
An Empirical Performance Study of the Ingres Search Accelerator for
a Large Property Management Database System

Sarabjot S. Anand David A. Bell
Dept. of Information System Dept. of Information Systems

University of Ulster university of Ulster
Northern Ireland Northem Ireland

ssa.nand@ukac.ulster.ujvax dbell@rk.ac.ulster.ujvax

John G. Hughes
Faculty of Informatics

university of Ulster
Northem Ireland

jgh@uk.ac.ulster.ujvax

Abstract

The property management database system
under development at the Northern Ireland
Housing Executive (NIHE) is a large relational
database system. The application system has a
high expected transaction processing rate -
approximately 37000 transactions per day (most
of them accessing mutliple tables) from about
250 on-line users. Performance is of critical
importance in its success. In this paper we
consider the effect of the Ingres Search
Accelerator on the transaction processing
efficiency of the system. The performance
enhancement brought about by SCAFS (XL’s
current version of the well-known Content
Addressable File Store, CAFS pABB79,
BABB85,COUL72] - the heart of the Ingres
Search Accelerator) for different fde
organisations is assessed. Recommendations on
how the performance of SCAFS can be
improved by tuning certain parameters is
provided. We also provide a rough guideline as
to when the Ingres Query Optimizer “decides” to
use SCAFS for different file organ&lions and
point out deficiencies in this decision making

___-_-______-_--_________________
Permission to copy without fee ail or part of this matwial is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and the
notice is given that copying is by pwmission of the Very
Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee andlor special permission from the
EMiYWment.
Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

process. We conclude this paper by
recommending techniques that may be employed
to increase the role of the Ingres Search
Accelerator in Ingres database systems.

1. Introduction
The Pmperty Rent Accounting and Waiting List

(PRAWL) database system under development at the
Northern Ireland Housing Executive (NIHE) is large -
NIHE is the largest “landlord” in Europe. We refer to it in
the rest of the paper as the NIHE dambase system. The
system is being implemented using Ingres/Star on 11
RX’s DRS6OOO machines. The approximate size of the
PRAWL database is 20 GB spread over 5 NlHE regions.
The expected work load on the system from about 250
on-line users is 37000 multi-table transactions per day.

A database system of this size and transaction rate
clearly requires that considerable attention be given to
performnce. One ‘performance enhance? available in the
applications environment is the Ingres Search Accelerator
released by ICL in partnership with Ingres Corp. in 1991.
As the name suggests, the Ingres Search Accelerator
(ISA) is claimed by its designers to accelerate searches on
Ingres tables thus enhancing the overall perfotman~ of
the database system. In this paper we investigate whether
the ISA lives up to its name and try to gauge its
usefulness to the PRAWL dambase system.

The chief potential benefit of using SCAFS is clearly to
enhance performance of a database application. Now
perfomnmce is usually assessed in terms of response
time, throughput or utilization of system resources.
Simulation, analytic or measurement studies can be used
to evaluate these indices. The present paper reports on a
performance measurement study of SCAFS mainly using
the responsiveness and, to a lesser extent, utilization
illdiCeS.

Leung et. al. [LEUN85] studied the efficiency of the
CAFS 800 but that analytic study is significantly different
from ours for two basic reasons :

676

l SCAFS is very different from the CAFS 800 and so
many of the objectives and parameters of the study
carried out by Leung et. al. are no longer valid e.g.
degree of amplifzation of the drive and cell size,
which were characteri&ics of the EDS60 discs but
are no longer meaningful. The parameters that effect
the performance of SCAFS are more at the design
level of the database e.g. file organizations and
indexes. The performance of SCAFS in a multi - user
environment is affected by scheduling on the SCAFS
board and the number of locations at which the table
being searched is located These are the parameters
that we take into consideration keeping in mind the
factthattheNIHEdatabasesystemisalargemulti-
user system with a high transaction processing rate.

l Our tests were performed on real data from the
property management system database of the
Northern Ireland Housing Executive, using
measurement rather than an analytic model, as the
previous study did.

Our objective 41 the present study is two fold. First we
are looking for reasons why the performance of the
newly-installed NIHE database system was lower than
expected, despite the availability of SCAFS. There is a
lack of practical guidance in the litemture for
development of large relational systems and we hope that
by sharing our experience in this paper other users may
benefit.

paper. In section 3 we discuss the improvement in
performance brought about by using SCAFS for scanning
tables which use different lile organizations and also
consider the effect of compressing data. This is followed
by a discussion of the effect of the SCAFS Scheduling
Parameter on tk performance of SCAFS in section 4.
Section 5 discusses the effect of data placement on the
performance of SCAFS. A rough guide to how the Ingres
Optimizer decides on using or not using SCAFS when
executing a p&cular quay is presented in section 6 and
section 7 concludes this paper and discusses on-going and
future work involving SCAFS that is being undertaken in
the authors’ Momtory.

2. The NIEIE Application

Our second objective is still pragmatic, but it has a
more scientific thrust - to gain insights into the
applicability of a backend filter architecture (SCAFS
here) for different design profiles and to study how other
database system modules e.g. the query optimizer, could
utilize this information.

We first quantify the precise improvement in
performance brought about by SCAFS over direct access
search devices for different file organisations. We study
the effect of different file organizations and query result
sizes, i.e. the number of ‘hit’ tuples, through a series of
simple queries made on the NIHE database.

Secondly, during the investigation of SCAFS we found
that certain SCAFS and INGRES parameters affect the
SCAFS performance. So we report on their effects. In
particular we assess the effect of the SCAFS scheduling
parameter and the number of locations over which a table
being searched is divided.

Thirdly, we give a rough guide to when the Ingres
Query Optimizer decides to employ the Ingres Search
Accelerator, and critically examine cases where the
decision made by the Optimizer may not be the ‘best’ in
pCtiCe.

The rest of the paper is arranged in the following
format. Section 2 describes the NIHE application whose
performance enhancement is our prime concern in this

The Northern bland Housing Executive, established in
1971 by the Housing Executive Act (Northern Ireland), is
the largest budy of its kind in western Europe. The
organ.i&on is geographically distributed around 70
locations spread throughout Northern Ireland.

In 1987, the NIHE carried out a review of the state of
their compute&&on. The vital role of computerisation in
the Housing Executive was recognised and a decision was
made to enhance the present system.

Computerisation in Ihe NIHE had started in the 1970’s
with a number of batch processing systems, mainly for
financial acmdng, being developed. In the 1980’s a
distributed network connecting each of the district oflices
of the Housing Executive was developed for on-line
queries to their “tenant management” systems. The survey
carried out in 1987 highlighted the gap between the
NlHEk then current management performance in terms of
innovation in policy development and its information
technology resources and a decision was made to improve
its use of information technology.

The NIHE decided to develop a ten year systems
strategy detailing the contribution of information
technology to corporate aims and objectives. The scope of
the review included identifying applications that were
required by tbe NIHE, determining their purpose, ranking
them in an onler of priority and identifying the most
appropriate hardware and software strategy needed to
deliver them. ‘I%e result was a decision to procure a new
integrated computer based tenant management system
encompassing a property database, rent accounting and
waiting lists The core component of this tenant
management system is the large property management
databae. The expected size of the database is approx. 20
gigabytes and the expected number of transactions per
day is 37000, executed by approximately 250 ConcurrenS
on-line users.

Transaction complexity of an application is normally
measured by the the number of tables accessed per

677

transaction. For the NIHE the transaction profile is as
follows: 4% of the transactions are queries accessing l-3
tables, 59% are queries accessing 4-6 tables, 1% are
queries accessing 7 or more tables, 29% am updates
accessing 1-3 tables, 6% are updates accessing 4-6 tables
and 1% are updates accessing 7 or more tables. Clearly
this is a more complex transaction profile than normal
OLTP applications like banking and airline reservations
that normally have a higher transaction rate but lower
transaction complexity.

The following specific objectives were outlined for the
new tenant management system, in addition to the usual
consistency and security objectives [NIHESS]:
l To increase efficiency in the performance of

Property, Rent Accounting and Waiting List tasks.
l To improve the quality and level of information to

managers, staff and customers.
l To improve control
l To provide “value for money”
l h%inimise batch updates

In collaboration with XL, the NIHE are currently
developing a distributed property management database
system called PRAWL, which will provide the Housing
Executive with the facilities outlined above. The system
is being developed in INGRES/STAR and uses RX’s
DRS6OOO machines. A huge relational database system
like PRAWL poses enormous problems to the
implementors who need to look to the database research
community for assistance. In this paper we discuss our
experiences with investigating the possible use of XL’s
SCAFS database filter machines in enhancing the
performance of the NIHE system. Phase 1 of the project
is now complete and is on-line. Phase 2 of the application
is now under development. While the tests reported in
this paper are based on the phase 1. it has also provided
useful insights into performance enhancement for phase
2.

3. SCAFS Vs DASD

In our experiments to quantify the improvement in
performance over the conventional DASD (direct access
storage devices) approach brought about by the use of
SCAFS, we considered the response time (CPU time +
I/O time) of a query and the CPU time required for the
query’s execution. Performance indices were evaluated by
measurement in the property management database.

Queries used in the experiments were made on an
existing table from the application with 113922 tuples.
Table 1 shows the size of the table for the four different
file organisation types tested . The table was stored on a
1.2 GB dish with a data transfer speed of 1.9 Mb per
second. As SCAFS “can scan data as fast as the data can
be read off the dish” [INGRgl], the time taken by SCAFS

to scan a table should be dependent only on the size of the
table. Table 1 also shows the theoretical scan time (= file
size in Mb /1.9) required by SCAFS to scan the tables.
Note that the difference in file sizes is due to the different
fill factors and number of overflow pages of the table for
different file structures.

Table 1: F& Sizes and Theoretical Scan Time of
Experimental Data

,
Fueorg~al Fiksi.r.e Thewaial scan
Type &W Tii (se@
Heap 28.482 14.99
Huh 19204 41.68
ISAM 88.338 44.49
BTzec 36314 19249

Tables 2, 3 show the effect of SCAFS on response
time and CPU time and Table 4 shows the effect of data
compression on SCAFS, for queries with no hit’ tuples
and 60000 ‘hit’ tuples respectively. The emeries in these
tables show the ratios indicated in the top, left-hand
comer. As can be seen from Table 2, for uncompressed
data the advantage of using SCAFS decreases for the
larger number of ‘hit’ tuples. This is understandable
because as the number of ‘hit’ tuples incmases the I/O
channel traffic increases. reducing the advantage of using
SCAFS - the main gain only being in the CPU idle time
while the table is being searched by SCAFS. For
compressed data we find that, for hash and BTree file
organisations, the effectiveness of SCAFS increases as
the number of hit’ tuples increases.

Table 2 : Effect of SCAFS on Response Time

From Table 3 we find that the savings in CPU time
using SCAFS are enormous for queries with the small
number of ‘hit’ tuples but for the larger number of ‘hit’
tuples, the saving reduces and is sometimes even less than
2 fold when the number of ‘hit’ tuples is approx. 60000.
Once again this is understandable because with a larger
number of ‘hit’ tuples, the CPU is sent more data from
SCAFS, increasing its load.

From Table 4 we find that for hash and BTree file
organizations the benefit of using compressed data in
terms of response time increases for the larger number of
‘hit’ tuples. Also for hash file organ&ion, using

678

compressed data increases the CPU time required for
queries with the larger number of hit’ tuples. This
highlights the fact that the advantage of using SCAFS
varies with the file organixation type and great care needs
to be taken in deciding when to use SCAFS for different
file organizations (see section 6).

Table 3 : Effect of SCAFS on CPU Time

Table 4 : Effect of Data Compression on SCAFS
Performance

CPU Time Vs Output Size
Heap File Organization

--cVisc*R +wuml-

fig. l(a)

Response Time Vs Output Size
Heap File Organization

70 -==(* -”

- vial SUPS - wihux*R

fig. l(c)

The graphs in @ures l(a - d) show more
comprehensively, how the response time and CPU time
for queries varies as the number of ‘hit’ tuples vary Born
0 to 60000 for heap and ISAM file organizations. The
graphs in fig. l(e - h) show the variation in response time
and CPU time when using compressed data. We limit our
discussion here to only heap and ISAM file organizations.
For a detailed discussion including BTree and Bash file
organizations we refer the interested reader to
[ANAN!Xa].

While the graphs in figures l(a - h) am primarily used
to quantify SCAFS benefits, we can see that the benefits
in CPU time and response time of using SCAFS is
inversely propotional to the number of tuples satisfying
the query. So SCAFS is most effective in this sense when
the query result size is small. Compressing data does not
affect the benefits due to SCAFS. The variation in the
benefit of SCAFS for different file structures can be
atmbuted to characteristics like fill factor, number of
overflow pages etc.

These results provided valuable insights for the
application and for the broader exploration of the
potential of SCAFS. The results discussed in this section
serve to emphasise the fact that the benefit of SCAFS

CPU Time Vs Output Size
ISAM File Organization

a . ..______...______...._.._.______.....___.___._._.........
t

Response Time Vs Output Size
ISAM File Organization

- wklstm - Hi-scm

fig. l(d)

679

CPU Time Vs Output Size
Heap File Organiz&ion (compressed data)

fig. l(e)

Response Time Vs Output Size
Heap File Organization (compressed data)

4 Ilrpour-ci-) I 1

~~

,o . ___..._.__......................-

depends on the file organization of the table being
searched and great care must be taken when employing
SCAFS.

4. The Effect of Scheduling on the SCAFS
Board

In this section we investigate the effect of different
scheduling policies on the performance of SCAFS. We
first discuss how the value of the SCAFSSCHED kernel
parameter effects scheduling on the SCAFS board We
then study the effect of different SCAFSSCHED values
ranging from 1 to 40000.

For a small value of SCAFSSCHED, the scheduling is
fairer in that all the queries get a small time on the board
and are not waiting for too long a time in the queue, but
the individual response times for each query increases.
For very small values of SCAFSSCHED we may fmd that
there is a large system overhead due to scheduling and the
advantage of using SCAFS is lost due to this overhead.

CPU Time Vs Output Size
ISAM File Organization (compressed data)

Response Time Vs Output Size
ISAM File Organization (compressed data)

u) bparTuoecd.,

)D ~.._.._._....__._..

fig. l(h)

For large values of SCAFSSCHED, queries will be
waiting in the queue for long periods of time though
results for the queries will start being received much
sooner. For a very large value of SCAF!%CHED, we may
fmd that it is equivalent to running the queries in serial
order 3 at a time. The total time taken to receive the
results of all the queries will remain the same.

These observations led us to seek more detailed
insights into the effect of this parameter. For a more
detailed discussion of the SCAFSSCHED parameter see
[ANANNa].

The graphs in fig. Z(a - h) show how SCAFSSCHED
affects the execution on 52.39.26 and 13 queries on a
single location table of heap file organization. As the
value of SCAFSSCHED is increased the tune between
all the queries having started and the time the first results
are received reduces. From the graph in fig. 2 (a) we see
that them is not much difference in the performance of
SCAFS for SCAFSSCHED values of 20000 and 40000.
Thus there must exist a value for SCAFSSCHED with the

680

Query Response Vs Time
Query Load : 52 queries (1)

(0 wb=dQ=k-- 1 1)_................................. ?=----m

:i::

9 _._..__................

,,J___.

0
nl*m 111 9od 994 101 ,174 nu 0%

-wiemmmxu -1 -10 -soI

“.mbhV fig. 2(a)

Query Response Vs Time
Query Load : 39 queries (1)

5. N~tacOfQwinamp~
r I

Query Response Vs Time
Query Load : 26 queries (1)

.Nlnhro,owksG.m.*u

~-...

;-~

0 R 144 2‘ 288 360 132 lm 97‘ &r 73
Time (seconds)

-wt~xAR --I -10 -m

"mm.. sum fig. 2(e)

Query Response Vs Time
Query Load : 13 queries (1)

II
ti~terofpri~~

.!~................._.___......____.......___. &

Query Response Vs Time
Query Load : 52 queries (2)

O----+ I

-tom -%a -1Qm -2om -wm

“Iam UQchpJ fig. 2(b)

Query Response Vs Time
Query Load : 39 queries (2)

o -e-=-cagw 1

i
Time(rseondr)

-*ODD -9x0 -mm -2om -40x0
““bh sz4F6cm fig. 2(d)

Query Response Vs Time
Query Load : 26 queries (2)

,L.....

,~

. .

-.-/A..../

.__....

R 21‘ 211 340 432 9%

Ti (seamds)

Query Response Vs Time
Query Load : 13 queries (2)

Time (secmcb)

- wn - wn -=-,mm ---xam -4a.m

Y..,. x*r- fig. 2(h)

681

property that there is no increase in performance for any
values greater than it This value of SCAFSSCHED is
probably dependent on the time SCAFS takes to scan the
table being queried i.e. the size and file organization of
the table being scanned (see section 3). Also, the graphs
for a constant value of SCAFSSCHED with varying
query load are of very similar shapes and average query
response times per query. Therefore the performance of
SCAFS for a particular value of SCAFSSCHED does not
seem to depend on the query load.

The graphs in fig. 3 show the total response time for a
varying number of queries on a single location table of
heap file organization for different values of the
SCAFSSCHED parameter. As can be seen from the graph
in fig. 3(b), for SCAFSSCHED values ranging horn 1000
to 40000 there is no appreciable change in the total
response time for the queries. However, if the value of
SCAFSSCHED is reduced to less than 500 there is an
increase in the total response time of the queries (fig.
3(a)). For a SCAFSSCHED value of 1 or 10 the total
response times are equal to those when not using SCAFS.
This degradation is due to the system being overloaded by
swapping on the SCAFS board. For SCAFSSCHED value
500 the total response times are comparable to those for
higher SCAFSSCHED values. Thus, increasing the value
of SCAFSSCHED to a value greater than 500 has little

.,effect on the total time taken by SCAFS to execute all the
queries.

Query Load Vs Response Time
Varying SCAFSSCHED

tm ..__._._.._........._

~~~ 

I 2 3 1 5 ‘ 7 I 9 10 II I.2 13 21 39 z 
Number of Qwia 

- 924P-v”~! 

- SIRICHrnlOO 

fig. 3(a) 

Query Load Vs Response Time 
Varying SCAFSSCHED 

Ra,pm lke ,-8, ldm, I 

These results show how important this parameter is in 
multi-user environments, such as the NIHE dambase 
system. Clearly, our experimental results, displayed in 
figs. 2 and 3, validate our predictions on how the 
SCAFSSCHED parameter would affect the performance 
of SCAFS and therefore, the performance of the database 
system. 

5. The Effect of Table Locations 
When more than one query is being executed at the 

sametimeondatalyingonthesamedi&thereis disk 
contention which increases the execution time of the 
individual queries. At any point in time the maximum 
number of queries searching data in parallel using SCAFS 
is three, so the maximum disk contention occurs when all 
three queries are searching data on the same disk. 

Disk contention can be reduced by splitting data over a 
number of locations. Locations could be on the same disk, 
the same SCSI (Small Computer System Interface) 
channel or separate SCSI channels. For SCAFS to be 
employed all the table locations must be accessible to 
SCAFS. 

Splitting data over more than one location on the same 
disk does not reduce disk contention as them are still 
three queries searching for data on the same disk 
concurrently. In fact disk contention may be increased as 
the disk head would spend more time on seeks. 

If data is split over more than one disk on the same 
SCSI channel, then there is a possibility that at some time 
the queries on the SCAFS board are searching data on 
separate disks, reducing the disk contention. 

If data from a table is split over disks on separate SCSI 
channels, we increase the parallelism in the execution of 
the queries. The disk contention remains the same. There 
are now a maximum of 3*n queries that could be rumring 
simultaneously (where n is the number of SCSI channels 
that the data is spread over), three on each SCAFS board 

As the advantages of splitting data over different disks 
on the same SCSI channel, i.e. reducing disk contention, 
and over different SCSI channels, i.e. increasing 
parallelism, are independent of each other, a blend of both 
methods would be expected to give best results. 

For this part of our performance study we looked at 
how the total response time varies for different work 
loads on tables with different numbers of locations. The 
results are presented in fig. 4(a - c). As can be seen in fig. 
4(a). a table with Wo locations on separate SCSI channels 
gives low,er response times than when the table is stored 
at a single location, at two locations on the same disk or 
at two locations on separate disks bt& sharing the same 
SCSI. The graph in fig. 4(b), shows that the response 
times for a table with 3 locations on separate SCSI 
channels am lower than that for 2 locations (fig. 4(a)) but 

682 



the response times for a table with 4 locations on separate 
SCSI channels are comparable to those for a table with 2 
locations on separate SCSI channels. A table with four 
locations, two on each SCSI channel performs better but 
still not as well as the table with thme locations on 
separate SCSI channels. In fig. 4(c), we see that response 
times for a table with 5 locations are higher than those 
using three locations on separate SCSI. The table with 6 
locations, 2 on each SCSI, gives the lowest response 
times but the improvement over the 3 location table is 
negligible (see fig. 4(b)). 

Query Load Vs Response Time 
rvDI ,d.l Iu) 

,9Q .._........__,..._._.._._______..._____,_..___..._..__._ 

fig. 4(a) 

Query Load Vs Response Time 
Km l-*,BDZ-.W 

@ . ..~.....~....~..............~~~.......~.~...~.~...~. J 

Sunk of Qwia 

- ,!rrpr*n -c .l.G atpw-m, - .I- 1oxe.zd 

fig. 4(b) 

Query Load Vs Response Time 

-*bc.rpurvlo, - 6k2mcani 

fig. 4(c) 
The above results indicate that using 3 separate SCSI 

c~nels simultaneously gives the best results for Our 
application and configuration. The reason for this could 

well be some constraint imposed by the hardware e.g. size 
of main memory. More SCSI channels being used 
simultaneously would mean more queries being run in 
parallel and an increase in memory requirements. 

The above results also indicate that spreading a table 
over separate SCSI channels reduces response times to a 
much greater extent than spreading a table over separate 
disks on the same SCSI channel. The queries used in the 
test were staggered by 2 seconds each. If these queries 
were staggered by a longer time having two locations on 
the same SCSI could have more effect on response times. 
Also the SCAFSSCHED parameter for the tests had a 
fmed value of 1000 ms. For larger values of 
SCAFSSCHED the spreading of data over locations on 
the same SCSI channel may have a greater effect. 

6. The Ingres Query Optimizer and The 
Ingres Search Accelerator 

The decision of whether or not SCAFS should be used 
in the processing of a particular query is solely the 
decision of the Ingres Query Optimizer. During our 
investigation of this decision making process we found 
that at present SCAFS is not being used to its full 
potential by Ingres. We present here a few guidelines that 
have been found to be quite accurate in predicting 
whether SCAFS is going to be employed by the Irtgres 
Query Optimizer. 

6.1 Heap File Organization 

l SCAFS is always employed for searching heap 
tables. 

6.2 Hash File Organization 

l SCAFS is used to search hash files except when the 
where clause of the query contains equality 
predicates on all key fields ‘anded’ together. 

l When searching on secondary indexes on the hash 
table, if the expected number of ‘hit’ mples is >= 
13.82% of the whole table, SCAFS is employed. 

l When searching on secondary indexes, if the where 
clause uses ‘not like’, ‘not between’ or ‘like’ with a 
% as the fmt letter in the like-pattern, SCAFS is 
always used. 

0 If the where clause has two predicates on 
secondary indexes anded together, SCAFS is 
employed only if 

l over 3.35% approx. of the whole table is 
expected as the result to the query and 

l each of the predicates, individually. expects to 
‘hit’ 13.82% of the whole table 

l If the where clause has an ‘or’, SCAFS is always 

683 



used. 

6.3 ISAM File Organization 

l If an ISAM file is being searched on its primary 
index, SCAFS is only used if the where clause uses 
a like-pattern with a 8 as its first character. 

l When searching on secondary indexes on the 
ISAM table, if the expected number of ‘hit’ tuples 
is >= 9.75% of the whole table, SCAFS is 
employed. 

l When searching on secondary indexes, if the where 
clause uses ‘not like’, ‘not between’ or ‘like’ with a 
% as the first letter in the like-pattern, SCAPS is 
always used. 

l If the where clause has two predicates on 
secondary indexes anded together, SCAFS is 
employed only if 

l over 1.8% approx. of the whole table is 
expected as the result to the query and 

l each of the predicates, individually, expects to 
‘hit’ 9.75% of the whole table 

0 If the where clause has an ‘or’, SCAFS is always 
used. 

6.4 BTree File Organization 

l If an file organized as a BTree is being searched on 
its primary index, SCAFS is only used if the where 
clause uses a like-pattern with a % as its frost 
character. 

l When searching on secondary indexes on the 
BTree, if the expected number of ‘hit’ tuples is 
>= 8.74% of the whole table, SCAFS is employed. 

l When searching on secondary indexes, if the where 
clause uses ‘not like’, ‘not between’ or ‘like’ with a 
% as the first letter in the like-pattern, SCAFS is 
always used 

0 If the where clause has two predicates on secondary 
indexes anded together, SCAES is employed only if 

l over 1.575% approx. of the whole table is 
expected as the result to the query and 

l each of the predicates, individually, expects to 
‘hit’ 8.74% of the whole table 

0 If the where clause has an ‘or’, SCAFS is always 
used. 

The conclusion we arrived at after testing the Ingres 
Query Optimizer was that the optimizer only considers 
the use of SCAPS after it has made the decision to scan 
the table. Thus, it does not take any of the benefits of 
using SCAPS into account when making the decision 
whether SCAFS should be employed or not. This results 
in queries being executed without SCAFS even though it 

would be more efficient to use SCAPS. 

7. Conclusions and Future Work 

A number of conclusions and observations emerge 
from this study and although they should be considered 
anecdotal rather than scientific at this stage, we believe 
they give useful insights into the utilization of SCAFS for 
large Ingm Databases. 

The improvement in response time and CPU time 
brought about by SCAFS depends on the 
organization of the file and the number of hit’ 
tuples for the query. 
The time taken by SCAFS to scan a table can be 
reduced by using a small index or some form of 
hashing that would reduce the amount of data to be 
scanned. Especially for large databases it would be 
useful to be able to use sparse indexes along with 
SCAR to reduce the amount of data to be scanned 
without putting an undue load on the CPU. Wiles 
lWILE85] showed how secondary indexes could 
be used in conjunction with CAPS-ISP, the version 
of CAPS for the VME environment. Such an 
approach could be useful in the case of SCAPS as 
well. 
Tuning the SCAFSSCHED parameter for a specific 
application can affect the performance of the 
system considerably. 
The number of table locations over which the table 
being searched is spread affects the performance of 
SCAFS for high work loads and can have a 
considerable effect on the performance of the 
system. 
The Ingres Query Optimizer does not take into 
account the full power of SCAPS when deciding 
when SCAR should be used to search an Ingres 
table. 

The results can also be used to create a kind of query 
pre-processor that can rewrite a query into a semantically 
equivalent query that forces the Ingres Query Optimizer 
to process the query using SCAPS. Such a pre-processor 
linked with Ingres could have great potential for use in 
high frequency on-line transaction processing database 
applications that are CPU bound [ANAN93,ANAN94]. 

A fairly simple tool that predicts the optimal value of 
the SCAPS scheduling parameter and the number of table 
locations over which the table being searched should be 
spread given a work load could be useful at database 
design time. 

We are working on these issues at present and also 

recommend further research into the use of secondary 
access paths for associative memories. Earlier studies inlo 

the use of secondary indexes in conjunction with CARS- 
ISP [WILE851 have shown that there is benefit in using 

684 



secondary indexes on IS’AM files in conjunction with 
CAFS. 

ILEuN851 C.H.C Leung, KS. Wong. File processing 
efficiency on the context addressable file 

We believe that these results will provide Ingres store. Proc. VLDB Conference, 1985. 
Database designers with useful insights into the 
prediction and improvem&rt of the performance of [NMEfBl Pmperty, Rent Accounting, Waiting List - 
databases being developed. operational Requirements Vol. 1 - Statement 

of User Requirements. 
8. Acknowledgements 

Bracknell and the members of the project team at the 
University of Ulster and the Northern Ireland Housing 
Executive for their help and valuable suggestions in 
performing the above tests on SCAFS. The research was 
funded by the Industtial Research and Technology Unit, 
Northern Ireland and ICL Ltd. and Kainos Software Ltd. 
were the industrial partners. 

,We would like to thank the ICL SCAFS team at 
IwILE P.R. Wiles. Using Secondary Indexes for 

Large CAFS Databases. ICL Technical 
Journal, Nov. 1985. 

9. References 

[ANAN93] S.S. Anand, D.A. Bell, J.G. Hughes. Using 
Semantic Knowledge to Enhance the 
Performance of Specialized Database 
Hardware. Workshop of the FSlTCS’93 
Conference, IlT Bombay, December, 1993. 

[ANAN!M] S.S. Anand, D.A. Bell, J.G. Hughes. 
Database Mining in the Architecture of a 
Semantic Preprocessor for State-Aware 
Query Optimization. Proc. of the AAAI-94 
Workshop on Knowledge Discovery in 
Databases, Seattle, July, 1994. 

[ANAN94a] S.S. Anand, D.A. Bell, J.G. Hughes. 
Performance Enhancement using SCAFS in 
a Large, Transaction Intensive Database 
System. To appear in Informatics Research 
Reports Issue No. 9, University of Ulster, 
Oct. 94. 

[BABB79] Ed Babb. Jmplementing a Relational Database 
by means of Specialized Hardware. ACM 
Transactions of Database. Systems, Vol. 4, No. 
1, March 1979. 

[BABB85] Ed Babb. CAFS file - correlation unit. ICL 
Technical Journal, Nov.. 1985. 

[COUL72] GE. Coularis, J.M. Evans, R.W. Mitchell. 
Towards content addressing in databases. 
The Computer Journal, Vol. 15, No. 2.1972. 

[lNGR91] The Ingres Search Accelerator User’s Guide 

685 


