
A Requirement-Based Approach to Data Modeling and Re-engineering

Alice H. Muntz
Hughes Information Technology Corporation

MS SUS64lC410
PO Box 929 19

Los Angeles, CA 90009
ahmuntz8hac2arpa.hac.com

Abstract

This paper reports on the managerial experience,
technical approach, and lessons learned from re-
engineering eight departmental large-scale
information systems. The driving strategic
objective of each project was to migrate these
systems into a set of enterprise-wide systems,
which incorporate current and future
requirements, drastically reduce operational and
maintenance cost, and facilitate common
understandings among stakeholders (i.e., policy
maker, high-level management, IS
developer/maintainer/ end-users). A logical data
model , which contains requirements, rules,
physical data representation as well as logical
data object, clearly documents the baseline data
requirements implemented by the legacy system
and is crucial to achieve this strategic goal.
Re-engineering products are captured in the
dictionaries of a CASE tool (i.e., in the form of a
business process decomposition hierarchy, as-is
data model, normalized logical data model, and
linkages among data objects) and are
supplemented with traceability matrices in
spreadsheets. The re-engineered data products
are used as follows: (1) migration of the legacy
databases to relational database management
systems, (2) automatically generation of
databases and applications for migration from
mainframes to client-server, (3) enterprise data
standardization, (4) integration of disparate
information systems, (5) re-documentation, (6)
data quality assessment and assurance, and (7)
baseline specifications for future systems.

Pemdssion to copy withoutfee all or part of this material ir grantedprovided that
the copies are not made or distributedfor direct commercial advantage, the VLDB
copyright notice and the title of the publication and it3 date appear, and notice is
given that copying b by permission of tk Very Large Dota Bare Endowment. To
copy otherwise, or to republish, requires a fee on&or special permission from the
EJt&wment.

Proceedings of the 20th VLDB Conference Santiago,
Chile, 1994

Christian T. Ramiller
Hughes Information Technology Corporation

MS SClS64lC41O
PO Box 929 19

Los Angeles, CA 90009

1. Introduction

Re-engineering is the process of analyzing, upgrading,
and integrating enterprise information systems to meet the
expanded operating requirements of the present, as well as
to prepare a sound base for effectively meeting future
needs. In this paper, we report our experience, key
technical approach, and lessons learned from applying our
framework ([MH94], [AHR94], [AHR93], [HI93a],
[HI93b]) to eight large scale legacy information systems,
each containing several million lines of code, and
thousands of data elements.
Our requirement-based re-engineering approach differs
from ([P&B94], [HDA87], [M&M90], [M&S89],
[NEK94], [MNBBK94],[HCTJ93]) that we couple our
extended entity-relationship modeling methodology and
tools with model integration processes to produce a
normalized data model. In a re-engineered data model,
the physical data objects, pertaining to the physical
schemas, link to the relevant logical data objects, external
data objects, business requirements, and system rules.

Why Requirement-Based Data Modeling and Re-
engineering?

A requirement-based re-engineering approach should be
used when the information infrastructure of an enterprise
is out-of-control and is not meeting its goals. Typical
symptoms are:

people can’t share or integrate data across the
enterprise
data can’t be combined from multiple sources
the information people need is in a system
somewhere else, not accessible to them
the Information System (IS) staff can’t support the
existing infrastructure because of obsolete platforms
or programs designed, built, and supported by one
person
the IS department charges are skyrocketing, but
people still can’t get the information they need (what)
to conduct the business; when they want it, how they
want it, or in the form they want it
the information systems don’t support enterprise
strategic planning or tactical decision support
information and application requirements have not
been mapped to business functions

643

IS Development Life Cycle Information Technology (IT) Task Use of Requirement-Based Re-Engineering Products
I

Business Requirements

Information system
Requirements

Software/Database
Requirements
Preliminary Design
Detail Design

Implementation

Unit Test
Integration

* Functional Economic Analysis
l Business Process Improvement
l Enterprise Data Architecture
* Enterprise Data Model
l Cross-functional Model

Integration
l Enterprise Model Integration
l Data Element Standardization
l Enterprise Data Warehouse
l Enterprise Data Repository

l Enterprise IT Consolidation
Planning

l Enterprise IS Security

l Forward Engineering

l Object Engineering

l Data Quality Engineering

l Database Generation

l Screen Generation
l Report Generation
l Data Migration

l Data Quality Assurance

l Data Administration

l Training

l data requirements specified in the re-engineered data
model

l understanding of requirements and how tbe IS implements
the requirements I l Maintenance I

Table 1. Use of Requirement-Based Re-Engineering Products
new application architecture and technology

l modifying one application causes errors, aborts, and / infrastructure.
or erroneous information in a different application As a part of our re-engineering approach, we resolve data

A requirement-based data modeling and re-engineering conflicts (e.g., synonyms, homonyms) during data
approach should be used to re-document or map business modeling and model integration. In section two, we
requirements, functional requirements, and data describe our approach to identify data conflicts and
requirements to architecture, design, and implementation. classify data conflicts. Depending on the scope of the re-
As depicted in Table 1, re-engineered data models enable engineering effort, various levels of integration will occur.
identification of obsolete portions of applications, We developed an integration taxonomy to guide our
outstanding unfulfilled requirements, applications that integration process for data modeling and re-engineering
require changes or consolidation based on new functional legacy information systems. Sections 3 describes this
requirements to meet current and future business needs. integration taxonomy. Section 4 describes our
The re-engineered design will provide a basis for requirement-based data modeling approach. Section 5
developing a plan to migrate reusable applications to the uses an example to illustrate our model integration

B understanding requirements of as-is business processes
/data models and how IS supports users and business

. inventory of baseline requirements implemented in the
current IS

. composition of the logical data dimension and tbe physical
data dimension of enterprise data architecture and
enterprise data model

m integration of tactical and operational data models among
business functions

. integration of strategic, tactical, and operational data
models for all business functions

. uniform name for the same data object to facilitate reuse
* same name, meaning, and usage for the sharable data

instances and objects
. identification of duplicating or similar databases for the

same business functions
l understanding requirements of as-is business processes

/data models and how IS supports users and business
l elimination of obsolete requirements, modification of

changed requirements, and addition of new requirements
l data objects formulated from data usage, processing rules,

attributes, and entities of logical data model
l data quality requirements represented in the re-engineered

logical data model

l databases and tables automatically generated by CASE
tools using re-engineered data models

l screen/report design and implementation via CASE tools
using re-engineered data models

l linkage between the legacy data elements to the as-is
normalized data model used by the data extraction
Program

l linkage between the to-be data element to the as-is
normalized data model used to store the extracted legacy
data to the to-be database tables

l data quality requirements specified in the re-engineered
data model

644

approach. Finally, in the last section, we summarize
lessons learned from these re-engineering experiences.

2. Five Data Conflicts Types

When systems are to be re-engineered or consolidated,
functional and data conflicts, and data duplication need
special attention, to determine the impact of selecting one
system’s implementation over another. Data conflicts fall
into one of 5 general types.

Synonyms are data element names which are different
but which are used to describe the same thing in the
various systems. The “same thing” refers to (a) the same
critical attribute of a real-world thing, or (b) the same
real-world thing. An example is shown in Figure 1. Here
the term ACTIVITY within the pay system is used to
identify what is called a UNIT or ORGANIZATION
within the personnel system. This conflict was uncovered
by noting the similarity in associations as well as in
definition.

Personnel Data MODEL I Pay MODEL

ORGANIZATION _ UNIT _ POSITION ORGANIZATION - ACTIVITY - POSITION

ORGANIZATION -- any group of individuals that serve a
function within the Enterprise.
UNIT -- an organizational sub-group identified by the
personnel accounting symbol authorization number to track
the owner of a position to which employees will be assigned.

ACTIVITY - an organization identified by ths major daiment code, for which 1
grouping of employees works.

Figure 1. Synonym Example: UNIT vs. ACTIVITY.
Homonyms are data element names that are the same or
almost the same but which are used to represent things
which are different with respect to usage or other
characteristics. An example of a homonym is shown in

owner of a POSITION in the personnel system.
Meanwhile, in the payroll system the term AGENCY
(with a synonym -- SERVICING AGENCY-- in the
payroll system) is related not to a POSITION but to an

1 EMPLOYEE.

AGENCY -- A code designating the Federal goveronment agency
who owns the position regardless of the servicing agency. (Navy
PDS Data Dictionary)
AGENCY -- Reflects the owning agency code. Used in conjunction
with DIN JPV which reflects the servicing agency. (Table 102~-
APDS Table)

AGENCY EMPLOYEE

AGENCY -- A two position code that designates the Federal
Government agency to which an employee is assigned or is
transferred. (DCPS User’s Manual, Appendix F)

I
Figure 2. Homonym Example: Agency
Structural anomalies which are tracked as in another system it is treated logically as an Attribute
Attribute/Entity conflicts are an occurrence of a data (one value which is used as a characteristic to describe
element treated logically as an Entity in one system (i.e., same entity).
many characteristics about it are tracked and stored) while

s Personnel MODEL
I

PPOINTMENT PPOINTMENT

CANDIDATE

EMPLOYEE

tNTERMllTENT

EMPLOYEE

Figure 3 Type/Subtype Example: Employee

645

Type/Subtype conflicts show up where one system keeps
only basic characteristics, or attributes, about an entity,
and thus the varying types are simply multiple subtypes of
that entity, while another system keeps a more complete
set of characteristics about real-world things, thus
encompassing all the variations within one type. As a
result, these real-world things can be categorized into
multiple types, each described by its own set of
distinguishing characteristics. This conflict can usually be
resolved by making the multiple type entities of the
second system subtypes and placing common
characteristics into the single entity from the first. An
example of this type of problem is shown in Figure 3.
Here the high-level model is more abstract and has only
an EMPLOYEE entity, while in the personnel system,
separate characteristics are tracked for TEMPORARY
EMPLOYEES, INTERMITTENT EMPLOYEES, and
PART TIME EMPLOYEES. Further investigation may
even find additional employee types. This conflict
actually helps to highlight a normalization need, such that
common attributes across the multiple types will not be
duplicated in the consolidated implementation.
The last conflict type is Stored vs. Calculated
Redundancy. An example of this kind of conflict is the
DOB (date of birth) sent from the personnel system to the
payroll system, and the EMPLOYEE AGE CATEGORY
stored within the payroll system after calculating the age
from the date of birth. This conflict was at first only
suspected, but was later validated when the actual usage
of ‘DOB’ was noted by pay system experts--that is, that
the date of birth is important to them only in determining
the appropriate age category for life insurance premium
calculation.

personnel system

INTER-SYSTEM / CROSS-FUNCTIONAL

Figure 4. Four Different Integration Processes.

3. Integration Taxonomy

The process of integrating information can be categorized
into a taxonomy which spans four different integration
processes, as shown in figure 4.
Intra-system integration are undertaken to resolve data
conflicts that exist during the re-engineering of each
system. Within each system, several physical data
elements may logically reference the same information.
When a logical model is generated, like elements are
combined as one logical object. For example, in the
payroll system there are two similar objects: AGENCY
and SERVICING AGENCY. They represent the same
data, and the same data values. The difference is not in
their content but in their usage. Within a logical model,
both elements would be combined, and the latter would be
indicated by associating the resulting object AGENCY
with the real-world object served--in this case, the
personnel office responsible for pay transactions of the
employees.
Inter-system integration is undertaken to resolve data
conflicts that exist among system being consolidated.
Cross-functional integration is required when information
models from two or more functional areas are combined,
and where the same information is maintained in both
areas. Inter-system integration may also occur concurrent
with cross-functional integration if the systems support
more than one functional area. Cross-functional
integration occurs within our integration task, for
example, by logically integrating information that
supports personnel functions with information that
supports pay functions. The overlap occurs in the process
of calculating pay, where information about an employee’s
salary, entitlements and deductions must be obtained from
personnel to calculate civilian employees’ pay, and
information about time, attendance, deductions, and actual
pay must be sent back to personnel to keep their records
up-to-date.
Cross-level integration pertains to the level of conceptual
detail being captured within the information model. At
the lowest level, details that are used for day-to-day
operations are included within the models. At the mid
level, details are only included if relevant to the decision-
making that will be made about how to accomplish broad
functional goals. At the highest level, only abstract
concepts are captured, to provide a framework for
decomposition of functional areas into specific systems or
organizations which provide those functions. Thus, cross-
level integration occurs when folding one or more lower
level models into one of the mid or higher level models,
or simply mapping the more detailed concepts of the
lower level model to a higher level concept through
aggregation. Finally, our integration task also includes
cross-level integration between a mid-level model which,
for example, reflects current policy for calculation of pay
and the lower level models.

646

i 1 ‘ig

Process
Uses Data b 1

I Ph slcal Evidence
(FIE Structures,

Model Views
I

.-..-.-
I . . . , ata Elements.

. Screens, & Rewrts) Statements of Poilcles,
Business Rules,
Procedures, Formal
& Requirements Link

Model Views
Contain
Loglcal Objects

\
Pdldea 6 Budneea Rules
Unkad To
Lo!&d MO&l

ure 5. Model Gestation

4. Data Modeling and Re-Engineering
Approach

With our re-engineering approach, we couple our
extended entity-relationship modeling approach with the
model integration processes.
As shown in Figure 5, our extended entity-relationship
modeling approach partitions data models into the
following components: (1) model view, (2) plan
dictionary, (3) physical dictionary, (4) data dictionary, and
(5) linkages (i.e., links between plan dictionary objects
and model view objects, links between plan dictionary
objects and data dictionary objects, links between data
dictionary objects and design dictionary objects).
Business processes and data are inexorably linked. In our
projects we have concentrated on the data requirements
side, but we never forget about the underlying processes.
Data does not appear suddenly out of the blue. Data ti
created by and & used by processes. Likewise, there are
no business processes which don’t use data. Failure to
recognize these fundamental truths leads to confusion and
artificial or theoretical results, not practical models and
solutions.
As show in Figure 5, we first construct an “as-is logical
data model” to represent the requirements, the logical
structures and semantics, and the physical implementation
of databases, screens, and reports. We then normalize the

“as-is logical data model” to an “as-is normalized data
model”, up to the fifth normal form when possible, by
using the up-to-date business strategies, business rules,
and functional dependency information. The usage of
each data object (i.e., entity, attribute, and association) are
also documented by specifying the “how” (i.e., Create,
Read, Update, and Delete), the “why” (i.e., links to the
relevant policies, business rules, business procedures,
practices, system implementation rules), the “when” (i.e.,
the “triggering business processes” and the “to be
triggered business processes”), and the “where” (i.e., the
“business process view” where the entity resides.) are
also documented. During the normalization process,
synonyms and homonyms in the physical data structures
are identified and resolved. The resolution of each such
conflict is documented with linkages to/from the logical
attributes and the conflicting data items.

The As-Is Model

The as-is data model, once created, serves as a baseline
representing the current configuration of the system. The
process of creating the as-is data model is called reverse
engineering. This model contains the existing definitions
of processes, data structures, and data elements.
Typically, our experience is that a large number of
homonyms cannot be identified by analyzing application
code, data dictionary, or schema definition. Multiple
external definitions result from differing usage of the data

647

element between organizations within the enterprise using
the application/database or “phased” usage of a data
element during various stages of the process supported by
the application where the meaning of the element
changes. For example, illustrated in Figure 6,
“Manufacturers cage part number indicator code” is used
in four different ways by four organizations (i.e., DCSC,
DESC, DGSC, and DISC.) During focus sessions, we
discovered this homonym and obtained clear definitions,
purposes, and usage of data elements from policy experts,
end users, system implementers, and system maintainers.
Model views are created to partition the model into
smaller pieces for analysis and to create meaningful
groupings of business rules and data. Generally, these are
process- or function- based although we can also create

3
I

I

I -
?igure 6. Homonym Detected from End User Usage.
4s shown in Figure 7, functional and business rules,

“data” views based on clusters of &ted data.
h

DCSC - A c& that indkater if the
manufacturer’s CAGE code and the part

be used to acquim the item.
DESC, DGSC, and DISC.

Codes: X-Yes; Blank - No

DESC -A coda that Indicates if the item

DGSC - A code that indicates if government

Codes: Y-Yer;N-No

developed from policies and regulations, drive system
rules while system rules describe processing logic and
data relationships to be implemented by the application
code. To facilitate the requirements-driven approach,
business rules and policies are generated from external
regulations and laws. Common practices and procedures
within the business enterprise are documented in the pIan
dictionary of the data model as shown in Figure 6.
Additional rules are also captured in the plan dictionary
through analysis of the application code (these are the
system rules - that implement the business rules). Rules
are then linked to the model views to which they apply as
illustrated in Figure 5.
Physical data is correlated with business processes (model
views) via the create, read, update, delete (CRUD) matrix
in spreadsheets. This matrix is also used to capture the
operations performed on the data for a specific process,
whether the data is optional or mandatory, and is system-
supplied or user-entered.
After the physical components of the model are defined
(in the design dictionary) and validated, are “extracted”
from the design dictionary, they are placed in the logical
data dictionary as candidate objects and used to populate

the model views. Preliminary linkages from physical to
logical are established as part of this extraction process to
establish the pedigree of the candidate logical objects.
The as-is model is then frozen for future reference and is
ready for use as a baseline for the development of the as-
is normalized model.
The A-Is Normalized Model
After as-is data model is derived, we begin the forward
engineering process which includes normalization
(through fifth normal form) of the candidate objects.
Normalization reduces complex data structures to their
basic, most natural form by removing redundancies,
eliminating data conflicts, and assigning attributes to
entities based on the essential meaning of data throughout
the organization. The resulting data architecture is based
on how data is related to other data, not on how the data is
used by the applications or on who uses the data. This
provides a more stable and flexible structure. This logical
data architecture is used to drive the creation of physical
data structures free of creation, update, and deletion
anomalies that result in inconsistent data values and other
data intearitv uroblems.

I I .

Figure 7. Relationships Among Requirements, System
Rules, and Application Code
As a result of normalization, new objects are created and
refined relationships established that differ from the
original as-is condition. Therefore additional rules
(requirements) must be written to support the
normalization assumptions/rationale. New business rules
are recorded as modeling issues are resolved.
Standard naming conventions (per enterprise standard)
are applied to logical objects. In many instances new
standard logical names based on the essential meaning of
the data will prove more transportable across the
enterprise than the legacy physical data names.
A full set of trace links between logical objects and rules
(planning statements) can now be completed. Trace links
between logical and physical objects must be refined to
account for logical objects eliminated to condense

648

synonyms and additional logical objects created to resolve
homonyms. In some cases, new objects

the business enterprise supported by the application being
reverse-engineered.

(entities/attributes) are created which are not currently
part of the application/database but are logically part of

The stage has now been set to achieve a model-driven
development environment as shown in Figure 8.

Figure 8. New Physical Schema Derived from the Re-Engineered Data Model
Forward Engineering and Model-Driven Development elements from the two systems as a small example to
Upon completion, the normalized model can be archived illustrate integration complexity and our approach to
as a baseline for configuration management purposes, and integration. In this example, we have cross-level
a new model is generated from the normalized model to integration between a mid-level model which reflects
meet two possible scenarios. Scenario 1 is to upgrade the current policy for calculation of pay and the lower level
system implementation for current needs by migrating the models; we have cross-finctional integration between the
existing data base to a relational data base by creating new personnel system representing personnel functions, and
physical components from the as-is normalized data the payroll system representing pay functions; we have
model. inrra-system integration within each migration system
Scenario 2 is to expand system functionality. We would model as it relates to tbe calculation of pay that is part of
frost modify the as-is normalized data model into the to-be the re-engineering effort that prepares it for integration;
normalized data model by capturing new business and finally we have inter-system integration since we need
requirements. In addition, we integrate strategic, tactical, to resolve data conflict between the two re-engineered
and operational level data models with the re-engineered data models representing the data requirements of the two
“as-is normalized data model”. We first use the strategic systems.
level enterprise data and process models to isolate the
relevant concepts and identify relationships between Integration Scope
tactical data and process models. Next, we use the
relevant tactical data and process models to identify The scope of this task is the information exchanged

grouping of business processes and possible entities and between the two systems for the pay calculation. As

associations. Then, we identify identical data objects, shown in Figure 9, there are three subsets of data that

synonyms, and homonyms in the related operational data should be distinguished.

models. Finally, we resolve conflicts and produce an The most critical items are those shown in the
integrated logical data model with a traceability matrix. intersection, i.e., elements that are shared by the two
Then, migrating the existing data base to a relational data systems and are directly related to pay. Examples of this

base by creating new physical components from the to-be type of data are an Employee-Id and the employee’s

normalized data model . associated Pay Grade. The second subset includes
elements that are not shared by the systems but which are

5. Our Model Integration Approach directly related to pay. Examples of this kind of data are
such things as Time and Attendance data or Allowance

In this section, we will use a payroll system, a personnel Categories which are kept only within the payroll system.
system, the pay calculation application and related data The third subset includes elements that are not shared, but

649

are common to both systems, and are either directly or
indirectly related to pay calculation. The most obvious
examples of this kind of data are reference tables, such as
locality adjustment percentages which affect pay, or
various benefit plan codes. The less obvious are elements
such as salary limitation accumulators which are officially
kept only within personnel, but are actually maintained
within both pay and personnel. Stewardship (i.e.,
organizational authority and responsibility for a specific
set of data elements) may be the most difficult to
determine for this tvne of data.

7 Figure 9 Scope of Data Elements to be integrated.

Not-Shared Elements,
Indirect support of Function Scope

Supporting Common but not shared

Bias Priority Approach

We use a bias priority approach discussed in [BLN86].
Integration tasks encountered in our projects involve all
four integration processes (i.e., intra-system, inter-system,
cross-functional, cross-level integration.) Therefore, the
approach being taken on this task is to merge each of the
re-engineered data models into one medium-level logical
model.

Figure 10. Priority Sequence Biases Resulting
Standard Elements.
In Figure 10, DCPDS is a re-engineered data model for a
personnel system, DCPS is a re-engineered data model for
a payroll system, and MCTFS is a re-engineered data
mode1 for a combined pay and personnel system. In the
process, conflicts of naming, structural representation, and
semantics are uncovered. In addition, stewardship may be
unclear. The goal of the task is to isolate each of these
conflicts and document the alternatives with the data-
related impact of each. The stewardship of the conflicting
elements may also be discovered; if so, this is noted to
help in establishing resolution authority.
The initial version of the mid-level data model is
developed top-down, using a variety of policy-level input
sources. In this specific example, policy documents

included DOD Directives, the Federal Personnel Manual .
and supplements, and several high-level models that have
been developed, including the DOD Enterprise Model. A
similar mid-level data model in a non-government
organization can also be developed using similar
documents such as Federal Law, State Law, corporate
directives, a corporate personnel manual. The mid-level
mode1 resulting from this policy review has been called
the Joint Personnel and Pay Model, JPPM.
The two re-engineered models, DCPDS and DCPS,
developed bottom-up using existing data structures and
in-depth system expert interviews as input sources, are
merged one-at-a-time. The first merge, DCPDS (i.e., the
personnel system data model) into JPPM, creates an
intermediate model which is being called Joint Personnel,
or JPERS. This model integrates personnel information
from a bottom-up and top-down view. The second merge,
DCPS into JPERS, creates a second intermediate mode1
which is being called Joint Civilian Personnel and Pay
Model, or JCPPM. This model uses the integrated top-
down/bottom-up personnel model to help guide the
integration of bottom-up pay information. The bias
priority is inherent in the sequence of integration. In
this example, the sequence of incorporating DCPDS,
DCPS, and MCTFS is driven by the time that a re-
engineered data model is available. We did not
intentionally impose preference on any of the systems, but
the timing of mode1 availability turns out determine the
bias priority.
As shown in Figure 11, the mid-level mode1 (JPPMl) has
the highest priority; if there is a conflict between it and
DCPDS, the mid-level mode1 representation will take
precedence. JPERS will therefore be biased towards this
mid-level view. Then , JCPPM will be biased towards
JPERS (i.e., the integrated model from the mid-level
model and DCPDS) over DCPS. Finally, the Standard
(the JPPM model) will have the bias toward JCPPM (i.e.,
the integrated mode1 from the mid-level model, DCPDS,
and DCPS) over the MCTFS . As the integration process
moves to the final stage, MCTFS will have least impact
on standardized terms as compared to DCPDS and DCPS
when conflicts arise.
The bias priority supported by this approach is especially
important when integrating a large number of existing
systems over time. The greatest advantage is in managing
the complexity that arises when consulting the number of
system and functional experts who may not previously be
aware that their data is also kept in other systems, perhaps
used as well as named quite differently. Special data uses
may also have to be compromised to accommodate the
standards, and mediation without a pre-determined
priority could be very costly in time, money, and delays
due to stalemate. The most effective sequence is
established by weighing the following factors: (1) the
breadth of use of the data elements in each system to
ensure the most complete understanding possible early-
on, (2) the dollar costs of changes to each system or the

650

time and cost of mapping the system’s data to the
standards resulting from earlier integration, to limit the
ultimate costs, and (3) the number of employees or
organizations supported by each and the relative
importance of the functions supported by the data being
integrated, to consider the risk of change. More detailed
advantages of this approach over others are discussed in
[BLN86].
Since one of the strategic objectives is to produce
sharable data among enterprise organizations performing
various business functions (such as personnel, payroll,
procurement, health care benefit, inventory management),
after the integration process we use a naming
standardization procedure [DoD94] which ensures
reusability of data objects. For example, we re-use the
standard name if the data object is equivalent to a standard
data element in the enterprise data repository; this is done
by transforming the name of an attribute into the format
“Modifier Name.Generic Data Element” such that the
transformed attribute and its associated data model can be
submitted as an enterprise standard.

Lessons Learned

Establishment of Re-Engineering Strategic Objectives

Getting formal commitment and authorization from the
system stakeholders (especially administrative and
technical management) is a crucial factor to the success of
reverse engineering projects. One problem we
experienced was the lack of timely access to key system
and functional personnel because they were
simultaneously required in other activities. In addition, the
costs of properly re-engineering systems and the value of
the re-engineering products produced are consistently
under-estimated by management (this is true is the
commercial environment as well). It has been challenging
to convince management that re-engineering is a
substantially broader and more complex task than just
“restructuring the code” by pumping the code through a
CASE tool. Restructuring the code is useful to improve
the system maintainability, but it does not support the
following critical tasks: (1) facilitation of data migration,
(2) evolution of a departmental system to satisfy
enterprise-wide system requirements, (3) data sharing
among functional areas (e.g., Health Care, Personnel,
Pay), and (4) incorporation of new or changed data
requirements resulting from business process
improvement activities. Nor does code restructuring
consider deletion of obsolete functions or requirements
that don’t need to be included in the future systems or
provide for identification of incomplete coverage of
business requirements by existing programs.

Establishment of Use of Re-Engineering Prod+s

Throughout the initial phase of our projects, we have been
continuously asked:
9 What reverse engineering products are produced?
l How can these products be used?
l How is reverse engineering related to other system

development activities?
l When will the re-engineering products be ready?
l Why do they need re-engineering in order to obtain

standard data elements?
The matrix in Table 1 helps to answer these questions.

Data Standardization and Integration Misconceptions

A dangerous misconception is that data standardization is
simply assigning related data elements with the same
name in each system. If implemented blindly, this will
cause future unforeseen and disastrous results, the causes
of which are difficult to isolate and correct. To correctly
use information from data elements, the business rules,
policies, and the functional dependencies among elements
must be identified and represented in a data model for
each system. Before standardization can be achieved,
model integration is an essential step to identify and
resolve synonyms and homonyms based on the rules,
policies and functional dependencies represented in the
models. Without the integration step, incorrect
information continues to propagate throughout the
enterprise.

The Need for a Re-Engineering Cost Model

Costs of re-engineering efforts are difficult to estimate.
Costs models are important in order to clearly enumerate
the contributing factors/tasks/resources required for a
project (based on the environment (technology,
administrative and operational) and the size of the system
in question. One vendor we know estimates a flat
$1 JO/line of code in the system. We were unable to even
estimate the lines of code in the medical portion of the
project because of the unstructured nature of the MUMPS
programming language code. One measure of prowess
among MUMPS programmers is how complex a program
can be written with a single line of code. Perhaps this
accounts for the various estimates in the number of lines
of MUMPS code in one of a hospital information system
ranging between 1.3 million to 2.5 million depending on
whom you ask.
Re-Engineering Tools and Tool Usage
The tools available are geared to specific target portions
of the IS life cycle. Many tools on the market today
exhibit varying degrees of tunnel-vision (covering only
the portion the vendor is interested in and not providing
adequate links to other tools or common formats.
Business rules and other information captured in logical
or conceptual models (or phases) may not be passed easily

651

to forward engineering tools of choice, and as a result it is
not easy to implement the structures, rules, and business
requirements with full traceability.
Selection of the proper tool set across the entire life cycle
requires a comprehensive strategic vision and a re-
engineering process model (across the entire IS life cycle)
aligned with the objectives of the customer organization.
Tool selections should align closely with the customer
organization’s goals, priorities and resource constraints.
The current crop of CASE tools focuses on associating
physical data structures and variables to segments of code.
This is useful in identifying how physical schemas are
created, updated, read, and deleted, but it is not sufficient
to construct the logical and conceptual external views of
data requirements. Even if the functional and technical
experts help the information engineers understand the
existing physical systems, the CASE tools do not provide,
for instance, the facility to link to the physical evidence
(e.g., functional specification, software, data dictionary,
focus session results) recorded in support of the
functional requirements. More importantly, using such
tools in a purely mechanical fashion (i.e., without help of
the technical and functional experts) will be more
damaging, producing inadequate, inaccurate, or
incomplete results. Recovering a normalized logical data
model together with the associated business rules,
policies, and physical data structures is hard, and requires
significant amount of human effort, but this extra effort is
required in the long run. CASE tools may augment the
analysis to provide initial understanding of physical
implementation of the system, but CASE tools cannot
replace hum effort for recovering the conceptual and
logical data requirements.

Task Thing: Availability of Re-Engineered Models

If the legacy systems being integrated do not have
existing and up-to-date models of the processes and
information structures, the integration task should be
delayed until they are close to readiness. While it is
important for the integrator to attend and perhaps
participate in some of the re-engineering modeling
sessions held in order to become familiarized with the
terms used in discussion, this participation can occur
towards the later stages of model review, as preparation
for integration. The models should be at a relatively
stable state, and complete with traceability before
integration begins.

Task Reviews

Products Reviewer

It is important to find a reviewer of the deliverables,
especially of the conflict cross-references, the conflict
resolution document, and the traceability of the model,
who will concentrate on coverage and format, not

necessarily on term resolutions. The question that must be
answered by that reviewer is “Will those who are required
to resolve have enough information to make a decision?“.
If not, the task output can not be relied on. However,
there is a need to steer clear of too much information, as
well, in order to keep the documents readable. Some
representations are good for working documents, some are
good for technical input, some are good for formal
review, and some can be made more simple for validation.
It is important to adapt to the readers’ needs, and to have a
customer reviewer available to help guide the content.

. . . Track Progress Usmg Metnq

It is possible to establish tangible metrics that can be used
to gauge the progress of the integration task for status
reporting and scheduling. For our integration project, the
metrics were based on the intersection diagram shown in
Figure 1. Each legacy system being integrated has a total
number of objects (entities and attributes) within it. This
number applies to each full circle in the diagram. The
isolation of overlap areas in the systems as they are
prepared for integration will uncover the number (and
percent) of objects that fall within each band on the
diagram (i.e. a--shared and direct functional relevance, b--
shared and indirect functional relevance, and c--common).
Once these numbers have been identified, progress can be
monitored by reporting the number of objects in
categories a, b and c that have been merged; the number
of objects in each category that show up in a conflict; the
number of objects in each category that have resolutions;
the number of objects that have had traceability noted
upwards, the number noted downwards; and so on.

Integration Task Process/Methodology

. . . . Draft ToD-Down Model is Kev to Famdlarume w ith
Terms

In some of the first systems we worked on, the mid-level
model which reflects policy (to compare to
implementations) was not planned. Its development on
the integration task was done as an exercise of the tools
and procedures, while awaiting the re-engineered models
of the personnel and payroll systems. It was found that
this exercise greatly contributed to familiarity with
terminology as used by each of the systems’ experts. This
familiarity helped guide the initial focus sessions, to help
in quickly isolating terms that were being used differently
in each system’s context.

. . o Shed-

The sequence of integration will affect the bias of
terminology usage that ends up in the ultimate
consolidated standard. If the focus sessions do not

652

proceed in this order, however, or if attendance by the
integrator does not occur in this sequence, or if the
sessions do not cover interchange elements right from the
beginning, terminology bias will occur incorrectly. In the
case of our project, payroll system information was
available significantly earlier than personnel system
information. While the bias has for the most part been
overcome through rigor in integration, it is possible that
information provided by the payroll system contacts
might have been questioned more thoroughly from a
personnel usage standpoint than it was, simply by being
introduced after personnel functions and data were more
familiar. One suggested resolution is to be sure to
schedule interview sessions according to the priority
sequence. An additional suggestion is to be sure to obtain
on-going validation of the terms from each system being
integrated even after its integration has been completed.
For this prototype effort, it was important to take the
payroll system input back to the personnel system experts
to validate the feedback obtained, and to reach a common
understanding.

Use of Legacv Svstem Documentation

Legacy system logical data models are required, but, in
our case, models were not available at first, so legacy
system documentation was researched as sample input for
conflict isolation. Since this documentation often has
more in-depth definitions than are found in model data
dictionaries, conflicts were sometimes found that would
not have been discovered simply by reviewing the input
models. On the other hand, the models contain more
semantics in the form of data dependencies and
association text, as well as in the structural representation
of the element (i.e. entity vs. attribute, primary vs. subtype
entity). The models also represent current actual practice,
something not easily gleaned from documentation. The
recommendation is to try to use both as information
sources to help in investigating, analyzing, and
uncovering candidate conflicts.
Along the same lines, the legacy system model
representation should take precedence whenever
contradictions occur between them and the system
documentation, since the models attempt to capture actual
as-is implementation as it has evolved over time, while
documentation may not be up to date with actual practice.

Integration Task Output

Conflict GI-OUDS

The conflicts found between legacy systems were
originally going to be documented only in cross-reference
or matrix form. These show one element name from one
system with one element name of the other system, noting
the potential conflict. To serve the purposes of conflict
resolution, however, the elements need to be logically

grouped to include all of the several conflicts that involve
those terms. The reason is that conflict resolutions impact
each other when like terms are involved.
For example, if there was a synonym conflict between
ACTIVITY in one system and UNIT in another, it may be
agreed that UNIT should be selected; if there is also a
synonym conflict between UNIT and ORGANIZATION,
and on its own the term ORGANIZATION is selected,
does that now mean that what used to be called
ACTIVITY should now also be changed to
ORGANIZATION? Or would the existence of both
conflicts as a group lead the integrator to suggest that all
of ACTIVITY, ORGANIZATION, and UNIT be called
UNIT? Or, would the integrator find that there was a
homonym use of UNIT going on? The grouping of both
conflicts together (or multiple conflicts if necessary)
provides the highest level of semantics from which the
integrator can make recommended resolutions.

When identifying stewardship of the exchanged data
elements, there may be a subset which is claimed by both
(or multiple) system experts. This issue cannot be
resolved by the integrator during integration. It should be
noted within the Conflict Resolution Document, and the
preliminary recommended resolutions can be used as
input in the integrator’s decision. The recommendations
will require further review before actual implementation;
this multiple claiming should be addressed at that time.
The integrator can raise a flag within the document to
make reviewers aware of these problems.

USC of Cross-Reference List for Customer IIIDU~

In our integration task, cross-reference lists were used
heavily to retrieve input from systems’ functional area
experts. Be very careful to include only information that
is relevant to the given system when requesting feedback,
if possible, to keep the expert focused on input you need
rather than differences found in the other system(s).
Along the same lines, be sure to provide separate lists for
each system, with their terms as the first, identifying
column. This is not only an issue of pride-of-ownership
but also a matter of providing information that will be
most recognizable to them; the more recognizable, the
better and faster their review can be.

Conclusion

Requirements-based re-engineering is not for solving
minor information technology problems or providing
minor improvements to legacy information systems. Re-
engineering is a non-trivial task best directed toward
formulating long-term solutions for the business
enterprise.
A requirements-based approach to dam modeling and re-
engineering requires cooperation and resources from the

653

policy makers and interpreters, end users and functional
experts, as well as the spectrum of IS professionals
Therefore, it is of paramount importance to align project
objectives, plans, technologies, and tools with the
organization’s strategic plan in order to obtain buy-in and
commitment from system stakeholders ([MH94],
[AHR94], [AHR93], [HI93a], [HI93b]).
It is essential to understand that automated tools, while
facilitating the process of re-engineering, cannot do the
entire job. A suite of tools supporting the life cycle of the
re-engineering effort that can exchange data would be
ideal. No CASE tool in itself can do the entire job and
may even prove to be bottleneck. To ensure that a
thorough job of re-engineering is performed human
intervention is required for analysis and problem solving.
Indeed, a committed team is required to establish the
continuity of expertise and purpose needed to successfully
implement a model-driven system development and
maintenance environment.

Acknowledgments

The work described here is based on the joint efforts of
the Data Processing Systems Modernization Program.
The authors are indebted to Carlo Zaniolo of UCLA for
comments and discussions.

References

[DoD94] DOD Directive 8320.1-M-1: Data Element
Standardization Procedures.
m941 Muntz and Hobson. Lessons Learned: Re-
engineering DOD Legacy Information Systems. Software
Engineering Techniques Workshop on Software
Reengineer@, Pittsburgh, PA, May 3-5, 1994
r-941 Aiken, Muntz, Richards. DOD Legacy
Systems: Reverse Engineering Data Requirements.
Communications of the ACM, May 1994, Volume 37,
Number 5, pages 26-4 1.
w=931 Aiken, Muntz, Richards. A Frame work for
Reverse Engineering DOD Legacy Information Systems.
Proceedings of Working Conference on Reverse
Engineering, May 21-23, 1993, Baltimore, Maryland,
Page 180-191.
[HI93a] Hughes Information Technology
Corporation. Approaches to Cross System Functional
Integration: Phase I , Final Report for Data Processing
Systems Modernization Program. Prepared for Defense
Information Systems Agency, April 5, 1993.

[HI93b] Hughes Information Technology
Corporation. Reverse Engineering DOD Legacy
Information Systems, Phase I, Final Report for Data
Processing Systems Modernization Program. Prepared
for Defense Information Systems Agency, April 13,1993.
[BOW Batini, Lenzerini, Navathe. A Comparative
Analysis of Methodologies for Database Schema
Integration. ACM Computing Surveys, Vol. 18, No.4,
December 1986, pages 323-364.
[P&B941 Premerlani, Blaha. An Approach for
Reverse Engineering of Relational Databases.
Communications of the ACM, May 1994, Volume 37,
Number 5, pages 42-49.
[I-IDA871 Hogshead-Davis, Arora. Converting a
Relational Database Model into an Entity-Relationship
Model. Proceedings of the Sixth International
Conference on Entity-Relationship Approach, 1987.
[M&M901 Markowitz, Makowsky. Identifying
Extended Entity-Relationship Object Structures in
Relational Schemas. IEEE Trans. Softw. Eng. 16,8 (Aug.
1990), 777-790
[M&S891 Markowitz, Shoshani. On the Correctness
of Representing Extended Entity-Relationship Structures
in the Relational Model. SZGMOD ‘89. ACM, New York,
1989.
[NEK94] Ning, Engberts, Kozaczynski. Automated
Support for Legacy Code Understanding.
Communications of the ACM, May 1994, Volume 37,
Number 5, pages 50-57.
[MNBBK94] Markosian, Newcomb, Brand, Burson,
Kitzmiller. Using an Enabling Technology to Reengineer
Legacy Systems. Communications of the ACM, May
1994, Volume 37, Number 5, pages 58-7 1.
[HCTJ93] Hainaut, Chandelon, Tonneau, Joris.
Contribution to a Theory of Database Reverse
Engineering. Proceedings of Working Conference on
Reverse Engineering, May 21-23, 1993, Baltimore,
Maryland, page 161-170.

654

