
Materialization: a powerful and ubiquitous abstraction
pattern

Alain Pirotte, * Esteban Zimanyi, David Massart, t Tatiana Yakusheva $

Abstract

Materialization is a useful abstraction pattern
that can be identified in many application set-
tings. Intuitively, materialization is the re-
lationship between a class of categories (e.g.,
models of cars) and a class of more concrete
objects (e.g., individual cars). This paper
gives a quasi-formal semantic definition of ma-
terialization in terms of the usual is-a and is-
of abstractions, and of a class/metaclass cor-
respondence. New and powerful inheritance
mechanisms are associated with materializa-
tion. Examples, properties, and extensions of
materialization are also presented. Providing
materialization as an abstraction mechanism
for conceptual modeling enhances expressive-
ness by a controled introduction of classifica-
tion at the application level.

Keywords: conceptual modeling, object oriented
model, classification.

1 Introduction

Conceptual modeling is the activity of formalizing
some aspects of the physical and social world around

“University of Louvain, IAG, 1 place des Doyens, 1348
Louvain-la-Neuve, Belgium, e-mail: pirotte@info.ucl.ac.be

tuniversity of Brussels, 50 Av. F. Roosevelt, C.P. 197,105O
Brussels, Belgium, e-mail: {ezi-yi,dmassart}@ulb.ac.be

iuniversity of Louvain, IAG, 1 place des Doyens, 1348
Louvain-la-Neuve, Belgium, e-mail: yakushevaQqant.ucl.ac.be.
T. Yakusheva is supported by the FDS program (Fonds de
Dkweloppement Scientifique) at the University of Louvain.

Permission to copy without fee all or part of thia material is

granted provided that the copies ase not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLPB Conference
Santiago, Chile, 1994

us for purposes of understanding and communica-
tion. Advances in conceptual modeling involve nar-
rowing the gap between concepts in the real world and
their representation in conceptual models by identi-
fying new powerful modeling primitives that allow a
more accurate and intuitive description of real world
concepts .

Object-oriented analysis strives to understand and
model application domains with object-oriented con-
cepts from the point of view of users and domain ex-
perts, without worrying about design and implemen-
tation. Semantically rich languages can substantially
ease the task of analysts. A realistic way to extend
conceptual languages is to enrich them with high level
domain-oriented patterns [Coa92]. Another advantage
of high level patterns is that they can be reused by in-
stantiation in related application domains. This paper
presents and formally defines one such extension.

Figure 1 introduces an example of materialization
that we will expand later in the paper. It relates two
classes, Car and Car-model, with attributes serial#
and manuf-date, and name, sticker-price, and #doors,
respectively.

Figure 1: A first example of materialization.

Car-model represents information typically dis-
played in the catalog of car dealers, whereas Car rep-
resents information about individual cars owned by
people. An instance of class Car-model describes a
specific model (e.g., with name = FiatJetro) and
defines attributes common to all cars of that model.

Materialization is a special relationship between two

630

classes, where one (here, Car-model) is more abstract
than the other (here, Car). Following [GS94], we note
materialization as a straight line with a star * on the
side of the more concrete class.

Defining materialization consists in precisely char-
acterizing the properties of the relationship. Thus,
materialization has a flavor of is-a generalization (we
are interested in a class of cars and in its subclasses for
specific models) and also a flavor of is-of classification
(a specific car model, e.g., FiatRetro, can be mod-
eled as an instance of a class of car models). But the
desired semantics is not adequately captured by either
of those abstraction mechanisms alone.

Every concrete car (e.g., Bico’s car) has exactly one
model (e.g., Fiat_Retro), while there can be any num-
ber of cars of a given model. Thus materialization has
cardinality (1,l) on the side of the more concrete class
and cardinality (0,n) on the side of the more abstract
class, Concrete cars somehow inherit some of the prop-
erties of their model: we will thus have to characterize
the inheritance properties of materialization.

The rest of the paper is structured as follows. The
basis of our data model is a fairly typical object-
oriented model, that we briefly describe in Section 2,
insisting on the most important assumptions. There
we also introduce a partial order to model the relative
abstractness/concreteness character of classes. Section
3 presents a general classification pattern that com-
bines an instance of both is-a and is-of relationships.
Section 4 is the core of the paper with a nearly formal
definition of materialization. We devote Section 5 to
the more delicate question of inheritance mechanisms
for materialization. New inheritance mechanisms are
characterized, which require the basic semantic defini-
tion to be extended. Section 6 presents further exam-
ples, while Section 7 is devoted to combinations and
extensions of materialization. Previous work on mate-
rialization is discussed in Section 8, while Section 9 is
a conclusion with suggestions for subsequent work.

For lack of space, this paper contains no strictly
formal definitions. However, Sections 4 and 5 give all
the necessary ingredients for a formal definition, which
is discussed in a companion paper [PZ94].

2 Our object model

As a framework for our study of materialization,
we assume a typical modern object model, with ob-
ject classes, relationships, abstraction mechanisms
(classification, generalization, aggregation) (see, e.g.,
[ABD+89, Dit93, KimSO, LAC+93, ZM90]). We
also need a class/metaclass correspondence and we
introduce a partial order to model the abstract-
ness/concreteness dimension.

Classification (is-of, instance-of, is-member-of).
We are well aware that there is a whole range of
possible variations for defining classification and the
class/metaclass correspondence (see for example the
careful discussion in [MPM92]). For clarity, we assume
a simple version of object model, knowing that our
discussion of materialization may have to be adapted,
should another version be adopted.

Classification associates a class with a set of ob-
jects with the same properties. Thus, we assume for
the moment that all instances of a class are isomor-
phic or structurally equivalent. The class is the place
where properties common to all objects of the class are
defined. These properties can be classified into struc-
tural (attributes) and behavioral (methods) depend-
ing on whether they describe the structure of objects
or their behavior. We relax structural equivalence in
Section 5.

Class/metaclass correspondence. Viewed as an
object, a class is related to another class, its metaclass,
by an is-of link. Metaclasses are explicitly supported
by several semantic models (e.g., TAXIS [MBW80],
SHM [BR84]), object models (e.g., VODAK [KAN93],
ADAM [PD91], OSCAR [GH93]), knowledge represen-
tation languages (e.g., LOOPS [BS83], KEE [FK85],
Proteus [Rus89], Telos [MBJKSO, JJ91, JEG+94]) and
programming languages (e.g. Smalltalk- [GR83],
ObjVlisp [Coi87], CLOS [Kee89]).

The common use of classification in database man-
agement is for modeling the basic type/instance di-
chotomy: classification is the relationship, essentially
implicit as an abstraction mechanism, between the
schema and the extension of the database. It is un-
common to mix classes and instances in database con-
ceptual modeling. But when the class/metaclass cor-
respondence is made available as an abstraction mech-
anism, then classification becomes explicit within the
conceptual schema.

A class and the associated object instance of its
metaclass are conveniently modeled as a two-faceted
construct [VanSO]. We will sometimes write Class(C)
and Object(C), respectively, to specifically refer to
each facet. Attributes of the metaclass instantiate as
values for the object facet. It is convenient to consider
that these attribute values transfer as attribute types
of the class facet, with the provision that they are con-
stant attributes, i.e., that their value is the same for
all instances of the class facet. Consistently with the
literature (see e.g., [MPM92]), we call them class at-
tributes of the class facet. The other attributes of the
class facet, that are instantiated for each instance of
the class, are referred to as instance attributes. We
generalize this mechanism in Section 5. The relation-
ship between the class facet and the object facet is
abstraction: all the attributes of the object are mean-

631

ingful for the class, whereas the instance attributes are
specific to the class and its instances.

Surprisingly little attention has been devoted so
far to the semantics of such two-faceted constructs in
database management. We will see that they are cen-
tral to the semantics of materialization.

Relationships are included in our model, as they
are in most modern object-oriented models. An in-
stance of a relationship corresponds to exactly one in-
stance of each of the participating classes, and an ob-
ject may participate in any number of instances of a
relationship. A relationship can also be viewed as a
class and thus have attributes of its own. A relation-
ship class may participate in other abstractions, like
generalization, or in another relationship.

Generalizations (or inclusion, subset, is-a) are
special relationships involving two (or more) classes.
If X is-a Y, then the set of instances of X is included
in the set of instances of Y. X is the subclass of the
generalization and Y is the superclass. As usual, gen-
eralization can be total or partial, and exclusive or
overlapping. Generalization realizes the inheritance
property: abstractions defined for the superclass are
inherited by the subclasses.

Aggregation (or part-whole, a-part-of) defines an
aggregate (or composite) class in terms of constituent
(or component) classes and can be viewed as a class of
its own.

Abstractness: we define the abstract/concrete as-
pect of object classes as a relative property, rather than
an absolute one as is usually done (see e.g., [GS94]).
Specifically, the more or less abstract or concrete char-
acter of object classes is described by a user-supplied
partial order among classes. Thus, given two classes A
and C, either A is more abstract than C, or C is more
abstract than A, or nothing is said about the relative
abstractness or concreteness of A and C.

As usual when defining a conceptual language, we
are only interested in the formal (or formalizable) se-
mantics, i.e., the semantics that can be formally re-
lated to the constructs of the basic object model, that
we distinguish from the intuitive unformalized seman-
tics of concepts in the outside world. The latter is
sometimes referred to as the particular semantics of
the application domain. The relationship between con-
cepts in the conceptual schema and the corresponding
particular semantics is sometimes called the denota-
tion of the formal constructs in the application do-
main.

To summarize, two ingredients are new in this sec-
tion: our use of the term two-faceted construct to refer
to the composite construct made of an object and its
associated class, and the introduction of a partial order

to model the more or less abstract character of object
classes. The discussion of inheritance, for which we
propose new mechanisms, is postponed to Section 5.
The rest of this section borrowed from fairly classical
object models to characterize the basic framework that
we use in the rest of the paper.

Notations are important, as we deal with concepts
that can play different roles. We denote classes as
square boxes, instance objects as oval boxes, classi-
fication links with grey lines, and is-a generalization
links with solid black lines. To picture their double
role, we draw a two-faceted construct as a square box
adjacent to an oval box. Class names are written in
italics with their first letter in upper-case, class at-
tributes in lower-case italics, constants in typewriter
font. In the figures, attribute types are not explicitly
indicated, except when they exhibit an essential aspect
of the semantics of materialization.

3 A taxonomic pattern

This section presents, by means of an example, a tax-
onomic pattern that combines an instance of general-
ization and of classification. This pattern illustrates
the class/metaclass correspondence and the use of the
associated two-faceted constructs in conceptual mod-
eling. It prepares our definition of the semantics of
materialization in the next section.

Figure 2: A general classification pattern.

The example models a situation where there is an
interest in a class/subclass generalization and at the
same time about the categories of objects in the sub-
classes, along a meta dimension. Categories of objects
are themselves objects about which useful information
is described.

Consider a class of land vehicles (Vehicle), which

632

generalize classes of trucks (%ck), buses (Bus), and
cars (Cur). We are also interested in the classification
itself of the types of vehicles that we model through a
class of vehicle types (Vtype).

Figure 2 shows the corresponding conceptual
schema, where two-faceted constructs emphasize that
Truck, Bus, and Car are at the same time instances of
the metaclass Vtype and subclasses ofthe class Vehi-
cle.

For example, Truck as a class defines attribute
types, e.g., manuf or #axles for its instances. Such
instance attributes do not concern Truck viewed as an
instance of class Vtype. As an object, Truck possesses
a value for the instance attributes of the metaclass
Vtype (e.g., licence = class-l). Such class attributes
are inherited by all the instances of class Duck. Sim-
ilar taxonomies, sometimes with many classification
levels, are commonplace, for example in the natural
sciences (e.g., organisms in biology).

Most often, in the database literature, the meta di-
mension is treated as a step away from the applica-
tion domain towards the software environment that
describes or manipulates the application domain (see,
e.g., [GH93, KAN93]). H ere, the classification abstrac-
tion is used to model information that is useful in the
application domain itself. The metalevel is merged
with the socalled object level to define the language
available for modeling the application domain. This
merging of levels to produce a more powerful language
is analog to what was called “reflection” in program-
ming languages, namely the merging, into an extended
language, of LISP or Prolog and their metalevels in-
terpreters [BH88, MN88]. We will see that such a two-
faceted description of something which is a single con-
cept in the real world is the essence of materialization.

4 Semantics of basic materialization

This section presents the basic semantics of material-
ization. It is generalised in Section 5 when new inher-
itance mechanisms are defined.

Informal definition
Figure 3 sketches the semantic definition of the ex-

ample in Figure 1. Its structure is similar to that of
Figure 2. The essential difference is that the whole
graph of Figure 2 is part of the conceptual schema,
while, for materialization, of course only the two
classes related by materialization appear in the con-
ceptual schema. The two-faceted constructs make ex-
plicit the semantics of materialization but they do not
belong to the conceptual schema. For clarity, we en-
close the semantic parts in a shaded box; only the
unshaded parts appear in the conceptual schema.

Figure 3 exhibits two instances of the more ab-
stract class Car-model, with name FiatJtetro and

WildZCV, respectively. They are the object facets
of two-faceted constructs whose class facets are sub-
classes of the more concrete class Car. Thus, for ex-
ample, a two-faceted construct reconciles the views of
FiatJletro as both an object of class Car-model and
a class FiaLRetroXars of concrete cars of that model.

We have already pointed out that the relation-
ship between the class and the object aspects in a
twofaceted construct is abstraction: there is less
information in the Fiat_Retro object than in the
Fiat-RetroXars class associated to it. Now, consid-
ering the reverse “concretion” process, we see that the
attribute information added to every Car-model object
to produce a clsss is the same: it consists of instance
attributes (serial# and manuf-date in the example),
in the terminology of Section 2, that each class of cars
of a particular model inherits from class Car through
an is-a generalization.

Figure 3: Semantics of the example in Figure 1.

Thus, to summarize, the classes Fiat_RetroXars
and WildX!V-Cars of the twofaceted constructs
have as attributes: (1) the class attributes from the
corresponding instance of the more abstract class
Car-model, and (2) the instance attributes inherited
from the more concrete class Car.

Nearly formal definition
We now summarize, in a precise way, the neces-

sary elements for a formal definition of materialization,
which is discussed in [PZ94].

Materialization is a binary relationship R between
two classes A and C where A is more abstract than
C and the cardinality of R is (1,l) on the C-side and
(0,n) on the A-side.

The semantics of the materialization of A into C
is expressed as a composition of the class/metaclass
correspondence, and the is-a generalization and is-of

633

classification abstractions, as sketched in Figure 4.
The semantics ?s expressed with a collection of two-

faceted constructs Ci. Following the notations of Sec-
tion 2 for two-faceted constructs, for each Ci, class
Class(Ci) is a subclass of C and Object(Ci) is an ob-
ject instance of A.

Thus, materialization induces a partition of the
population of class C into subclasses Class(C=i) along
an is-a dimension. This partitioning of class C is
governed by the is-of classification link: there is a
class Class(Ci) of the partition for each object instance
Object(Ci) of class A.

Figure 4: Semantics of materialization.

As an instance of A, each object Object(Ci) has
a value for each instance attribute of class A. These
attribute values are transferred as class attributes to
the associated Class(Ci), that is, as attributes with
the same value for each instance of Class(Ci). The
instance attributes of class(Ci) are inherited from C
through the is-a generalization link. Thus they are
the same for all Ci’s. There are no other attributes for
ClasS(Cj).

To summarize, the semantics of the materialization
of a more abstract class into a more concrete class is a
partition (i.e., a total and exclusive generalization) of
the more concrete class governed by the instances of
the more abstract class.

5 Inheritance

We agree in general with e.g. [Bra83, MPM92] that,
beyond the common intuition, the fine interpretation
of inheritance is far from unequivocal and that inher-
itance is, in the first place, a convenient implementa-
tion mechanism. Still, in all examples of materializa-
tion, many attributes of the more abstract class are
naturally applicable to the more concrete class and we

find convenient to present the discussion in terms of
inheritance mechanisms.

Figure 5: Example of Figure 1 with more attributes.

Figure 5 expands the example of Figure 1 by adding
multivalued attributes eng-size, auto-sound and spe-
cial-equip to class Car-model. Figure 5 also shows an
instance of each class. The semantics of the example is
sketched in Figure 6, which similarly expands Figure
3, with two examples of two-faceted constructs.

According to our definition of materialization, each
instance of Car-model is the object facet of a two-
faceted construct, whose class facet is a class of the
partition of class Car governed by the correspond-
ing instance of class Car-model. We distinguish three
mechanisms for inheritance from the more abstract
class to the more concrete one, that we describe as cor-
respondences from an attribute value of the instance
facet to a class attribute of the class facet of a two-
faceted construct:

l Type 1. The value of an attribute of the object
facet is inherited as a class attribute of the class
facet. An example is the monovalued attribute
name. This mechanism also applies to multi-
valued attributes. Thus a multivalued attribute
standard-equipment of Car-model could list the
standard equipment of each car model, that is ex-
actly the equipment that comes with each physical
car of the model.

l Type 2. The value of a multivalued attribute
of the object facet becomes the domain of an at-
tribute, monovalued or multivalued, of the class
facet.

634

An example of the monovalued case is ex-
hibited by the multivalued attribute eng-size
of Car-model. Its value {1200,1300} for the
Fiat_Retro object facet means that physical cars
of the FiatRetro model can come with eng-size
= 1200 or with engsize = 1300. Thus the as-
sociated class Fiat-retro-cars has a monovalued
attribute eng-size with { 1200,1300} as its type.

An example of the multivalued case is exhib-
ited by the multivalued attribute auto-sound
of Car-model. Its value {tape,radio} for
the FiatJletro object facet means that phys-
ical cars of the Fiat_Retro model can come
with tape, or radio, or both, or nothing
at all as auto-sound. Thus the associated
class Fiairetro-cars has a multivalued attribute
auto-sound with {tape,radio} ss its type.

Figure 6: Semantics of the example in Figure 5.

l Type 3. The value of a monovalued (resp., mul-
tivalued) attribute of the object facet determines
one (resp., several) new attributes of the class
facet.

An example of the multivalued case is exhib-
ited by the multivalued attribute special-equip of
Car-model. Its value {Airbag, Alann, Cruise} for
the FiatJletro object facet means that phys-
ical cars of the Fiat_Retro model come with
three pieces of special equipment: an Airbag, an
Alarm, and a Cruise-ctrl. In addition, for each
piece of equipement, various models are avail-
able. Thus the associated class Fiat-retro-cars has
three monovalued attributes airbag, alarm, and
cruise-ctrl, whose value is the make of the corre-
sponding piece of equipment.

Another example of type 3 inheritance is devel-

oped in Section 7.1.

With the type 3 mechanism, the class facets
are no longer structurally equivalent, While class
Fiat-retro-cars has attributes airbag, alarm, and
cruise-ctrl, class Wild-%X-cars has alarm and
pwrsteer as corresponding attributes.

In many examples of materialization, it seems that
inheritance from the more abstract class to the more
concrete class could be strict, with the appropriate
particular semantics. For example, each Car object
somehow carries or refers to, albeit sometimes indi-
rectly, the properties of the Car-model object that it
materializes.

As an example of less plausible inheritance, consider
first-year-manuf and total#-sold as new attributes for
class Car-model, with obvious particular semantics,
At first glance, it does not seem that they should be
treated as attributes of Car objects. The latter could
also be defined as a derived attribute and its value for
a particular Car-model be computed from the materi-
alized Car objects of the associated Car-model. But it
is also conceivable that both attributes be inherited by
Car objects, and treated as, arguably remote, proper-
ties of individual cars (with the meaning of first pro-
duction date for the model of a car and total number
of cars sold for the model of that car).

Our feeling about the strictness of inheritance is
that aa much flexibility as possible should be left to
the analysts modeling an application domain and that
they should have the option of defining non-strict data
attributes if that fits their perception of the domain.

On the contrary, we have found no example of meth-
ods that we would like the more concrete class of a ma-
terialization to inherit from the more abstract class.

Class Car-model could have, for example, an
add-eng-size method that makes available a new value
of eng-size, a type 2 attribute, for cars of a particu-
lar model. Applied to the FiaLRetro object of class
Car-model, the operation should change the definition
of class Fiat-retro-cars so that the new type of its
eng-size attribute include the new engine size. Thus
the eng-size class attribute that class Car inherits in
the materialization has changed its type in the opera-
tion.

Operations on type 3 attributes of the more abstract
class cause still more drastic changes to the attribute
structure of the more concrete class. Thus, with type 2
and type 3 inheritance mechanisms, appealing as they
look, not only do we have to give up the the struc-
tural equivalence for instances of the more concrete
class, but we also open the door to a highly dynamic
conceptual schema.

635

6 More examples of materialization

Materialization provides a new degree of freedom for
the analyst building conceptual schemas modeling a
part of the real world.

For a class C to materialize a class A, C must be
more concrete than A in the partial order that ex-
presses abstractness, and the cardinalities of the rela-
tionship between A and C must be (1,l) on the side
of C and (On) on the side of A. Note that the (0,n)
cardinality could be made stricter by the real world
semantics being modeled.

Once materialization is made available in the
schema, examples are ubiquitous. The following gives
only a short list:

l Consider the modeling of air traveling. It could
involve a concept of itinerary (from an origin to
a destination, with a distance, etc.), materialized
as a class of flights (for an airline, with a price,
days of the week, period of the year, etc.), itself
materialized as a class of flights for specific calen-
dar days (with a date, an aircraft, a crew, etc.).
Another analysis of the concept of trip is shown
in Figure 9 (b). This example if typical of the fre-
quent lack of specific words in natural languages
to refer precisely to the various levels of materi-
alized concepts. Often, the same word is used at
various levels and ambiguity is avoided by various
clues in the linguistic or pragmatic context of the
communication.

l News items are materialized as articles for a par-
ticular edition of a newspaper, which in turn ma-
terialize as physical copies of the newspaper.

l Similarly, stories materialize as book titles, which
materialize as book copies. Stories can also ma-
terialize as theater plays, which themselves ma-
terialize as performances. A refinement of that
example is discussed in Section 7.1. Movies are
another materialization of stories, and they can
in turn materialize as videotapes.

l In our car example, the Car-model class can ma
terialize as catalogs for car dealers and as videos
presenting the models.

Section 7.1 shows that materialization is transitive,
which suggests other instances of materialization from
existing instances.

Conversely, we have found no examples where we
could rule out materialization between two classes that
satisfy the partial order. Specific choices of particular
semantics always enable to discover scenarios in the

application domain in which materialization is mean-
ingful when the partial order is satisfied. Thus it ap-
pears that a necessary and sufficient condition for ma-
terialization to be possible between two classes is that
they satisfy the partial order for abstractness. We do
not rule out tightening this condition through a finer
analysis, by detecting pieces of particular semantics
that are sufficiently general to be transformed into for-
malizable semantics (like we did with the partial order
that models abstractness/concreteness).

7 Extensions

Thus far, we have discussed materialization as a rela-
tionship between two classes. This section extends ma-
terialization in several directions: first, the composi-
tion of materializations in cascade illustrates the tran-
sitivity of materialization; then materialization is ex-
tended to relationships, aggregation, and constraints.
Only the general ideas are given here by means of ex-
amples. Elaboration will be presented in forthcoming
papers.

7.1 Composition of materializations

This section considers, by means of an example, cas-
cades of materializations, where the more concrete
class of a materialization is also the more abstract class
of another materialization, and so on.

The example, shown in Figure 7, deals with theatre
Plays written by an author, with a title and a set of
main roles. An instance of Play, say, M6nage-Ltrois
by VictorHugo, has three main roles that are repre-
sented as a value husband, uif e , lover of the multi-
valued attribute role.

Plays materialize as Settings, that embody the pro-
duction decisions for a theatrical season: a troupe, a
director, a set of actors for each role of each play at the
repertoire for that season. The semantics of material-
ization partitions Setting in as many classes as there
are instances of Play.

The multivalued roles attribute of Play is another
example of type 3 inheritance. Thus the class facet
of the two-faceted construct of HBnageLtrois has
three multivalued attributes, husband, wife, and lover,
corresponding to its main roles. An instance of Set-
ting-ofiV&age-dlrois decides for example that Delon
and Sharif will be available as husband during the
Fall-1993 season.

Settings materialize as Performances, at a particu-
lar date, such that each role of Play is assigned to a spe-
cific actor for each Performance. Thus, Performance
is partitioned in as many classes as there are instances
of Setting. In an instance of Performance, for exam-
ple, on 12122193 at the PZUC theatre, the husband was
Delon.

636

Figure 7a shows both materializations and sketches
their semantics, by displaying one two-faceted con-
struct for each one. Figure 7b an instance of each
of the three classes involved, will all their attribute
values.

Figure 7: Composition of materializations.

This example shows that cascading materializations
permits a fine analysis of the application domain. In
the class Setting-of-Mknage-d-trois, the three new at-
tributes correspond to the value of the roles attribute
in the associated instance of Play. In the class Per-
formance-of-M&age-ci-trois, the domain of attribute
husband (and, similarly, wife and lover) denotes the
set of actors available for playing the husband role in a
particular theatrical season, represented as an instance
of Setting-of-M&age-Ltrois.

Transitivity of materialization is a trivial property
at the type level. If C materializes B and B material-
izes A, then C can also materialize A, since A is more
abstract than C by transitivity of the partial order.
But transitivity at the instance level does not neces-
sarily hold: its presence or absence depends on the
particular semantics of the application domain. For
example, stories can materialize as theatre plays (e.g.,

the Antigone story written by Sophocles materializes
as the play written by Anouilh), which can in turn
materialize as physical books. Stories also materialize
as books, but the book of Anouilh’s play is different
from that of Sophocles’ story.

Even when transitivity of materialization holds at
the instance level, its semantics is not a simple combi-
nation of the intermediate materializations. In our ex-
ample above, Hay can directly materialize as Perfor-
mance without the intervening Setting and things can
be such that transitivity holds at the instance level.
The modeling is coarser and, not surprisingly, infor-
mation is lost in the shortcut: it is no longer possible
to model that a set of actors are available for the same
role during a particular season. The mechanics of these
combinations is further investigated in [PZ94].

7.2 Materialization of relationships

A relationship can be seen as an object (sometimes
called associative object) with its own properties (see,
e.g., [RBP+Sl]). Th ere ore, f a relationship can partic-
ipate as an object class in other abstractions, for ex-
ample materialization. Figure 8 shows a relationship
Course associating object classes Teacher and Subject,
and a materialization Course-Offer of Course, with ob-
vious meanings. The attributes of Course are mono-
valued and are inherited by Course-Offer through a
type-l mechanism (see Section 5).

Figure 8: Materialization of relationships.

7.3 Materialization of aggregation

Consider now materialization of aggregation, as de-
fined in, e.g., [MP93]. When an object in an aggrega-
tion hierarchy materializes into a more concrete object,
the aggregation hierarchy also materializes into a more

637

concrete hierarchy with the same structure as that of
the abstract hierarchy. A similar behavior is called
homomorphism in [RBP+Sl].

As an example, Figure 9(a), inspired from
[RBP+Sl], models a catalog for car parts, where a
catalog part may contain other catalog parts. Each
catalog part is identified by a part number, while each
manufactured part has its own serial number. Like the
catalog parts, the physical parts are composed of sub-
parts. The part explosion tree has the same form for
both the catalog parts and the physical parts.

(a)

TOP Segment

dy-city A N-city

arr_city at-city
fare fare
tlip# .segment #

Figure 9: Materialization of composition hierarchies.

Figure 9(b), inspired from [BCN92], analyzes a
concept of trip. A trip is composed of several seg-
ments. Trips and segments describe the fare informa-
tion. Trips and segments materialize, respectively, as
daily trips and daily segments, that contain the sched-
ule information. The composition hierarchy of a trip in
segments is materialized as a hierarchy with the same
structure for the associated daily trips.

7.4 Incomplete information and materializa-
tion of constraints

The following example is from [Bee93]. A travel agent
sells travel plans featuring many choices and options
about flights, hotels, side trips, and so on. Eventu-
ally, travel agent and customer agree on a specific plan,
with no option left open. In the meantime, travel plans
exist in an incomplete state, where some choices have
been made, others are still open, still others are tenta-
tive (e.g., awaiting confirmation). Also, some choices

may have to be undone, because requests can be de-
nied and because customers change their mind.

We describe plans at various stages with a generic
class Generic-plan that materializes for example as
Aegean-cruise or Across-USA-tour, which in turn ma-
terialize as several classes of Customer-trip, where all
choices have been made. Restrictions and constraints
may apply to Generic-plan and to the more concrete
plans, and they have to be satisfied by the corre-
sponding Customer-trip. Thus, materialization of con-
straints parallels the role of constraints in traditional
databases: they are formulated in the database schema
and they must be satisfied by the database instance.
Here, they appear as constraints in the more abstract
classes and, having fulfilled their role as constraints,
they disappear as such in the more concrete classes,
whose instances satisfy the constraints and for which
the constraints themselves have become in a sense ir-
relevant.

A similar materialization of constraints is typical of
engineering application domains like manufacturing,
design, planning, or scheduling. Guidelines and com-
pany procedures appear as explicit constraints that the
end products must satisfy. Such procedural rules may
take the form of templates for design, with, for ex-
ample, a hierarchical part/subpart structure in which
subparts still to be chosen can be prescribed to be
mandatory or optional, single or multiple, etc. Such
templates can be represented as AND/OR trees, where
OR-nodes represent choices still to be made in the de-
sign process. The designer retrieves a template for the
part to be designed and records design decisions ac-
cording to the prescriptions and rules of the template.
Designs have to coexist at various stages of completion
in the design database.

Templates can be represented as one or several more
abstract classes, possibly with more concrete material-
ized templates where some design decisions have been
made. Completed designs are modeled as one or sev-
eral more concrete classes. Several levels data manip-
ulation must be supported. For example, “do equip-
ments A and B always have a part in common?” is a
query at a more abstract level than “if we choose part
#333 as a subpart of part A, do all possible designs
cost more than $100 ?“, which is at the design level.

Several questions are raised by this kind of appli-
cations. Some were studied in [INVSla, INVSlb], but
no differentiation is made there between abstract and
concrete classes. Another problem is that the aggre-
gation abstraction (as studied, e.g., in [MP93]) is not
powerful enough to represent a family of alternative
part/subpart hierarchies. At the more concrete de-
sign level, the main problem is to cope with incom-
plete information, for which satisfactory solutions are
still lacking [ZP92]. In particular, very little work

638

has been done on representing and manipulating in-
complete information in object-oriented models and
databases. A related area is the work on versioning in
object-oriented database systems [CJ92, MJC93].

8 Related work

Materialization has been intuitively perceived, with
different names, by several authors but no precise
semantics was defined. Coad [Coa92] presents sev-
eral patterns frequently occurring in the real world;
the pattern closest to materialization is called “item-
description pattern”. Rumbaugh et al. [RBP+Sl] de-
scribe two constructs similar to materialization, which
they refer to aa metadata and homomorphisms.

Goldstein and Storey [GS94] introduced the term
materialization and characterized it informally. Most
of their informal discussion automatically follows from
our precise definition. They claim that their material-
ization cannot be defined by a combination of existing
abstractions. We have shown in this paper that the
semantics of our materialization can be captured with
the class/metaclass correspondence, and the classifica-
tion and generalization abstractions.

9 Summary and further work

This paper has presented materialization as a useful
abstraction pattern for conceptual schemas to relate
a class of concepts to another class of more concrete
concepts. Specifically, we have given a quasi-formal
definition of materialization as a combination of is-a
generalization, is-of classification, and class/metaclass
correspondence; we have characterized several mecha-
nisms of attribute inheritance through materialization;
we have exhibited examples that demonstrate that ma-
terialization is frequently encountered in practice; we
have shown the combination of several materializations
and extensions of materialization to relationships, ag-
gregation, and constraints.

Materialization could also be defined as it is im-
plemented, namely as an ordinary binary relationship,
suitably supplemented with integrity constraints that
force the desired behavior. But it is precisely this em-
bedding of constraints into a more powerful modeling
operation that represents progress in conceptual mod-
eling, by enabling the construction of more adequate
conceptual models and easing the work of the human
modeler. In other words, high-level abstraction pat-
terns like materialization replace explicit constraints,
that would be needed to enforce the same behavior
if the abstraction pattern was not available. Instead,
the constraints have become structural (or inherent,
implicit), they are built in the pattern and automati-
cally brought to bear when the modeling construct is
invoked during conceptual modeling.

We are implementing materialization in an expert
system CASE tool for investigating current object-
oriented analysis and design methodologies (e.g.,
[RBP+Sl, Boo94, CAB+94]). We have implemented
the management of materialization at the conceptual
level. We have identified several kinds of constraints,
e.g., for controlling inheritance, for ensuring the se-
mantic correctness of several related materializations
or a materialization combined with other abstractions
(in the spirit of [FM941 for is-a hierarchies). We have
studied interesting high-level optimizations in the im-
plementation of several materializations of the same
class into different more concrete classes. We also de-
fined operational procedures for high-level updating
(for example, when the more abstract class of a ma-
terialization is deleted, its attributes can selectively
migrate to the concrete class).

Another area of research is to study how the seman-
tics of materialization can be implemented into less
expressive contexts, like object oriented programming
languages coupled with classical relational databases.

The present work suggests many continuations. We
are studying formalizations of materialization with
knowledge representation languages, particularly Telos
and 0-Telos[MBJKSO, JJ91, JEG+94]. We want to ex-
plore more thoroughly the inheritance mechanisms as-
sociated with materialization and extensions that lead
to dynamic schemas. We also wish to study the rela-
tionships between materialization and versioning. We
considered relaxing the (1,l) cardinalilty on the side
of the more concrete class of materialization. For ex-
ample, we would like to describe the materialization
of several movies on the same videotape, or, similarly,
of several journal issues bound in the same physical
volume. This opens the door to multiple inheritance
and probably requires a more powerful aggregation ab-
straction than the one commonly studied.

Materialization breaks the traditional database sep-
aration of concerns between the generic and the indi-
vidual. This paper has shown that a controled intro-
duction of classification at the application level sub-
stantially enhances expressiveness in the conceptual
schema. There is an endless collection of materializa-
tions to be found in most application domains.

Materialization systematically invokes the classifi-
cation abstraction for application domain modeling,
whereas such a me&dimension is more often invoked
as a step away from domain modeling in the litera-
ture on database conceptual modeling. This is less
true for knowledge representation, where the tradi-
tional database distinction between schema and in-
stances does not hold. Materialization thus follows
the current trend in bringing knowledge representa-

639

tion and database conceptual modeling closer to one
another.

For future database management systems, opening
the door (albeit cautiously) to classification in the con-
ceptual schema suggests a revision of the role of the
central multifunction schema of traditional databases,
as both the support of a conceptual model for users,
and a guide and control for the operation of the
database system. The latter function may well lose
some its importance in the future and progressively
give way to a layered and distributed dynamic schema.

Acknowledgements. Our disagreements with the treat-
ment of materialization in [GS94] provided a vigorous ini-
tial inspiration. Useful suggestions were provided by A.
Borgida, S. Brinkkemper, M. Jeusfeld, F. Manola, P. Mss-
sonet, J. Mylopoulos, and M. Sakkinen.

References
[ABD+89] M. Atkinson, F. Bancilhon, D. Dewitt, K. Dit-

[BCN92]

[Bee931

[BH88]

[Boo941

[BR84]

[Bra831

[BS83]

trich, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In
Proc. 1st Int. Conf. on Deductive and Object-
Oriented Databases, Kyoto, 1989.

C. Batini, S. Ceri, and S. Navathe. Concep-
tual Database Design: An Entity-Relationship
Approach. Benjamin/Cummings, 1992.

Catriel Beeri. Some thoughts on the future evo-
lution of object-oriented database concepts. In
Proceedings BTW’93 - Datenbankayateme fir
B&o, Technik und Wiaaenachaft, “Informatik
aktuelI”. Springer-Verlag, 1993.

A. Bruffaerts and E. Henin. Proof trees for
negation a8 failure: yet another Prolog meta-
interpreter. In Logic Progmmming, Proceedings
of the 5th International Conference and Sympo-
sium, pages 343-358, Seattle, 1988.

G. Booth. Object-Oriented Analysis and De-
sign with Applicutions. Benjamin/Cummings,
second edition, 1994.

M.L. Brodie and D. Ridjanovic. On the design
and specification of database transactions. In
M.L. Brodie, J. Mylopoulos, and J.W. Schmidt,
editors, On Conceptual Modelling. Springer-
Verlag, 1984.

Ronald Brachman. What Is-a IS and what Is-a
Isn’t: An analysis of taxonomic Iinks in seman-
tic networks. IEEE Computer, pages 30-36,
October 1983.

D. Bobrow and M.J. Stefik. The LOOPS Man-
ual. Xerox Corp., 1983.

[CAB+941 D. Coleman, P. Arnold, S. Bodoff, C. Dollin,
H. Gilchrist, F. Hayes, and P. Jeremaes. Object-
Oriented Development: The fiaion Method.
Prentice-Hall, 1994.

[CJ92]

[Coa92]

[Coi87]

[Dit93]

W. CelIary and G. Jomier. Consistency of ver-
sions in object-oriented databases. In F. Ban-
cilhon, C. Delobel, and P. Kane&&is, editors,
Building an Object-Oriented Database System:
the Story of 02, chapter 19, pages 447-462.
Morgan Kaufmann, 1992.

P. Coad. Object-oriented patterns. Comm.
of the Assoc. for Computing Machinery,
35(9):152-159, September 1992.

P. Cointe. Metaclasses are first class: the Ob-
jVlisp model. In Proceedings of the 2nd ACM
Conference on Object-Oriented Progmmming
Systems, Languages and Applications, pages
156-167. ACM Press, 1987.

K. Dittrich. Object-oriented data model con-
cepts. In Do&q et al. [DOBS93].

[DOBS93] A. Do&, M. T. dzsu, A. BiIiris, and T. Sel-
lis, editors. Object-Oriented Database Manage-
ment Systems, NATO AS1 Series, Turkey, 1993.
Springer-Verlag.

[DOOSl]

[FK85]

[FM941

[GH93]

[GR83]

[GS94]

[INVSla]

[INVSlb]

Proceedings 2nd International Conference
on Deductive and Object-Oriented Databasea,
0000’91, LNCS 566, Munchen, Germany, De-
cember 1991. Springer-Verlag.

R. Fikes and J. Kehler. The role of frame-based
representation in reasoning. Comm. of the Aa-
aoc. for Computing Machinery, 28(9), Septem-
ber 1985.

A. Formica and M. Missikoff. Correctness
of ISA hierarchies in object-oriented database
systems. In Proceedings EDBT’94, Interna-
tional Conference on Extending Database Tech-
nology, pages 231-244, Cambridge, UK, 1994.
Springer-Verlag.

J. Gibers and A. Heuer. Definition and ap-
plication of metaclasses in an object-oriented
database model. In Proc. of the 9th IEEE Int.
Conf. on Data Engineering, 1993.

A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-
Wesley, 1983.

Robert C. Goldstein and Veda C. Storey. Ma-
terialization. IEEE Tmna. on Knowledge and
Data Engineering, 6, October 1994.

T. Imielirlski, S. Naqvi, and K. Vadaparty. In-
complete objects - a data model for design and
planning applications. In Proc. A CM-SIGMOD
Int. Conf. on Management of Data, pages 288-
297, 1991.

T. Imielixiski, S. Naqvi, and K. Vadaparty.
Querying design and planning applications.
In Proceedings 2nd International Conference
on Deductive and Object-Oriented Databases,
DOOD’91 [DOO91].

640

[JEGt94] M. Jarke, S. Eherer, R. Gallersdiirfer, M.A.
Jeusfeld, and M. Staudt. ConceptBase - a de-
ductive object base manager. Journal on Intel-
ligent Information Systems, 1994.

[JJ91] M. Jeusfeld and M. Jarke. From rela-
tional to object-oriented integrity specification.
In Proceedings 2nd International Conference
on Deductive and Object-Oriented Databases,
DOOD’91 [D0091].

[KAN93] W. Klas, K. Aberer, and E. Neuhold. Object-
oriented modeling for hypermedia systems us-
ing the VODAK modeling language. In Dogac
et al. [DOBS93].

[Kee89] S.E. Keene. Object-Oriented Programming in
COMMON LISP: A programmer’s Guide to
CLOS. Addison-Wesley, 1989.

[Kim901 W. Kim. Introduction to Object-Oriented
Databases. MIT Press, 1990.

[LA@931 M. Loomis, T. Attwood, R. Cattell, J. Duhl,
G. Ferran, and D. Wade. The ODMG object
model. Journal of Object-Oriented Program-
ming, June 1993.

[MBJKSO] J. Mylopoulos, A. Borgida, M. Jarke, and
M. Koubarakis. Telos: representing knowl-

[MBW80]

[MJC93]

[MN881

[MP93]

[MPM92]

[PD91]

edge about informations systems. ACM Trans.
on Ofice Information Systems, 8(4):325-362,
1990.

J. Mylopoulos, P. Bernstein, and H. Wong.
A language facility for designing interactive,
database-intensive applications. ACM Trans.
on Database Systems, S(2), 1980.

C.B. Medeiros, G. Jomier, and W. Cellary.
Maintaining integrity constraints across ver-
sions in a database. In Proceedings of the 8th
Brazilian Conference on Databases, pages 83-
97, May 1993.

P. Maes and D. Nardi, editors. Meta-level ar-
chitectures and reflection. North-Holland, 1988.

R. Motschnig-Pitrik. The semantics of parts
versus aggregates in data/knowledge mod-
elling. In Colette Rolland, Francois Bodart,
and Corine Cauvet, editors, Advanced Infor-
mation Systems Engineering, Proceedings 01
the 5th International Conference, CAiSE’93,
LNCS 685, pages 352-373, Paris, France, June
1993. Springer-Verlag.

R. Motschnig-Pitrik and J. Mylopoulos. Classes
and instances. International Journal of In-
telligent and Cooperative Information Systems,
1(1):61-92, 1992.

N. Paton and 0. Diaz. Metaclasses in ob-
ject oriented databases. In R. Meersman,
W. Kent, and S. Khosla, editors, Object ori-
ented databases: analysis, design and construc-
tion (OS-d), pages 331-347. North-Holland,
1991.

[PZ94]

[RBP+ 911

[Rus89]

[VanSO]

[ZM90]

[ZP92]

A. Pirotte and E. Zim&.nyi. Materialization.
Technical Report RR 94-04, INFODOC, Uni-
versite de Bruxelles, Belgium, 1994. Forthcom-
ing.

J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, 1991.

D.M. Russinof. Proteus: A frame-based non-
monotonic inference system. In W. Kim and
F.H. Lochovsky, editors, Object-Oriented Con-
cepts, Databases and Applications, pages 127-
150. ACM Press, 1989.

P. Vandamme. Reprhentation des Connais-
sances par Rkseaux Se’mantiques. PhD thesis,
Unite d’informatique, UniversitC de Louvain,
Belgium, 1990.

S. Zdonik and D. Maier. Fundamentals of
object-oriented databases. In Stanley Zdonik
and David Maier, editors, Readings in Object-
Oriented Database Systems. Morgan Kauf-
mann, 1990.

E. Zimanyi and A. Pirotte. Imperfect knowl-
edge in databases. Technical Report RR 92-
36, Unite d’informatique, UniversitC de Lou-
vain, Belgium, October 1992. To appear in
“Uncertainty Management in Information Sys-
tems: from Needs to Solutions”, A. Motro and
P. Smets eds, 1994.

641

