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Abstract 

This paper describes the design and implementation 
of Paradise, a database system designed for handling 
GIS type of applications. The current version of Par- 
adise, uses a client-server architecture and provides an 
extended-relational data model for modeling GIS ap- 
plications. Paradise supports~an extended version of 
SQL and provides a graphical user interface for query- 
ing and browsing the database. We also describe the 
results of benchmarking Paradise using the Sequoia 
2000 storage benchmark. 

1 Introduction 

Over the last five years interest in Geographic Infor- 
mation Systems (GIS) has increased significantly. Ex- 
isting systems represent an integration of ideas from 
many different fields including remote sensing, pho- 
togrammetry, and computer cartography [MGRSl]. In 
turn, new application domains have placed additional 
demands on existing systems. For example, GIS sys- 
tems are now being used to store and process vast 
amounts of remote-sensed data gathered from sensors 
on satellites. These satellites scan the surface of the 
earth, measuring certain electromagnetic properties of 
the surface. This information is then radioed down 
to a receiving station on the surface. Since this pro- 
cess is completely automated and continues non-stop, 
the data volumes are enormous. In addition to stor- 
ing the raw data, the receiving station will also gen- 
erally reprocesses the new data into a set of standard 
data products that are then made available to scien- 
tists around the world. 
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In addition to having to store and manage large 
volumes of data, GIS systems must also be capable of 
handling a variety of different data and query types. 
For example, many GIS applications provide support 
for at least two forms of spatial data: raster and vector 
data. Raster data is usually represented as a two (or 
more) dimensional array of integer or floating point 
values, corresponding, for example, to readings taken 
by a sensor on a satellite. Vector data, on the other 
hand, is generally composed of a set of lines, represent- 
ing, for example, the outline of a region. The type of 
queries posed in such a system will frequently include 
predicates involving spatial relationships, such as spa- 
tial overlap or containment. In addition to providing 
an expressive data model and query language, a GIS 
must also provide an efficient mechanism for perform- 
ing operations on spatial data if it is to successfully 
process spatial queries on large volumes of data. 

Existing GIS systems employ a variety of dif- 
ferent architectures [MP94]. Some systems (e.g. 
GRASS [Sea92]) t s ore all data in normal operating 
system files, providing a library of functions for re- 
trieving, manipulating, and displaying data. From 
a traditional database perspective these systems are 
very limited in terms of functionality especially with 
respect to query optimization and processing, transac- 
tion support, concurrency control, and physical data 
independence. Other GIS systems [Mor92, HHK+93], 
employ a hybrid approach in which a traditional rela- 
tional database manager is used to store non-spatial 
data with the spatial data going into either the file 
system (ARC/INFO) or a spatial data manager (Pa- 
pyrus). While the hybrid approach has been quite suc- 
cessful, it complicates query optimization and execu- 
tion, especially in a multiuser environment. The third 
approach, as exemplified by Postgres [SR86], Mon- 
tage [Ube94], GE0 [vvO92], and Paradise uses a in- 
tegrated approach in which all data is stored in the- 
database system. 

We began the Paradise (Parallel Data Information 
System) project in early 1993 [DLPY93] as a re- 
sponse to the challenges posed by the Sequoia bench- 
mark [SFGM93]. The goal of the Paradise project is to 
apply the object-oriented and parallel database tech- 
nology developed as part of the EXODUS [CDF+86] 
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and Gamma [DGS+SO] projects to the task of imple- 
menting a parallel GIS system capable of managing ex- 
tremely large (multi-terabyte) data sets such as those 
that will be produced by the upcoming NASA EOSDIS 
project [Car92]. The project is focusing its resources 
on algorithms, processing, and storage techniques, and 
not on making new contributions to the data modeling, 
query language, or user interface domains. Paradise 
supports storing, browsing, and querying of geographic 
data sets. Its data model is an extended-relational 
data model, extended with raster, polygon, and poly- 
line ADTs and typed references. An extension of SQL 
is provided to support ad-hoc queries over extents of 
persistent objects. Paradise uses SHORE [CDF+94] 
as its storage manager for persistent objects, and a 
graphical user interface that is built using Tk, a pub- 
lic domain X11 toolkit. 

At the outset, we organized the Paradise project as 
two phases. The goal of first phase was to produce a 
client-server version of Paradise. The second phase of 
the project is to parallelize the Paradise server to op- 
erate on a shared-nothing [St0861 multiprocessor (our 
target multiprocessor platform is a 64 processor/64 
disk Intel Paragon). The first phase is now complete 
and is described in this paper. In addition to allow- 
ing us to “get our feet wet” in the GIS domain, phase 
one of the project has produced a usable, client-server 
version of the system whose performance and function- 
ality is comparable to other integrated systems. 

The remainder of the paper is organized as follows. 
Section 2 describes Paradise’s data model and query 
language. The software architecture of the system, in- 
cluding several novel techniques for dealing with spa- 
tial data, is presented in Section 3. Section 4 contains 
a performance evaluation of the system using the Se- 
quoia benchmark. Finally section 5 contains our con- 
clusions and some future plans. 

2 Data Model And Query Language 
2.1 Data Model 

Paradise provides an extended-relational data model 
for modeling GIS applications. Three type construc- 
tors are provided: extent, tuple, and reference. An 
extent consists of a set of objects of the same type. 
A Paradise database consists of one or more such ex- 
tents. Objects themselves are defined using the tuple 
type constructor. Each attribute can be an instance of 
either a standard base type (i.e. integer, float, string, 
. . . ), one of the predefined GIS-specific abstract data 
types (ADTs) including polygon, polyline, and raster, 
or a typed reference to another object. Since extents 
themselves are typed objects, the use of references al- 
lows the definition of a fairly rich set of complex ob- 
jects. In addition, one can define functions on the 

ADTs which can be used in the predicate of a query. 
The ADTs, their functions, and their operators (meth- 
ods) are defined and coded in C++. The type system 
can be extended either through inheritance from exist- 
ing ADTs or by defining new ones. New ADTs must 
first be registered with the catalog manager before be- 
ing used to define new object types. As an exam- 
ple, consider the weather database shown in Figure 1. 
In the example, “Text”, “Baster”, “Date”, “Polyline” 
and “Polygon” are some of the predefined ADTs. 

While fairly rich, the Paradise data model is more 
restricted than what a full object-oriented database 
system would provide [ABD+89]. For example, 
Paradise does not directly support set-valued at- 
tributes. We made this simplifying decision in or- 
der to avoid many of the implementation complexi- 
ties associated with a full object-oriented data model. 
When the SHORE implementation of the ODMG stan- 
dard [Cat931 object-oriented data model ODL is op- 
erational, we plan on switching to it. 

create extent Instrument (name String, 
type Integer, manual Text); 

create extent CloudCover ( 
cloudDensity Raster, 
measuringDevice ref Instrument, date Date); 

create extent Rivers(name String, 
shape Polyline, flood-plain Polygon, 
water-level Integer, levee-status Integer); 

create extent Cities(boundary Polygon, 
name String, population Integer) ; 

Figure 1: Sample Paradise Schema. 

2.2 The Query Language 

As a query language, Paradise provides an extended 
version of SQL. To SQL we have added the ability to 
invoke methods defined on the ADTs, and the abil- 
ity to follow inter-object references using the standard 
nested dot notation [Zan83] for accessing components 
of complex objects (i.e. x.y.z). 

Consider the schema shown in Figure 1. To locate 
cities that could be affected by floods, one might pose 
the query (Note that this query performs a spatial join 
between the Cities and Rivers extents): 

Select * from Cities, Rivers where 
Cities.boundary overlaps Rivers.flood-plain 
and Rivers. levee-status = “Weak” 

This query might be executed by first select- 
ing all the Rivers tuples that satisfy the predi- 
cate on levee-status. Then, if an index exists 
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on the boundary attribute of the Cities extent, a 
nested-loops index join might be performed using the 
flood-plain attribute of the selected Rivers tuples 
to filter out the “non-matching” Cities tuples. 

As another example consider the query for finding 
the current cloud cover over all “large” cities, for which 
a “severe thunderstorm” warning needs to be issued: 

Select name, cloudDensity.clip(boundary) 
from Cities, CloudCover 
where boundary.areaO > 900 and 

date = “9/15/94” and 
cloudDensity.clip(boundary).average()>lO 

Here area is a function that is defined on the 
polygon ADT, average is a function defined on the 
raster ADT, and clip is a function on the raster 
ADT that takes a polygon as its argument. The 
query selects all Cities that have an area greater 
than 900 sq miles and “joins” it with the CloudCover 
tuple that was scanned on “g/15/94”. Further, 
only those “join” result tuples that have an aver- 
age cloudDensity greater than 10 units are pro- 
duced as result tuples. The result tuples have two 
attributes-one is the city name, and the other is the 
raster image corresponding to the cloud cover over 
the city. Note the use of the dot notation in the ex- 
pression CloudDensity. clip(boundary) . average0 . 
This expression implies that the function clip should 
be applied to the CloudCover.cloudDensity at- 
tribute. Cities. boundary provides the argument for 
this clip function, which returns a value of type 
Raster. To this return value, the average function 
is applied. The return value of this function is then 
used for evaluating the predicate ( . . . > 10). 

3 Software Architecture 

3.1 System Overview 

Version 1.0 of Paradise employs a conventional client- 
server architecture as shown in Figure 2. The server 
includes a tuple manager, an extent manager, a cata- 
log manager, a query optimizer, and a scheduler. The 
front-end provides a graphical user interface that sup- 

ports querying, browsing, and updating of Paradise 
objects through either its graphical or textual inter- 
faces. In either case, the front-end transforms a query 
into our extended SQL syntax and ships it to the 
Paradise server for execution. After executing the 
query, the server ships the result objects back to the 
client process through a Postgres-like portal mecha- 
nism [Gro93]. All communication between the front- 
end and server processes is in the form of remote pro- 
cedure calls running over TCP/IP. 

Paradise Client Process Paradiae Server 

Meta Data Cache 

Figure 2: Paradise Process Architecture 

3.2 Paradise User Front-end 

Although the user interface is an important compo- 
nent of any database system, it is an especially impor- 
tant part of a GIS. In particular, a GIS must provide a 
convenient graphical interface for the visualization and 
manipulation of spatial data. The front-end should be 
capable of graphically querying, browsing and updat- 
ing spatial objects stored in the database. It should 
also be able to address the various complex user re- 
quirements for spatial processing and analysis. In this 
section, we will describe our approach to developing 
such an user front-end for Paradise. 

Our first attempt at a front-end used GEO, a 
C++ based, graphical user interface for geographical 
database systems [vOV91]. GE0 uses the ET++ class 
libraries [FW91] (based on X11) as its display vehicle 
and Postgres [SR36] as its underlying spatial database 
management system. GE0 provides both a graphi- 
cal browser for viewing spatial data and a graphical 
interface for composing ad-hoc queries. 

We converted GE0 to use Paradise instead of Post- 
gres as its database server. While this approach en- 
abled us to rapidly produce a working graphical user 
interface for Paradise, we encontered a number of sig- 
nificant problems. First, since GE0 was designed 
specifically to run on top of Postgres, each object re- 
turned from the Paradise server to the GE0 front-end 
had to be converted from its Paradise representation to 
the corresponding Postgres representation.’ Needless 
to say, the performance of this approach was not very 
good. A more serious problem was that Version 1.33 
of GE0 cannot display multiple spatial attributes; for 
example, an object with both polygon and point at- 
tributes. Third, GE0 requires that the result of a join 
contain attributes from only one of its input relations. 
Finally, the modified ET++ library that GE0 uses 
as its display library is extremely complex, not in the 
public-domain, and not available for a wide variety of 

‘The obvious solution, converting GE0 to understand the 
Paradise object format, was determined to be far too difficult. 

560 



platforms. 
Given these limitations we reluctantly decided that 

the best solution was to write our own interface. The 
approach was simple: “clone” GEO’s “look and feel” 
while avoiding the limitations of the current GE0 im- 
plementation. The new Paradise front-end is imple 
mented using Tk [Ous91], a publicly available X11 
toolkit based on a lightweight interpretive command 
language Tel [Ous90]. Using Tk, instead of ET++ or 
Interviews [LCVSS], resulted in a dramatic reduction2 
in the size and complexity of the front-end, without 
apparently sacrificing performance. The key features 
of the Paradise front-end include: 

l Display of objects with spatial attributes on a 2-D 
map. For objects with multiple spatial attributes, 
one of the spatial attributes can be used to specify 
the position of the object on the screen. The spa- 
tial ADTs currently supported include points, closed 
polygons, polylines, and raster images. 

l Layered display of overlapping spatial attributes 
from different queries or extents. For example, one 
can display city objects that satisfy a certain predi- 
cate (e.g. population > 300K) in one layer on top of 
a second layer of country objects. 

l Querying through a graphical interface: implicitly is- 
suing spatial queries by zooming, clicking, or sketch- 
ing a rubber-banded box on the 2-D map. 

l Querying by explicitly composing ad-hoc queries in 
Paradise’s extended SQL syntax. 

l Browsing the objects from sn extent. In this mode 
attributes are displayed as ASCII strings. 

l Updating Paradise objects. The object(s) to be up- 
dated can be selected either by pointing-and-clicking 
on the 2-D map or by selecting via the textual 
browser. 

l General catalog operations including browsing, cre- 
ating new databases, defining new extents, creating 
indices on attributes, and bulk loading data into ex- 
tents from the Unix file system. 

The structure of the Paradise user front-end is 
shown in Figure 3. It consists of the following com- 
ponents: 

l The Map View is responsible for displaying and 
manipulating objects contained in one or more lay- 
ers. The current position of the cursor is continu- 
ously displayed in a sub-window in units of the map 
projection system. Users can point and click on dis- 
played objects to view their non-spatial attributes. 

2Approximately 75% reduction in the number of lines of code 

1 Parad&e Server I 

Figure 3: Architecture of the Paradise Front-end 

In addition, users can also zoom into a selected re- 
gion by sketching a rubber-banded box. 

l The Layer Manager is responsible for adding, 
deleting, hiding, and reordering layers displayed by 
the Map View. Each layer corresponds to an extent 
of objects produced by executing some query. 

l The Extent browser allows a user to view any Par- 
adise extent and adjust the way it should be dis- 
played by the Map View. The selected extent be- 
comes a new layer with its spatial attributes dis- 
playable via the Map View. 

l The Query composer allows a user to compose a 
SQL query using a simple text editor. 

l The Query executor is the interface to the Par- 
adise server. It ships SQL queries to Paradise server 
for execution and retrieves result tuples into its own 
object cache. 

l The Object cache caches the result of a query in 
formats understood by Tcl/Tk. 

l The Meta cache stores the catalog information of 
the currently open database. 

A screen dump from the Paradise front-end is shown 
in Figure 4. 

3.3 The Paradise Server 

The Paradise server uses SHORE [CDF+94] as its 
underlying persistent object manager. The Paradise 
server is implemented as a SHORE Value Added 
Server (VAS) directly on top of the SHORE Storage 
Manager. To the basic SHORE server, Paradise adds 
a catalog manager, an extent manager, a tuple man- 
ager, a query optimizer and execution engine, and sup- 
port for point, polyline, polygon, and raster ADTs. 
Since the SHORE server has been designed to run on 
shared-nothing multiprocessors, the task of extending 
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Figure 4: Map View of Paradise Front-end 

Paradise to such an environment will be significantly 
simplified. 

Execution of a query in Paradise proceeds as fol- 
lows. After submission, the query is sent by the front- 
end to the Paradise server for execution. Here the 
query is parsed and optimized and an execution plan 
is generated. The Parser and Optimizer consult the 
Catalog Manager to obtain the necessary type infor- 
mation and statistics. Once a query plan has been 
generated, the plan is forwarded to the Query Sched- 
uler and Executor for execution. As result tuples are 
produced, they are packed into pages and shipped to 
the client process for display and subsequent manip- 
ulation. Upon arrival at the client process, objects 
sometimes undergo further transformations (e.g. co- 
ordinate projection conversion) prior to display pro- 
cessing. 

In designing and implementing the Paradise server, 
careful attention was paid to insure that the system 
could efficiently process queries (especially those in- 
volving spatial attributes) on large volumes of data. In 
the following sections, we describe several of the more 
interesting design and implementation issues that we 
encountered during the implementation phase. 

3.3.1 Spatial Access Through R*-Trees 

In order to support the efficient retrieval of objects 
with spatial attributes, R*-trees [BKSSSO] (with full 
concurrency control and recovery) were added to the 
SHORE storage manager. R*-trees were selected be 
cause of their efficacy and “relative” ease of imple- 
mentation, especially since we could reuse a lot of the 
existing SHORE B+-tree code. Grid files [NHS84] 
and KDB-trees [Rob811 were not considered as these 
multidimensional access methods do not do a good 

job of handling non-point spatial data [Gre89]. R+- 
trees [TS87] (another variant of the R-tree [Gut84]) 
reduce the overlap between nodes by duplicating spa- 
tial objects across different nodes. However, when a 
full node in an R+-tree is split, the split must be prop- 
agated in both a downwards and upwards direction. 
This significantly complicates implementing concur- 
rency control and recovery. Finally, R*-trees provide 
support for “forced reinsert” [BKSSSO], which makes 
it possible to dynamically re-clustering spatial objects 
in the index. We feel that this feature is very impor- 
tant in order to avoid performance degradation in a 
dynamically changing environment. 

3.3.2 Bulk Loading R*-Trees 

An important characteristic of any access method is its 
ability to perform initial index construction via a bulk 
load. This is especially important in a system like Par- 
adise that is designed to efficiently handle very large 
volumes of spatial data. With respect to R*-trees, this 
requires being able to both load data at a fast rate and 
to produce a good clustering of the rectangles in the 
resulting index. Many systems, instead of bulk load- 
ing the R-tree, use multiple insertions, one per tuple. 
This results in very long load times since the R-tree is 
split repeatedly during insertions. Bulk loading builds 
the index bottom up and guarantees that each index 
page is only processed once. 

In order to improve the bulk load time while re- 
taining the effectiveness of the resulting R*-tree, a 
tree packing algorithm must be used. Like [FK93], 
our bulk load algorithm does spatial sorting using the 
Hilbert Curve. The Hilbert Curve was selected as 
it has better performance than other spatial ordering 
curves (e.g. Z-ordering, Grey code, column-scan) in 
a spatial query processing domain [Jag90]. However, 
unlike [FK93], our algorithm does not pack the leaves 
of the R*-tree to 100% utilization as we discovered 
(through simulation) that doing so may not generate 
a well structured R*-tree when the input data is not 
distributed uniformly. Our algorithm uses two spe- 
cial mechanisms to make it more resilient to different 
spatial data distributions: 

I) A Heuristic Approach to Rectangle Packing 

To guide the packing process, a heuristic is used to de- 
cide when to stop adding entries to the current node 
and to move on to the next node. The heuristic uses 
two parameters, a fill factor for monitoring the utiliza- 
tion of the current node and an expansion factor for 
measuring the increase in size of the minimum bound- 
ing box for the node that would occur if the next rect- 
angle were added. When the fill factor reaches a min- 
imum threshold (e.g. 75%) and the expansion factor 
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reaches a maximum threshold (e.g. 120%), the packing 
process flushes the current node and starts adding en- 
tries to the next node. This optimization is designed to 
achieve spatial clustering by packing spatially “close” 
objects together into the same node to the maximum 
extent possible, even if it means incurring some de- 
crease in storage utilization. Consequently, spatially 
clustered nodes will have less overlap between their 
minimum bounding boxes. 

II) Caching with Repacking 

As each packed node is produced it is added to a small 
(e.g. size 3) cache of recently packed nodes that have 
not yet been written to disk. Since the nodes in the 
cache were packed independently of one another, their 
minimum bounding boxes may overlap with one an- 
other. The rectangles from each of the nodes in the 
cache are then inserted into a single large node. This 
node is then resplit into smaller nodes using the stan- 
dard R*-tree splitting algorithm. This process of com- 
bining and then splitting improves the spatial cluster- 
ing and minimizes the overlap between the nodes in 
the cache. Finally, the cached node with the smallest 
value on the Hilbert Curve is flushed to disk, leaving 
room for the next node to be produced. 

3.3.3 Implementation of Paradise ADTs 

Each Paradise ADT has three different representa- 
tions: an in-memory format, a database format, and 
an &ernal format. The in-memoq representation 
is the format in which the ADTs are stored in user 
space; The database representation is the format in 
which they are stored on disk/tape in the database; 
and the external representation is an ASCII represen- 
tation of the data used for either input (e.g. during 
initial loading) or output (e.g. as the output of a query 
being viewed through the query browser in the front- 
end). All ADTs have conversion methods to switch be- 
tween the different representations. A base ADT type 
is used as the super class of all Paradise ADTs. This 
super class provides a set of low-level memory man- 
agement routines for memory-resident ADT instances 
plus a standard interface for the common conversion 
modules. 

Paradise ADTs can be classified into two broad cat- 
egories: spatial and non-spatial. The spatial ADTs 
(points, polygons, and polylines) all provide spatial 
methods and operators to deal with spatial analysis 
such as overlap, containment, and adjacency. In addi- 
tion, each of these operators can be applied to different 
types of spatial ADTs (e.g. to determine whether a 
polygon and polyline overlap). Spatial functions such 
as “minimum bounding box” and “geometric size” cal- 
culations are also supported. Each spatial ADT in- 

stance also stores its coordinate projection system and 
the ADT classes provide methods for converting be- 
tween different projection systems. The raster ADT 
provides several unique operations including polygon 
clip and “lowerresolution”. The raster ADT in de- 
scribed in more detail below. 

Raster ADT 

Raster images tessellate space into regular shaped cells 
and assign a value to each cell. The value of each cell 
generally corresponds to the readings of some satellite 
sensor. Raster images, specially those used for study- 
ing large portions of the earth surface, can thus be 
very big. For example, the National Oceanographic 
and Atmospheric Administration (NOAA) Advanced 
Very High Resolution Radiometer (AVHRR) has a 
cell size of approximately l.lkm x l.lkm (at the 
nadir) [MGRSl]. If the size of each cell value is 2 
bytes, each raster image for a region corresponding to 
the United States (5500km x 3000km) will consume 
about 27 MBytes of space. In order to make opera- 
tions on such large images as efficient as possible, the 
raster ADT in Paradise employs several techniques to 
improve performance. These techniques are described 
in the following two sections. 

I) Separation of Raster Header and Data 

When implementing the raster ADT in Paradise, we 
decided to break each raster ADT instance into two 
pieces: a raster header and the actual raster image. 
The raster header is used to store descriptive data 
about the raster image. The actual raster image, 
which consists of a two dimensional array of values 
(one per cell) is stored as a separate object in the 
SHORE storage manager. 

The raster header contains the SHORE OID (object 
identifier) of the corresponding raster image, the size 
of the raster image, and the bounding box of the raster 
image. 

As an example, consider Figure 5 which shows how 
Paradise stores the objects of the CloudCover ex- 
tent of the weather database (see Figure 1 for the 
database schema). Each CloudCover instance has 
three attributes: date of type Date, measuringDevice 
which is a reference to an Instrument object, and 
cloudDensity which is of type Raster. Physically each 
object in the extent consists of three values: a date, 
the OID of the instrument used to take this measure- 
ment, and the raster header for the cloudDensity at- 
tribute. The objects containing the raster images for 
the CloudCover extent are themselves stored as large 
objects in a separate SHORE file. 

This ,approach has a number of significant advan- 
tages. First, as illustrated by Figure 5, the objects 
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Figure 5: Physical Representation of the CloudCover 
Extent 

containing the actual raster images can transparently 
migrate between secondary and tertiary storage. Sec- 
ond, by storing the raster images as large objects in a 
separate SHORE file, the tuples in the primary extent 
remain physically clustered with one another, signifi- 
cantly improving the performance of a sequential scan 
over the extent. Finally, even for queries involving the 
raster attribute, the raster images need not always be 
brought into memory. For example, consider a clip op- 
eration between a polygon and a raster attribute. To 
determine, whether an object satisfies the predicate 
we only need to check the bounding box information 
stored in the raster header part of the tuple. Even 
if the tuple does satisfy the clip predicate the raster 
images are fetched “lazily” - only when the image ac- 
tually needs to be manipulated or displayed. 

To further enhance performance of operations on 
raster images, each raster image is actually decom- 
posed into regular rectangular shaped regions called 
tiles. The data in each tile is stored as a separate 
SHORE object. A map table (one per each raster im- 
age) is used for maintaining the correspondence be- 
tween the tile objects and the region of the raster im- 
age corresponding to that tile object. The raster 
header simply stores the OID of the map table object. 

Decomposition of the raster image into tiles allows 
Paradise to fetch only those portions that are required 
to execute an operation. For example, consider Fig- 
ure 6, which illustrates the raster image being clipped 
by a polygon (as required by query 2 in Section 2.2). 
When the raster attribute is first needed for perform- 
ing the clip operation, only the mapping information 
for the raster image is read from the disk. The OID 
part of the raster header is “swizzled” to point to the 
in-memory mapping information. From the spatial 
position of the polygon and the mapping table, we can 
precisely calculate the tiles of the raster image that 

Figure 6: Processing the Clip Function for Attributes 
of Type Raster 

are needed by the clip operation. Then, each relevant 
tile of the input is read from the disk and processed 
by the clip operation. 

II) Compression as an Optimization Strategy 

While compression techniques have been widely used 
in many image processing domains, only occasionally 
have they been integrated directly into a database sys- 
tem [SWKH94, GS91]. Several problems arise when 
such an integration is attempted. First, the unit of 
compression is generally the entire image. This ap- 
proach makes sense if the entire image is always re- 
quired. However, if only a piece of the image is 
needed, the cost of uncompressing the entire image 
may overshadow the improvement in performance re- 
sulting from having to read less data from disk. The 
situation is even worse if part of the image is updated 
as the entire object will have to be read, uncompressed, 
updated, recompressed, and written back to disk. A 
second problem is the unpredictability of the effective- 
ness of the compression algorithms in handling vari- 
ous kinds of data. If the compression ratio (defined as 
“~~~~~~=,W~~~~~~~~~~~~) is too low, then the added 
cost of compression/decompression process could de- 
grade overall system performance. 

In Paradise, we combine lossless compression tech- 
niques with decomposition to solve the first problem. 
As discussed above, raster images are stored on sec- 
ondary (and tertiary) storage as a number of smaller 
tiles. Each tile serves as the basic unit of compres- 
sion. The raster image now becomes a large object 
with compressed tiles as its subcomponents. The map- 
ping between a particular position in the image and 
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its associated tile is performed via the mapping ta- 
ble (which is stored along with the tiles). To handle 
the unpredictability of the compression algorithm, we 
monitor the effectiveness of each compressed tile as it 
is created. If compression does not reduce the size of 
the tile significantly, we store the tile in its uncom- 
pressed form (a flag in the mapping table is used to 
indicate whether or not a tile is compressed). 

Currently, only the basic LZW algorithm [We1841 
is used for compression and all raster objects are de- 
composed into rectangular shaped tiles. In the future, 
we plan on adding fancier, domain specific compres- 
sion algorithms. We are also considering adopting the 
Quadtree [Sam891 approach, which has the additional 
advantage of improving the performance for certain 
types of spatial analysis on raster objects. 

4 Performance Evaluation 

To evaluate the performance of Paradise, we used the 
Sequoia 2000 Storage Benchmark [SFGM93]. The Se- 
quoia benchmark uses real data sets and defines a suite 
of 11 queries that were chosen to be representative of 
the queries that earth scientists frequently pose to such 
a system. The benchmark has four different scales 
of data. For the purpose of benchmarking Paradise, 
we chose the regional benchmark. The data for this 
benchmark is fairly big (just over 1GByte) and can fit 
on a single disk. At later stages in the project, we 
intend to run the national and, perhaps, the earth 
benchmark. The national benchmark is around 18 
GByte and the earth benchmark is multiple terabytes. 
While the national benchmark will fit on a moderate- 
size secondary storage system, the earth benchmark 
clearly requires the use of a tertiary storage system. 

A brief description of the regional benchmark fol- 
lows (for more details, readers are referred to the orig- 
inal benchmark paper [SFGM93]). 

4.1 Description of the Regional Benchmark 

The regional benchmark comprises of data correspond- 
ing to a 1280km X 800km rectangular region, covering 
parts of California and Nevada. The data set for this 
benchmark primarily consists of the following different 
data sets. 

l Raster data. This corresponds to the readings of 
the earth surface taken by sensors on a satellite. The 
raster image consists of a 16 bit value for each cell 
of the area being scanned. The size of each cell is 
0.5km X 0.5km and hence each raster image is about 
8MBytes. Each image has a time field (when the 
reading was taken) and a frequency field (frequency 
of the instrument taking the reading) associated with 

it. The raster data set contains a total of 130 such 
readings. 

l Polygon data. This consists of a set of regions, the 
boundaries of which are defined using a collection of 
lines. Each region has an integer typed landuse value 
associated with it. 

l Point data. This consists of (location, name) pairs, 
which correspond to geographic points that have spe- 
cific geographic features. 

l Directed Graph data. This data set contains in- 
formation about drainage networks. Each river is 
represented as a collection of line segments. 

The Paradise schema for the Sequoia benchmark con- 
sists of the following extents 

create extent raster (time Integer, 
frequency Integer, data Raster); 

create extent polygon (landuse Integer, 
shape ClosedPolygon); 

create extent point (location Point, 
name String) ; 

create extent graph (shape PolyLine); 

A brief description of the queries 1 . . . 10 follows (for 
more details see [SFGM93]). Terms in a query in all 
capitals (e.g. FBEQ, RECT . ..) are constants. 

Query 1: Loads all the data files and builds 
a clustered R*-tree on “point.location” and “poly- 
gon.shape” . Non-clustered B+-tree indices axe 
constructed on “rasterfrequency”, “raster.time”, 
“point .name” and “polygon.landuse”. 

Query 2: This involves clipping a portion of the 
raster images taken by a certain sensor. 

select raster.data.clip(RECT), raster.time 
from raster where frequency = FREIJ 

Query 3: This computes the average of the clipped 
portion of the raster images taken at a certain time. 

select average (raster.data.clip(RRCT)) 
from raster where time = TIME 

Query 4: This query selects one raster image 
(there is only one raster image for a given time and 
frequency), which is then clipped to the rectangular 
region under study. The result tuple is stored at a 
lower resolution. 

create extent rasterTemp (time Integer, 
frequency Integer, data Raster); 

insert into rasterTemp 
select time, frequency, 

data.clip(FlECT-VAL).lower-res(RES_VAL) 
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from raster name String) ; 
where time = TIME and frequency = FREQ 

Query 5: This query selects a given point. 

select * from point where name = POINT-NAME 

Query 6: This query select and stores all polygons 
that overlap with the specified rectangular region. 

create extent polygonTemp (landuse Integer, 
shape ClosedPolygon); 

insert into polygonTemp 
select * from polygon 
where shape overlaps FUXT 

Query 7: This query finds all polygons, greater 
than a certain area, that are contained in a circle. 

select * from polygon 
where shape containedIn Circle(LOC, RADIUS) 

and shape.areaO > AREA; 

Query 8: This query selects all polygons that over- 
lap a rectangular region around a point. Note this 
query involves a spatial join between the point and 
the polygon data. 

select polygon.location, polygon.lsnduse 
from polygon, point 
where point.name = POINT-NAME 

and polygon.shape overlaps 
point.location.makebox(SIDE-VAL) 

Query 9: This query selects all raster images cor- 
responding to polygons with a certain landuse. This 
query is a spatial join between the polygon and the 
raster extents. 

select polygon.shape, 
raster.data.clip(polygon.shape) 

from polygon, raster 
where polygon.lsnduse = LANDUSE 

and raster.frequency = FREQ 
and raster. time = TIME 

Query 10: This query again performs a spatial join 
between the point and the polygon data, selecting all 
points that overlap polygons with a specified landuse 
value. The query is executed as two parts. In the 
first part we select all the points that overlap with the 
selected polygons. In the next part we remove from 
the selected points those points that overlap with any 
islands. 

create extent pointsFoo(location Point, 
name String) ; 

create extent pointsResult(location Point, 

insert into pointsFoo 
select distinct point.name, point.location 
from polygon, point 
where polygon.landuse = LANDUSE and 

polygon.shape overlaps point.location 

insert into pointsResult 
select * from pointsFoo minus 
select distinct pointsFoo.name, 

pointsFoo.location 
from islands, pointsFoo 
where islands.shape overlaps 

pointsFoo.location 

4.2 Effectiveness of Compression in Conjunc- 
tion With Tiling 

In this section, we evaluate the effectiveness of com- 
pression and the choice of a tile size for the raster 
ADT. The use of compression has the benefit of reduc- 
ing the amount of data that is stored and read from 
the disk. On the other hand, using compression incurs 
a CPU overhead for compressing and decompressing 
the data. Furthermore, compression is more effective 
(yields larger compression ratios) if the unit of com- 
pression is large. Since we use a tile as the basic unit 
for compression, this argues for larger tile sizes. How- 
ever, using a larger tile size implies that operations like 
the clip operation will fetch more redundant data. 

To quantify these tradeoffs, we ran the raster 
queries (queries 2, 3, 4 and 9) of the Sequoia 2000 
benchmark for three configurations. The first config- 
uration used a tile size of 8KB, the same as SHORE’s 
page size. This configuration represents the best case 
for not using compression. The relatively small tile 
size minimizes the amount of redundant data that is 
read from disk. The second configuration used a very 
large tile size of 512KB in conjunction with compres- 
sion. The last configuration, which lies somewhere in 
the middle of the spectrum, used compression with a 
tile size of 128KB. 

The execution time for running queries 4, 2, 3, 4 
and 9 are shown in Table 1. (The system configu- 
ration used here was the same as that described in 
Section 4.4.) 

As can be seen from Table 1, using compression in- 
creases the database loading time (query 1). For the 
512KB tile size, the average compression ratio was ob- 
served to be about 1.85, implying a 46% reduction in 
the amount of data that was written to the disk. The 
128KB tile size configuration had a similar compres- 
sion ratio (of about 1.75, implying a 43% reduction 
in the amount of data that was written to the disk). 



Query No Compr. Compr. Compr. 
# 8KB 128KB 512KB 

tiles tiles tiles 
1 3019.9 set 3613.0 set 4104.7 set 
2 18.0 set 13.1 sec. 18.3 set 
3 2.3 set 2.0 set 3.0 set 
4 0.6 set 0.6 set 0.7 set 
9 2.8 set 2.8 set 4.7 set 

Table 1: Effect of Compression and Tile Size 

While compression reduced the amount of data that 
got written to the disk, the CPU overhead for com- 
pression outweighed the savings in disk I/O thereby 
increasing the overall load time. 

Looking at the query execution times in Table 1, we 
observe that as we move from a 8KB tile size to the 
configuration using a 128KB tile size with compres- 
sion, the query execution times almost always improve. 
However, moving to a 512KB tile size degrades the per- 
formance because more redundant data gets fetched, 
while the compression ratio increases only slightly. 

4.3 Effectiveness of Building Clustered Spa- 
tial Indices 

As mentioned in Section 3.3.2, Paradise provides a 
mechanism for building spatially-clustered R*-trees. 
Clustered indices have the advantage that fewer data 
pages need to be fetched (as objects “close” to each 
other are on the same page). On the other hand, build- 
ing a clustered spatial index requires that the tuples 
be clustered based on their spatial position. A non- 
clustered index, however, only requires sorting the 
(oid, bounding box) pairs for each tuple. Thus a clus- 
tered spatial index speeds the evaluation of queries, 
while incurring a load time penalty. To quantify the 
tradeoffs, we ran an experiment that had the following 
two parts: one in which a clustered index was created 
on the shape attribute of the polygon extent, and the 
other in which a non-clustered index was created on 
the same attribute. The results of this experiment are 
shown in Table 2. 

c1ust. 
R*-tree 
559.0 set 

7.4 set 
0.2 set 
7.2 set 

Table 2: Effect of clustering 

The load time shown above includes the time to 
load the polygon data and the time to build the R*- 
tree. We observe that for a 43% penalty in loading 

the data (which has to be done only once), we obtain 
a 21% performance improvement for Query 8. Query 7 
retrieves only one polygon, and as a result there is no 
difference between the two cases. All of these queries 
have a low selectivity (less than 1%) and hence retrieve 
very few tuples. With a larger selectivity, we would 
have observed a bigger difference in the performance 
of the two cases. 

4.4 Comparison with Other Systems 

In this section, we compare Paradise with two other 
systems, namely POSTGRES [SR86] and Illustra (for- 
merly called Montage [Ube94]). In [Sto94] it was 
shown that these systems outperformed GRASS and 
IPW, two popular GIS systems. The machine used 
for the benchmark was a Sun SPARC-lo/40 with 32 
MBytes of memory, running SunOS Release 4.1.3. One 
Seagate 2GByte disk (3.5” SCSI, model # ST 12400N) 
was used to hold the database. (Both Illustra and 
POSTGRES used a UNIX file, while Paradise used 
a raw disk for its data volume. Neither Illustra nor 
POSTGRES supports the use of a raw disk for the data 
volume). A second Seagate 2GByte disk was used to 
hold the raw input data and the log for each system. 
The binaries of each system were stored on a third 
1GB disk (3.5” SCSI, model # ST 11200N), which 
also served as the system swap disk. About 200MB 
of free disk space was left on this disk to ensure that 
none of the systems paid an unrealistically high cost 
due to swapping. 

We used version 4.2 of POSTGRES and version 1.3 
of Illustra. For Paradise, the use of compression was 
turned on and a tile size of 128KB was used for the 
raster ADT. Both Paradise and Illustra were run with 
a 16 MB buffer pool. The performance of POSTGRES 
was better with 0.5 MB buffer pool than with a 16MB 
buffer pool. Hence, a 0.5MB buffer pool was used for 
POSTGRES. 

The polygon data was pre-processed, so that very 
large polygons (> 500 points) were broken up into 
smaller polygons. This was done because the current 
version of Paradise3 and the version of POSTGRES 
that we were using could not handle these very large 
polygons. Although Illustra could handle them, to en- 
sure a fair comparison, we used the same pre-processed 
data for all the systems. 

For all the systems, we ran all the benchmark 
queries five times and took the average of the mid- 
dle three numbers. Each run was taken by starting up 

a client that sequentially issued all the queries in the 
benchmark. Further, each query was run as a separate 
transaction. Thus for the five runs, we ran the client 

3Paradise can handle large objects, but currently has some 
problems with the spatial sorting of large objects. 
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executable five times in a row. 
All the scripts that were used for running the bench- 

mark are available via anonymous ftp from the Par- 
adise directory of ftp. cs .wisc.edu. The scripts for 
POSTGRES and Illustra are modified versions of the 
scripts that we had received from the developers. 

A few modification were made to the scripts pro- 
vided by POSTGRES and Illustra in order to ex- 
actly match the the benchmark originally specified in 
[SFGM93]. For example, the scripts that we received 
used a value of 50 meters for the constant SIDE-VAL 
in query 8 (refer to section 4.1 for the query). How- 
ever, the value specified for this in the original bench- 
mark [SFGM93] is 50,000 meters. 

Paradise cannot run query 10 because the minus 
operator is not currently implemented. 

The numbers for the three systems are shown in 
Table 3. 

Query 
# 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Paradise 

3613.0 set 
13.1 set 
2.0 set 
0.6 set 
0.2 set 
7.0 set 
0.6 set 
9.4 set 
2.8 set 

- 

Illustra 

5748.0 see 
14.6 set 
4.8 set 
2.4 set 
1.0 set 

20.5 set 
1.2 set 

23.7 set 
1.1 set 
0.6 set 

POST- 
GRES 

8687.0 set 
13.4 set 
5.4 set 
1.3 set 
0.9 set 

36.0 set 
30.5 set 
62.2 set 
2.8 set 

327.2 set 

Table 3: Sequoia Benchmark numbers. 

As can be seen, except for query 9, Paradise gen- 
erally has the best performance. The raster queries 
(2, 3, and 4) benefit from the use of performance en- 
hancing techniques like tiling and compression, while 
the polygon and the point queries (6, 7 and 8) benefit 
from the use of clustered indices on spatial attributes. 

5 Conclusions and Future Directions 

This paper describes the client-server version of Par- 
adise, a new GIS under development at the Univer- 
sity of Wisconsin. Paradise provides an extended- 
relational data model with support for point, raster, 
polygon, and polyline ADTs, and an extended version 
of SQL for formulating ad-hoc queries. A graphical 
user interface based on the Tk toolkit allows the user 
to query and browse graphically. 

To facilitate handling large collections of large 
raster, satellite images, Paradise incorporates several 
performance optimizations including the transparent 
separation of raster images from their associated meta- 
data, division of raster images into tiles to minimize 

unnecessary I/O, and the automatic application of 
lossless compression/decompression on a tile-by-tile 
basis. Paradise’s performance is competitive with 
other systems when executing queries from the Sequoia 
benchmark. 

During the next phase of the project we will add 
support for tertiary storage and extend the software 
to run on “shared nothing” multiprocessors [Sto86]. 
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