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Abstract 

In this paper, we consider various spatial re- 
lationships that are of general interest in pic- 
torial database systems. We present a set of 
rules that allow us to deduce new relationship- 
s from a given set of relationships. A deduc- 
tive mechanism using these rules can be used 
in query processing systems that retrieve pic- 
tures by content. The given set of rules are 
shown to be sound, i.e. the deductions are 
logically correct. The rules are also shown to 
be complete for three dimensional systems, i.e. 
every relationship which is implied by a given 
consistent set of relationships F is deducible 
from F using the given rules. In addition, we 
show that the given set of rules is incomplete 
for two dimensional systems. 

1 Introduction 

We are currently witnessing an explosion of interest in 
multimedia technology. Consequently, pictorial and 
video databases will become central components of 
many future applications. Access to such databases 
will be facilitated by a query processing mechanis- 
m that retrieves pictures based on user queries. In 
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this paper, for the first time, we present a deductive 
method to reason about spatial properties of object- 
s in pictorial databases. A component based on this 
method can be used as part of a picture retrieval sys- 
tem. 

We assume that there is a database containing the 
pictures. We also assume that each picture is asso- 
ciated with some meta-data describing the contents 
of the picture. This me&data contains information 
about the objects in the picture, their properties and 
the relationships among them. For example, consid- 
er a picture containing a man shaking hands with a 
woman in front of a building. The meta-data about 
this picture identifies three objects, man, woman and 
the building, and the spatial relationship in-front-of 
and the non-spatial relationship hand-shaking. We as- 
sume that this meta-data is generated a priori (possi- 
bly, by image processing algorithms, or manually, or 
by a combination of both), and is stored in a separate 
database. This meta-data will be used by the query 
processing mechanism in determining the pictures that 
need to be retrieved in response to a query. The meta- 
data facilitates efficient query processing, i.e. it avoids 
the invocation of the expensive image processing algo- 
rithms each time a query is processed. 

The meta-data stored in the database may not be 
complete in the following sense. For example, it may 
contain the relationships that object A is behind object 
B, and B is behind C, but not the relationship that A 
is behind C. Note that the last relationship is implied 
by the first two. This incompleteness may be due to 
any of the following reasons. Firstly, existing image 
processing algorithms may not be able to recognize al- 
l objects and their relationships. For example, since 
pictures are two dimensional images of three dimen- 
sional scenes, some of the spatial relationships in the 
missing dimension may not be detectable by the image 
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processing algorithms. The missing objects and/or the 
missing relationships may have been introduced man- 
ually. In this process some of the implied relation- 
ships may have been left out to save time for entering 
these relationships manually. Secondly, the implied 
relationships may not have been stored explicitly in 
order to save space. This saving in space will be ad- 
vantageous in distributed environments (for example, 
see pGB89, LY93]) where the met&data is stored at 
the user sites with limited storage facilities, while the 
actual pictures are stored in remote sites. The query 
processing mechanism executed at the user sites uses 
the meta-data to determine the pictures that need to 
be retrieved from the remote sites. 

In this paper, we consider various spatial relation- 
ships that are of general interest in picture retrieval 
systems. Specifically, the following relationships- 
left-of, right-of, in-front-of behind, above, below, insid- 
e, outside and overlaps - are investigated. We present 
a set of rules R that allow us to deduce new relation- 
ships from a given set of relationships. These rules are 
shown to be sound, i.e. the deductions are logically 
correct. Furthermore, the set of rules are shown to 
be complete for three dimensional systems, i.e. every 
relationship which is implied by a given consistent set 
of relationships F is deducible from F using the rules 
in R. In addition, we show that the set of rules R is 
incomplete for two dimensional systems. 

Existing pictorial database management system- 
s have been mostly application dependent (for ex- 
ample see [Amd93, LeeW93, RP92, CIIH93]). Some 
preliminary work towards a unified framework for 
content based retrieval of images can be found in 
[GWJSl, GRV94]. Our motivation is to construct a 
general-purpose pictorial retrieval system which will 
accommodate pictorial databases for a broad class of 
applications. In order to accomplish this, we need 
to devise a powerful set of tools. These tools con- 
sist of components to reason about spatial relation- 
ships, to handle user interfaces, and to compute a 
degree of similarity between a query and a picture 
etc. In this paper, we concentrate on the reason- 
ing about spatial relationships. Earlier work on han- 
dling spatial relationships are mostly based on algo- 
rithms [CSY84, CCT94, GR94]. In these approches, 
new algorithms need to be devised whenever addi- 
tional spatial operators are added to the existing sys- 
tems. On the other hand, our approach is to con- 
struct rules which allow spatial relationships to be d- 
educed (The deduction mechanism itself can be car- 
ried out by existing systems such as LDL and CORAL 
[NT89, TZ86, R92]). If new spatial operators are em- 
ployed, it is sufficient to augment existing rules with 
additional rules that capture the interactions between 
the new and the existing spatial operators. The rules 

for the existing operators need not be changed. An- 
other difference between our approach and earlier ap- 
proaches is that the sets of spatial operators are not 
identical. For example, we employ the operators ower- 
laps, inside, outside, which are not present in the ear- 
lier approach. On the other hand, some measure of 
distance was provided, but is not considered in this 
paper. Our intention is to first provide a set of deduc- 
tive rules for basic spatial operators. Then, the basic 
set of operators will be enlarged so as to be suitable 
for different applications. Surveys of pictorial database 
systems can be found in [TaY84, GrM92, ChH92]. 

In [MS93a, MS93b], Marcus and Subrahmanian 
present a general formal framework for multimedia sys- 
tems. The model of pictorial databases that we use 
in this paper can be considered as a special case of 
media-instances defined in their work. For example, 
our pictures and objects in pictures correspond, re- 
spectively, with the states and features in their paper. 
While they provide a general framework for multime- 
dia systems, we give a complete axiomatization for de- 
ducing spatial relationships of 3-dimensional pictures. 
There has also been much work done on defining and 
handling queries involving spatial relationships in spa- 
tial databases such as Geographic Information System- 
s (see [Eg89] for references). However, none of these 
works provides an axiomatization for deducing spatial 
relationships. 

The paper is organized as follows. Section 2 
presents the notation and various definitions used in 
the remainder of the paper. This section also intro- 
duces a property called connectedness which is as- 
sumed to be satisfied by all the objects in the pictures. 
Section 3 gives the system of rules for the different s- 
patial operators. It also presents the soundness result, 
and the completeness result for 3-dimensional pictures. 
In addition, it shows the incompleteness of the rules for 
2-dimensional pictures by providing a counter exam- 
ple. Section 4 contains a discussion showing how the 
completeness (or incompleteness) results are affected 
by removing the connectedness assumption. We also 
discuss the addition of new operators. This section 
also discusses future work. 

2 Notation and Definitions 

Objects and Pictures 
We assume that each object has a unique name as- 

sociated with it belonging to a finite set of names N. 
Each 3-dimensional picture specifies a set of points oc- 
cupied by each object present in the picture. Formal- 
ly, a 3-dimensional picture p is a partial function that 
maps each object in N to a non-empty set of points 
in the 3-dimensional Cartesian space; here each point 
in the S-dimensional space is given by its three coor- 
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dinates. For an object A E N and picture p, we say 
that A is present in the picture p iff p(A) is defined. 
When the object A is present in the picture p, then 
we use the term “object A in the picture p” to refer 
to the set of points p(A). A 2-dimensional picture is 
a partial function that maps each object’to a set of 
points in the 2-dimensional space. 

We say that an object A is connected in the picture 
p if A is present in the picture, and for every pair of 
points in p(A) th ere exists a line joining the two points 
such that all the points on the line are also in p(A); the 
line connecting the two points need not be a straight 
line ‘. The connectedness property prevents an objec- 
t from having disjoint parts. We say that a picture 
is connected if every object defined in the picture is 
connected. If an object is connected in a picture then 
the set of x-coordinates of all the points in the object 
form a single interval on the x-axis; similar conditions 
hold for the set of y- and z-coordinates; these intervals 
can be open or closed on either side. We say that a 
connected object is closed if these x, y and z intervals 
are closed intervals. Unless it is otherwise stated, we 
assume that all the pictures that we consider are con- 
nected and all objects in them are closed. We will later 
discuss the consequences of removing this assumption. 
Spatial Relationships 

As indicated in the introduction, we consider the 
following set of spatial relationship symbols- left-of 
right-of, behind, in-front-of, above, below, inside, out- 
side, and overlaps. 

Let p be a picture in which objects A and B are 
defined. Now, we formally define when p satisfies the 
above relationships. If z is any of the above relation- 
ship symbols, we write p b A x B to denote that p 
satisfies the relationship A x B. 

l p + A left-of B, informally stated that A is to 
the left of B in the picture p, iff the x-coordinate 
of every point in p(A) is less than the x-coordinate 
of every point in p(B) . 

l p k A above B, informally stated that A is above 
B in the picture p, iff the y-coordinate of every 
point in p(A) is greater than the y-coordinate of 
every point in p(B). 

l p k A behind B, informally stated that A is be- 
hind B in the picture p, iff the z-coordinate of ev- 
ery point in p(A) is greater than the z-coordinate 
of every point in p(B). 

l p b A inside B, informally stated that A is 
inside B in the picture p, iff p(A) s p(B). 

‘Note that the connectedness requirement is different from 
convexity since the later property requires that, for any two 
points with in an object, there be a straightline connecting the 
two points which is contained entirely with in the object. 

l p b A outside B, informally stated that A is 
outside B in the picture p, iff p(A) n p(B) = 
0. This means that A and B do not have any 
common points. 

l p b A overlaps B, informally stated that A. 
overlaps B in the picture p, iff p(A) rl p(B) # 
8. This means that A and B have at least one 
common point. 

The semantics of operators right-of in-front-of and 
below are defined similarly. 

It is to be noted that if A and B are present in 
the picture p, then A is outside B iff A and B do not 
overlap in p. Also, the relationship symbols right-of 
inJront-of below are duals of left-of, behind and 
above, respectively. For example, A is to the left of 
B in a picture iff B is to the right of A. 

We use the term “relationship symbol” to refer to 
any of the symbols given previously. We use the term 
“relationship” to denote a triple of the form A x B 
where A and B are objects, and x is a relationship 
symbol. Sometimes, we use the term relationship to 
refer to the corresponding symbols. However, the in- 
tended meaning will be clear from the context. 
Deductive Systems 

Let F be a finite set of relationships. We say that 
F is consistent if there exists a picture that satis- 
fies all the relationships in F. For example, the set 
{A left-of B , B left-of C} is consistent, while the 
set {A overlaps B , A outside B} is inconsistent. 
We say that a relationship r is implied by F, if every 
picture that satisfies all the relationships in F, also 
satisfies the relationship r. For example, the set of 
relationships {A left-of B , B left-of C} implies 
A left-of C. 

In this paper, we present various rules for deduc- 
ing new relationships from a given set of relationships. 
Each rule will be written as P :: ri, rz, . . . . rk. In 
this rule r is called the head of the rule and the list 
r1, . . . . rk is called the body of the rule. We say that 
a relationship r is deducible in one step from a set of 
relationships F using a rule, if P is the head of the 
rule, and each relationship in the body of the rule is 
contained in F. Let R be a set of rules and F be a 
set of relationships. We say that a relationship r is 
deducible from F using the rules in R, if r is in F, or 
there exists a finite sequence of relationships rl, . . . . rk 
ending with r, i.e. r) = r, such that r1 is deducible 
in one step from F using one of the rules in R, and 
for each i = 2, . . . . L, ri is deducible in one step from 
F U {rl, . . . . pi-r} using one of the rules in R. 

Now, we define soundness and completeness of a set 
of rules R. A single rule in R is said to be sound if, 
every picture that satisfies all the relationships in the 
body of the rule also satisfies the relationship given by 
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the head of the rule. The set of rules R is sound if every 
rule in R is sound. We say that the set of rules R is 
complete if it satisfies the following property for every 
consistent set F of relationships: every relationship 
implied by F is deducible from F using the rules in R. 

3 Rules for Deducing Spatial Relation- 
ships 

Now, we present a system of rules R for deducing 
new spatial relationships from existing ones. In these 
rules, we exclude the relationship symbols right-of, 
in-front-of and below. As indicated before, these re- 
lationship symbols are duals of left-of, behind and 
above, respectively. They can be handled by simply 
introducing additional rules that relate them to their 
duals as indicated at the end of the section. 

I. (Transitivity of left-of above, behind, and in- 
side): This rule indicates the transitivity of 
some of the relationships. For example, this 
rule allows one to deduce the relationship 
A left-of C from the relationships A left-of B 
and B left-of C. Let x denote any relationship 
symbol in {left-of, above, behind, inside). We 
have the following rule for each such z. 
AxC :: AzB, BxC 

II. This rule captures the interaction between the re- 
lationships involving left-of, above, behind, and 
the relationship involving overlaps. For exam- 
ple, it allows us to deduce A left-of D from 
the relationships A left-of B, B overlaps C and 
C left-of D. Let z denote any of the relationship 
symbols- left-of, above and behind. We have the 
following rule for each such z. 
AxD :: A x B , B overlaps C, C x D 

III. This rule captures the interaction between the 
relationships involving left-of, above, behind, out- 
side, and the relationship involving inside. For 
example, it allows one to deduce A left-of C from 
the relationships A inside B and B left-of C. 
The relationship A left-of C can also be deduced 
from A left-of B and C inside B. These two 
types of deductions are captured by rules (a) and 
(b) given below. Let x denote any relationship 
symbol in { left-of, above, behind, outside}. We 
have the following two rules for each such x. 
(a) AxC :: A inside B, B x C 
(b) A XC :: A x B, C inside B 
Rule (b) is redundant for the case when x is the 
relationship symbol outside; for the other cases 
(a) and (b) are independent. 

IV. (Symmetry of overlaps and outside): This rule 
captures the symmetry of overlaps and outside. 

Let x denote either of overlaps and outside. We 
have the following rule for each such t. 
AxB :: BxA 

V. This rule allows one to deduce that two object- 
s are outside each other if one of them is to 
the left of, or above, or behind the other object. 
Let x denote any of the relationship symbols in 
{left-of, above, behind}. We have the following 
rule for each such x. 
Aoutside B :: Ax B 

VI. This rule allows one to deduce that if an object is 
inside another object, then the two objects over- 
lap. 
A overlaps B :: A inside B 

VII. This rule allows one to deduce that A overlaps 
with B if B overlaps with an object inside A. 
A overlaps B :: C inside A, C overlaps B 

VIII. This rule says that every object is inside itself. 
Note that this rule has no body. 
A inside A :: 

Now, we prove the soundness of the rule system R 
given above for 2-dimensional and S-dimensional pic- 
tures. We write F l- r to indicate that the relation- 
ship r is deducible from F using the set of rules in 
R. For 2-dimensional pictures, we will not have the 
relationship behind and the rules referring to it. 

THEOREM l:(S oundness-theorem) The set of rules 
given by R is sound for 2 and 3-dimensional pictures. 

Proof: Clearly, the rules given by I are sound. For 
example, assume that the relationships A left-of B, 
B left-of C are satisfied in a picture p, and let u, v 
and w be arbitrary points in p(A),p(B) and p(C) re- 
spectively. Clearly, x-coordinate of u < x-coordinate 
of v < x-coordinate of w. From transitivity of <, we 
see that the x-coordinate of u < x-coordinate of w. 
Since U,ZI and w are arbitrary points, it follows that 
p satisfies the relationship A left-of C. The sound- 
ness of the rules given by IV is easy to see. To see the 
soundness of IIIa, assume that p is a picture satisfying 
the relationships A inside B and B outside C. Clear- 
ly, p(A) C p(B) and p(B) f~ p(C) = 0. Hence 
p(A) n p(C) = 0 and p satisfies the relationship 
A outside C. Similar proofs can be given for other 
relationships such as left-of, above and behind and 
also for the different cases of IIIb. 

To prove the soundness of the rules given by II, as- 
sume that p is a picture that satisfies the relationships 
A left-of B, B overlaps C and C left-of D. Let u 
and v be arbitrary points in p(A) and p(D), respec- 
tively. Also, let w be a point in p(B) n p(C); there 
exists such a point w since p(B) n p(C) # 0. Clearly, 
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the x-coordinate of u is < the x-coordinate of w which 
is < the x-coordinate of u. Using the transitivity of <, 
it follows that the x-coordinate of u is < x-coordinate 
of v. Since u and v are arbitrary points in p(A) and 
p(D) respectively, it follows that the p satisfies the re 
lationship A left-of D. 

It should be easy to see the soundness of the V. 
Suppose, the relationship A left-of B is satisfied in a 
picture p. Then, every point in p(A) is strictly to the 
left of every point inp(B), and hence p(A)np(B) = 0. 
As a consequence, A outside B is satisfied in p. The 
soundness of VI, VII and VIII should also be easy to 
see. cl 

Completeness for 3-dimensional Pictures 

THEOREM 2:(Completenea+theorem) The set of 
rules R is complete for 3-dimensional pictures. 

To prove the completeness theorem, we need the 
following definitions and lemmas. 

In our proofs we use constructions that extend ob- 
jects in the x-,y- and z-directions. These extensions 
are carried out so that the extended objects contin- 
ue to satisfy many of the previous left-of, above and 
behind relationships. If the extensions are within cer- 
tain bounds, then the previous relationships continue 
to be satisfied. With this as the main motive, for each 
picture p and object A, we define three open intervals 
x-bounds(A, p), y_bounds(A, p) and z-bounds(A, p) as 
follows. 

We define the interval t-bounds(A,p) as follows. 
Let u and v respectively be the minimum and max- 
imum x-coordinate of any point in p(A). Let u’ be the 
largest x-coordinate of any point in any object to the 
left of A in p, and v’ be the smallest x-coordinate of 
any point in any object to the right of A in p. If there 
is no object to the left of A then take u’ to be -oo. 
Similarly, if there is no object to the right of A take v’ 
to be 00. Let u’l be the mid point between u and u’, i.e. 
u” = (u+u’)/2. L e vt’ be the mid point between v and t 
v’, i.e. v” = (v + v/)/2. N ow define x-bounds(A,p) to 
be the open interval (utt, v”) on the real line. The other 
bounds ybounds(A, p) and zbounds(A, p) are defined 
using the y and z coordinates respectively. It should 
be easy to see that each of the above intervals contains 
an infinite number of points. Now, define bounds(A, p) 
to be the set of all points in the 3-dimensional s- 
pace such that the x-coordinates, y-coordinates and 
z-coordinates of these points are contained with- 
in the intervals zbounds(A,p), ybounds(A,p) and 
t-bounds(A, p), respectively. Note that bounds(A, p) 
denotes an open rectangular box which is non-empty, 
and has non-zero volume. It should also be easy to see 
that p(A) c bounds(A,p). 

In any picture p, if object A is to the left of object 

B then all the values in x-bounds(A,p) are less than 
all the values in x-bounds(B,p). The follbwing lemma 
is a consequence of the above observation. It states 
that if objects in the picture are changed so that the 
resulting objects are within their old bounds, then all 
of the previous left-of, above, behind relationships 
continue to be satisfied. 

LEMMA 3: Let p and p’ be two pictures contain- 
ing the same objects. If for every object A, the x- 
coordinates of all points in p’(A) are in x-bounds(A, p), 
then every left-of relationship satisfied in p is al- 
so satisfied in p’; similar conditions hold for above 
and behind relationships using y_bounds(A, p) and 
z-bounds(A,p) respectively. Also, if for every object 
A, p’(A) is contained in bounds(A,p), then p’ satisfies 
the same left-of, above and behind relationships as p. 

We say that an object in a picture is a line object 
if it is a connected set of lines. The following lemma 
says that if a picture satisfies a set of relationships, 
then there exists another picture satisfying the same 
set of relationships and in which all objects are line 
objects. 

LEMMA 4: For every picture p, there exists another 
picture p’ such that all the objects in p’ are line objects, 
and such that p’ satisfies all the relationships satisfied 
by P- 

Proof: Let p be any picture. We obtain p’ as fol- 
lows. The objects in p’ are defined inside out, i.e. we 
first define those objects that do not have any other 
objects in them. Let A be any such object. For each 
object B such that A overlaps B in p we take a single 
point in p(A) n p(B). ( If A does not overlap with 
any object, then we take an arbitrary point in p(A) 
and consider that to be p’(A)). Then, we join all these 
points by lines that are contained entirely within p(A). 
Furthermore, we make the connecting lines go around 
any other lines belonging to previously defined objects 
in p’ so that no additional overlaps are caused. If A 
has some objects inside it, we first define p’(B) for all 
objects B inside A, inductively; then we choose a finite 
number of points in p(A) II p(C) for each C that over- 
laps with A, but is not inside A, in p. Then, we join all 
these points, and all points in p’(B) for each B which 
is inside A in p, by lines that are contained entirely 
within p(A) and such that no additional overlaps are 
created. We can thus construct p’(A) such that A is 
connected in p’, p’(A) s p(A), and all overlap relation- 
ships in p are also satisfied in pt. It is easy to see that 
every outside, inside, left-of, behind, above rela- 
tionships satisfied in p are also satisfied in pt. Clearly, 
all objects in p’ are line objects. cl 

Proof of Theorem 2: To prove the completeness 
theorem, we have to show that for every finite set F 
of consistent relationships and for every relationship r, 
the following property holds: 

574 



(*) if F implies r, then F l- r (i.e., r is deducible from 

F). 

TO show (*) for any F and r, it is enough if we show 
the following: 
(**) if r is not deducible from F, then. F does not 
imply r, i.e. there exists a 3-dimensional picture p 
that satisfies all the relationships in F but does not 
satisfy the relationship r. 

Let F be any finite consistent set of relationships 
and r be any relationship that is not deducible from 
F using the rules in R. Now, we construct a picture 
that satisfies all relationships in F, but does not satisfy 
r. Since F is consistent, there exists a picture p that 
satisfies all the relationships in F. Furthermore, using 
lemma 4, we can assume that all objects in p are line 
objects. If p does not satisfy r, then p is the required 
picture. So, assume that p satisfies r. Now, we show 
how p can be modified so that the modified picture p’ 
satisfies all the relationships in F, but does not satisfy 
r. The way we modify F depends on the relationship 
r. We need the following definitions in the remainder 
of the proof. 

For any object A, define inside(A) to be the set 
of all B such that B inside A is deducible from F. 
Also, define strict-inside(A) to be the set of all B such 
that B inside A is deducible from F, but A inside B 
is not. It is easy to see that A E inside(A) (due 
to rule VIII), but A $! strict-inside(A). We also 
define a simple equivalence relation s among objects 
as follows: A E B iff A inside B and B inside A are 
deducible. Let class(A) denote the equivalence class 
containing A. All objectswq in class(A) need to be 
identical in any picture satisfying the relationships in 
F. In our modifications, whenever we modify an object 
A, we extend every object B such that A E inside(B); 
the extension to B is done so as to connect it to the 
modified A and to contain it. Also, when we modify or 
redefine A, we automatically assume that all objects 
in class(A) are changed identically. 

We divide the remainder of the proof into the fol- 
lowing cases. We consider the difficult cases in the 
beginning. 

case 1: r is the relationship X above Y. In this 
case, we alter p substantially. The idea behind this 
alteration is to extend the object Y in p in the y- 
direction (i.e. parallel to the y-axis) so that the rela- 
tion r is violated. When we extend Y, we also need to 
shift and extend some other objects so that the rela- 
tionships in F continue to be satisfied. Now let u be 
the lowest point in p(X) (i.e. having the smallest y- 
coordinate), and v be the highest point in p(Y). Clear- 
ly, u is above v in p. Now, let d be some positive value 
greater than the difference between the y-coordinates 
of u and v. Now, we modify p as follows. We call 

this modification Extend-up(Y,d). We will be using 
similar modifications in other cases also. 

To describe the modification Extend-up(Y, d), 
we define two sets of objects above(Y) and 
overlaps-above(Y). The set above(Y) contains exl 
actly all the objects A present in p such that the 
relationship A above Y is deducible from F. The 
set overlaps-above(Y) contains exactly the objects 
B such that B 6 above(Y), and for some object 
A E above(Y), the relationship B overlaps A is d- 
educible from F. 

Now, the operation Extend-up(Y,d) modifies the 
picture p as follows. The only objects that 
will be altered are Y and those in above(Y) u 

overlaps-above(Y). We extend Y from the point v 
by a straight line parallel to the y-axis so that the 
end point of this line is at a height d above v. Clear- 
ly, this end point is above the point u in p(X). As 
a consequence X above Y is not satisfied in p’. The 
straight extension to object Y, as given above, may 
overlap with other objects in the picture and hence 
violate some outside relationships present in F. So, 
we modify this extension as follows. Since all objects 
in p are line objects, the obstacles to the above ex- 
tension are going to be lines. Hence, we bend the s- 
traight extension to Y at the obstacles slightly so that 
it goes around these obstacles, and does not cause any 
undesired overlaps. Furthermore, we bend it at the 
obstacles slightly so that the x- and z-coordinates of 
all points in p’(Y) are contained xhounds(Y, p) and 
zbounds(Y,p) respectively. This is illustrated in Fig- 
ure 1. 

Observe that we are able to do this, since 
xbounds(Y, p) and z-bounds(Y, p) are intervals that 
are not single points. 

We shift all objects in above(Y) in the y-direction 
by a constant distance d’ > d (see Figure l), so that in 
the picture p’, all the objects in above(Y) are going to 
be above all other objects. This shifting ensures that 
all the objects in above(Y) are above Y in p’ also and 
such that they do not overlap some other objects, and 
hence violate some outside relationships. Note that 
all spatial relationships among the objects in above(Y) 
are preserved since they are all shifted by a constant 
distance in the y-direction. 
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A in above(Y); 

C in overlaps-above(y). 

/ 
X 

A 

1 
s Y 

C 

before 
--------------------------- 

Y is extended and bent to avoid overlapping B; 
X is not above Y, C is extended to continue 
overlapping A, A is shifted higher to remain 
above Y. 

A 

u/ 

1:---T 

B 

Y 

C 

Figure 1 Illustrating proof of Theorem 2, case 1. 

We extend each object C E overlaps-above(Y) as 
follows. For each object A E above(Y) such that the 
relationship C overlaps A is deducible from F, we ex- 
tend C as follows. We take some point u where A and 
C overlap in p, i.e. some point u E p(A) n p(C), and 
extend C by a straight line parallel to the y-axis start- 
ing from u that goes around any obstacles so that the 
end point of this extended line is directly above u by 
a distance d’. Clearly, the end point of this extension 
will be in p’(A) ( see Figure 1). This ensures that C 
and A overlap in p’. Also, these extensions to C will be 
such that the x- and s-coordinates of points in p’(C) 
are in z-bounds(C, p) and zbounds(C, p) respectively. 
In addition, if A E inside(C) (i.e. A inside C is d- 
educible from F), then we define p’(C) so that p’(C) 
contains p(C) and the points in the previously defined 
extension and also all the points in p’(A). This ensures 
that A inside C continues to be satisfied in p’ also. 

In the above construction, any extension done to 
any object D (such as Y or C as given in the previous 
two paragraphs) is also applied to all objects E such 
that D inside E is deducible from F. This ensures 

that all inside relationships deducible from F are pre- 
served in p’. 

Let p’ be the picture obtained from p as specified 
above. Clearly, p’ violates r. Now, we prove that p’ 
satisfies all the relationships in F. 

For every r’ E F, p’ + r’. Claim: 
Proof of Claim: Consider any r’ E F. We prove 

that p’ satisfies r’ by cases. 

r’ is A above B: Note that for any object, the lowest 
point in p’ is either same as in p, or it has been 
moved upwards. Hence, if B is not modified in p’, 
i.e. same as in p, then A will continue to be above 
B in p’ irrespective of whether A is modified in p’ 
or not. Hence, if p(B) = p’(B), then p’ also 
satisfies r’. Now, assume that B is modified in p’, 
i.e. p’(B) # p(B). This can occur only if B is Y 
or B E above(Y) or B E overlaps-above(Y). If 
B is Y, then A E above(Y) and by construction 
of p’, A would have been shifted up by a distance 
greater than the distance by which Y is extended, 
and hence p’ will also satisfy r’. If B E above(Y) 
then A E above(Y) (due to rule I), and both 
A , B would have been shifted up by the same 
distance, and hence p’ will also satisfy r’. If B E 
overlaps-above(Y) then, due to rule II in R, A 
will be in above(Y), and the distance by which B 
is extended up is exactly the distance by which A 
has been shifted, and hence p’ will also satisfy r’. 

r’ is A behind B or A left-of B: In our construc- 
tion we make sure that for every object C, the 
x- and z-coordinates of points in p’(C) are with- 
in zbounds(C, p) and z-bounds(C, p) respective- 
ly. From lemma 3, we see that p’ satisfies r’. 

r’ is A inside B: If B E above(Y) then A is also in 
above(Y) by rule IIIa. In this case, both A and 
B are shifted by the same distance d’, and hence 
r’ continues to be satisfied in p’. If both A and 
B are not in above(Y), then any extension done 
to A is also applied to B, and hence r’ continues 
to be satisfied. Now consider the subcase when 
A E above(Y) but B $! above(Y). Clearly, B E 
overlaps-above(Y), due to rule VI. Clearly, A is 
shifted in p’ by a distance d’. By our construction, 
B is extended so that p’(B) contains p’(A) also. 
Hence r’ continues to be satisfied in p’. 

r’ is A overlaps B: If both A and B are shifted (i.e. 
both of them are in above(Y)), then both of them 
would have been shifted by the same distance. If 
only one of them is shifted, then the other would 
have been extended by the same distance at one 
of the previous points of overlap. In all the above 
cases r’ continues to hold. If neither of them is 
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shifted, then whether they are extended or not, 
both of them contain their previous points of over- 
lap, and hence p’ satisfies P’. 

r’ is A outside B: If both A and B are shifted, then 
they are shifted by the same distance and hence 
they remain to be outside each other. If A is 
shifted and B is not shifted, then the distance 
by which A is shifted is long enough to not cause 
any overlaps with B; also, any extensions carried 
to B ensure that none of the outside relationships 
is violated. A symmetric argument takes care of 
the situation when B is shifted, but A is not. If 
neither of them is shifted, then any extensions car- 
ried out to them ensures that no overlap relation 
is violated. cl 

Case 2 of the Proof of theorem 2: r is 
X behind Y or X left-of Y. The proof is simi- 
lar to case 1. If r is the relationship X behind Y, 
then we extend Y in the direction of the z-axis, shift 
some objects and extend some objects as in case 1. 
We call this operation Eztendbac&(Y, d) where d is 
appropriately chosen as in case 1. If P is the rela- 
tionship X left-of Y, then we extend Y along the 
x-axis towards X, and also modify other objects using 
EztendJeft(Y, d) operation where d is appropriately 
chosen. 

Case 3: r is X overlaps Y. We will modify, i.e. 
redefine, some of the objects including X so that r is 
not satisfied. Recall that for any object A, inside(A) 
is the set of all objects B such that B inside A is d- 
educible from F; strict-inside(A) is the set of all B 
such that B inside A is deducible and A inside B 
is not deducible from F. Also, for any object A, 
define overlaps(A) to be the set of all B such that 
B overlaps A is deducible from F. 

We redefine all the objects A E inside(X). This 
redefinition starts with the innermost objects; we re- 
define them so that they do not overlap with Y, but 
continue to overlap with all other objects. Next we 
redefine each object A E inside(X) that contain the 
previously redefined objects; The redefined A is ex- 
tended to join with, and also to contain, all objects 
that are supposed to be inside A. This process is car- 
ried out inductively until X itself is redefined. 

Now, we redefine the objects in inside(X) as fol- 
lows. First, consider any A E inside(X) such that 
strict-inside(A) = 0. If A does not overlap with Y in 
p, then we do not change A, i.e. we let p’(A) = p(A). 
Assume that A overlaps with Y in p. Now, we re- 
construct A so that it continues to satisfy the re- 
quired overlap relationships in F. For each object B E 
overlaps(A) such that A $ strict-inside(B), take any 
point ZB which is in bounds(A,p) n bounds(B,p) but 

is not in p(Y) 2 (Note that B $ inside(Y), other- 
wise due to the rule VII, A overlaps Y and hence 
X overlaps Y will be deducible from F which contra- 
dicts our assumption). If ZB $8 p(B) then we extend 
B by a line to join with 28 and such that this line 
lies within bounds(B,p) and such that no new over- 
laps are created ( any object C such that B inside C 
is deducible from F is extended to contain the extend- 
ed B). This gives us p’(B). We obtain p’(A) by taking 
each of the points ZB, as defined above, and join them 
with lines that lie within bounds(A,p) and such that 
these lines do not overlap with any other objects. 

Next, we define p’(A) for each A E inside(X) 
such that p’(B) has already been defined for all B E 
strict-inside(A). We construct p’(A) as in the base 
case given above, and we further extend it to contain 
all points in p’(B) for each B E strict-inside(A). We 
do this redefinition inductively until X itself is rede- 
fined. In this construction we ensure that p’(A) is 
contained in bounds(A, p) and no additional overlap 
conditions are satisfied. 

Whenever we redefine or extend an object A, 
we need to extend all objects C such that A E 
strict-inside(C) but C $2 inside(X) (i.e. A inside C 
is deducible from F but C inside X is not). Each 
such C is extended to join with A and to contain all 
the points in p’(A). 

Now, it should be obvious from the construction 
that r is not satisfied in p. We prove that every re- 
lationship in F is satisfied in p’. For every object A 
modified by the above construction it can be shown 
that p’(A) s bounds(A,p). From this and lemma 3, we 
see that all the left-of, above and behind relationship- 
s satisfied in p are also satisfied in p’. We made sure 
that all inside, outside relationships deducible from F 
are preserved. Clearly, we preserved all overlaps rela- 
tionships that are deducible from F. 

Case 4: r is X inside Y. Let S be the set of all 
objects A such that X inside A is deducible from F 
using the rules in R. Clearly, Y 4 S since we assumed 
that r is not deducible from F. Now, we extend X and 
all objects in S by a single small line all of whose lines 
within the bounds of the appropriate objects; this can 
be done since, all these objects are line objects. We 
can easily ensure that the extensions do not violate any 
outside relationships in F. It is easy to see that in the 
resulting picture all relationships in F are satisfied. 
Since the extended line is present in X but not in Y, 
it follows that the relationship r is not satisfied in the 
resulting picture. 

2Such a point can be found because bounds(A,p) fl 
bounds(B,p) has non-zer?,volume, due to both of them being 
rectangular boxes open in all the directions such that they have 
non-empty intersection, while p(Y) has zero volume because Y 
is a line object in p. 
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Case 5: P is X outside Y. Since P is not de- 
ducible from F, it follows that none of the relation- 
ships of the form X z Y is deducible from F where 
3: E {left-of, behind, above} (If any of these rela- 
tionships were deducible from F, then r itself will be 
deducible from F using rule V). Now, we extend X and 
Y so that all other (i.e. other than r) relationships be- 
tween X and Y, and all their relationships with other 
objects, deducible from F, are preserved. The way the 
extensions are done depends upon how X and Y are 
positioned in p. The modifications to the picture are 
similar to those done in cases 1 and 2. 

The following case is the most difficult case; other 
cases can be handled similarly. Assume that the rela- 
tionships X left-of Y, X above Y and X behind Y 
are satisfied in p. Now take any point u E p(Y), and 
extend it horizontally towards X, by going around ob- 
stacles, such that the the x-coordinate of the end point 
of the extension is equal to the highest x-coordinate 
of any point in p(X). As in cases 1 and 2, we 
use Extendleft(Y,d,) operation where dz is the d- 
ifference between the x-coordinates of u, and the x- 
coordinate the rightmost point in p(X). This shift 
preserves all relationships in F. Let ui denote the end 
point of the above extension, and pl be the resulting 
picture. 

Now, extend Y from the point ui vertically upwards 
until the y-coordinate of the end point us is equal to 
the y-coordinate of the lowest point in p(X). Let d, be 
the difference between the y-coordinate of the lowest 
point in p(X) and the y-coordinate of ui. To do this, 
we use the Extend-up(Y,dv) operation as defined in 
case 1. This modification preserves all relationships in 
F. Let p2 be the resulting picture. 

Let d, be the difference between the smallest z- 
coordinate of any point in p(X) and the z-coordinate 
of 212. Now extend Y from uz in the z-direction until 
the z-coordinate of the end point of the extension is e- 
qual to the smallest z-coordinate of any point in p(X). 
This is achieved by the operation Extend-back(Y, d,). 
Let uz be the end point of the above extension, and p3 

be the resulting picture. Now, it should be easy to see 
that we can take any point in m(X) and join it with us 
so that all the points on the line are in bounds(ps, X). 
It is not difficult to see that the above construction 
can be carried out such that the resulting picture p’ 
satisfies all the relationships in F. Clearly, the point 
us is going to be common to both the objects X and 
Y in p’. Hence the relationship P is not satisfied in p’. 

0 
Addition of “right -of”, “below” and 
“infront-of” 

Now, we show how to include the relationship sym- 
bols right-of, below and in-front-of into the deduc- 
tive system. We simply add the following additional 

rules relating them to other relationship symbols. 

IX. These rules say that left-of and right-of are d- 
uals. 
A right-of B :: B left-of A 
A left-of B :: B right-of A 

X. These rules say that above and below are duals. 
A below B :: B above A 
A above B :: B below A 

XI. These rules say that behind and in-front-of are 
duals. 
A behind B :: B in-front-of A 
A in-front-of B :: B behind A 

The soundness of the above rules should be obvi- 
ous. Let S denote all the rules from I through XI. 
Recall that R denotes the set of rules from I thorugh 
VIII. Now, we prove that the set of rules S is com- 
plete. Let F be any set of relationships involving al- 
l relationship symbols including right-of, below and 
in-front-of. Let r be any relationship implied by F, 
i.e. every picture p that satisfies F also satisfies r. 
Now we will show that r is deducible from F using 
the rules in S. Let E be the set of relationships ob- 
tained from F by replacing every relationship of the 
form A right-of B by B left-of A, every relationship 
of the form A below B by B above A and every rela- 
tionship of the form A in-front-of B by B behind A. 
Now define a relationship r’ which is a dual of of r 
as follows. If r is A right-of B, or is A below B, 
or is A in-front-of B then r’ is B left-of A, or is 
B above A, or is B behind A, respectively. Other- 
wise, r’ is r itself. From theorem 2, we see that rt is 
deducible from E using the rules in R. Also, all the re- 
lationships in E are deducible from F using the rules 
IX through XI. The relationship rt is also deducible 
from r using these rules. Putting all these observa- 
tions together, we see that r is deducible from F using 
the rules in S. 

Incompleteness for a-dimensional pictures 

In this section we show that the set of rules given by 
R is incomplete for 2-dimensional pictures. We give 
a counter example to show the incompleteness. First, 
using the relationship symbols that we have, we as- 
sert that an object X is enclosed between the objects 
A, B, C and D as shown in figure 2. To do this, we first 
state that the objects A, B overlap, B, C overlap, C, D 
overlap and D, A overlap. Next we state that A is to 
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the left of X and X is to the left of C. We also state 
that B is above X and X is above D. All these rela- 
tionships ensure that X is enclosed by A, B, C and D. 
Next we assert that another object Y overlaps with X, 
but is outside the objects A, B, C and D. This essen- 
tially means that Y also is enclosed by A, B, C and D. 
Then we assert that another object .Z is to the left of 
A, B, C and D. Let F be the set of all these relation- 
ships. Clearly, 2 is to the left of Y in this picture. It 
should be easy to see that every 2-dimensional picture, 
which is connected, and which satisfies all the relation- 
ships in F, also satisfies the relationship 2 left-of Y, 
i.e. the relationship Z left-of Y is implied by the re- 
lationships in F. By exhaustively enumerating all the 
relationships that can be deduced from F using the 
rules in R, it is easy to see that Z left-of Y is not 
deducible from F using the rules given by R. 

--Y- 
/z *\i Y X 

I D 

C 

- 

Figure 2 Illustrating incompleteness for 2-D 
objects; the objects are not necessarily lines. 

4 Conclusions and Discussion 

In this paper, for the first time, we have presented a 
deductive system for reasoning about a wide variety 
of spatial properties in picture retrieval systems. We 
have shown that our deductive system is complete for 
3-dimensional pictures. We have also shown that this 
system is incomplete for 2-dimensional pictures. 

We assumed that all objects in the pictures are con- 
nected and closed. The closedness assumption is made 
for technical convenience and is not crucial; the com- 
pleteness continues to hold even if objects do not sat- 
isfy this property. On the other hand, the connected- 
ness assumption is crucial. This property prevents an 
object from having disjoint parts. We briefly discuss 
the consequences of discarding the connectedness as- 
sumption. In this case, the deductive system present- 
ed in this paper can be shown to be complete for 3- 
dimensional as well as for 2-dimensional pictures. For 
3-dimensional pictures, the completeness proof given 
in the paper continues to hold. (For 2-dimensional pic- 
tures, observe that the counter example given at the 
end section 3 and shown in figure 2, is no longer valid; 

that is, the set of relationships F given there no longer 
imply the relationship 2’7 outside Y. To see this con- 
sider a picture in which Y has two disjoint parts, one 
part overlaps with X and is inside the area enclosed 
by A, B, C and D, the other part is outside this region 
and overlaps with 2.) Now we briefly show the con- 
struction of the completeness proof for S-dimensional 
pictures when we discard the connectedness assump- 
tion. Consider the current proof for 3-dimensional pic- 
tures. In this proof, we assume that a relationship r 
is not deducible from a given set of relationships F, 
and construct a picture that satisfies all relationship- 
s in F but does not satisfy r. The only place where 
we use the 3-dimensional property is, when we make 
an extension/modification to an object to go around 
other objects (see figure l), by using the third dimen- 
sion, in order to avoid undesired overlap conditions. 
In such situations, since we no longer require the con- 
nectedness property, we simply make the object being 
extended to be discontinuous, i.e. one part of the ob- 
ject is on one side of the obstacle and the other part 
on the other side; then we do not need the third di- 
mension to go around the obstacles. The closedness 

Now, we would like to discuss other spatial opera- 
tors. The operators left-of right-of above, below, be- 
hind and in-front-of considered in the paper are strict 
operators; that is, A left-of B is satisfied iff every 
point in A is strictly to the left of every point in B. 
Now, consider the addition of non-strict operators to 
the previous set of operators. The rules I,II,III,V,IX,X 
and XI in our deductive system ( note that 1X,X and 
XI are given at the end of section 3) involve the above 
mentioned strict operators. All these rules excepting 
V are sound for non-strict operators also. We extend 
these rules to include the non-strict operators. Rule 
V needs to be changed slightly for non-strict opera- 
tors. After these modifications, by adding another set 
of rules, we can obtain a proof system for a set of 
operators consisting of the above strict operators, the 
corresponding non-strict operators, and the operators 
inside, outside, overlaps. This proof system can be 
shown to be complete for strictly S-dimensional pic- 
tures (i.e. pictures in which all objects have non-zero 
volume). 

In this paragraph, we briefly discuss how the spatial 
relationships and feature indices (see [MS93a]) can be 
used to retrieve pictures. We assign a similarity mea- 
sure with each picture denoting how closely the picture 
matches the user description. The similarity measure 
is based on the objects and the relationships in com- 
mon between the picture and the user description. We 
distinguish “fundamental” and implied relationships, 
assign different weights to them. To efficiently com- 
pute the similarity measures, we employ indices on the 
spatial relationships to retrieve ids of pictures. The de- 
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tails of this method, which uses the deductive system 
presented in this paper, will be addressed in a subse- 
quent paper. 

As part of the future work, it will be interesting 
to extend our rules so as to make the extended rules 
to be complete for 2-dimensional pictures that satisfy 
the connectedness property. Also, other application 
dependent spatial operators and deductive systems for 
them need to be explored. 
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