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Abstract 

Materialization is a useful abstraction pattern 
that can be identified in many application set- 
tings. Intuitively, materialization is the re- 
lationship between a class of categories (e.g., 
models of cars) and a class of more concrete 
objects (e.g., individual cars). This paper 
gives a quasi-formal semantic definition of ma- 
terialization in terms of the usual is-a and is- 
of abstractions, and of a class/metaclass cor- 
respondence. New and powerful inheritance 
mechanisms are associated with materializa- 
tion. Examples, properties, and extensions of 
materialization are also presented. Providing 
materialization as an abstraction mechanism 
for conceptual modeling enhances expressive- 
ness by a controled introduction of classifica- 
tion at the application level. 

Keywords: conceptual modeling, object oriented 
model, classification. 

1 Introduction 

Conceptual modeling is the activity of formalizing 
some aspects of the physical and social world around 
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us for purposes of understanding and communica- 
tion. Advances in conceptual modeling involve nar- 
rowing the gap between concepts in the real world and 
their representation in conceptual models by identi- 
fying new powerful modeling primitives that allow a 
more accurate and intuitive description of real world 
concepts . 

Object-oriented analysis strives to understand and 
model application domains with object-oriented con- 
cepts from the point of view of users and domain ex- 
perts, without worrying about design and implemen- 
tation. Semantically rich languages can substantially 
ease the task of analysts. A realistic way to extend 
conceptual languages is to enrich them with high level 
domain-oriented patterns [Coa92]. Another advantage 
of high level patterns is that they can be reused by in- 
stantiation in related application domains. This paper 
presents and formally defines one such extension. 

Figure 1 introduces an example of materialization 
that we will expand later in the paper. It relates two 
classes, Car and Car-model, with attributes serial# 
and manuf-date, and name, sticker-price, and #doors, 
respectively. 

Figure 1: A first example of materialization. 

Car-model represents information typically dis- 
played in the catalog of car dealers, whereas Car rep- 
resents information about individual cars owned by 
people. An instance of class Car-model describes a 
specific model (e.g., with name = FiatJetro) and 
defines attributes common to all cars of that model. 

Materialization is a special relationship between two 
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classes, where one (here, Car-model) is more abstract 
than the other (here, Car). Following [GS94], we note 
materialization as a straight line with a star * on the 
side of the more concrete class. 

Defining materialization consists in precisely char- 
acterizing the properties of the relationship. Thus, 
materialization has a flavor of is-a generalization (we 
are interested in a class of cars and in its subclasses for 
specific models) and also a flavor of is-of classification 
(a specific car model, e.g., FiatRetro, can be mod- 
eled as an instance of a class of car models). But the 
desired semantics is not adequately captured by either 
of those abstraction mechanisms alone. 

Every concrete car (e.g., Bico’s car) has exactly one 
model (e.g., Fiat_Retro), while there can be any num- 
ber of cars of a given model. Thus materialization has 
cardinality (1,l) on the side of the more concrete class 
and cardinality (0,n) on the side of the more abstract 
class, Concrete cars somehow inherit some of the prop- 
erties of their model: we will thus have to characterize 
the inheritance properties of materialization. 

The rest of the paper is structured as follows. The 
basis of our data model is a fairly typical object- 
oriented model, that we briefly describe in Section 2, 
insisting on the most important assumptions. There 
we also introduce a partial order to model the relative 
abstractness/concreteness character of classes. Section 
3 presents a general classification pattern that com- 
bines an instance of both is-a and is-of relationships. 
Section 4 is the core of the paper with a nearly formal 
definition of materialization. We devote Section 5 to 
the more delicate question of inheritance mechanisms 
for materialization. New inheritance mechanisms are 
characterized, which require the basic semantic defini- 
tion to be extended. Section 6 presents further exam- 
ples, while Section 7 is devoted to combinations and 
extensions of materialization. Previous work on mate- 
rialization is discussed in Section 8, while Section 9 is 
a conclusion with suggestions for subsequent work. 

For lack of space, this paper contains no strictly 
formal definitions. However, Sections 4 and 5 give all 
the necessary ingredients for a formal definition, which 
is discussed in a companion paper [PZ94]. 

2 Our object model 

As a framework for our study of materialization, 
we assume a typical modern object model, with ob- 
ject classes, relationships, abstraction mechanisms 
(classification, generalization, aggregation) (see, e.g., 
[ABD+89, Dit93, KimSO, LAC+93, ZM90]). We 
also need a class/metaclass correspondence and we 
introduce a partial order to model the abstract- 
ness/concreteness dimension. 

Classification (is-of, instance-of, is-member-of). 
We are well aware that there is a whole range of 
possible variations for defining classification and the 
class/metaclass correspondence (see for example the 
careful discussion in [MPM92]). For clarity, we assume 
a simple version of object model, knowing that our 
discussion of materialization may have to be adapted, 
should another version be adopted. 

Classification associates a class with a set of ob- 
jects with the same properties. Thus, we assume for 
the moment that all instances of a class are isomor- 
phic or structurally equivalent. The class is the place 
where properties common to all objects of the class are 
defined. These properties can be classified into struc- 
tural (attributes) and behavioral (methods) depend- 
ing on whether they describe the structure of objects 
or their behavior. We relax structural equivalence in 
Section 5. 

Class/metaclass correspondence. Viewed as an 
object, a class is related to another class, its metaclass, 
by an is-of link. Metaclasses are explicitly supported 
by several semantic models (e.g., TAXIS [MBW80], 
SHM [BR84]), object models (e.g., VODAK [KAN93], 
ADAM [PD91], OSCAR [GH93]), knowledge represen- 
tation languages (e.g., LOOPS [BS83], KEE [FK85], 
Proteus [Rus89], Telos [MBJKSO, JJ91, JEG+94]) and 
programming languages (e.g. Smalltalk- [GR83], 
ObjVlisp [Coi87], CLOS [Kee89]). 

The common use of classification in database man- 
agement is for modeling the basic type/instance di- 
chotomy: classification is the relationship, essentially 
implicit as an abstraction mechanism, between the 
schema and the extension of the database. It is un- 
common to mix classes and instances in database con- 
ceptual modeling. But when the class/metaclass cor- 
respondence is made available as an abstraction mech- 
anism, then classification becomes explicit within the 
conceptual schema. 

A class and the associated object instance of its 
metaclass are conveniently modeled as a two-faceted 
construct [VanSO]. We will sometimes write Class(C) 
and Object(C), respectively, to specifically refer to 
each facet. Attributes of the metaclass instantiate as 
values for the object facet. It is convenient to consider 
that these attribute values transfer as attribute types 
of the class facet, with the provision that they are con- 
stant attributes, i.e., that their value is the same for 
all instances of the class facet. Consistently with the 
literature (see e.g., [MPM92]), we call them class at- 
tributes of the class facet. The other attributes of the 
class facet, that are instantiated for each instance of 
the class, are referred to as instance attributes. We 
generalize this mechanism in Section 5. The relation- 
ship between the class facet and the object facet is 
abstraction: all the attributes of the object are mean- 
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ingful for the class, whereas the instance attributes are 
specific to the class and its instances. 

Surprisingly little attention has been devoted so 
far to the semantics of such two-faceted constructs in 
database management. We will see that they are cen- 
tral to the semantics of materialization. 

Relationships are included in our model, as they 
are in most modern object-oriented models. An in- 
stance of a relationship corresponds to exactly one in- 
stance of each of the participating classes, and an ob- 
ject may participate in any number of instances of a 
relationship. A relationship can also be viewed as a 
class and thus have attributes of its own. A relation- 
ship class may participate in other abstractions, like 
generalization, or in another relationship. 

Generalizations (or inclusion, subset, is-a) are 
special relationships involving two (or more) classes. 
If X is-a Y, then the set of instances of X is included 
in the set of instances of Y. X is the subclass of the 
generalization and Y is the superclass. As usual, gen- 
eralization can be total or partial, and exclusive or 
overlapping. Generalization realizes the inheritance 
property: abstractions defined for the superclass are 
inherited by the subclasses. 

Aggregation (or part-whole, a-part-of) defines an 
aggregate (or composite) class in terms of constituent 
(or component) classes and can be viewed as a class of 
its own. 

Abstractness: we define the abstract/concrete as- 
pect of object classes as a relative property, rather than 
an absolute one as is usually done (see e.g., [GS94]). 
Specifically, the more or less abstract or concrete char- 
acter of object classes is described by a user-supplied 
partial order among classes. Thus, given two classes A 
and C, either A is more abstract than C, or C is more 
abstract than A, or nothing is said about the relative 
abstractness or concreteness of A and C. 

As usual when defining a conceptual language, we 
are only interested in the formal (or formalizable) se- 
mantics, i.e., the semantics that can be formally re- 
lated to the constructs of the basic object model, that 
we distinguish from the intuitive unformalized seman- 
tics of concepts in the outside world. The latter is 
sometimes referred to as the particular semantics of 
the application domain. The relationship between con- 
cepts in the conceptual schema and the corresponding 
particular semantics is sometimes called the denota- 
tion of the formal constructs in the application do- 
main. 

To summarize, two ingredients are new in this sec- 
tion: our use of the term two-faceted construct to refer 
to the composite construct made of an object and its 
associated class, and the introduction of a partial order 

to model the more or less abstract character of object 
classes. The discussion of inheritance, for which we 
propose new mechanisms, is postponed to Section 5. 
The rest of this section borrowed from fairly classical 
object models to characterize the basic framework that 
we use in the rest of the paper. 

Notations are important, as we deal with concepts 
that can play different roles. We denote classes as 
square boxes, instance objects as oval boxes, classi- 
fication links with grey lines, and is-a generalization 
links with solid black lines. To picture their double 
role, we draw a two-faceted construct as a square box 
adjacent to an oval box. Class names are written in 
italics with their first letter in upper-case, class at- 
tributes in lower-case italics, constants in typewriter 
font. In the figures, attribute types are not explicitly 
indicated, except when they exhibit an essential aspect 
of the semantics of materialization. 

3 A taxonomic pattern 

This section presents, by means of an example, a tax- 
onomic pattern that combines an instance of general- 
ization and of classification. This pattern illustrates 
the class/metaclass correspondence and the use of the 
associated two-faceted constructs in conceptual mod- 
eling. It prepares our definition of the semantics of 
materialization in the next section. 

Figure 2: A general classification pattern. 

The example models a situation where there is an 
interest in a class/subclass generalization and at the 
same time about the categories of objects in the sub- 
classes, along a meta dimension. Categories of objects 
are themselves objects about which useful information 
is described. 

Consider a class of land vehicles (Vehicle), which 
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generalize classes of trucks (%ck), buses (Bus), and 
cars (Cur). We are also interested in the classification 
itself of the types of vehicles that we model through a 
class of vehicle types ( Vtype). 

Figure 2 shows the corresponding conceptual 
schema, where two-faceted constructs emphasize that 
Truck, Bus, and Car are at the same time instances of 
the metaclass Vtype and subclasses ofthe class Vehi- 
cle. 

For example, Truck as a class defines attribute 
types, e.g., manuf or #axles for its instances. Such 
instance attributes do not concern Truck viewed as an 
instance of class Vtype. As an object, Truck possesses 
a value for the instance attributes of the metaclass 
Vtype (e.g., licence = class-l). Such class attributes 
are inherited by all the instances of class Duck. Sim- 
ilar taxonomies, sometimes with many classification 
levels, are commonplace, for example in the natural 
sciences (e.g., organisms in biology). 

Most often, in the database literature, the meta di- 
mension is treated as a step away from the applica- 
tion domain towards the software environment that 
describes or manipulates the application domain (see, 
e.g., [GH93, KAN93]). H ere, the classification abstrac- 
tion is used to model information that is useful in the 
application domain itself. The metalevel is merged 
with the socalled object level to define the language 
available for modeling the application domain. This 
merging of levels to produce a more powerful language 
is analog to what was called “reflection” in program- 
ming languages, namely the merging, into an extended 
language, of LISP or Prolog and their metalevels in- 
terpreters [BH88, MN88]. We will see that such a two- 
faceted description of something which is a single con- 
cept in the real world is the essence of materialization. 

4 Semantics of basic materialization 

This section presents the basic semantics of material- 
ization. It is generalised in Section 5 when new inher- 
itance mechanisms are defined. 

Informal definition 
Figure 3 sketches the semantic definition of the ex- 

ample in Figure 1. Its structure is similar to that of 
Figure 2. The essential difference is that the whole 
graph of Figure 2 is part of the conceptual schema, 
while, for materialization, of course only the two 
classes related by materialization appear in the con- 
ceptual schema. The two-faceted constructs make ex- 
plicit the semantics of materialization but they do not 
belong to the conceptual schema. For clarity, we en- 
close the semantic parts in a shaded box; only the 
unshaded parts appear in the conceptual schema. 

Figure 3 exhibits two instances of the more ab- 
stract class Car-model, with name FiatJtetro and 

WildZCV, respectively. They are the object facets 
of two-faceted constructs whose class facets are sub- 
classes of the more concrete class Car. Thus, for ex- 
ample, a two-faceted construct reconciles the views of 
FiatJletro as both an object of class Car-model and 
a class FiaLRetroXars of concrete cars of that model. 

We have already pointed out that the relation- 
ship between the class and the object aspects in a 
twofaceted construct is abstraction: there is less 
information in the Fiat_Retro object than in the 
Fiat-RetroXars class associated to it. Now, consid- 
ering the reverse “concretion” process, we see that the 
attribute information added to every Car-model object 
to produce a clsss is the same: it consists of instance 
attributes (serial# and manuf-date in the example), 
in the terminology of Section 2, that each class of cars 
of a particular model inherits from class Car through 
an is-a generalization. 

Figure 3: Semantics of the example in Figure 1. 

Thus, to summarize, the classes Fiat_RetroXars 
and WildX!V-Cars of the twofaceted constructs 
have as attributes: (1) the class attributes from the 
corresponding instance of the more abstract class 
Car-model, and (2) the instance attributes inherited 
from the more concrete class Car. 

Nearly formal definition 
We now summarize, in a precise way, the neces- 

sary elements for a formal definition of materialization, 
which is discussed in [PZ94]. 

Materialization is a binary relationship R between 
two classes A and C where A is more abstract than 
C and the cardinality of R is (1,l) on the C-side and 
(0,n) on the A-side. 

The semantics of the materialization of A into C 
is expressed as a composition of the class/metaclass 
correspondence, and the is-a generalization and is-of 
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classification abstractions, as sketched in Figure 4. 
The semantics ?s expressed with a collection of two- 

faceted constructs Ci. Following the notations of Sec- 
tion 2 for two-faceted constructs, for each Ci, class 
Class(Ci) is a subclass of C and Object(Ci) is an ob- 
ject instance of A. 

Thus, materialization induces a partition of the 
population of class C into subclasses Class(C=i) along 
an is-a dimension. This partitioning of class C is 
governed by the is-of classification link: there is a 
class Class(Ci) of the partition for each object instance 
Object(Ci) of class A. 

Figure 4: Semantics of materialization. 

As an instance of A, each object Object(Ci) has 
a value for each instance attribute of class A. These 
attribute values are transferred as class attributes to 
the associated Class(Ci), that is, as attributes with 
the same value for each instance of Class(Ci). The 
instance attributes of class(Ci) are inherited from C 
through the is-a generalization link. Thus they are 
the same for all Ci’s. There are no other attributes for 
ClasS(Cj). 

To summarize, the semantics of the materialization 
of a more abstract class into a more concrete class is a 
partition (i.e., a total and exclusive generalization) of 
the more concrete class governed by the instances of 
the more abstract class. 

5 Inheritance 

We agree in general with e.g. [Bra83, MPM92] that, 
beyond the common intuition, the fine interpretation 
of inheritance is far from unequivocal and that inher- 
itance is, in the first place, a convenient implementa- 
tion mechanism. Still, in all examples of materializa- 
tion, many attributes of the more abstract class are 
naturally applicable to the more concrete class and we 

find convenient to present the discussion in terms of 
inheritance mechanisms. 

Figure 5: Example of Figure 1 with more attributes. 

Figure 5 expands the example of Figure 1 by adding 
multivalued attributes eng-size, auto-sound and spe- 
cial-equip to class Car-model. Figure 5 also shows an 
instance of each class. The semantics of the example is 
sketched in Figure 6, which similarly expands Figure 
3, with two examples of two-faceted constructs. 

According to our definition of materialization, each 
instance of Car-model is the object facet of a two- 
faceted construct, whose class facet is a class of the 
partition of class Car governed by the correspond- 
ing instance of class Car-model. We distinguish three 
mechanisms for inheritance from the more abstract 
class to the more concrete one, that we describe as cor- 
respondences from an attribute value of the instance 
facet to a class attribute of the class facet of a two- 
faceted construct: 

l Type 1. The value of an attribute of the object 
facet is inherited as a class attribute of the class 
facet. An example is the monovalued attribute 
name. This mechanism also applies to multi- 
valued attributes. Thus a multivalued attribute 
standard-equipment of Car-model could list the 
standard equipment of each car model, that is ex- 
actly the equipment that comes with each physical 
car of the model. 

l Type 2. The value of a multivalued attribute 
of the object facet becomes the domain of an at- 
tribute, monovalued or multivalued, of the class 
facet. 
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An example of the monovalued case is ex- 
hibited by the multivalued attribute eng-size 
of Car-model. Its value {1200,1300} for the 
Fiat_Retro object facet means that physical cars 
of the FiatRetro model can come with eng-size 
= 1200 or with engsize = 1300. Thus the as- 
sociated class Fiat-retro-cars has a monovalued 
attribute eng-size with { 1200,1300} as its type. 

An example of the multivalued case is exhib- 
ited by the multivalued attribute auto-sound 
of Car-model. Its value {tape,radio} for 
the FiatJletro object facet means that phys- 
ical cars of the Fiat_Retro model can come 
with tape, or radio, or both, or nothing 
at all as auto-sound. Thus the associated 
class Fiairetro-cars has a multivalued attribute 
auto-sound with {tape,radio} ss its type. 

Figure 6: Semantics of the example in Figure 5. 

l Type 3. The value of a monovalued (resp., mul- 
tivalued) attribute of the object facet determines 
one (resp., several) new attributes of the class 
facet. 

An example of the multivalued case is exhib- 
ited by the multivalued attribute special-equip of 
Car-model. Its value {Airbag, Alann, Cruise} for 
the FiatJletro object facet means that phys- 
ical cars of the Fiat_Retro model come with 
three pieces of special equipment: an Airbag, an 
Alarm, and a Cruise-ctrl. In addition, for each 
piece of equipement, various models are avail- 
able. Thus the associated class Fiat-retro-cars has 
three monovalued attributes airbag, alarm, and 
cruise-ctrl, whose value is the make of the corre- 
sponding piece of equipment. 

Another example of type 3 inheritance is devel- 

oped in Section 7.1. 

With the type 3 mechanism, the class facets 
are no longer structurally equivalent, While class 
Fiat-retro-cars has attributes airbag, alarm, and 
cruise-ctrl, class Wild-%X-cars has alarm and 
pwrsteer as corresponding attributes. 

In many examples of materialization, it seems that 
inheritance from the more abstract class to the more 
concrete class could be strict, with the appropriate 
particular semantics. For example, each Car object 
somehow carries or refers to, albeit sometimes indi- 
rectly, the properties of the Car-model object that it 
materializes. 

As an example of less plausible inheritance, consider 
first-year-manuf and total#-sold as new attributes for 
class Car-model, with obvious particular semantics, 
At first glance, it does not seem that they should be 
treated as attributes of Car objects. The latter could 
also be defined as a derived attribute and its value for 
a particular Car-model be computed from the materi- 
alized Car objects of the associated Car-model. But it 
is also conceivable that both attributes be inherited by 
Car objects, and treated as, arguably remote, proper- 
ties of individual cars (with the meaning of first pro- 
duction date for the model of a car and total number 
of cars sold for the model of that car). 

Our feeling about the strictness of inheritance is 
that aa much flexibility as possible should be left to 
the analysts modeling an application domain and that 
they should have the option of defining non-strict data 
attributes if that fits their perception of the domain. 

On the contrary, we have found no example of meth- 
ods that we would like the more concrete class of a ma- 
terialization to inherit from the more abstract class. 

Class Car-model could have, for example, an 
add-eng-size method that makes available a new value 
of eng-size, a type 2 attribute, for cars of a particu- 
lar model. Applied to the FiaLRetro object of class 
Car-model, the operation should change the definition 
of class Fiat-retro-cars so that the new type of its 
eng-size attribute include the new engine size. Thus 
the eng-size class attribute that class Car inherits in 
the materialization has changed its type in the opera- 
tion. 

Operations on type 3 attributes of the more abstract 
class cause still more drastic changes to the attribute 
structure of the more concrete class. Thus, with type 2 
and type 3 inheritance mechanisms, appealing as they 
look, not only do we have to give up the the struc- 
tural equivalence for instances of the more concrete 
class, but we also open the door to a highly dynamic 
conceptual schema. 
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6 More examples of materialization 

Materialization provides a new degree of freedom for 
the analyst building conceptual schemas modeling a 
part of the real world. 

For a class C to materialize a class A, C must be 
more concrete than A in the partial order that ex- 
presses abstractness, and the cardinalities of the rela- 
tionship between A and C must be (1,l) on the side 
of C and (On) on the side of A. Note that the (0,n) 
cardinality could be made stricter by the real world 
semantics being modeled. 

Once materialization is made available in the 
schema, examples are ubiquitous. The following gives 
only a short list: 

l Consider the modeling of air traveling. It could 
involve a concept of itinerary (from an origin to 
a destination, with a distance, etc.), materialized 
as a class of flights (for an airline, with a price, 
days of the week, period of the year, etc.), itself 
materialized as a class of flights for specific calen- 
dar days (with a date, an aircraft, a crew, etc.). 
Another analysis of the concept of trip is shown 
in Figure 9 (b). This example if typical of the fre- 
quent lack of specific words in natural languages 
to refer precisely to the various levels of materi- 
alized concepts. Often, the same word is used at 
various levels and ambiguity is avoided by various 
clues in the linguistic or pragmatic context of the 
communication. 

l News items are materialized as articles for a par- 
ticular edition of a newspaper, which in turn ma- 
terialize as physical copies of the newspaper. 

l Similarly, stories materialize as book titles, which 
materialize as book copies. Stories can also ma- 
terialize as theater plays, which themselves ma- 
terialize as performances. A refinement of that 
example is discussed in Section 7.1. Movies are 
another materialization of stories, and they can 
in turn materialize as videotapes. 

l In our car example, the Car-model class can ma 
terialize as catalogs for car dealers and as videos 
presenting the models. 

Section 7.1 shows that materialization is transitive, 
which suggests other instances of materialization from 
existing instances. 

Conversely, we have found no examples where we 
could rule out materialization between two classes that 
satisfy the partial order. Specific choices of particular 
semantics always enable to discover scenarios in the 

application domain in which materialization is mean- 
ingful when the partial order is satisfied. Thus it ap- 
pears that a necessary and sufficient condition for ma- 
terialization to be possible between two classes is that 
they satisfy the partial order for abstractness. We do 
not rule out tightening this condition through a finer 
analysis, by detecting pieces of particular semantics 
that are sufficiently general to be transformed into for- 
malizable semantics (like we did with the partial order 
that models abstractness/concreteness). 

7 Extensions 

Thus far, we have discussed materialization as a rela- 
tionship between two classes. This section extends ma- 
terialization in several directions: first, the composi- 
tion of materializations in cascade illustrates the tran- 
sitivity of materialization; then materialization is ex- 
tended to relationships, aggregation, and constraints. 
Only the general ideas are given here by means of ex- 
amples. Elaboration will be presented in forthcoming 
papers. 

7.1 Composition of materializations 

This section considers, by means of an example, cas- 
cades of materializations, where the more concrete 
class of a materialization is also the more abstract class 
of another materialization, and so on. 

The example, shown in Figure 7, deals with theatre 
Plays written by an author, with a title and a set of 
main roles. An instance of Play, say, M6nage-Ltrois 
by VictorHugo, has three main roles that are repre- 
sented as a value husband, uif e , lover of the multi- 
valued attribute role. 

Plays materialize as Settings, that embody the pro- 
duction decisions for a theatrical season: a troupe, a 
director, a set of actors for each role of each play at the 
repertoire for that season. The semantics of material- 
ization partitions Setting in as many classes as there 
are instances of Play. 

The multivalued roles attribute of Play is another 
example of type 3 inheritance. Thus the class facet 
of the two-faceted construct of HBnageLtrois has 
three multivalued attributes, husband, wife, and lover, 
corresponding to its main roles. An instance of Set- 
ting-ofiV&age-dlrois decides for example that Delon 
and Sharif will be available as husband during the 
Fall-1993 season. 

Settings materialize as Performances, at a particu- 
lar date, such that each role of Play is assigned to a spe- 
cific actor for each Performance. Thus, Performance 
is partitioned in as many classes as there are instances 
of Setting. In an instance of Performance, for exam- 
ple, on 12122193 at the PZUC theatre, the husband was 
Delon. 
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Figure 7a shows both materializations and sketches 
their semantics, by displaying one two-faceted con- 
struct for each one. Figure 7b an instance of each 
of the three classes involved, will all their attribute 
values. 

Figure 7: Composition of materializations. 

This example shows that cascading materializations 
permits a fine analysis of the application domain. In 
the class Setting-of-Mknage-d-trois, the three new at- 
tributes correspond to the value of the roles attribute 
in the associated instance of Play. In the class Per- 
formance-of-M&age-ci-trois, the domain of attribute 
husband (and, similarly, wife and lover) denotes the 
set of actors available for playing the husband role in a 
particular theatrical season, represented as an instance 
of Setting-of-M&age-Ltrois. 

Transitivity of materialization is a trivial property 
at the type level. If C materializes B and B material- 
izes A, then C can also materialize A, since A is more 
abstract than C by transitivity of the partial order. 
But transitivity at the instance level does not neces- 
sarily hold: its presence or absence depends on the 
particular semantics of the application domain. For 
example, stories can materialize as theatre plays (e.g., 

the Antigone story written by Sophocles materializes 
as the play written by Anouilh), which can in turn 
materialize as physical books. Stories also materialize 
as books, but the book of Anouilh’s play is different 
from that of Sophocles’ story. 

Even when transitivity of materialization holds at 
the instance level, its semantics is not a simple combi- 
nation of the intermediate materializations. In our ex- 
ample above, Hay can directly materialize as Perfor- 
mance without the intervening Setting and things can 
be such that transitivity holds at the instance level. 
The modeling is coarser and, not surprisingly, infor- 
mation is lost in the shortcut: it is no longer possible 
to model that a set of actors are available for the same 
role during a particular season. The mechanics of these 
combinations is further investigated in [PZ94]. 

7.2 Materialization of relationships 

A relationship can be seen as an object (sometimes 
called associative object) with its own properties (see, 
e.g., [RBP+Sl]). Th ere ore, f a relationship can partic- 
ipate as an object class in other abstractions, for ex- 
ample materialization. Figure 8 shows a relationship 
Course associating object classes Teacher and Subject, 
and a materialization Course-Offer of Course, with ob- 
vious meanings. The attributes of Course are mono- 
valued and are inherited by Course-Offer through a 
type-l mechanism (see Section 5). 

Figure 8: Materialization of relationships. 

7.3 Materialization of aggregation 

Consider now materialization of aggregation, as de- 
fined in, e.g., [MP93]. When an object in an aggrega- 
tion hierarchy materializes into a more concrete object, 
the aggregation hierarchy also materializes into a more 
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concrete hierarchy with the same structure as that of 
the abstract hierarchy. A similar behavior is called 
homomorphism in [RBP+Sl]. 

As an example, Figure 9(a), inspired from 
[RBP+Sl], models a catalog for car parts, where a 
catalog part may contain other catalog parts. Each 
catalog part is identified by a part number, while each 
manufactured part has its own serial number. Like the 
catalog parts, the physical parts are composed of sub- 
parts. The part explosion tree has the same form for 
both the catalog parts and the physical parts. 

(a) 

TOP Segment 

dy-city A N-city 

arr_city at-city 
fare fare 
tlip# .segment # 

Figure 9: Materialization of composition hierarchies. 

Figure 9(b), inspired from [BCN92], analyzes a 
concept of trip. A trip is composed of several seg- 
ments. Trips and segments describe the fare informa- 
tion. Trips and segments materialize, respectively, as 
daily trips and daily segments, that contain the sched- 
ule information. The composition hierarchy of a trip in 
segments is materialized as a hierarchy with the same 
structure for the associated daily trips. 

7.4 Incomplete information and materializa- 
tion of constraints 

The following example is from [Bee93]. A travel agent 
sells travel plans featuring many choices and options 
about flights, hotels, side trips, and so on. Eventu- 
ally, travel agent and customer agree on a specific plan, 
with no option left open. In the meantime, travel plans 
exist in an incomplete state, where some choices have 
been made, others are still open, still others are tenta- 
tive (e.g., awaiting confirmation). Also, some choices 

may have to be undone, because requests can be de- 
nied and because customers change their mind. 

We describe plans at various stages with a generic 
class Generic-plan that materializes for example as 
Aegean-cruise or Across-USA-tour, which in turn ma- 
terialize as several classes of Customer-trip, where all 
choices have been made. Restrictions and constraints 
may apply to Generic-plan and to the more concrete 
plans, and they have to be satisfied by the corre- 
sponding Customer-trip. Thus, materialization of con- 
straints parallels the role of constraints in traditional 
databases: they are formulated in the database schema 
and they must be satisfied by the database instance. 
Here, they appear as constraints in the more abstract 
classes and, having fulfilled their role as constraints, 
they disappear as such in the more concrete classes, 
whose instances satisfy the constraints and for which 
the constraints themselves have become in a sense ir- 
relevant. 

A similar materialization of constraints is typical of 
engineering application domains like manufacturing, 
design, planning, or scheduling. Guidelines and com- 
pany procedures appear as explicit constraints that the 
end products must satisfy. Such procedural rules may 
take the form of templates for design, with, for ex- 
ample, a hierarchical part/subpart structure in which 
subparts still to be chosen can be prescribed to be 
mandatory or optional, single or multiple, etc. Such 
templates can be represented as AND/OR trees, where 
OR-nodes represent choices still to be made in the de- 
sign process. The designer retrieves a template for the 
part to be designed and records design decisions ac- 
cording to the prescriptions and rules of the template. 
Designs have to coexist at various stages of completion 
in the design database. 

Templates can be represented as one or several more 
abstract classes, possibly with more concrete material- 
ized templates where some design decisions have been 
made. Completed designs are modeled as one or sev- 
eral more concrete classes. Several levels data manip- 
ulation must be supported. For example, “do equip- 
ments A and B always have a part in common?” is a 
query at a more abstract level than “if we choose part 
#333 as a subpart of part A, do all possible designs 
cost more than $100 ?“, which is at the design level. 

Several questions are raised by this kind of appli- 
cations. Some were studied in [INVSla, INVSlb], but 
no differentiation is made there between abstract and 
concrete classes. Another problem is that the aggre- 
gation abstraction (as studied, e.g., in [MP93]) is not 
powerful enough to represent a family of alternative 
part/subpart hierarchies. At the more concrete de- 
sign level, the main problem is to cope with incom- 
plete information, for which satisfactory solutions are 
still lacking [ZP92]. In particular, very little work 
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has been done on representing and manipulating in- 
complete information in object-oriented models and 
databases. A related area is the work on versioning in 
object-oriented database systems [CJ92, MJC93]. 

8 Related work 

Materialization has been intuitively perceived, with 
different names, by several authors but no precise 
semantics was defined. Coad [Coa92] presents sev- 
eral patterns frequently occurring in the real world; 
the pattern closest to materialization is called “item- 
description pattern”. Rumbaugh et al. [RBP+Sl] de- 
scribe two constructs similar to materialization, which 
they refer to aa metadata and homomorphisms. 

Goldstein and Storey [GS94] introduced the term 
materialization and characterized it informally. Most 
of their informal discussion automatically follows from 
our precise definition. They claim that their material- 
ization cannot be defined by a combination of existing 
abstractions. We have shown in this paper that the 
semantics of our materialization can be captured with 
the class/metaclass correspondence, and the classifica- 
tion and generalization abstractions. 

9 Summary and further work 

This paper has presented materialization as a useful 
abstraction pattern for conceptual schemas to relate 
a class of concepts to another class of more concrete 
concepts. Specifically, we have given a quasi-formal 
definition of materialization as a combination of is-a 
generalization, is-of classification, and class/metaclass 
correspondence; we have characterized several mecha- 
nisms of attribute inheritance through materialization; 
we have exhibited examples that demonstrate that ma- 
terialization is frequently encountered in practice; we 
have shown the combination of several materializations 
and extensions of materialization to relationships, ag- 
gregation, and constraints. 

Materialization could also be defined as it is im- 
plemented, namely as an ordinary binary relationship, 
suitably supplemented with integrity constraints that 
force the desired behavior. But it is precisely this em- 
bedding of constraints into a more powerful modeling 
operation that represents progress in conceptual mod- 
eling, by enabling the construction of more adequate 
conceptual models and easing the work of the human 
modeler. In other words, high-level abstraction pat- 
terns like materialization replace explicit constraints, 
that would be needed to enforce the same behavior 
if the abstraction pattern was not available. Instead, 
the constraints have become structural (or inherent, 
implicit), they are built in the pattern and automati- 
cally brought to bear when the modeling construct is 
invoked during conceptual modeling. 

We are implementing materialization in an expert 
system CASE tool for investigating current object- 
oriented analysis and design methodologies (e.g., 
[RBP+Sl, Boo94, CAB+94]). We have implemented 
the management of materialization at the conceptual 
level. We have identified several kinds of constraints, 
e.g., for controlling inheritance, for ensuring the se- 
mantic correctness of several related materializations 
or a materialization combined with other abstractions 
(in the spirit of [FM941 for is-a hierarchies). We have 
studied interesting high-level optimizations in the im- 
plementation of several materializations of the same 
class into different more concrete classes. We also de- 
fined operational procedures for high-level updating 
(for example, when the more abstract class of a ma- 
terialization is deleted, its attributes can selectively 
migrate to the concrete class). 

Another area of research is to study how the seman- 
tics of materialization can be implemented into less 
expressive contexts, like object oriented programming 
languages coupled with classical relational databases. 

The present work suggests many continuations. We 
are studying formalizations of materialization with 
knowledge representation languages, particularly Telos 
and 0-Telos[MBJKSO, JJ91, JEG+94]. We want to ex- 
plore more thoroughly the inheritance mechanisms as- 
sociated with materialization and extensions that lead 
to dynamic schemas. We also wish to study the rela- 
tionships between materialization and versioning. We 
considered relaxing the (1,l) cardinalilty on the side 
of the more concrete class of materialization. For ex- 
ample, we would like to describe the materialization 
of several movies on the same videotape, or, similarly, 
of several journal issues bound in the same physical 
volume. This opens the door to multiple inheritance 
and probably requires a more powerful aggregation ab- 
straction than the one commonly studied. 

Materialization breaks the traditional database sep- 
aration of concerns between the generic and the indi- 
vidual. This paper has shown that a controled intro- 
duction of classification at the application level sub- 
stantially enhances expressiveness in the conceptual 
schema. There is an endless collection of materializa- 
tions to be found in most application domains. 

Materialization systematically invokes the classifi- 
cation abstraction for application domain modeling, 
whereas such a me&dimension is more often invoked 
as a step away from domain modeling in the litera- 
ture on database conceptual modeling. This is less 
true for knowledge representation, where the tradi- 
tional database distinction between schema and in- 
stances does not hold. Materialization thus follows 
the current trend in bringing knowledge representa- 
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tion and database conceptual modeling closer to one 
another. 

For future database management systems, opening 
the door (albeit cautiously) to classification in the con- 
ceptual schema suggests a revision of the role of the 
central multifunction schema of traditional databases, 
as both the support of a conceptual model for users, 
and a guide and control for the operation of the 
database system. The latter function may well lose 
some its importance in the future and progressively 
give way to a layered and distributed dynamic schema. 
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