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Abstract 

A repository is a shared database of information 
about engineered artifacts. We define a repository 
manager to be a database application that 
suPports checkout/checkin, version and 
configuration management, notification, context 
management, and workflow control. Since the 
main value of a repository is in the tools that use 
it, we discuss technical issues of integrating tools 
with repositories. We also discuss how to 
implement a repository manager by layering it on 
a DBMS, focusing especially on issues of 
programming interface, performance, distribu- ,; 
tion, and interoperability. 

1 IntrGduction 

Metadata management is a growing part of the database 
business, driven by many trends in information 
technology. For example, 

Business process re-engineering has gotten the 
attention of executives of most large enterprises. This 
leads to the development of large process models and 
information models, which are metadata and need to be 
Itunaged. 

Information technology departments are buying 
computer-aided software engineering (CASE) tools 
piecemeal, and are now finding it ditlicult to merge the 
design data (metadata) developed with each of them. 

Large enterprises are deploying “data warehouses” to 
cache databases in user-oriented form. Tracking this 
data and where it comes from is a metadata problem. 
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Diverse database types, managed by heterogeneous 
database systems (DBMSs), some not managed in a 
DBMS at all, are being widely deployed. Their 
descriptions need to be managed in an integrated 
way. 

Users want object-oriented (00) application 
development. Many of the objects produced by 00 
development are metadata, such as interface 
descriptions and class hierarchies. 

Manufacturing enterprises are alarmed by the high 
cost lof information technology to introduce new 
products, most of it just translating information 
between different formats. They need to manage 
these data formats and the data they describe, so that 
all their&formation management, computer-aided 
design (CAD), and product data management tools 
can share on-line databases. 

The technical requirement to support the above 
activities is not just a fancier catalog for the customer’s 
database. Nor is it just introducing an object-oriented 
DBMS in place of a relational one. Rather, it’s 
implementing a layer of control services on top of the 
DBMS, called a repository manager, and integrating it 
with many tools. The result of this integration is a 
framework for metadata management, called a 
repository Sysfem. 

There is a small but rapidly-growing market for 
repository systems. This market is led by vendors of data 
dictionaries, CASE tools and CAD tools. Database 
researchers have had little infhrence, except indirectly 
via their OODB work. Conversely, the vendors have 
made little use of what has been learned about 
OODBMSs. This paper attempts to bridge this gap. 

We propose a definition of repository (Section 2). 
We then discuss what functions a repository manager 
must support (Section 3), how to integrate tools with a 
repository (Section 4), how to layer a repository system 
on a DBMS (Section 5), and what technical problems 
need to be addressed for this technology to move 
forward (Section 6). 
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2 What’s a Repository? 

A repository is a shared database of information about 
engineered artifacts produced or used by an enterprise. 
Examples of such artifacts include software, documents, 
maps, information systems, and discrete manufactured 
components and systems (e.g., electronic circuits, 
airplanes, automobiles, industrial plants). The fact that 
artifacts are “engineered” leads to a variety of 
requirements for database structuring and access, which 
we describe here and in Section 3. 

Over the lifecycle of engineered artifacts, many 
objects of many di@erent types are defined, created, 
manipulated, and managed by a variety of tools that 
need to share data. For example, software engineers use 
design tools, language editors, compilers, builders, and 
debuggers to create and test programs. Project 
managers use planning, tracking, financial analysis, and 
reporting tools to create and manage project plans, 
spreadsheets, and reports. Technical writers use text 
and graphics editors, hypertext and document 
management tools to produce, manage, and manipulate 
compound documents. System managers use 
monitoring, reporting, diagnosis, and configuration tools 
to monitor and reconfigure system components. 

The objects themselves may be stored in a variety of 
storage systems, such as file systems, database systems, 
or hardapy filing cabinets. Descriptions of these 
objects are stored in the repository. In addition, the 
repository may store information about an object’s 
location, its revision history, the tools and processes that 
were used to build it, constraints that it satisfies, who is 
authorized to access or modify it, who is responsible for 
managing it, and its dependencies on other objects. 

Storing this information in a common repository has 
several benefits. First, since the repository provides 
storage services, tool develc@ers need not create 
tool-specific databases of the objects that tools or use. 

Second, a common repository allows tools to share 
information so they can work together. For example, 
the repository can store meta-metadata (such as 
allowable data formats for record and field definitions), 
metadata (such as specific record and field definitions), 
and data itself, which may be shared by tools such as 
compilers and debuggers, database query processors, 
forms managers, and report writers. Without a common 
repository, special protocols would be needed for 
exchanging information between tools. By conforming 
to a common data model (i.e., allowable data formats) 
and information model (i.e., schema expressed in the 
data model), tools can share data and metadata without 
being knowledgeable about the internals of other tools. 
In this respect, a repository is like a data dictionary. 
However, while data dictionaries typically only store 
metadam (database schemes, record and field 
definitions), a repository can store information about the 
whole range of object types pertinent to an enterprise. 

Third, the information in the repository is subject to 
common control services, which makes sets of tools 
easier to use. Since a repository is a database, it is 
subject to database controls, such as integrity, 
concurrency, and access control. However, in addition, 
a repository system provides checkout/checkin, version 
and configuration control, notification, context 
management, and workflow. These services are 
described in the next section. Of course, even in the 
absence of tools sharing data, a single tool can benefit 
from these repository services, though one would 
probably not invest in building an independent set of 
complete and robust repository services unless the 
investment were amortized over many tools that would 
use the services (even if they won’t share via the 
repository). 

By promoting data sharing through common data 
and information models, and imposing a common set of 
control services, a repository is the centerpiece of an 
integrated environment in which a dynamic collection of 
tools can work together. 

3 Repository Manager Functions 

3.1 Introduction 

A repository manager provides services for modeling, 
retrieving, and managing the objects in a repository. It 
typically uses one or more storage managers to store the 
objects. For example, a file object (e.g., a document, 
circuit diagram, or source code program) may be stored 
in a file system, while descriptive attributes of the file 
object (e.g., how and when it was created, who owns it, 
where to find it, lists of related objects) may be stored in 
a DBMS. When a user asks to retrieve an object, the 
repository manager looks up the object’s location 
attribute and then copies the object into the user’s 
workspace, such as a file directory or a private database. 

A repository manager should provide the standard 
amenities of a DBMS: a data model (to structure a 
repository), queries (to browse a repository), views (to 
enhance data independence of tools that access a 
repo~tory), integrity control (to trap integrity 
violations), access control (for secure access), and 
transactions (for atomic multi-statement updates). 
Managing metadata requires additional services beyond 
those of a conventional DBMS. These services are the 
main added value of a repository manager: 
checkout/checkin, version control, configuration control, 
notification, context management, and workllow 
control. We define a repository manager to be a data 
manager that offers these functions. Most repository 
manager products offer these functions, though not 
always in their full generality. We describe these 
flmctions below. 
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3.2 Checkout/checkin 
Activities that use a repository can be of long duration, 
lasting days or months. Treating the entire activity as 
one transaction is impractical. For example, a system 
crash during such an activity could lose days of work. 

Therefore, the repository manager must support 
checkout and checkin of objects. The checkout operation 
copies the object from the shared repository into the 
user’s private workspace. Afler working on the object, 
the user issues a checkin operation, which copies the 
object from the private workspace into the shared 
repository. Checkout and checkin execute as (separate) 
short transactions. Essentially, checkout sets a persistent 
lock on the object, which is released by checkin. 
Checkout should support shared and exclusive modes. 

3.3 Version control 
Repository objects typically undergo a series of 
revisions, which the repository manager represents as 
versions. A version is a semantically meaninghtl 
snapshot of an object at some point in its lifecycle. The 
repository manager maintains each object’s version 
history. A version history is a directed graph with one 
node per version and an edge from version A to version 
B if B was derived from A. Features of a version model 
should include [ 71: 

A mechanism for representing versions as objects in 
the repository. 

A version naming mechanism, preferably both with 
default and user-supplied names. 

An operation for deriving a new version from an old 
one. The derivation operation specifies whether the 
properties and behavior of the new version are 
copied from the old version or are modified in some 
way. 

Constraints on the ‘version history. Some models 
restrict the version history to a single path, but this is 
too restrictive for most applications. 

A mechanism for identifying a particular version to 
be used in a given context. 

The semantics of checkout and checkin of versioned 
objects. Checkout in exclusive mode might 
automatically create a new version, while checkout 
in shared mode does not. On checkin, the model 
might allow multiple branches, or might require that 
concurrently created siblings be merged. 

A semantics for relationships between versioned 
objects. A new version of an object may inherit 
relationships that were attached to the previous 
version of the object. 

An operation for declaring that two or more 
independently-developed versions merge into one 
version. The operation must specify how the 

properties and behavior of the new version are 
derived from those of the versions being merged 
(inherit from only one of them, or perform some 
semantically meaningful merge). Some version 
models distinguish one path in the version history as 
the “main” line of descent; other versions are 
variants which are merged back into the main line 
from time to time. While this main-line concept is 
sometimes useful, a general version model is needed 
that supports true alternatives that may never be 
merged. 

3.4 Configuration control 
Some objects in a repository are hierarchical collections 
of other objects, called composite objects. Both a 
composite object and its components may be versioned. 
A configuration is a binding between a version of a 
composite object and a version of each of its (versioned) 
components. Not all the components of a configuration 
need to be versioned, e.g., the authors in a versioned 
author list. Features of a configuration control model 
should include: 

A mechanism for representing a configuration. 

A mechanism for identifying a configuration’s 
component versions, either explicitly by name or 
implicitly by context (e.g., John’s current 
configuration of A includes the last checked-in 
version of B and the last version of C created by 
John). 

Operations for attaching component versions to 
ca~guratious and for detaching them. 

Mechanisms to define and enforce constraints on 
contigurations. One should avoid fixed constraints 
on all configurations. E.g., a model might require 
that a configuration contain only one version of each 
component. This is useful for soflware systems, 
where different versions of a component could 
interfere with each other. But it’s inconvenient for 
complex vehicles, which might contain more than 
one version of a par& especially after being repaired 
a few times. 

The semantics of change propagation in 
configurations. If one version of a component is 
replaced by another version, does that automatically 
result in a new configuration7 If so, then when a 
versioned object is checked out, its composite 
objects must also be checked out, reducing 
concurrency. It can recursively proliferate 
configurations up the composite object hierarchy; 
e.g., replacing a version of a screw would cause a 
new version of a vehicle to be created. Not all 
applications want this behavior, so the model should 
allow the configuration’s definer to specify the 
desired semantics for each component: create a new 
version, do not create a new version, or perform 
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some other action (e.g., notify a user or invoke a 
tool). 

3.5 Notification 

Many objects in a repository are interrelated. When an 
operation is applied to one object, operations may need 
to be applied to related objects. For example, when a 
source module is changed, rebuild dependent object 
modules. When one representation of a design object is 
changed, update the other representations. When a 
checkout request is received for an already-checked-out 
object, grant the request but notify the concurrent users 
of the object. 

These are all examples of notijication, where the 
repository manager implements rules of the form “When 
event E occurs, if condition C holds, then perform action 
A.” The rules for change propagation, version control, 
and configuration control might be “hardwired” into a 
repository manager. However, a general facility for 
users to define and implement rules would be more 
flexible. It would allow customization of version and 
configuration control. It would support integrity 
control, access control, and propagation of operations to 
related objects. It would also enable the definition of 
enterprise-specific, domain-specific, or application- 
specific policies. For example, release control might 
define the rule “When the last signature on the approval 
list is obtained, change the status of the object to 
‘Released’.” 

3.6 Context management 

A context defines a view of the objects in the repositoq. 
It is typically used to define the set of objects that an 
engineer is manipulating for a particular task. It may 
also include user preferences (e.g., language, editor, 
display), and specific rules and constraints to be 
enforced. One should be able to put arbitrary objects in a 
context, not just files. Thus, a file directory is often an 
inadequate mechanism for context management. 

To carry out a task,’ a user opens a context and then 
performs operations on objects visible in this context. 
When the task is finished, the user closes the context. A 
user can have many contexts open at a time (e.g., an edit 
context and a compile context). Also, contexts can 
remain open for a long time, and therefore should be 
persistent. This allows a user to leave a task for awhile, 
and the same ;or different user pick it up later. 

3.7 workflow control 

Engineered artifacts progress through phases of a 
lifecycle, such as requirements, specification, design, 
analysis, production, testing, and release. A repository 
manager should support a wor@low control model to 
track an object’s state relative to its lifecycle. A 
promote or demote operation changes the state of the 
object. It can either be invoked mantiy by a user or 

automatically by a notification rule (e.g., because a test 
ran successfully). 

A more general workflow control model would 
provide primitives for describing a long duration activity 
as a collection of steps, the flow of control and data 
among the steps, steps for handling exceptions, etc., and 
a controller to drive executions of activities. Such a 
model is of general value, not just to the design of 
engineered artifacts, so it should be available separate 
from a repository manager. However, it may use a 
repository to hold its metadata. 

4 Tool Integration 

Some users just want a repository for its data modeling 
capability, for example, to describe scientific data sets. 
However, most users don’t really want just a repository 
per se. Rather, they want tools, and the repository makes 
those tools more valuable in some way. 

Even when only one tool is of interest, users often 
want (some of) the control services that a repository 
manager provides. They’ll accept the database (i.e., 
repository) that comes along with it, if it’s explained 
why they need it: to model objects and collections for 
configuration management, to model relationships for 
notification services, etc. 

Most users quickly graduate to an environment 
where multiple tools are used. For example, they might 
want toolsets for business process modeling, application 
design and analysis, DB design and analysis, application 
programming, application reengineer@, product 
release management, or computer systems management. 
At this point, they want their toolset integrated. There 
are a number of dimensions in which to, integrate a 
toolset. One critical dimension is to have the tools share 
data. Data sharing among tools requires a repository. 

A minimal level of repository integration is tool 
invocation. A tool is defined in the repository by its 
interface and invocation method, so the repository 
manager can invoke it and pass it objects of the correct 
types. When invoking the tool, the repository manager 
can exercise some control, such as triggering 
notifications or updating worldlow state. At this level of 
integration, though tools are known to the repository, 
they may not be able to share data. 

One way for tools to share data is via data exchange. 
Data exported by one tool is translated into the impo$ 
format of another tool. With n tools, you need n 
translators. One can do better by defining a canonical 
format for data translation, and building two translators 
for each tool, to translate the tool’s export format to 
canonical form and to translate canonical form into the 
tool’s import format. This reduces the problem to 2n 
translators. The main technical problems are to have a 
sufficiently rich data model to represent all shared data, 
a complete and tool-neutral information model for 
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objects that tools want to share, and translators that 
properly interpret the semantics of the data they 
translate. Some examples of this data exchange witch 
approach are the Express data interchange standard for 
CAD data translation [12], and the Software One 
Exchange product that moves data between CASE tools. 
This is a state-of-the-practice solution in many fields 
WI. 

Although a data exchange switch can help tools 
share data, it is not a database system. By using a 
repository (i.e., database) to store data being shared by 
tools, one gets some additional benefits: 

you know where to look for objects. They’re in the 
repository, not scattered around in files that are 
independently maintained by different tools. 

you only have one copy of each shared object, 
thereby avoiding inconsistencies between copies of 
the same object managed by different tools 

you don’t lose information moving from one tool to 
another. Even data that can’t be represented in the 
canonical model can at least be stored in the 
repository in tool-specific format and not simply lost 
during data exchange. 

you control all shared objects the same way, with the 
same version model, configuration model, etc. 

you can incrementally update shared data. By 
comparison, data exchange is, by its nature, a batch 
process. 

you can query the data, e.g., to find the revision 
history of an object or all dependent objects of an 
object. ? 

Integrating a tool with a repository can be the same . . ._ _ .- . 
as integrating it with a data exchange switch: write 
translators that move data from tool export format to 
repository format and from repository format to tool 
import format. As with a data exchange switch, this 
requires that the repository have a rich canonical model 
that can represent all shared data and that the translators 
properly interpret the semantics of shared data. This 
approach works well when a tool checks out all the data 
it needs before executing, and checks in all the data it 
used when it finishes. 

Some tools need to access data interactively during 
their execution (for example, a system builder, such as 
“make”). The batch translator approach, which 
imports and exports tools’ data, doesn’t work well in 
this case. One could modify each tool to directly access 
individual repository objects, as needed. However, this 
requires extensive modification of each tool, to access 

data in the repository’s format using the repository 
manager’s interface, which is quite expensive. Also, it. 
results in a tool that is completely dependent on the 
repository manager, which limits the tool vendor’s 
market to customers that use this repository manager. 
Instead, one can leave the tool unchanged and use a 
virtual repository interface, which traps all of the tool’s 
data accesses (using whatever data access interface the 
tool depends on) and translates them into accesses of 
repository objects. This is a common way to integrate 
unmodified UNIX tools with a repository; all UNIX 
files operations are trapped and directed to the 
repository [ 81. 

Since tools are what give value to a repository, it 
should be cheap and easy to integrate a tool with a 
repository, so many tools can be integrated. The 
state-of-the-art here is not very good and would benefit 
from some serious research attention. Today, integrating 
a tool with a repository is an art, requiring protracted 
technical negotiation between the tool vendors who 
want to share data and the repository vendor, 

Tool integration work should be reusable, so a tool 
vendor’s integration effort is portable to many repository 
managers. This requires that all repositories support the 
same application programming interface (API) and 
canonical information model. In practice, this is hard to 
do, since international standards are incomplete or 
immature and there is no dominant vendor dictating a 
standard. Still, there have been some successes. For 
example, in the discrete mamifacturing area, there is a 
canonical information model (STEP [ 111) which is 
written in the standard data modeling language 
(EXPRESS [ 13]), but the API for accessing such models 
(SDAI [ 141) is immature and not yet widely supported. 
In the CASE area, there is growing support for the 
CASE Data Interchange Format (CDIF), which is an 
information model for CASE data, but this model is 
unrelated to the Portable Common Tools Environment 
(PCTE) API standard for CASE frameworks [lo]. 
Moreover, PCTE is principally oriented toward version 
and configuration control of coarse-grained objects, and 
is unsuitable for fine-grained data sharing. Competing 
CASE APIs are also being considered. For example, 
ATIS (A Tool Integration Standard) is being discussed 
in ANSI [5]. ATIS is an extensible object+riented 
information model covering the basic repository 
functions described in Section 3 plus an object-at-a-time 
API to access repository objects. The existing IS0 
standard for information resources is based on SQL, but 
seems to have had little commercial impact’. Presented 
with such a confusing picture, many tool vendors are 
delaying their investment in repository integration until 
the market stabilizes. Or, they have implemented their 

‘Incidentally, all of the API standards mentioned above (SDAI, PCTE, ATIS) are throwbacks to a CODASYL-like 
model. They offer record-at-a-time access will minimal content-based retrieval and no attempt at SQL compatibility. 
They would benefit from attention by DBMS language experts. 
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own information model which at least ensures their own 
tools can interoperate (e.g., Texas Instruments’ 
Information Engineering Facility (IEF)). 

There’s a temptation to have the repository be the 
tool’s native storage manager. While this is feasible in 
principle, it is often undesirable, because high 
performance may require that the tool use its private 
repository format. Most tools manipulate objects in a 
“main memory database” which they construct after 
checking out the required files. A repository manager is 
inherently slower, in many cases too slow for interactive 
use. 

Even if a tool T uses a repository manager as its 
storage manager, integrating T is still an issue with tools 
that don’t use this repository manager. To integrate T 
with tool U, either U must integrate with Ts repository 
manager or T’s and Vs repository managers must 
interoperate (see Section 5.5). 

5 Repository Manager Implementation 

A repository manager is an application layered on a 
DBMS. In this section we discuss some of the issues 
involved in implementing this application. 

5.1 Repository API 
The API requirements for a repository manager are 
essentially the same as those for DBMSs in support of 
CAD. These requirements are met well by 00 AEIs [l], 
which allow you to: 

construct types for objects that support repository 
control functions, such as versions, version histories, 
configurations, contexts, and rules. 

construct new atomic and complex types that 
represent objects within their domain. You can also 
construct bulk types of these objects, such as tuples, 
sets, sequences, and lists. 

represent relationships in a flexible and natural way. 

use a inheritance hierarchy to share type information 
across multiple types. 

incorporate type-specific operations that encapsulate 
tools (e.g., edit a document, approve a design). 

navigate among objects, an object-at-a-time. 

dynamically construct new objects. 

Queries over col&ctions of objects in the repository 
are needed in addition to object-at-a-time navrgatton. 
Highly functional query languages are starting to be 
developed for OODBMSs [2], but they are not yet 
ubiquitous in OODBMS products. 

Entity-relationship ApIs support the data modeling 
requirements of repositories, but they don’t allow you to 
add new operations. SQL has traditionally not supported 

many of the above capabilities. However, with the 
addition of abstract data type facilities in many relational 
DBMSs, there may soon be little difference in functional 
capability between 00 APIs and SQL beyond syntactic 
sugar [3,9]. 

5.2 Database Engine Support 

A repository manager is an application layered on a 
database engine, which could be a file system, relational 
DBMS @DBMS), or OODBMS. 

Most repository managers use a file system to store 
coarse-grained objects, such as program source, text, 
and diagrams. Some repository managers also use files 
to store objects that support their control functions, such 
as versions and relationships. For example, classical 
CASE repositories operate this way, such as CMS, 
SCCS, rcs, MMS, and make. Although file systems are 
light on functionality compared to DBMSs, they do 
offer two advantages: they’re ubiquitous, so by relying 
on a file system, a repository manager can easily be 
ported to many operating systems; and they offer 
excellent performance for sequential access. 

Some repository managers are implemented on a 
combination of RDBMS and file system. The RDBMS 
tables store descriptions of objects, and files store 
objects themselves. This allows one to use unmodified 
tools that use files for object storage, while for 
description data one gets the benefits of DBMS 
amenities, such as transactions, referential integrity, and 
queries. However, there are some problems with this 
approach: Updates to descriptions of objects and objects 
themselves cannot be grouped in the same transaction 
(because file systems don’t support transactions). 
Administration of objects and descriptions is hard to 
coordinate (e.g., to coordinate backup and recovery so 
that objects and descriptions can always be recovered to 
a mutually consistent state). And one cannot build 
indices on objects and execute queries on objects (unless 
one replicates some of each object in its RDBMS 
description, which creates potential consistency 
problems). 

The first two problems can be solved by storing 
objects in the RDBMS as binary large objects (BLOBS). 
The last requires that objects be decomposed into pieces 
which are stored separately in the RDBMS. But this is 
hard to do with conventional RDBMSs, which require 
objects to be laid out in rigid table structures. 

Ideally, a repository manager would map its “object 
base” into labeled directed graphs, where objects are 
mapped to nodes and relationships are mapped to edges. 
Operations include object-at-a-time navigation, 
following paths of objects, and taking transitive closures 
of subgraphs. A growing number of RDBMSs are 
supporting graph-type databases via 00 features, such 
as user-defined data types, type constructors for 
complex user-defined types (such as records and arrays), 
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and extensions to SQL for transitive-closure-type 
operations. The SQL standard is also evolving to 
support these features [9]. 

OODBMSs are a promising target for repository 
manager implementation, because they can directly 
implement graphs and graph operations. They have rich 
facilities for user-defined types and type constructors. 
They can lay out complex objects in contiguous memory 
instead of splitting them into different tables. They can 
execute type-specilic methods. They are optimized for 
navigational operations; in some products, edge 
traversal in the database graph only costs a pointer 
dereference, either by directly mapping database pages 
into main memory or by “swizzling” (mapping) disk 
pointers into memory pointers when objects move to 
memory. Also, since most OODBMSs target the CASE 
and CAD markets, they provide limited forms of the 
repository control functions (typically checkout/checkin, 
versions, and configurations). 

However, most OODBMSs are less mature than 
RDBMSs. Many provide limited transaction facilities 
(e.g. medium- or coarse-grained locking), limited 
support for queries, views, constraints, and triggers, and 
weak subsets of SQL with limited query optimization. 

In summary, both RDBMSs with 00 features and 
the best OODBMSs are promising targets for repository 
manager implementation. Since both types of DBMS 
products are immature and since experience in building 
repository managers on such types of products is 
limited, it is too soon to say which type will dominate in 
the long term. 

5.3 Performance 

A critical problem of today’s repository managers is 
poor performance. A checkout or checkin operation on a 
complex design object can take tens of minutes, for 
example, to traverse a large object base to find the 
relevant versions of objects in a large configuration. A 
design tool that accesses large parts of a repository can 
take hours. Users find this barely acceptable. They often 
work around the problem by storing a large set of 
objects as one large object whose internal structure isn’t 
visible to the repository manager and which is read and 
written as a unit. Of course, this reduces the value of 
many repository control services, since they are unable 
to help manage the fine-granted components of a design. 

One aspect of repository management performance 
is cache management. Most RDBMSs implement a 
record (i.e., object) server, and the client process (in this 
case the repository manager) has an object cache that is 
invalidated on every transaction commit. Thus, each 
object access costs a client-server message, except when 
the server sends multiple use&l objects in bulk (e.g., for 
set-oriented access) or when the client’s transaction 
accesses the same object multiple times. Most RDBMSs 
support “stored procedures,” which are application 

procedures that run in the object server. One client call 
to a stored procedure can result, in many object accesses, 
thereby reducing client-server traffic. . 

Most QQDBMSs implement a page server and the 
client process (the repository manager) has a page 
cache. Since a page access brings many objects to the 
client, if the client accesses many objects on a page 
(e.g., navigating an object-at-a-time), client-server 
traffic is lower than with an object server. Moreover, in 
some OODBMSs, the client cache is not invalidated on 
every transaction commit. Thus, when the client runs 
many transactions, it can build up a useful cache that’s 
continually reused, further reducing client-server trafllc. 
This gives OODBMSs a performance advantage, at the 
cost of protection between the repository manager’s and 
OODBMS’s address space. 

Many customers insist that the repository manager 
be layered on the same DBMS they use for other 
purposes, e.g., for easier administration and training. 
This means the repository manager must be portable 
across DBMSs, which makes it diflicult to get the full 
performance benefit from certain DBMSs. We predict 
that successful repository manager vendors will attain 
this portability with high performance, but it entails 
much engineering expense and therefore isn’t around the 
comer. 

OODB benchmarks are probably representative of 
how repository managers use a DBMS [6], but we know 
of no published workload analyses to substantiate this 
intuition. Even less is known of how a repository 
manager’s use of a DBMS affects performance. This 
area would benefit greatly from systematic study. 

5.4 Distribution Issues 

A repository manager may offer transparent access to 
distributed data. That is, a client application may issue a 
location-transparent access, which the repository 
manager translates to a local access on the appropriate 
repository manager server. If the repository manager is 
implemented on a DBMS that supports transparent 
distribution, then it can trivially rely on the DBMS’s 
capability. Otherwise, it must implement the capability 
itself 

In a distributed repository, objects in one repository 
may reference objects in other repositories. Since each 
repository manager needs the flexibility to move and 
delete its own objects, these references should be 
logical, not physical, and certain update operations need 
to check the integrity of these references. For example, 
if it is illegal to delete an object that participates in a 
relationship, then a delete needs to check the validity of 
relationships with objects in other repository managers. 

Another form of integrity involves distributed 
transactions. If an update transaction accesses two or 
more repository managers, then those repository 
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managers must use two-phase commit to ensure that the 
transaction is all-or-nothing. If the underlying DBMSs 
do not support this capability, then the repository 
manager needs a private workaround. 

In a design environment such as CASE or CAD, 
users normally operate on repository data for long 
periods. Even if they use data managed by a remote 
repository manager, they probably need a private 
(replicated) copy of that data to get adequate 
performance. Fully symmetric data replication is beyond 
the state-of-the-art of distributed DBMSs. Therefore, 
one needs to exploit application-specific behavior to 
implement a replication scheme. For example, if 
versions are immutable, and sharing over short periods 
is rare, then copies of versions of popular objects can be 
distributed to all servers, say overnight, so they can be 
read locally on demand [15]. As another example, a 
remote checkout operation with intent to update may 
create a new locked version in the remote and local 
repository. On checkin, the local copy is written to the 
remote repository and deleted from the local repository. 
This replication technique is used in Digital’s 
CDDLRepository [4]. 

5.5 Interoperation 
To share information, heterogeneous repository 
managers have to interoperate. That is, object types in 
one repository’s information model or data model must 
be accessible as object types in the other’s model. This 
requires mapping operations on one repository manager 
into operations on the other (see fig. 1). 

Application --) Repository Mapper,- Repository 
Program 1 Manager Rl 4 Manager R2 

Reposit04 Repositoj 
Operations Operations 
in Rl’s in R2’s 
Language Language 

Figure 1: Mapping Operations Between Repositories 

Ideally, each object exists in only one repository, 
with references to it in other repositories that share the 
object. This way, each object is only updated in one 
place. If replicas of an object exist in heterogeneous 
repositories, then updates must be propagated to all 
replicas. Semantic differences can make this hard to 
automate. Often, even a manual solution is hard, i.e., 
writing a repository-specific and information-model- 
specific program for cross-posting updates between two 
repositories. For example, if a versioned record 
definition in a CASE repository may be shared with an 
RDBMS catalog, how do you translate an update in the 
CASE repository that creates a new version into an 
RDBMS catalog update7 What if they don’t support the 
same data types? What if a relationship is many-to-one 
in one repository but many-to-many in another? Etc. 

We believe it is unavoidable that many tools will, for 
the foreseeable future, have replicated heterogeneous 
repositories, for the following reasons: 

Many existing tools have already committed to a 
private repository implementation. E.g., database 
systems. These repositories are already well-tuned to 
the tool’s performance requirements. 

Many tools need to be portable across operating 
systems. Therefore, they can only depend on a 
repository manager that runs on those operating 
systems and there are few such products on the 
market. 

In an object-oriented world, some objects will be 
designed to maintain some state that describes the 
object. It will be some time before repository 
technology is so mature that all objects will entrust 
all their state to a shared repository manager. 

Thus, the problem of maintaining consistent 
heterogeneous repositories must be faced. Or we will 
have to wait for a repository technology to dominate the 
product world and for tools to be written or re-written to 
use that technology 

6 Conclusion 
We have argued that repository systems are an important 
type of database application and a worthwhile area of 
study. We proposed definitions for “repository” and 
‘ ‘repository manager. ’ ’ We discussed approaches to 
repository tool integration. And we discussed repository 
manager implementation issues. 

We believe repositories are a field that would benefit 
by more intense study by the database research 
c&mu&y. Some specific areas that warrant attention 
are tool integration techniques, repository manager 
performance, a completely general model of versions 
and configurations, interoperability of heterogeneous 
repositories and repository managers, comparisons of 
commercial products, and case studies of using 
repositories in different tool domains. 
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