
Client-Server Paradise*

David J. Dewitt, Navin Kabra, Jun Luo, Jignesh M. Patel, and Jie-Bing Yu
Computer Sciences Department,

University of Wisconsin, Madison
paradise@cs.wisc.edu

Abstract

This paper describes the design and implementation
of Paradise, a database system designed for handling
GIS type of applications. The current version of Par-
adise, uses a client-server architecture and provides an
extended-relational data model for modeling GIS ap-
plications. Paradise supports~an extended version of
SQL and provides a graphical user interface for query-
ing and browsing the database. We also describe the
results of benchmarking Paradise using the Sequoia
2000 storage benchmark.

1 Introduction

Over the last five years interest in Geographic Infor-
mation Systems (GIS) has increased significantly. Ex-
isting systems represent an integration of ideas from
many different fields including remote sensing, pho-
togrammetry, and computer cartography [MGRSl]. In
turn, new application domains have placed additional
demands on existing systems. For example, GIS sys-
tems are now being used to store and process vast
amounts of remote-sensed data gathered from sensors
on satellites. These satellites scan the surface of the
earth, measuring certain electromagnetic properties of
the surface. This information is then radioed down
to a receiving station on the surface. Since this pro-
cess is completely automated and continues non-stop,
the data volumes are enormous. In addition to stor-
ing the raw data, the receiving station will also gen-
erally reprocesses the new data into a set of standard
data products that are then made available to scien-
tists around the world.

*This work was partially supported by NASA Contracts
#USFLA-5555-17 and #NAGW-3895 and by an IBM Research
Initiation Grant.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

In addition to having to store and manage large
volumes of data, GIS systems must also be capable of
handling a variety of different data and query types.
For example, many GIS applications provide support
for at least two forms of spatial data: raster and vector
data. Raster data is usually represented as a two (or
more) dimensional array of integer or floating point
values, corresponding, for example, to readings taken
by a sensor on a satellite. Vector data, on the other
hand, is generally composed of a set of lines, represent-
ing, for example, the outline of a region. The type of
queries posed in such a system will frequently include
predicates involving spatial relationships, such as spa-
tial overlap or containment. In addition to providing
an expressive data model and query language, a GIS
must also provide an efficient mechanism for perform-
ing operations on spatial data if it is to successfully
process spatial queries on large volumes of data.

Existing GIS systems employ a variety of dif-
ferent architectures [MP94]. Some systems (e.g.
GRASS [Sea92]) t s ore all data in normal operating
system files, providing a library of functions for re-
trieving, manipulating, and displaying data. From
a traditional database perspective these systems are
very limited in terms of functionality especially with
respect to query optimization and processing, transac-
tion support, concurrency control, and physical data
independence. Other GIS systems [Mor92, HHK+93],
employ a hybrid approach in which a traditional rela-
tional database manager is used to store non-spatial
data with the spatial data going into either the file
system (ARC/INFO) or a spatial data manager (Pa-
pyrus). While the hybrid approach has been quite suc-
cessful, it complicates query optimization and execu-
tion, especially in a multiuser environment. The third
approach, as exemplified by Postgres [SR86], Mon-
tage [Ube94], GE0 [vvO92], and Paradise uses a in-
tegrated approach in which all data is stored in the-
database system.

We began the Paradise (Parallel Data Information
System) project in early 1993 [DLPY93] as a re-
sponse to the challenges posed by the Sequoia bench-
mark [SFGM93]. The goal of the Paradise project is to
apply the object-oriented and parallel database tech-
nology developed as part of the EXODUS [CDF+86]

558

and Gamma [DGS+SO] projects to the task of imple-
menting a parallel GIS system capable of managing ex-
tremely large (multi-terabyte) data sets such as those
that will be produced by the upcoming NASA EOSDIS
project [Car92]. The project is focusing its resources
on algorithms, processing, and storage techniques, and
not on making new contributions to the data modeling,
query language, or user interface domains. Paradise
supports storing, browsing, and querying of geographic
data sets. Its data model is an extended-relational
data model, extended with raster, polygon, and poly-
line ADTs and typed references. An extension of SQL
is provided to support ad-hoc queries over extents of
persistent objects. Paradise uses SHORE [CDF+94]
as its storage manager for persistent objects, and a
graphical user interface that is built using Tk, a pub-
lic domain X11 toolkit.

At the outset, we organized the Paradise project as
two phases. The goal of first phase was to produce a
client-server version of Paradise. The second phase of
the project is to parallelize the Paradise server to op-
erate on a shared-nothing [St0861 multiprocessor (our
target multiprocessor platform is a 64 processor/64
disk Intel Paragon). The first phase is now complete
and is described in this paper. In addition to allow-
ing us to “get our feet wet” in the GIS domain, phase
one of the project has produced a usable, client-server
version of the system whose performance and function-
ality is comparable to other integrated systems.

The remainder of the paper is organized as follows.
Section 2 describes Paradise’s data model and query
language. The software architecture of the system, in-
cluding several novel techniques for dealing with spa-
tial data, is presented in Section 3. Section 4 contains
a performance evaluation of the system using the Se-
quoia benchmark. Finally section 5 contains our con-
clusions and some future plans.

2 Data Model And Query Language
2.1 Data Model

Paradise provides an extended-relational data model
for modeling GIS applications. Three type construc-
tors are provided: extent, tuple, and reference. An
extent consists of a set of objects of the same type.
A Paradise database consists of one or more such ex-
tents. Objects themselves are defined using the tuple
type constructor. Each attribute can be an instance of
either a standard base type (i.e. integer, float, string,
. . .), one of the predefined GIS-specific abstract data
types (ADTs) including polygon, polyline, and raster,
or a typed reference to another object. Since extents
themselves are typed objects, the use of references al-
lows the definition of a fairly rich set of complex ob-
jects. In addition, one can define functions on the

ADTs which can be used in the predicate of a query.
The ADTs, their functions, and their operators (meth-
ods) are defined and coded in C++. The type system
can be extended either through inheritance from exist-
ing ADTs or by defining new ones. New ADTs must
first be registered with the catalog manager before be-
ing used to define new object types. As an exam-
ple, consider the weather database shown in Figure 1.
In the example, “Text”, “Baster”, “Date”, “Polyline”
and “Polygon” are some of the predefined ADTs.

While fairly rich, the Paradise data model is more
restricted than what a full object-oriented database
system would provide [ABD+89]. For example,
Paradise does not directly support set-valued at-
tributes. We made this simplifying decision in or-
der to avoid many of the implementation complexi-
ties associated with a full object-oriented data model.
When the SHORE implementation of the ODMG stan-
dard [Cat931 object-oriented data model ODL is op-
erational, we plan on switching to it.

create extent Instrument (name String,
type Integer, manual Text);

create extent CloudCover (
cloudDensity Raster,
measuringDevice ref Instrument, date Date);

create extent Rivers(name String,
shape Polyline, flood-plain Polygon,
water-level Integer, levee-status Integer);

create extent Cities(boundary Polygon,
name String, population Integer) ;

Figure 1: Sample Paradise Schema.

2.2 The Query Language

As a query language, Paradise provides an extended
version of SQL. To SQL we have added the ability to
invoke methods defined on the ADTs, and the abil-
ity to follow inter-object references using the standard
nested dot notation [Zan83] for accessing components
of complex objects (i.e. x.y.z).

Consider the schema shown in Figure 1. To locate
cities that could be affected by floods, one might pose
the query (Note that this query performs a spatial join
between the Cities and Rivers extents):

Select * from Cities, Rivers where
Cities.boundary overlaps Rivers.flood-plain
and Rivers. levee-status = “Weak”

This query might be executed by first select-
ing all the Rivers tuples that satisfy the predi-
cate on levee-status. Then, if an index exists

559

on the boundary attribute of the Cities extent, a
nested-loops index join might be performed using the
flood-plain attribute of the selected Rivers tuples
to filter out the “non-matching” Cities tuples.

As another example consider the query for finding
the current cloud cover over all “large” cities, for which
a “severe thunderstorm” warning needs to be issued:

Select name, cloudDensity.clip(boundary)
from Cities, CloudCover
where boundary.areaO > 900 and

date = “9/15/94” and
cloudDensity.clip(boundary).average()>lO

Here area is a function that is defined on the
polygon ADT, average is a function defined on the
raster ADT, and clip is a function on the raster
ADT that takes a polygon as its argument. The
query selects all Cities that have an area greater
than 900 sq miles and “joins” it with the CloudCover
tuple that was scanned on “g/15/94”. Further,
only those “join” result tuples that have an aver-
age cloudDensity greater than 10 units are pro-
duced as result tuples. The result tuples have two
attributes-one is the city name, and the other is the
raster image corresponding to the cloud cover over
the city. Note the use of the dot notation in the ex-
pression CloudDensity. clip(boundary) . average0 .
This expression implies that the function clip should
be applied to the CloudCover.cloudDensity at-
tribute. Cities. boundary provides the argument for
this clip function, which returns a value of type
Raster. To this return value, the average function
is applied. The return value of this function is then
used for evaluating the predicate (. . . > 10).

3 Software Architecture

3.1 System Overview

Version 1.0 of Paradise employs a conventional client-
server architecture as shown in Figure 2. The server
includes a tuple manager, an extent manager, a cata-
log manager, a query optimizer, and a scheduler. The
front-end provides a graphical user interface that sup-

ports querying, browsing, and updating of Paradise
objects through either its graphical or textual inter-
faces. In either case, the front-end transforms a query
into our extended SQL syntax and ships it to the
Paradise server for execution. After executing the
query, the server ships the result objects back to the
client process through a Postgres-like portal mecha-
nism [Gro93]. All communication between the front-
end and server processes is in the form of remote pro-
cedure calls running over TCP/IP.

Paradise Client Process Paradiae Server

Meta Data Cache

Figure 2: Paradise Process Architecture

3.2 Paradise User Front-end

Although the user interface is an important compo-
nent of any database system, it is an especially impor-
tant part of a GIS. In particular, a GIS must provide a
convenient graphical interface for the visualization and
manipulation of spatial data. The front-end should be
capable of graphically querying, browsing and updat-
ing spatial objects stored in the database. It should
also be able to address the various complex user re-
quirements for spatial processing and analysis. In this
section, we will describe our approach to developing
such an user front-end for Paradise.

Our first attempt at a front-end used GEO, a
C++ based, graphical user interface for geographical
database systems [vOV91]. GE0 uses the ET++ class
libraries [FW91] (based on X11) as its display vehicle
and Postgres [SR36] as its underlying spatial database
management system. GE0 provides both a graphi-
cal browser for viewing spatial data and a graphical
interface for composing ad-hoc queries.

We converted GE0 to use Paradise instead of Post-
gres as its database server. While this approach en-
abled us to rapidly produce a working graphical user
interface for Paradise, we encontered a number of sig-
nificant problems. First, since GE0 was designed
specifically to run on top of Postgres, each object re-
turned from the Paradise server to the GE0 front-end
had to be converted from its Paradise representation to
the corresponding Postgres representation.’ Needless
to say, the performance of this approach was not very
good. A more serious problem was that Version 1.33
of GE0 cannot display multiple spatial attributes; for
example, an object with both polygon and point at-
tributes. Third, GE0 requires that the result of a join
contain attributes from only one of its input relations.
Finally, the modified ET++ library that GE0 uses
as its display library is extremely complex, not in the
public-domain, and not available for a wide variety of

‘The obvious solution, converting GE0 to understand the
Paradise object format, was determined to be far too difficult.

560

platforms.
Given these limitations we reluctantly decided that

the best solution was to write our own interface. The
approach was simple: “clone” GEO’s “look and feel”
while avoiding the limitations of the current GE0 im-
plementation. The new Paradise front-end is imple
mented using Tk [Ous91], a publicly available X11
toolkit based on a lightweight interpretive command
language Tel [Ous90]. Using Tk, instead of ET++ or
Interviews [LCVSS], resulted in a dramatic reduction2
in the size and complexity of the front-end, without
apparently sacrificing performance. The key features
of the Paradise front-end include:

l Display of objects with spatial attributes on a 2-D
map. For objects with multiple spatial attributes,
one of the spatial attributes can be used to specify
the position of the object on the screen. The spa-
tial ADTs currently supported include points, closed
polygons, polylines, and raster images.

l Layered display of overlapping spatial attributes
from different queries or extents. For example, one
can display city objects that satisfy a certain predi-
cate (e.g. population > 300K) in one layer on top of
a second layer of country objects.

l Querying through a graphical interface: implicitly is-
suing spatial queries by zooming, clicking, or sketch-
ing a rubber-banded box on the 2-D map.

l Querying by explicitly composing ad-hoc queries in
Paradise’s extended SQL syntax.

l Browsing the objects from sn extent. In this mode
attributes are displayed as ASCII strings.

l Updating Paradise objects. The object(s) to be up-
dated can be selected either by pointing-and-clicking
on the 2-D map or by selecting via the textual
browser.

l General catalog operations including browsing, cre-
ating new databases, defining new extents, creating
indices on attributes, and bulk loading data into ex-
tents from the Unix file system.

The structure of the Paradise user front-end is
shown in Figure 3. It consists of the following com-
ponents:

l The Map View is responsible for displaying and
manipulating objects contained in one or more lay-
ers. The current position of the cursor is continu-
ously displayed in a sub-window in units of the map
projection system. Users can point and click on dis-
played objects to view their non-spatial attributes.

2Approximately 75% reduction in the number of lines of code

1 Parad&e Server I

Figure 3: Architecture of the Paradise Front-end

In addition, users can also zoom into a selected re-
gion by sketching a rubber-banded box.

l The Layer Manager is responsible for adding,
deleting, hiding, and reordering layers displayed by
the Map View. Each layer corresponds to an extent
of objects produced by executing some query.

l The Extent browser allows a user to view any Par-
adise extent and adjust the way it should be dis-
played by the Map View. The selected extent be-
comes a new layer with its spatial attributes dis-
playable via the Map View.

l The Query composer allows a user to compose a
SQL query using a simple text editor.

l The Query executor is the interface to the Par-
adise server. It ships SQL queries to Paradise server
for execution and retrieves result tuples into its own
object cache.

l The Object cache caches the result of a query in
formats understood by Tcl/Tk.

l The Meta cache stores the catalog information of
the currently open database.

A screen dump from the Paradise front-end is shown
in Figure 4.

3.3 The Paradise Server

The Paradise server uses SHORE [CDF+94] as its
underlying persistent object manager. The Paradise
server is implemented as a SHORE Value Added
Server (VAS) directly on top of the SHORE Storage
Manager. To the basic SHORE server, Paradise adds
a catalog manager, an extent manager, a tuple man-
ager, a query optimizer and execution engine, and sup-
port for point, polyline, polygon, and raster ADTs.
Since the SHORE server has been designed to run on
shared-nothing multiprocessors, the task of extending

561

Figure 4: Map View of Paradise Front-end

Paradise to such an environment will be significantly
simplified.

Execution of a query in Paradise proceeds as fol-
lows. After submission, the query is sent by the front-
end to the Paradise server for execution. Here the
query is parsed and optimized and an execution plan
is generated. The Parser and Optimizer consult the
Catalog Manager to obtain the necessary type infor-
mation and statistics. Once a query plan has been
generated, the plan is forwarded to the Query Sched-
uler and Executor for execution. As result tuples are
produced, they are packed into pages and shipped to
the client process for display and subsequent manip-
ulation. Upon arrival at the client process, objects
sometimes undergo further transformations (e.g. co-
ordinate projection conversion) prior to display pro-
cessing.

In designing and implementing the Paradise server,
careful attention was paid to insure that the system
could efficiently process queries (especially those in-
volving spatial attributes) on large volumes of data. In
the following sections, we describe several of the more
interesting design and implementation issues that we
encountered during the implementation phase.

3.3.1 Spatial Access Through R*-Trees

In order to support the efficient retrieval of objects
with spatial attributes, R*-trees [BKSSSO] (with full
concurrency control and recovery) were added to the
SHORE storage manager. R*-trees were selected be
cause of their efficacy and “relative” ease of imple-
mentation, especially since we could reuse a lot of the
existing SHORE B+-tree code. Grid files [NHS84]
and KDB-trees [Rob811 were not considered as these
multidimensional access methods do not do a good

job of handling non-point spatial data [Gre89]. R+-
trees [TS87] (another variant of the R-tree [Gut84])
reduce the overlap between nodes by duplicating spa-
tial objects across different nodes. However, when a
full node in an R+-tree is split, the split must be prop-
agated in both a downwards and upwards direction.
This significantly complicates implementing concur-
rency control and recovery. Finally, R*-trees provide
support for “forced reinsert” [BKSSSO], which makes
it possible to dynamically re-clustering spatial objects
in the index. We feel that this feature is very impor-
tant in order to avoid performance degradation in a
dynamically changing environment.

3.3.2 Bulk Loading R*-Trees

An important characteristic of any access method is its
ability to perform initial index construction via a bulk
load. This is especially important in a system like Par-
adise that is designed to efficiently handle very large
volumes of spatial data. With respect to R*-trees, this
requires being able to both load data at a fast rate and
to produce a good clustering of the rectangles in the
resulting index. Many systems, instead of bulk load-
ing the R-tree, use multiple insertions, one per tuple.
This results in very long load times since the R-tree is
split repeatedly during insertions. Bulk loading builds
the index bottom up and guarantees that each index
page is only processed once.

In order to improve the bulk load time while re-
taining the effectiveness of the resulting R*-tree, a
tree packing algorithm must be used. Like [FK93],
our bulk load algorithm does spatial sorting using the
Hilbert Curve. The Hilbert Curve was selected as
it has better performance than other spatial ordering
curves (e.g. Z-ordering, Grey code, column-scan) in
a spatial query processing domain [Jag90]. However,
unlike [FK93], our algorithm does not pack the leaves
of the R*-tree to 100% utilization as we discovered
(through simulation) that doing so may not generate
a well structured R*-tree when the input data is not
distributed uniformly. Our algorithm uses two spe-
cial mechanisms to make it more resilient to different
spatial data distributions:

I) A Heuristic Approach to Rectangle Packing

To guide the packing process, a heuristic is used to de-
cide when to stop adding entries to the current node
and to move on to the next node. The heuristic uses
two parameters, a fill factor for monitoring the utiliza-
tion of the current node and an expansion factor for
measuring the increase in size of the minimum bound-
ing box for the node that would occur if the next rect-
angle were added. When the fill factor reaches a min-
imum threshold (e.g. 75%) and the expansion factor

562

reaches a maximum threshold (e.g. 120%), the packing
process flushes the current node and starts adding en-
tries to the next node. This optimization is designed to
achieve spatial clustering by packing spatially “close”
objects together into the same node to the maximum
extent possible, even if it means incurring some de-
crease in storage utilization. Consequently, spatially
clustered nodes will have less overlap between their
minimum bounding boxes.

II) Caching with Repacking

As each packed node is produced it is added to a small
(e.g. size 3) cache of recently packed nodes that have
not yet been written to disk. Since the nodes in the
cache were packed independently of one another, their
minimum bounding boxes may overlap with one an-
other. The rectangles from each of the nodes in the
cache are then inserted into a single large node. This
node is then resplit into smaller nodes using the stan-
dard R*-tree splitting algorithm. This process of com-
bining and then splitting improves the spatial cluster-
ing and minimizes the overlap between the nodes in
the cache. Finally, the cached node with the smallest
value on the Hilbert Curve is flushed to disk, leaving
room for the next node to be produced.

3.3.3 Implementation of Paradise ADTs

Each Paradise ADT has three different representa-
tions: an in-memory format, a database format, and
an &ernal format. The in-memoq representation
is the format in which the ADTs are stored in user
space; The database representation is the format in
which they are stored on disk/tape in the database;
and the external representation is an ASCII represen-
tation of the data used for either input (e.g. during
initial loading) or output (e.g. as the output of a query
being viewed through the query browser in the front-
end). All ADTs have conversion methods to switch be-
tween the different representations. A base ADT type
is used as the super class of all Paradise ADTs. This
super class provides a set of low-level memory man-
agement routines for memory-resident ADT instances
plus a standard interface for the common conversion
modules.

Paradise ADTs can be classified into two broad cat-
egories: spatial and non-spatial. The spatial ADTs
(points, polygons, and polylines) all provide spatial
methods and operators to deal with spatial analysis
such as overlap, containment, and adjacency. In addi-
tion, each of these operators can be applied to different
types of spatial ADTs (e.g. to determine whether a
polygon and polyline overlap). Spatial functions such
as “minimum bounding box” and “geometric size” cal-
culations are also supported. Each spatial ADT in-

stance also stores its coordinate projection system and
the ADT classes provide methods for converting be-
tween different projection systems. The raster ADT
provides several unique operations including polygon
clip and “lowerresolution”. The raster ADT in de-
scribed in more detail below.

Raster ADT

Raster images tessellate space into regular shaped cells
and assign a value to each cell. The value of each cell
generally corresponds to the readings of some satellite
sensor. Raster images, specially those used for study-
ing large portions of the earth surface, can thus be
very big. For example, the National Oceanographic
and Atmospheric Administration (NOAA) Advanced
Very High Resolution Radiometer (AVHRR) has a
cell size of approximately l.lkm x l.lkm (at the
nadir) [MGRSl]. If the size of each cell value is 2
bytes, each raster image for a region corresponding to
the United States (5500km x 3000km) will consume
about 27 MBytes of space. In order to make opera-
tions on such large images as efficient as possible, the
raster ADT in Paradise employs several techniques to
improve performance. These techniques are described
in the following two sections.

I) Separation of Raster Header and Data

When implementing the raster ADT in Paradise, we
decided to break each raster ADT instance into two
pieces: a raster header and the actual raster image.
The raster header is used to store descriptive data
about the raster image. The actual raster image,
which consists of a two dimensional array of values
(one per cell) is stored as a separate object in the
SHORE storage manager.

The raster header contains the SHORE OID (object
identifier) of the corresponding raster image, the size
of the raster image, and the bounding box of the raster
image.

As an example, consider Figure 5 which shows how
Paradise stores the objects of the CloudCover ex-
tent of the weather database (see Figure 1 for the
database schema). Each CloudCover instance has
three attributes: date of type Date, measuringDevice
which is a reference to an Instrument object, and
cloudDensity which is of type Raster. Physically each
object in the extent consists of three values: a date,
the OID of the instrument used to take this measure-
ment, and the raster header for the cloudDensity at-
tribute. The objects containing the raster images for
the CloudCover extent are themselves stored as large
objects in a separate SHORE file.

This ,approach has a number of significant advan-
tages. First, as illustrated by Figure 5, the objects

563

Figure 5: Physical Representation of the CloudCover
Extent

containing the actual raster images can transparently
migrate between secondary and tertiary storage. Sec-
ond, by storing the raster images as large objects in a
separate SHORE file, the tuples in the primary extent
remain physically clustered with one another, signifi-
cantly improving the performance of a sequential scan
over the extent. Finally, even for queries involving the
raster attribute, the raster images need not always be
brought into memory. For example, consider a clip op-
eration between a polygon and a raster attribute. To
determine, whether an object satisfies the predicate
we only need to check the bounding box information
stored in the raster header part of the tuple. Even
if the tuple does satisfy the clip predicate the raster
images are fetched “lazily” - only when the image ac-
tually needs to be manipulated or displayed.

To further enhance performance of operations on
raster images, each raster image is actually decom-
posed into regular rectangular shaped regions called
tiles. The data in each tile is stored as a separate
SHORE object. A map table (one per each raster im-
age) is used for maintaining the correspondence be-
tween the tile objects and the region of the raster im-
age corresponding to that tile object. The raster
header simply stores the OID of the map table object.

Decomposition of the raster image into tiles allows
Paradise to fetch only those portions that are required
to execute an operation. For example, consider Fig-
ure 6, which illustrates the raster image being clipped
by a polygon (as required by query 2 in Section 2.2).
When the raster attribute is first needed for perform-
ing the clip operation, only the mapping information
for the raster image is read from the disk. The OID
part of the raster header is “swizzled” to point to the
in-memory mapping information. From the spatial
position of the polygon and the mapping table, we can
precisely calculate the tiles of the raster image that

Figure 6: Processing the Clip Function for Attributes
of Type Raster

are needed by the clip operation. Then, each relevant
tile of the input is read from the disk and processed
by the clip operation.

II) Compression as an Optimization Strategy

While compression techniques have been widely used
in many image processing domains, only occasionally
have they been integrated directly into a database sys-
tem [SWKH94, GS91]. Several problems arise when
such an integration is attempted. First, the unit of
compression is generally the entire image. This ap-
proach makes sense if the entire image is always re-
quired. However, if only a piece of the image is
needed, the cost of uncompressing the entire image
may overshadow the improvement in performance re-
sulting from having to read less data from disk. The
situation is even worse if part of the image is updated
as the entire object will have to be read, uncompressed,
updated, recompressed, and written back to disk. A
second problem is the unpredictability of the effective-
ness of the compression algorithms in handling vari-
ous kinds of data. If the compression ratio (defined as
“~~~~~~=,W~~~~~~~~~~~~) is too low, then the added
cost of compression/decompression process could de-
grade overall system performance.

In Paradise, we combine lossless compression tech-
niques with decomposition to solve the first problem.
As discussed above, raster images are stored on sec-
ondary (and tertiary) storage as a number of smaller
tiles. Each tile serves as the basic unit of compres-
sion. The raster image now becomes a large object
with compressed tiles as its subcomponents. The map-
ping between a particular position in the image and

564

its associated tile is performed via the mapping ta-
ble (which is stored along with the tiles). To handle
the unpredictability of the compression algorithm, we
monitor the effectiveness of each compressed tile as it
is created. If compression does not reduce the size of
the tile significantly, we store the tile in its uncom-
pressed form (a flag in the mapping table is used to
indicate whether or not a tile is compressed).

Currently, only the basic LZW algorithm [We1841
is used for compression and all raster objects are de-
composed into rectangular shaped tiles. In the future,
we plan on adding fancier, domain specific compres-
sion algorithms. We are also considering adopting the
Quadtree [Sam891 approach, which has the additional
advantage of improving the performance for certain
types of spatial analysis on raster objects.

4 Performance Evaluation

To evaluate the performance of Paradise, we used the
Sequoia 2000 Storage Benchmark [SFGM93]. The Se-
quoia benchmark uses real data sets and defines a suite
of 11 queries that were chosen to be representative of
the queries that earth scientists frequently pose to such
a system. The benchmark has four different scales
of data. For the purpose of benchmarking Paradise,
we chose the regional benchmark. The data for this
benchmark is fairly big (just over 1GByte) and can fit
on a single disk. At later stages in the project, we
intend to run the national and, perhaps, the earth
benchmark. The national benchmark is around 18
GByte and the earth benchmark is multiple terabytes.
While the national benchmark will fit on a moderate-
size secondary storage system, the earth benchmark
clearly requires the use of a tertiary storage system.

A brief description of the regional benchmark fol-
lows (for more details, readers are referred to the orig-
inal benchmark paper [SFGM93]).

4.1 Description of the Regional Benchmark

The regional benchmark comprises of data correspond-
ing to a 1280km X 800km rectangular region, covering
parts of California and Nevada. The data set for this
benchmark primarily consists of the following different
data sets.

l Raster data. This corresponds to the readings of
the earth surface taken by sensors on a satellite. The
raster image consists of a 16 bit value for each cell
of the area being scanned. The size of each cell is
0.5km X 0.5km and hence each raster image is about
8MBytes. Each image has a time field (when the
reading was taken) and a frequency field (frequency
of the instrument taking the reading) associated with

it. The raster data set contains a total of 130 such
readings.

l Polygon data. This consists of a set of regions, the
boundaries of which are defined using a collection of
lines. Each region has an integer typed landuse value
associated with it.

l Point data. This consists of (location, name) pairs,
which correspond to geographic points that have spe-
cific geographic features.

l Directed Graph data. This data set contains in-
formation about drainage networks. Each river is
represented as a collection of line segments.

The Paradise schema for the Sequoia benchmark con-
sists of the following extents

create extent raster (time Integer,
frequency Integer, data Raster);

create extent polygon (landuse Integer,
shape ClosedPolygon);

create extent point (location Point,
name String) ;

create extent graph (shape PolyLine);

A brief description of the queries 1 . . . 10 follows (for
more details see [SFGM93]). Terms in a query in all
capitals (e.g. FBEQ, RECT . ..) are constants.

Query 1: Loads all the data files and builds
a clustered R*-tree on “point.location” and “poly-
gon.shape” . Non-clustered B+-tree indices axe
constructed on “rasterfrequency”, “raster.time”,
“point .name” and “polygon.landuse”.

Query 2: This involves clipping a portion of the
raster images taken by a certain sensor.

select raster.data.clip(RECT), raster.time
from raster where frequency = FREIJ

Query 3: This computes the average of the clipped
portion of the raster images taken at a certain time.

select average (raster.data.clip(RRCT))
from raster where time = TIME

Query 4: This query selects one raster image
(there is only one raster image for a given time and
frequency), which is then clipped to the rectangular
region under study. The result tuple is stored at a
lower resolution.

create extent rasterTemp (time Integer,
frequency Integer, data Raster);

insert into rasterTemp
select time, frequency,

data.clip(FlECT-VAL).lower-res(RES_VAL)

565

from raster name String) ;
where time = TIME and frequency = FREQ

Query 5: This query selects a given point.

select * from point where name = POINT-NAME

Query 6: This query select and stores all polygons
that overlap with the specified rectangular region.

create extent polygonTemp (landuse Integer,
shape ClosedPolygon);

insert into polygonTemp
select * from polygon
where shape overlaps FUXT

Query 7: This query finds all polygons, greater
than a certain area, that are contained in a circle.

select * from polygon
where shape containedIn Circle(LOC, RADIUS)

and shape.areaO > AREA;

Query 8: This query selects all polygons that over-
lap a rectangular region around a point. Note this
query involves a spatial join between the point and
the polygon data.

select polygon.location, polygon.lsnduse
from polygon, point
where point.name = POINT-NAME

and polygon.shape overlaps
point.location.makebox(SIDE-VAL)

Query 9: This query selects all raster images cor-
responding to polygons with a certain landuse. This
query is a spatial join between the polygon and the
raster extents.

select polygon.shape,
raster.data.clip(polygon.shape)

from polygon, raster
where polygon.lsnduse = LANDUSE

and raster.frequency = FREQ
and raster. time = TIME

Query 10: This query again performs a spatial join
between the point and the polygon data, selecting all
points that overlap polygons with a specified landuse
value. The query is executed as two parts. In the
first part we select all the points that overlap with the
selected polygons. In the next part we remove from
the selected points those points that overlap with any
islands.

create extent pointsFoo(location Point,
name String) ;

create extent pointsResult(location Point,

insert into pointsFoo
select distinct point.name, point.location
from polygon, point
where polygon.landuse = LANDUSE and

polygon.shape overlaps point.location

insert into pointsResult
select * from pointsFoo minus
select distinct pointsFoo.name,

pointsFoo.location
from islands, pointsFoo
where islands.shape overlaps

pointsFoo.location

4.2 Effectiveness of Compression in Conjunc-
tion With Tiling

In this section, we evaluate the effectiveness of com-
pression and the choice of a tile size for the raster
ADT. The use of compression has the benefit of reduc-
ing the amount of data that is stored and read from
the disk. On the other hand, using compression incurs
a CPU overhead for compressing and decompressing
the data. Furthermore, compression is more effective
(yields larger compression ratios) if the unit of com-
pression is large. Since we use a tile as the basic unit
for compression, this argues for larger tile sizes. How-
ever, using a larger tile size implies that operations like
the clip operation will fetch more redundant data.

To quantify these tradeoffs, we ran the raster
queries (queries 2, 3, 4 and 9) of the Sequoia 2000
benchmark for three configurations. The first config-
uration used a tile size of 8KB, the same as SHORE’s
page size. This configuration represents the best case
for not using compression. The relatively small tile
size minimizes the amount of redundant data that is
read from disk. The second configuration used a very
large tile size of 512KB in conjunction with compres-
sion. The last configuration, which lies somewhere in
the middle of the spectrum, used compression with a
tile size of 128KB.

The execution time for running queries 4, 2, 3, 4
and 9 are shown in Table 1. (The system configu-
ration used here was the same as that described in
Section 4.4.)

As can be seen from Table 1, using compression in-
creases the database loading time (query 1). For the
512KB tile size, the average compression ratio was ob-
served to be about 1.85, implying a 46% reduction in
the amount of data that was written to the disk. The
128KB tile size configuration had a similar compres-
sion ratio (of about 1.75, implying a 43% reduction
in the amount of data that was written to the disk).

Query No Compr. Compr. Compr.
8KB 128KB 512KB

tiles tiles tiles
1 3019.9 set 3613.0 set 4104.7 set
2 18.0 set 13.1 sec. 18.3 set
3 2.3 set 2.0 set 3.0 set
4 0.6 set 0.6 set 0.7 set
9 2.8 set 2.8 set 4.7 set

Table 1: Effect of Compression and Tile Size

While compression reduced the amount of data that
got written to the disk, the CPU overhead for com-
pression outweighed the savings in disk I/O thereby
increasing the overall load time.

Looking at the query execution times in Table 1, we
observe that as we move from a 8KB tile size to the
configuration using a 128KB tile size with compres-
sion, the query execution times almost always improve.
However, moving to a 512KB tile size degrades the per-
formance because more redundant data gets fetched,
while the compression ratio increases only slightly.

4.3 Effectiveness of Building Clustered Spa-
tial Indices

As mentioned in Section 3.3.2, Paradise provides a
mechanism for building spatially-clustered R*-trees.
Clustered indices have the advantage that fewer data
pages need to be fetched (as objects “close” to each
other are on the same page). On the other hand, build-
ing a clustered spatial index requires that the tuples
be clustered based on their spatial position. A non-
clustered index, however, only requires sorting the
(oid, bounding box) pairs for each tuple. Thus a clus-
tered spatial index speeds the evaluation of queries,
while incurring a load time penalty. To quantify the
tradeoffs, we ran an experiment that had the following
two parts: one in which a clustered index was created
on the shape attribute of the polygon extent, and the
other in which a non-clustered index was created on
the same attribute. The results of this experiment are
shown in Table 2.

c1ust.
R*-tree
559.0 set

7.4 set
0.2 set
7.2 set

Table 2: Effect of clustering

The load time shown above includes the time to
load the polygon data and the time to build the R*-
tree. We observe that for a 43% penalty in loading

the data (which has to be done only once), we obtain
a 21% performance improvement for Query 8. Query 7
retrieves only one polygon, and as a result there is no
difference between the two cases. All of these queries
have a low selectivity (less than 1%) and hence retrieve
very few tuples. With a larger selectivity, we would
have observed a bigger difference in the performance
of the two cases.

4.4 Comparison with Other Systems

In this section, we compare Paradise with two other
systems, namely POSTGRES [SR86] and Illustra (for-
merly called Montage [Ube94]). In [Sto94] it was
shown that these systems outperformed GRASS and
IPW, two popular GIS systems. The machine used
for the benchmark was a Sun SPARC-lo/40 with 32
MBytes of memory, running SunOS Release 4.1.3. One
Seagate 2GByte disk (3.5” SCSI, model # ST 12400N)
was used to hold the database. (Both Illustra and
POSTGRES used a UNIX file, while Paradise used
a raw disk for its data volume. Neither Illustra nor
POSTGRES supports the use of a raw disk for the data
volume). A second Seagate 2GByte disk was used to
hold the raw input data and the log for each system.
The binaries of each system were stored on a third
1GB disk (3.5” SCSI, model # ST 11200N), which
also served as the system swap disk. About 200MB
of free disk space was left on this disk to ensure that
none of the systems paid an unrealistically high cost
due to swapping.

We used version 4.2 of POSTGRES and version 1.3
of Illustra. For Paradise, the use of compression was
turned on and a tile size of 128KB was used for the
raster ADT. Both Paradise and Illustra were run with
a 16 MB buffer pool. The performance of POSTGRES
was better with 0.5 MB buffer pool than with a 16MB
buffer pool. Hence, a 0.5MB buffer pool was used for
POSTGRES.

The polygon data was pre-processed, so that very
large polygons (> 500 points) were broken up into
smaller polygons. This was done because the current
version of Paradise3 and the version of POSTGRES
that we were using could not handle these very large
polygons. Although Illustra could handle them, to en-
sure a fair comparison, we used the same pre-processed
data for all the systems.

For all the systems, we ran all the benchmark
queries five times and took the average of the mid-
dle three numbers. Each run was taken by starting up

a client that sequentially issued all the queries in the
benchmark. Further, each query was run as a separate
transaction. Thus for the five runs, we ran the client

3Paradise can handle large objects, but currently has some
problems with the spatial sorting of large objects.

567

executable five times in a row.
All the scripts that were used for running the bench-

mark are available via anonymous ftp from the Par-
adise directory of ftp. cs .wisc.edu. The scripts for
POSTGRES and Illustra are modified versions of the
scripts that we had received from the developers.

A few modification were made to the scripts pro-
vided by POSTGRES and Illustra in order to ex-
actly match the the benchmark originally specified in
[SFGM93]. For example, the scripts that we received
used a value of 50 meters for the constant SIDE-VAL
in query 8 (refer to section 4.1 for the query). How-
ever, the value specified for this in the original bench-
mark [SFGM93] is 50,000 meters.

Paradise cannot run query 10 because the minus
operator is not currently implemented.

The numbers for the three systems are shown in
Table 3.

Query

1
2
3
4
5
6
7
8
9
10

Paradise

3613.0 set
13.1 set
2.0 set
0.6 set
0.2 set
7.0 set
0.6 set
9.4 set
2.8 set

-

Illustra

5748.0 see
14.6 set
4.8 set
2.4 set
1.0 set

20.5 set
1.2 set

23.7 set
1.1 set
0.6 set

POST-
GRES

8687.0 set
13.4 set
5.4 set
1.3 set
0.9 set

36.0 set
30.5 set
62.2 set
2.8 set

327.2 set

Table 3: Sequoia Benchmark numbers.

As can be seen, except for query 9, Paradise gen-
erally has the best performance. The raster queries
(2, 3, and 4) benefit from the use of performance en-
hancing techniques like tiling and compression, while
the polygon and the point queries (6, 7 and 8) benefit
from the use of clustered indices on spatial attributes.

5 Conclusions and Future Directions

This paper describes the client-server version of Par-
adise, a new GIS under development at the Univer-
sity of Wisconsin. Paradise provides an extended-
relational data model with support for point, raster,
polygon, and polyline ADTs, and an extended version
of SQL for formulating ad-hoc queries. A graphical
user interface based on the Tk toolkit allows the user
to query and browse graphically.

To facilitate handling large collections of large
raster, satellite images, Paradise incorporates several
performance optimizations including the transparent
separation of raster images from their associated meta-
data, division of raster images into tiles to minimize

unnecessary I/O, and the automatic application of
lossless compression/decompression on a tile-by-tile
basis. Paradise’s performance is competitive with
other systems when executing queries from the Sequoia
benchmark.

During the next phase of the project we will add
support for tertiary storage and extend the software
to run on “shared nothing” multiprocessors [Sto86].

6 Acknowledgement

We would like to thank C. K. Tan and Mike Zwill-
ing for patiently answering our questions regarding
the SHORE storage manager, the developers of the
Sequoia benchmark for providing us with a realistic
benchmark with real data sets, Paul Brown for his
help with Postgres and She1 Finkelstein for his assis-
tance with Illustra. We would also like to acknowl-
edge Joe Hellerstein for answering some of our Post-
gres questions and in helping us install Montage on
our machines. Jeff Naughton deserves special thanks
for his many useful suggestions during the course of
this project.

References
[ABD+89] M. Atkinson, F. Bancilhon, D. Dewitt, K. Dit-

trich, D. Maier, and S. Zdonik. “The Object-Oriented
Database Manifesto”. In International Conference on
DOOD, Japan, 1989.

[BKSSSO] N. Beckmann, Hans-Peter Kriegel, R. Schnei-
der, and B. Seeger. “The R*-tree: An Efficient and Ro-
bust Access Method for Points and Rectangles”. In Pro-
ceedings of the 1990 ACM-SIGMOD Conference, June
1990.

[Car921 R. V. Carlone. “NASA’s EOSDIS Development
Approach”. Technical report, United States General Ac-
counting Office, February 1992.

[Cat931 R. G. G. Cattell, editor. “The Object Database
Standard: ODMG-93”. Morgan Kaufmann Publishers,
San Mateo, California, 1993. With contributions by T.
Attwood, J. Duhl, G. Ferran, M. Loomis and D. Wade.

[CDF+86] M. J. Carey, D. J. Dewitt, D. Frank, G. Graefe,
M. Murahkrishna, J. E. Richardson, and E. J. Shekita.
“The Architecture of the EXODUS Extensible DBMS”.
In Proceedings of the 12th VLDB Conf., September 1986.

[CDF+94] M. J. Carey, D. J. Dewitt, M. J. Franklin,
N. E. Hall, M. McAuliffe, J. F. Naughton, D. T. Schuh,
M. H. Solomon, C. K. Tan, 0. Tsatalos, S. White, and
M. J. Zwilling. “Shoring up Persistent Objects”. In Pro-
ceedings of the 1994 ACM-SIGMOD Conference, “Min-
neapolis, Minnesota”, May 1994.

[DGS+SO] D. J. Dewitt, S. Ghandeharizadeh, D. Schnei-
der, A. Bricker, H. Hsiao, and R. Rasmussen. “The
Gamma Database Machine Project”. IEEE Tkansac-
tions on Knowledge and Data Engineering, March 1990.

568

[DLPY93] D. J. Dewitt, J. Luo, J. M. Patel, and J. Yu.
“Paradise - A Parallel Geographic Information System”.
In Proceedings of the ACM Workshop on Advances in
Geographic Information Systems, Arlington, Virginia,
November 1993.

[FK93] C. Faloutsos and I. Kamel. “Packed R-Trees Using
Fractals”. In Conference on Intelligence and Knowledge
Management, November 1993.

(FW91] E. Famma and A. Weinand. “ET++3.0-
Introduction and Installation”. UBILAB, Union Bank
of Switzerland, 1991.

[Gre89] D. Greene. “An Implementation and Performance
Analysis of Spatial Data Access Methods”. In Proc. of
the 5th Data Engineering Conf., 1989.

[Gro93] The Postgres Group. “Postgres 4.1 Reference
Manual”. University of California, Berkeley, CA, 1993.

[GS91] G. Graefe and L. D. Shapiro. “Data Compres-
sion and Database Performance”. In Proceedings of the
ACM/IEEE-Computer Science Symposium on Applied
Computing, 1991.

[Gut841 A. Gutman. “R-trees: A Dynamic Index Struc-
ture for Spatial Searching”. In Proceedings of the 1984
ACM-SIGMOD Conference, Boston, Mass, June 1984.

[HHK+93] W. Hasan, M. Heytens, C. Kolovson, M. A.
Neimat, S. Potamianos, and D. Schneider. “Papyrus
GIS Demonstration”. In Proceedings of the 1993 ACM-
SIGMOD Conference, Washington, D.C., May 1993.

[Jag901 H. V. Jagadish. “Linear Clustering of Objects with
Multiple Attributes”. In Proceedings of the 1990 ACM-
SIGMOD Conference, May 1990.

[LCVSS] M. A. Linton, P. R. Calder, and J. M. Vlissides.
“Interviews: A C++ Graphical Interface Toolkit”.
Technical Report CSL-TR-88-358, Stanford University,
July 1988.

[MGRSl] D. J. Maguire, M. F. Goodchild, and D. W.
Rhind. “Geogmphic Information Systems”, volume 1.
Longman Scientific & Technical, copublished in the US
with John Wiley & Sons, Inc. New York, 1991.

[Mor92] S. Morehouse. “The ARC/INFO Geographic In-
formation System”. Computers and Geosciences: An
International Journal, 18(4), August 1992.

[MP94] C. B. Medeiros and F. Pires. “Databases for GIS”.
In SIGMOD Record, March 1994.

[NHS84] J. Nievergelt, H. Hinterberger, and K. C. Sevcik.
“The Grid File: An Adaptable, Symmetric Multikey File
Structure”. ACM tinsactions on Database Systems,
March 1984.

[Ous90] J. Ousterhout. “Tel: An embeddable command
language”. In Proceedings of the 1990 Winter USENIX
Conference, 1990.

[Ous91] J. Ousterhout. “An X11 toolkit based on the Tel
language”. In Proceedings of the 1991 Winter USENIX
Conference, 1991.

[Rob811 J. T. Robinson. “The K-D-B Tree: A Search
Structure for Large Multidimensional Dynamic In-
dexes”. In Proceedings of the 1981 ACM-SIGMOD Con-
ference, April 1981.

[Sam89] H. Samet. “The Design and Analysis of Spatial
Data Structures”. Addison-Wesley, 1989.

[Sea921 Michael Shapiro and et. al. “GRASS 4.0 Progmm-
mer ‘s Manual”. U.S. Army Consrtuction Engineering
Research Laboraroty, 1992.

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, and
J. Meredith. “The SEQUOIA 2000 Storage Benchmark”.
In Proceedings of the 1993 ACM-SIGMOD Conference,
Washington, D.C., May 1993.

[SR86] M. Stonebraker and L. A. Rowe. “The Design of
Postgres” . In Proceedings of the 1986 ACM-SIGMOD
Conference, 1986.

[Sto86] M. Stonebraker. “The Case for Shared Nothing”.
Database Engineering, 9(l), 1986.

[Sto94] M. Stonebraker, editor. “Readings in Database
Systems”, pages 492-505. Morgan Kaufmann, 1994.

[SWKH94] M. Stonebraker, E. Wong, P. Kreps, and
G. Held. “The Design and Implementation of INGRES”,
pages 37-53. Morgan Kaufmann, 1994.

[TS87] C. Faloutsos T. Sellis, N. Roussopoulos. “The
R+-Tree: A Dynamic Index for Multi-Dimensional Ob-
jects”. In Proceedings of the 13th VLDB Conf., Septem-
ber 1987.

[Ube94] M. Ubell. “The Montage Extensible DataBlade
Architecture”. In Proceedings of the 1994 ACM-
SIGMOD Conference, May 1994.

[vOV91] P. van Oosterom and T. Vijlbrief. “Building a
GIS on Top of the Open DBMS Postgres”. In Pro-
ceedings EGIS’91, Second European Conference on Ge-
ogmphical Information Systems, April 1991.

[VvO92] T. Vijlbrief and P. van Oosterom. “The GE0
System: an Extensible GIS”. In Proceedings of the
International Symposium on Spatial Data Handling,
Charleston, South Carolina, August 1992.

[We1841 T.A. Welch. “A Technique for High-Performance
Data Compression”. IEEE Computer, 17(6), 1984.

[Zan83] C. Zaniolo. “The Database Lanaguage GEM”.
In Proceedings of the 1983 ACM-SIGMOD Conference,
May 1983.

569

