [4].

5.5 Interoperation
To share information, heterogeneous repository
managers have to interoperate. That is, object types in
one repository’s information model or data model must
be accessible as object types in the other’s model. This
requires mapping operations on one repository manager
into operations on the other (see fig. 1).

Application --) Repository Mapper,- Repository
Program 1 Manager Rl 4 Manager R2

Reposit04 Repositoj
Operations Operations
in Rl’s in R2’s
Language Language

Figure 1: Mapping Operations Between Repositories

Ideally, each object exists in only one repository,
with references to it in other repositories that share the
object. This way, each object is only updated in one
place. If replicas of an object exist in heterogeneous
repositories, then updates must be propagated to all
replicas. Semantic differences can make this hard to
automate. Often, even a manual solution is hard, i.e.,
writing a repository-specific and information-model-
specific program for cross-posting updates between two
repositories. For example, if a versioned record
definition in a CASE repository may be shared with an
RDBMS catalog, how do you translate an update in the
CASE repository that creates a new version into an
RDBMS catalog update7 What if they don’t support the
same data types? What if a relationship is many-to-one
in one repository but many-to-many in another? Etc.

We believe it is unavoidable that many tools will, for
the foreseeable future, have replicated heterogeneous
repositories, for the following reasons:

Many existing tools have already committed to a
private repository implementation. E.g., database
systems. These repositories are already well-tuned to
the tool’s performance requirements.

Many tools need to be portable across operating
systems. Therefore, they can only depend on a
repository manager that runs on those operating
systems and there are few such products on the
market.

In an object-oriented world, some objects will be
designed to maintain some state that describes the
object. It will be some time before repository
technology is so mature that all objects will entrust
all their state to a shared repository manager.

Thus, the problem of maintaining consistent
heterogeneous repositories must be faced. Or we will
have to wait for a repository technology to dominate the
product world and for tools to be written or re-written to
use that technology

6 Conclusion
We have argued that repository systems are an important
type of database application and a worthwhile area of
study. We proposed definitions for “repository” and
‘ ‘repository manager. ’ ’ We discussed approaches to
repository tool integration. And we discussed repository
manager implementation issues.

We believe repositories are a field that would benefit
by more intense study by the database research
c&mu&y. Some specific areas that warrant attention
are tool integration techniques, repository manager
performance, a completely general model of versions
and configurations, interoperability of heterogeneous
repositories and repository managers, comparisons of
commercial products, and case studies of using
repositories in different tool domains.

7 Acknowledgments
Most of what we know about repository systems we
learned from dozens of engineers at Digital who work
on repository products and strategy. We especially thank
Jonathan Bauer, Jim Gray, Ken Moore (now at Iris
Software), Chip Nylander, Neil Schutzman, Al Simons,
and Melissa Waldie.

712

8 References Standardization, 1993.

1. Atkinson, M. et al, “The Object-Oriented Database
Systems Manifesto, ’ ’ in Deductive and
Object-Oriented Databases, Elsevere Science
Publishers, Amsterdam, Netherlands, 1990.

2. Cattell, R.G.G. (txi.), The Object Database Standard
ODMG-93, Morgan Kaufmann Pubs., 1993.

3. Committee for Advanced Database Function, ‘ ‘Third
Generation Data Base System Manifesto,” ACM
SIGMOD Record 19.3 (Sept 1990), pp. 3 l-44.

4. Digital Equipment Corporation, CDDmepository
fr$&ture Manual, Field Test 3 Draft, March

5. Goering, R., “Standardization Effort Targets Dam
Management for CASE,” Computer Design 27, 18
(Oct. 1, 1988), pp. 28-30.

6. Gray, J. The Benchmark Handbook for Database and
Transaction Processing Systems, Morgan
Kaufmann, San Mateo, CA, 1991.

7. Katz, R.H. “Toward a Unified Framework for
Version Modeling in Engineering Databases. ” ACM
Surveys Vol. 22, No. 4}, December 1990.

8. Lain, Roy and Paul R. McJones, The Vesta
Approach to Precise Conjiguration of Large
Software Systems, Tech. Report 105, Digital System
Research Lab, Palo Alto, June 1993.

9. Melton, Jim (ed.), Database Language SQL 3,
ISO/ANSI Working Draft, ANSI X3H2-93-091 and
IS0 DBL-YOK 003, February, 1993.

10. Portable Common Tool Environment (PCTE)
Abstract Specification. ECMA European Computer
Manufacturing Association Standard ECMA-149.
December 1990.

11. Product Data Representation and Exchange. STEP
Part 1: Overview and Fundamental Principles, IS0
CD 10303-1(E), International. Organization for
Standardization, 1993.

12. Product Data Representation and Exchange. STEP
Part 21: Clear Text Encoding of the Exchange
Structure (Physical File), IS0 CD 10303-21,
InternationaI Organization for Standardization, 1993.

14. Product Data Representation and Exchange. STEP
Part 22: Standard Data Access Interface
Specification, IS0 WD 10303-22, Working Draft
TC184/SC4/WG7/N350, International Organization
for Standardization, 1993.

$15. Prusker, Francis, Edward P. Wobber, “The Siphon:
Managing Distant Replication Repositories,”
Technical Report 42, Digital Systems Research
Center, Palo Alto, April 1990.

16. Ring, K. “U.K. Start-Up Software One Claims to
Have Nuts and Bolts of AD/Cycle,” Computergram
International, Issue No. 1512 (Sept. 14, 1990),
Applied Data Services, England.

13. Product Data Representation and Exchange. STEP
Part 1 I: Express Language Reference Manual, IS0
CD 10303-11, International Organization for

713

