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Abstract 

A join index hierarchy method is proposed to 
handle the “goto’s on disk” problem in object- 
oriented query processing. The method con- 
structs a hierarchy of join indices and trans- 
forms a sequence of pointer chasing operations 
into a simple search in an appropriate join in- 
dex file, and thus accelerates navigation in 
object-oriented databases. The method ex- 
tends the join index structure studied in re- 
lational and spatial databases, supports both 
forward and backward navigations among ob- 
jects and classes, and localizes update prop- 
agations in the hierarchy. Our performance 
study shows that partial join index hierar- 
chy outperforms several other indexing mech- 
anisms in object-oriented query processing. 

1 Introduction 

Query processing and optimization is crucial to 
the performance of object-oriented database systems. 
Substantial researches into query processing and query 
optimization in object-oriented databases have been 
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conducted in recent years with encouraging progress 
reported, e.g., [2, 3, 4, 5, 7, 13, 15, 171. 

Since object-oriented databases support complex 
data objects and enable explicit and natural represen- 
tation of logical relationships among complex objects 
via class/subclass hierarchies, attributes, methods, ob- 
ject identities, etc., navigation among different classes 
and objects via class hierarchies and/or class composi- 
tion hierarchies is an essential operation. Navigations 
from one object in a class to objects in other classes 
are essentially “pointer chasing” (using object identity 
“OID” references) operations which may cause signif- 
icant performance degradation because the objects to 
be accessed may be stored at widely scattered loca- 
tions and many disk read operations may be required 
to fetch them into main memory [4]. The attempts to 
solve this problem can be classified into three classes 
of techniques: the indexing method, the read-ahead 
buffering method (e.g., [ll]), and parallel complex ob- 
ject assembly method (e.g., [5]). 

Following the philosophy of indexing methods, a 
join index hierarchy method is proposed in this pa- 
per, which extends the join index technique developed 
in relational databases [16] and its variations in spatial 
databases [12, 91, constructs hierarchies of join indices 
to accelerate navigations via a sequence of objects and 
classes. In a broad sense, a join index in our method 
stores the pairs of identifiers of objects of two classes 
that are connected via dir& or indirec2 logical rela- 
tionships. Thoee formed by direct logical relationships 
are called base join indices; whereas those represent 
indirecf logical relationships are called derived join in- 
dices. Base and derived join indices form a join index 
hierarchy. A join index hierarchy supports navigations 
through a sequence of classes in either forward or back- 
ward navigation direction and supports efficient up- 
date propagation starting with the base join indices 
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by localizing update propagations in the hierarchy. 
The following considerations motivate the proposal 

of the join index hierarchy structures. 
First, by construction of join index hierarchies, the 

“pointer chasing,, problem, that is, accessing objects 
and their properties via a sequence of referencing 
pointers to widely scattered disk locations, is trans- 
formed into simple accessing of appropriate join index 
files. This may significantly reduce the I/O accessing 
cost in object-oriented query processing. The price 
for this I/O cost reduction is the increase of space 
for storing join index files, which is practically im- 
plementable since large inexpensive disk memories are 
available with reasonable cost based on the current 
hardware technology. 

Secondly, with join index hierarchies, appropriate 
join index files for specific navigation operations can 
be selected by consulting the index hierarchy direc- 
tory. Moreover, update propagation can be localized 
to a few base and derived join index files in the hi- 
erarchy. Both forward and backward navigations can 
be supported with minimum storage and update over- 
heads. The structure is especially good for frequent 
navigations and infrequent updates. 

Thirdly, using join index hierarchies, object-at-a- 
time styled navigation is transformed into efficient, set- 
oriented and associative access of join indices. More- 
over, it supports navigations among objects connected 
not only via a sequence of attribute relationships but 
also via a sequence of methods and deduction rules. 
This is accomplished by precomputing methods and 
rules and storing the related information in join in- 
dices. By doing so, the object-at-a-time evaluation 
of computationally intensive methods or deduction- 
intensive rules can be transformed into efficient and 
set-oriented accessing of precomputed relationships. 
Moreover, retrieval from either directions becomes 
available even for methods and deduction rules. 

Fourthly, in some cases, the join of some classes on 
certain attributes may generate a substantially large 
join index file because of its large join selectivity, or 
some class may sustain regular and frequent updates. 
Joins involving such kind of characteristics should be 
considered as “fire walls” in the construction of join 
index hierarchies. The system should prohibit the con- 
struction of such join indices or the merge of such join 
indices into the hierarchy in order to avoid the poten- 
tial explosion on the size of join index files or the heavy 
cost of updates. Queries involving such joins can be 
processed by performing concrete joins or using the 
base join index files, if available. 

The remaining of the paper is organized as follows. 
In section 2, following a preliminary survey of the pre- 
vious work on join indices and object-oriented naviga- 

tion techniques, three join index hierarchy structures 
are introduced. In section 3, the construction and up- 
date maintenance of join index hierarchies are stud- 
ied. In section 4, an analytical evaluation of three join 
index hierarchy structures and some potentially com- 
petitive associative indexing structures are presented. 
In section 5, implementation considerations, improve- 
ments and extensions of the approach are discussed. 
Finally, the study is summarized in section 6. 

2 Join Index Hierarchy 

2.1 Previous work 

Join index structure was first proposed by Valduriez 
[16] for optimizing join and semijoin operations in re- 
lational databases. A join index file stores pairs of the 
surrogates of joining tuples from two relations, which 
transforms expensive joins to selections in join index 
files. Since efficient accessing structures can be con- 
structed on join indices, it has been shown that re- 
lational join using join index structures outperforms 
other relational join methods in many cases [16]. 

Join index structures can be applied to different ap- 
plication domains. For example, a spatial join index 
structure was developed by Rotem [12] and organized 
in the form of grid files. Further, certain precomputed 
information (e.g. distance) can be associated with such 
spatial join index structure to speed up query process- 
ing as shown by Lu and Han [9]. 

In the studies of query optimization in object- 
oriented databases, special attention has been paid to 
path indices which associate the values of nested at- 
tributes with the objects in the head class of a path 
expression, e.g., by Maier and Stein [lo], Bertino and 
Kim [2] and Bertino [l]. In Maier and Stein [lo], 
a series of index components, indices on each level 
of the nested attributes, are maintained for the pur- 
pose of update propagations. In Bertino and Kim [2], 
three index structures are presented: nested index, 
path index and multiindex, which have been later ex- 
tended to handle inheritance of classes appearing in 
a path expression [l]. The nested index structure fa- 
cilitates associative search and update by storing to- 
gether the key values of the tail attribute and the ob- 
jects of the head class and intermediate objects of a 
path expression in primary records. An auxiliary in- 
dex, which basically keeps direct reference informs 
tion between objects, together with the extra infor- 
mation in the primary records are used to propagate 
updates. The nested index structure in general out- 
performs the other two index structures [l]. Shekita 
and Carey [14] d escribe a mechanism called field repli- 
cations which replicate the values of the nested at- 
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tributes. In-place field replication stores the replicated 
data with the objects, whereas se.parate field replica- 
tion stores the replicated data in a separated place. 
The separated replication is used to solve the issue of 
updating the shared replicated data. Inverted path 
structures, which are similar to the index components 
in [lo], are used to support update propagation. These 
approaches support only the associated retrieval of ob- 
jects through nested attributes but not navigations in 
both directions along a reference chain. 

Kemper and Moerkotte [6] present a data structure 
called access support relation which keeps the identi- 
fiers of those objects connected by attribute relation- 
ships in a path expression and can span over the refer- 
ence chains of a path expression. Several alternatives 
which include full, canonical, left and right extensions 
and decomposition of access support relations for a 
given path expression are discussed. The optimal one 
is determined according to the domain-specific infor- 
mation such as the probabilities of different types of 
queries and updates. The join index hierarchy ap- 
proach proposed here shares certain similarity with 
this approach. However, the storage size of each com- 
ponent in an access support relation could be large be- 
cause all the identifier sequences of the joinable objects 
along an object path corresponding to the component 
are stored, and any two objects in the two classes could 
be connected by more than one object path. Further, 
an update on one object may need to be propagated 
to several components or to the entire access support 
relation, which could be costly. 

2.2 Preliminaries 

Following the previous research, a join index hierarchy 
structure is proposed here to support efficient naviga- 
tion through multiple object classes. The variations 
of a join index hierarchy can be constructed based on 
the richness of the derived join index structures. Three 
kinds of structures: based-only, complete, and partial, 
are investigated in terms of their construction, naviga- 
tion and update propagation. 

A database schema is a directed graph in which the 
nodes correspond to classes, and edges to relationships 
between classes. Suppose At is an attribute of class 
Ci, and Ak ranges over class Ci . Then there exists 
a directed edge from Ci to Cj in the schema graph, 
labeled with At. Moreover, if for i = 0, 1, . . . , n - 1, 
there is a directed edge from Ci to Ci+i, labeled with 
A i+i, in a database schema, then (C’s, Al, Cl, A2, . . . , 
A,, C,, ) is a schema path. 

Regarding to a schema path (CO, AI, Cl, Aa, . . . , 
A,, , Cn) over a database schema, a join index file (node) 
JZ(i, j) (1 5 i < j 5 fl) consists of a set of tuples 

A Schema Path in a Database Schema 

Figure 1: A Schema Path of Length 5 

(OZD(oi),OZD(oj),m), where oi and oj are objects 
of classes Ci and Cj respectively, and there exists an 
object path (oi, oi+l, . . . , oj-1, oj ) such that for k = 
O,l ,..., j-i- 1, oi+k+l is referenced by oi+k via the 
attribute Ai+k+l, and m is the number of the above 
distinct object paths that connect the objects oi and 
Oj . 

Join index nodes connecting different object classes 
along a schema path form a join index hierarchy, de- 
noted as JZH(Cs, Al, Cl, AI,. . . , A,,, C,,), or simply 
JZH(O,n). The longest join index path, JZ(O,n), is 
the root of the hierarchy. Each node JZ(i, j) where 
j - i > 1 may have two direct children JZ(i, j - k) and 
JZ(i+Z,j)whereO<)< j-iandO<Z< j-i. The 
join index nodes JZ(i, i + l), for i = 0, 1, . . . , n - 1, 
are at the bottom of the hierarchy, and are therefore, 
called base join indices. 

Figure 1 shows a schema path of length 5 on a class 
composition hierarchy and Figure 2(a)(b)(c) illustrates 
the following three join index hierarchy structures. 

1. A complete join index hierarchy (C-JIH), as 
shown in Figure 2(a), consists of a complete set 
of all the possible base and derived join indices. 
It supports navigations between any two directly 
or indirectly connected object classes along the 
schema path. 

2. A base join index “hierarchy” (B-JIH), as 
shown in Figure 2(b), consists of only base join 
indices. It supports direct navigations only be- 
tween any two adjacent classes. It cannot be en- 
titled as a “hierarchy” in a rigorous sense but can 
be viewed as a degenerate hierarchy with all the 
higher level join index nodes missing, and these 
nodes can be derived from the base join indices. 

3. A partial join index hierarchy (P-JIH), as 
shown in Figure 2(c), consists of a proper subset 
of the set of derived join indices in a complete join 
index hierarchy. It supports direct navigations 
between a pm-specified set of object class pairs 
since it materializes only the corresponding join 
indices and their related auxiliary (derived) join 
indices. 

Figure 2(c) demonstrates a typical partial join index 
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Figure 2: Three Kinds of Join Index Hierarchies 
Corresponding to the Schema Path in Figure 1 

hierarchy which supports direct navigations between 
CO and C’s, Cl and Ca, and CO and Cs. Their corre- 
sponding JI nodes: JZ(O,5), .ZZ(1,5) and JZ(O,3), cir- 
cled in the figure, are called target nodes. Notice that 
a materialized intermediate level node JZ(i, j) may be 
used not only for supporting navigations between Ci 
and Cj but also (and sometimes more importantly) for 
accelerating update propagations from the base join 
indices to higher level join indices such as JZ(O,5). For 
example, if there were no intermediate level join index 
nodes in the hierarchy JZH(O,5), four join-like (de- 
fined later) operations are needed on average to prop 
agate an update from the base join indices to the target 
nodes JZ(O,5), JZ(1,5) and JZ(O,3). With the help of 
intermediate level join indices, it takes an average of 
3.2 join-like operations to propagate an update from 

the base join indices. 
In a join index hierarchy JZH(0, n), the base join 

index nodes .ZZ(i, i + 1) (for i = 0,. . . , n - 1) reside at 
level 1, and the root node .ZZ(O, n) at level n. Although 
a complete join index hierarchy could be quite large, 
each individual join index node is usually of reasonable 
size. In many csses, it is unnecessary to materialize all 
of the join index nodes in the hierarchy since it is ben- 
eficial to support only the frequently used navigations. 
Given a set of frequently accessed schema paths, a par- 
tial join index hierarchy can be constructed to support 
the corresponding navigations. 

In a join index hierarchy, a set of join index nodes 
which must be supported (due to frequent references) 
are called target join indices, e.g. JZ(O,5) , JZ(1,5) and 
.ZZ(O,3) in Figure 2(a); whereas the others which are 
mainly used for update propagation are called auxiliary 
join indicas, e.g. JZ( 1,3), and .ZZ(3,5). Auxiliary join 
indices can of course be used, as a by-product, for 
support of the navigations between the corresponding 
classes. The target, auxiliary and base join indices 
are maierialized join indices. The unmaterialized join 
indices are called virtual join indices. 

Update propagation includes three types of up- 
dates. 

Insert an attribute relationship Ai+l between an 
object oi in clash Ci and an object oi+l in class 

This corresponds to inserting a tuple 
~$~(oi),OZD(o,+l), I) to the base join index 
JZ(i, i + 1). 
Delete an attribute relationship Ai+l between 
an object oi in claa~ Ci and an object oi+l in 
class Ci+l. This corresponds to deleting a tuple 
(OZD(Oi), OZD(Oi+l), 1) from JZ(i, i + 1); 
Modify an attribute relationship Ai+l from that 
between an object oi E Ci and another object 
oi+l E Ci+l to that between oi E Ci and 0&1 E 

. This corresponds to deleting an existing tu- 
$z;bZD(oi), OZD(oi+l), 1) from JZ(i i+ 1) and 
inserting a new tuple (OZD(oj), OZD(Ai+l), 1) to 
JZ(i, i + 1). 

As a notational convention, AJZ(i, j) denotes a 
set of tuples being inserted into .ZZ(i, j). A.ZZ(i, j) 
consists of tuples (OZD(oi), OZD(oj),m) and m > 
0, indicating that there are m new object paths 
connecting oi and oj. Similarly, vJZ(i, j) repre- 
sents a set of tuples being deleted from JZ(i, j). 
It consists of tuples (OZD(oi), OZD(oj),-m) and 
m > 0, indicating that there are m object paths 
connecting oi and oj being deleted. bJZ(i, j) de- 
notes v.ZZ(i, j) followed by A.ZZ(i, j). A join op- 
erator UWen, which is similar to a join operation 
in relational databases, is introduced. JZ(i,E) w, 
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JZ(k, j) contains a tuple (OZD(Oi), OZD(Oj), mi X 

rnz) if there is a tuple (OZD(oi), OID(oh),ml) 
in JZ(i,k) and a tuple (OID(o~),OID(oj),mz) in 
JZ(h, j). That is, if there are ml distinct object 
paths from oi to ok and ma distinct object paths 
from Ok t0 Oj, there are ml x mr object paths 
from Oi t0 Oj. Notice that identical tuples, such as 
(OZD(Oi), ozD(Oj),mk) (for L = 0, 1,. . .,p) are au- 
tomatically merged into one with their path numbers 
accumulated, i.e., (OZD(Oi), OZD(Oj), ~~=s mk). 

3 Construction and Maintenance of 
Join Index Hierarchies 

3.1 Construction of a partial join index hier- 
m&Y 

A partial join index hierarchy can be constructed in 
three steps: (1) find a set of necessary auxiliary join 
indices for a given set of target indices; (2) build the 
corresponding base join indices; and (3) build the tar- 
get and auxiliary join indices from the lowest level up. 

Example 3.1 In Figure 2(a), the join index JZ(1,5) 
can be computed from JZ(l,4) and 51(4,5), where 
.ZZ( 1,4) can be derived in turn from JZ(1,3) and 
.ZZ(3,4), and JZ(1,3) from JZ(l,2) and 51(2,3). 

The base join indices for JZ(l,5) are the set: 

VW, 2), w, 3), JZ(3,4), JZ(4,5)1 

The auxiliary join indices for supporting efficient up- 
date of .ZZ( 1,5) are: 

{JW, 4), JZ(L 3)) 

Notice that there could be other choices in selecting 
auxiliary JIs, such as {.ZZ(l, 3), .ZZ(3,5)}, etc. 0 

Example 3.2 To directly support the navigations be- 
tween CO and Cs, Cr and C’s, and Cc and C’s, the set 
of target join indices are (JZ(O,5), .ZZ(O, 3), JZ(1,5)}, 
and the set of base join indices are 

{JZ(O, 11, JZ(I, 2), 5Z(2,3), 5Z(3,4), 5Z(4,5)1. 

Three different kinds of partial join index hierar- 
chies are presented in Figure 3(a)(b) and Figure 4. 

The sets of auxiliary JIs which supports the 
three target JIs are {JZ(O, 2), JZ(2,4), 51(2,5)} in 
Figure 3(a), {.ZZ(1,3),.ZZ(1,4)} in Figure 3(b) and 
{JZ(l, 3), .ZZ(3,5)} in Figure 4. 0 

Given a set of target join index nodes, the join in- 
dex nodes which need to be materialized are the union 

Jl(O.1) Jl(W Jl(2.3) Jl(3A) Jl(45) 

(a) A Padal Join Index Hiidty Supporbing 

Jl(OS), Jl(O.3) and Jl(1.5) 

avg#doperatiamforqdde=4 

’ 5$)\, 

I: 

;J;;t ;)‘, 

P- 

Jl(o,J%/gz,\ 

JW9 Jl(W Jl(3E) Jl(46) 

(b)A Partial Join Index tliirchy Supporting 
Jl(O,5), Jl(0.3) end Jl(1.5) 

avg t d operalims lof updak3.4 

Figure 3: Two Partial Join Index Hierarchy Structures 
for Supporting JI(O,5), JI(O,3) and JI(1,5) 

of the base and auxiliary sets derived from each target 
join index node. Since there could be more than one 
choice in the derivation, the optimal choice should be 
the one which minimizes (1) the total number of auxil- 
iary join indices (and then the total storage costs); and 
(2) the total number of W, operations in updating the 
target join indices. This is performed by Algorithm 
3.1. 

Algorithm 3.1 Construction of a minimum 
auxiliary set of JIs 

Input: A set of classes Cc,. . . , C,,, and a set of target 
JI nodes (i.e., frequently referenced class pairs) in 
the schema path C’s, AI, Cl, AZ, . . . , A,, C,,. 

Output: A minimum set of auxiliary JIs nodes. 

Method: The method collects the set of auxiliary 
nodes which are used to generate the set of tar- 
get nodes, and then selects those containing the 
minimum numbers of nodes, as shown below. 

1. Starting with the set of target nodes, find S: 
the set of their immediate auxiliary nodes. No- 
tice that the set of immediate auxiliary nodes 
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for 8 (target or auxiliary) node Jl(i, j) is 
{Jl(i, k), Jl(,,j)} for i < L < j with the removal 
of Jl(i, k) or .JI(k, j) if it is a target node or a 
base node. If there is an empty set resulted from 
this removal, return the empty set. Otherwise, if 
there are more than one such 1: available, each t: 
generates one set, and the result is a set of sets. 
Thus, S is in the form of {{Jl(i, k), . . . , Jl(k, j)}, 
. . ., {Jl(i,m), . . .,Jl(m, j)}}. 

For each JI in the set s in S, find its immediate 
auxiliary nodes. If its immediate auxiliary nodes 
consists of I sets, al, . . . , 01, make 1 copies of s, 
and add each of ai (1 < i < I) to a copy, which 
forms 1 new sets. This process repeats until no 
new immediate auxiliary nodes can be found. The 
result is a set of auxiliary node sets which are used 
for generating the set of target nodes. 

For each set s in the generated set of auxiliary 
nodes, count the number of (auxiliary) nodes. 
Only those with the minimum number of nodes 
are retained. 

From the retained sets obtained in Step 2 (i.e., 
the set in which each set contains the minimum 
number of auxiliary nodes), calculate the number 
of W, operations required for updating each set 
and select the one which requires the minimum 
number of W, operations. Cl 

Example 3.3 We examine how the algorithm works 
on Example 3.2. At the beginning, 

Since JI(0, 1) is a base join index and 51(1,5) is 
a target join index and they can be employed to de- 
rive JI(O,5), the immediate auxiliary set of JI(O,5) is 
empty. Thus, 

s = HJW, 5), qo, 3))) 

The target join index JI(1,5) has three im- 
mediate auxiliary sets {J1(1,4)}, {51(2,5)} and 
{JW, 3), Jq3,5)); whereas the target join index 
JI(O,3) has two immediate auxiliary sets {JI(O, 2)) 
and {51(1,3)}. Among these nodes, only J1(1,4) 
and J1(2,5) have nonempty auxiliary sets. The for- 
mer has {51(1,3)} and {51(2,4)}, and the latter has 
{51(2,4)}, and {51(3,5)}. Therefore, the set of pos- 
sible auxiliary node sets should be all of their combi- 
nations, that is, 

S={{JW, 4), JW, 3)9 JW 2)1, W(L4), 
51(2,4), w, 2)h w(2,5), 51(2,4), wo, 2)h 
W(2,5), 51(3,5), JI(O, 2))) VW, 3), 51(3,5), 
JI(O, 2)h w(1,4), w, 3)), w(1,4), ~1(2,4), 

, 

JI(0, 

Figure 4: Build a Partial Join Index Hierarchy and 
Propagate Update 

w, 3)h w(2,5), 51(2,4), w, 3)h w2,5), 
31(3,5), JW, 3)h W(3,5), JW, 3))). 

Both {J1(1,4),JI(1,3)} and {51(3,5),51(1,3)} 
have the minimum number of auxiliary join indices. 
The first one corresponds to the partial join index hi- 
erarchy structure in Figure 3(b), whereas the second 
one to that in Figure 4. The average numbers of W, 
operations for update propagation in Figure 3(b) and 
Figure 4 are 3.4 and 3.2 respectively. This is computed 
by averaging the sum of the numbers of all the CU, op- 
erations needed for propagation of the updates on the 
base join index nodes. Obviously, the second partial 
join index hierarchy is the most preferable one. 0 

Algorithm 3.2 Construction of a partial join in- 
dex hierarchy. 

Input: A set of frequently referenced class pairs (i.e., 
target JI nodes) in a schema path C’s, Al, Cl, AZ, 
-*-, A,,, C,, and the corresponding classes. 

Output: JIH(CO,AI,CI,AI, . . .,A,,, C,,), a partial 
join index hierarchy which supports navigations 
between these pairs of classes. 

Method: The computation includes both finding the 
minimum set of auxiliary JI nodes and computing 
all the necessary JIs. 

1. Find the minimum set of auxiliary JIs based on 
the set of target JIs by using Algorithm 3.1. 

2. Build base JIs by computing Jl(i,i + 1) for i = 
0, 1, . . . , n - 1 and constructing the corresponding 
B+-tree indices on i for each base JI. 

3. Build auxiliary and target JIs. This is accom- 
plished by computing the selected auxiliary JIs 
and/or target JIs from the bottom level up us- 
ing the W, operation, and constructing the cor- 
responding B+-tree indices on i for each derived 
JI. 
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4. Build “reverse” JIs for searching in the reverse 
direction. (A reverse JI of .ZZ(i, j), .ZZ(j,i), 
supports the search from class j to class i via 
the schema path in reverse to that of .ZZ(i, j)). 
,ZZ(j, i) is derived from .ZZ(i, j) by sorting on j in 
a copy of JZ(i, j) and constructing the B+-tree 
indices on j. cl 

Notice that in step 3 there could be more than one 
pair (but at most j-i pairs) of JIs of lower level nodes 
which can be used to compute JZ(i, j). A cost model 
should be constructed to determine the minimum cost 
pair. Moreover, B+-trees can be used to build JIs for 
efficient retrieval and for efficient computation of JIs 
at higher levels. 

The join index hierarchy computes the logical rela- 
tionships between the objects not only in two adjacent 
classes but also in the “remote” classes linked via a 
specified schema path. It maintains both forward and 
backward join indices and supports both forward and 
backward navigations efficiently. 

Furthermore, navigations on the virtual nodes (un- 
materialized nodes) can still be performed efficiently 
using the partial join index hierarchy. For exam- 
ple, any virtual node in Figure 4 can be constructed 
by at most one join of two existing materialized JI 
nodes. Actually, it is easy to verify for n 5 6, tak- 
ing the root of .ZZH(O,n) as the single target node, 
there always exists a set of minimum auxiliary nodes, 
with minimum update cost, and any virtual node in 
JZH(O,n) can be obtained by at most one join of 
two existing (base/auxiliary) JI nodes. For example, 
{JZ(O, 3), JZ(3,6), .ZZ(1,3), 51(3,5)} is such a mini- 
mum auxiliary node set for JZH(O,6). This implies 
that any traversal from one object in any class to any 
other object class along the schema path with length 
less than 7 will need to search at most two (indexed) 
JI files using such a small partial join index hierarchy. 
Since one rarely constructs a JZH(0, n) for n 2 7 in 
practice, traversal along any subpath of a schema path 
in both directions can be performed fairly efficiently 
using the partial join index hierarchy. 

3.2 Update maintenance of a partial join in- 
dex hierarchy 

An update in one class or in the relationship of one 
class with another may cause the update of a base join 
index, such as .ZZ(k, k + 1) (and its update is denoted 
as a.ZZ(k, k + 1)). Such an update will not affect other 
base join indices but may affect some corresponding 
join indices at higher levels. It is easy to show that 
for an update on ,ZZ(k, k + l), only the materialized 
JZ(i, j) with i 5 I and j > E will need to be updated 
accordingly. For example, if JZ(1,2) is updated in 

Figure 4, only those join indices in the dotted area 
need to be updated. 

Algorithm 3.3 Update propagation in a join in- 
dex hierarchy. 

Input: A join index hierarchy JZH(0, n) and 
bJZ(k, h + 1). 

Output: An updated join index hierarchy. 

Method: Perform a bottom-up incremental update 
propagation starting at the base join index. 

1. Update the base join index JZ(k, k + 1) based on 
6JZ(E, k + 1). 

2. Update the auxiliary JIs and/or target JIs from 
the bottom level up using the W, operation. This 
is implemented as follows (Note U, is a union op- 
eration with path count addition or deminution.). 

for level 1 := 2 to n do 
for i := 0 to n - 1 do 

if JZ(i,i+ I) ia an auxiliary or target JI 
aadilkmdi+l>k 

then incrementally update JZ(i, i + 2) to JZ'(i, i + 1). 
Note: This is performed as follouw. 
6JZ(i,i+ I) := JZ(i,i+ p) MC MZ(i+ p, i+ I), or 
6.7Z(i,i+ I) := JZ(i+ q, i+ I) W, UZ(i,i+ q), 
wherel<p<k-iandk-i<q<I-1; 

JZ'(i,i+ I) := JZ(i,i + 1) U, 6JZ(i,i+ I); Cl 

Notice that incremental updates are performed on 
both forward and backward join indices. Also, there 
are often more than one way to compute &ZZ(i, i + 
1) in .Step 2, e.g., either JZ(0, 1) W, 651(1,5) or 
&ZZ(O, 3) W, .ZZ(3,5) to compute JZ(O,5) in Figure 4, 
and the choice can be determined by a cost analysis. 

3.3 Base and complete join index hierarchies 

A base join index hierarchy (BJIH) can be constructed 
and updated in a way simpler than Algorithms 3.2 
and 3.3 (only Step 1 of the algorithms need to be per- 
formed) since BJIH is a degenerate hierarchy and no 
upward propagation need to be considered. 

However, navigation between Cd and Ci+r in a base 
join index hierarchy requires the retrieval of a sequence 
of I base join indices: 

JZ(i, i + l), . . . , JZ(i + 1 - 1, i + I). 

This is the major overhead of the base join index hier- 
archy in comparison with the partial join index hierar- 
chy which requires the retrieval of only one or a very 
small number of join indices. 
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Table 1: Database Parameters 

Parameters Meaning, Derivation and Default 

Dl number of objects in class Ci 

IPill number of pages 01 blocks of C~MH Ci 

fi average number of references from an object in Ci to objects in C<+l (fan-out) 

ri average number of objects in class Ci referencing the same object in Ci+l(= 

sz(OZD) number of bytes for storing an object identifier (= 8) 
a(m) number of bytes for the counter in a tuple of a join index (= 4) 
az(ji) number of bytes of a tuple in a join index (= 2 l ss(OZD) + sz(m)) 

4P) number of bytes of a page pointer (= 4) 

B number of bytes in a block or page of a disk (= 4096) 

B;, 
average page occupancy factor(= 70%) 
fan out of a Bt-tree ([= rscp$~Oro~l) 

L f wd(i,i k) average number of distinct objects in Cj referenced by a set of ) objects in Ci 
bwd(i, j, k) average number of distinct objects in Ci referencinn a set of L objects in C; 
IJZ(4i)l number of tuples in JZ(i, j) 
II JZ(i,N number of blocks or pages of JZ(i, j) I 

Since all the join indices are materialized in a com- 
plete join index hierarchy (CJIH), Step 1 of Algorithm 
3.2 does not need to be performed in the construction 
of CJIH: All of the join indices at each level are con- 
sidered as target join indices. The retrieval could be 
faster using a complete JIH in comparison with that 
using a corresponding partial JIH if the retrieval re- 
quires to access a (virtual) node which is not directly 
materialized in the partial JIH. However, a complete 
JIH obviously takes more storage space and more up- 
date propagation cost than a partial JIH although the 
update algorithm is similar to Algorithm 3.3. 

4 Performance Evaluation of Join In- 
dex Hierarchies 

An analytical model is constructed to study the per- 
formance of different join index hierarchies and access 
support relation [6], a competitive index structure for 
navigation through a sequence of object classes. The 
study is focused on several crucial performance mea 
surements, including the storage size of a join index 
hierarchy, the cost of navigation (query processing), 
and the cost of update propagation over a join index 
hierarchy. Table 1 lists some database parameters used 
in the cost analysis. 

4.1 Storage, navigation and update costs 

The number of pages for a join index Jl(i, j) is 

Following Valduriez[lG], the number of disk accesses 
for a forward navigation from a set of ni objects in Ci 

Table 2: Database Parameters 

Parameters Co Cl Cr C3 C+ Cs 
ICil 1000 2000 4000 3000 1000 5000 
fi 1.08 2.08 1.08 1.08 1.0s 3.08 

s s = 0.1,0.5,1,1.5,2.0,2.5,3 

to objects in Cj using a target join index is 

1+ y(ni, r&l, El) + !/(ni, IIJ~(~,i)lL ICilh 

where y is a function from Yao[l8], 

y(k,m,n)= rm*(l-~n~~~~~l),. 
kl 

It represents the number of page accesses for retrieving 
k objects out of n objects distributed over m pages. 
Here it is assumed that a typical B+-tree is of two 
levels r . One page access is needed to retrieve the 
root node. To find the page pointers for ni object 
identifiers, y(ni, [#], ]Ci]) leaf pages of the Bt-tree 
are accessed. There are y(ni, IIJ~(i,j)ll, IGI) pages 
need to be accessed to find the tuplee corresponding to 
ni object identifiers. Thus the number of disk accesses 
for a forward navigation from a set of ni objects in 
Ci to objects in Cj using a base join index hierarchy 
structure is 

(l+y(ni,[lCil B?;13 Icil) + Y(W) llJZ(C i + 1)117 ICil)) 
f 

‘The results for a B+-tree of more than two levels can be 
calculated similarly as in Valduriez(16j. 
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Figure 5: Storage Costs of B-JIH, P-JIH, C-JIH and 
Pull-ASR vs. Fan-outs 

j-l 

k=i+l 

+dfwd(C h, ni), IIJI(k, k + l)ll, Ickl)). 

The first sum is the number of page accesses when 
the join index Jl(i, i + 1) is scanned and related tu- 
ples retrieved. The second sum covers the case when 
fwd(i, ), ni) object identifiers from the previous join 
index Jl(k - 1,k) are used to search the join index 
Jl(k, k + 1). One page access is needed to retrieve the 
root node, and y(fwd(i, k, ni), [#], ]Ci]) leaf pages 
of the B+-tree are accessed to find the page pointers 
for the fwd(i, k, ni) object identifiers. Finally, there 
are y(fwd(& k, ni), IIJI(h h+ 1111, IGl) pag- n=d to 
be accessed to find the tuples corresponding to the 
fwd(i, h, ni) object identifiers. 

The update cost is computed similarly. 

4.2 Explanation of performance results 

Four data structures are compared in our performance 
study: (1) C-JIH as shown in Figure 2(a); (2) B-JIH 
as shown in Figure 2(b); (3) P-JIH as shown in Figure 
2(c); and (4) Full-ASR (full access support relafion), 
which stores the full sequences of object identifiers of 
the path (of length 5) in one full access support rela- 
lion. Notice that cases (2) and (4) correspond to two 
extreme cases of the access suppori relation method 
proposed in [6], in which the former (case 2) decom- 
poses each class pair into one component (i.e., binary 
decomposition of a full ASR: thus, a B-JIH is labeled 
B-JIH/B-ASR in the performance curves.), whereas 
the latter (case 4) merges the access path (sequence) 
into one relation. 

The fan-out factors (join selectivities) is taken as 
the z-axis variable in Figures 5, 6, 7, and 10 because 

‘GJIH’ -y- 
W3) 

‘Full-ASIT + 

1' I , 1 I 1 I 
0.1 0.5 1 1.5 2 2.5 3 
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Figure 6: Navigation Costs of B-JIH, P-JIH, C-JIH 
and Full-ASR vs. Fan-outs 

the performance is sensitive to the increase of the fan- 
out factors (join selectivities), which matches our ex- 
pectation and experimentation. The set of clans sizes, 
fan-out values, and scale changes in the analysis are 
in Table 2. The scale change factor s is introduced so 
that the performance under varying fan-outs can be 
presented in one graph. Other database parameters 
are set to the default values as shown in Table 1. 

Figure 5 shows that the storage costs increase ss the 
fan-outs do. Full-ASR stores all the sequences of ob- 
ject identifiers in complete or incomplete paths. P-JIH 
materializes the root node JI(O,5) of the join index hi- 
erarchies and some higher level join indices; whereas 
C-JIH materializes all of the higher level join indices. 
These are reflected in the storage cost graph. Obvi- 
ously, the storage sizes of Full-ASR, P-JIH and C-JR-I 
increase faster than that of B-JIH/B-ASR. 

Figure 6 presents how the navigation costs increase 
as the fan-outs grow. It is assumed that the forward 
and backward counts 50% and 50% in the total cost of 
the navigation respectively. The navigations between 
Cc and Cz, Ci and Cz, C’s and C’s, and Ci and C’S 
weigh 50%, 20%, 20% and 10% in the total cost respec- 
tively. Notice that the navigation between Ci and 194 
is not supported directly in the chosen P-JIH. The se- 
lectivity of navigation starting point is fixed as follows. 
If the navigation starts at Ci, the selectivity is chosen 
to be se1 * @ where se1 is the selectivity of the naviga- 
tion starting at Co. Here sel is set at 0.01, therefore, 
every navigation starts with 10 objects. P-JIH and 
C-JIH perform much better than B-JIH/B-ASR and 
Full-ASR. Full-ASR has the poorest performance be- 
cause the whole ASR has to be retrieved (the relation 
is usually sorted on both head and tail classes to fa- 
cilitate retrieval from the starting and the end points) 
when the navigations other than the one between head 
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Figure 7: Update Costs of B-JIB P-JIH, C-JIH and Figure 9: Navigation Costs of B-JIH, P-JIH, C-JIH 
Full-ASR vs. Fan-outs and Full-ASR vs. Navigation Selectivities 
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Figure 8: Costs of Navigation and Update mix for 
B-JIH, P-JIH, C-JIH and Full-ASR 

and tail classes are required. 
Figure 7 illustrates the update costs. It is assumed 

that the update probability of all the base join indices 
are equal. Obviously, B-JIH/B-ASR has the lowest 
update overhead since each time only base join indices 
need to be updated. The update cost of Full-ASR is 
higher than those of other index structures and grows 
faster. 

Figure 8 describes the cost of navigation and update 
operation mix. The total cost is defined as (1 - p)* 
NavigationCost+p* UpdateCost, where p is the update 
probability, and p = 0.2 means that there are 20% 
probability of updates and 80% probability of naviga 
tions among all the operations. The scale s on fan-out 
is set to be 1.5. With less frequent update (update 
probability less than 0.5), the overall performance of 
P-JIH and C-JIH is much better than that of B-JIH/B- 
ASR. All the three structures perform better than Full- 

‘FuICASfT t 

Figure 10: Storage Explosion with Large Fan-outs 

ASR. 
Figure 9 presents the navigation costs vs. naviga- 

tion selectivities. The scale s on fan-outs is set to be 
1.5. The selectivity at CO is set from 0.001 to 0.5. The 
navigation cost grows as the navigation selectivity in- 
creases. 

Figure 10 presents the storage requirements vs. 
large fan-outs. The reason that only large fan-outs are 
analyzed but not large cardinalities of classes is be- 
cause our other performance results2 shows that the 
costs of storage, navigation and updates do not grow 
very fast as the cardinalities of classes increase. As one 
can predict, the storage cost (and hence the navigation 
and update costs) grows rapidly when the fan-out ra- 
tio grows. Full-ASR has the highest storage cost since 
multiple access paths from Ci-i to Ci will have to be 
multiplexed when pairing with the objects in Ci+r , etc. 

%ot shown here due to space limitation. 
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This also suggests that the fan-outs should be consid- 
ered as an important factor for setting “hre walls” to 
avoid cost explosion. 

In summary, the performance study shows that 
both P-JIH and C-JIH outperform BJIH/BASR and 
Full-ASR in navigation and overall performance. P- 
JIH has better storage and better update costs than 
C-JIH. Clearly, join index hierarchy, especially the par- 
tial one, provides an interesting data structure to sup 
port efficient navigations in object-oriented databases. 

5 Discussion 

5.1 Join index hierarchy which supports other 
kinds of navigations 

The join index hierarchies discussed in the previous- 
sections are designed for support of class composition 
hierarchies, i.e., navigations through a sequence of ob- 
ject classes via their attribute relationships. Similar 
join index hierarchies can be applied to support of nav- 
igations through class/subclass hierarchies, or through 
a sequence of classes via the relationships specified by 
methods and/or deduction rules. 

Some relationships between different classes of ob- 
jects may not be specified by existing attributes but 
by deduction rules or computational methods. For ex- 
ample, the relationships between the objects in two 
classes, Parks and Lakes, could be specified by a spa- 
tial computational routine, which computes, based on 
a geographic map, whether one is inside the other, or 
whether two intersect, or their shortest (or highway) 
distances, otherwise. 

The method- or deduction rule- specified object 
linkage can be constructed using the structure of 
join index hierarchy as well, by evaluation of the 
method/rule at the join index construction time rather 
than at the query processing time. 

One advantage of the construction of join indices 
for rule- or method- defined object linkages could be 
the transformation of the expensive rule/method com- 
putation from query evaluation time to join index con- 
struction time. Since a method or a rule may involve 
recursion or iterative computation of a relatively large 
number of complex (such as spatial) objects, it could 
be quite expensive to perform such computation at the 
query processing time. The evaluation of such linkages 
at the join index construction time and the storage of 
the join indices together with other frequently used in- 
formation (such ss distance, etc. [9]) in join indices will 
trade storage space for query evaluation efficiency. It 
will be especially beneficial if such computation must 
be performed repeatedly or iteratively. 

Furthermore, by storage of important information 

in join indices, some queries, especially those involving 
traversing in the direction in reverse to those specified 
in the methods or rules, can be answered efficiently. 
For example, to find all the lake and park pairs whose 
intersected regions greater than 1 square kilometer, 
one can retrieve the join indices and return the results 
directly (if the information-associated join indices [9] 
are constructed and the area of intersection is the asso- 
ciated information). However, it is impossible to com- 
pute a region from an area based on the same method 
which defines only the computation of an area from a 
geographic object but not in reverse. 

5.2 “Fire walls” in the construction of join in- 
dex hierarchies 

There may exist long object referencing sequences in 
queries, and any object class may serve as the start- 
ing point in a sequence of object referencing. Never- 
theless, this does not suggest the construction of join 
index hierarchies on a very long sequence of schema 
path because of the size of such a hierarchy and the 
cost of updates. Therefore, it is often necessary to 
partition a long schema path into a few short ones, or 
prohibitive to build some join indices or merge them 
into join index hierarchies. 

A class linkage (by either attribute relationship, 
methods, or rules) which is not suitable for construct- 
ing join indices or for being merged into a join index 
hierarchy is called the “fire wall” of the hierarchy. It 
is important to identify fire walls and partition a long 
schema path into a set of smaller ones for the con- 
struction of easily accessible or updatable join index 
hierarchies. 

“Fire walls” are suggested to set in the following 
places in the design of a join index hierarchy. 

1. 

2. 

3. 

Rarely referenced class linkages: Some class link- 
ages, though referable, are rarely used in appli- 
cations, based on the examination of a relatively 
long history of referencing patterns. It is rela- 
tively safe to set up a fire wall at a rarely refer- 
enced point since it is fair to let rarely used refer- 
encing pay a little higher cost in accessing. 

Large join selec2iviGes: A large join selectivity im- 
plies a potentially large (or huge) join index rela- 
tion. The further construction of upper level join 
indices would usually result in large join index re- 
lations as well. The break of the chain at this 
point may contribute to a relatively small join in- 
dex relation and/or hierarchy. 

Frequenily updated or multiple-source class link- 
ages: Some join index may sustain frequent up- 
dates or be derived from multiple objects, classes 
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or class relationships (such as, those computed us- 
ing multiple objects or classes by methods). Such 
kind of class linkages may need frequent or sophis- 
ticate updates and update propagation to upper 
level join indices will likely be costly and thus it 
could be beneficial to set up “fire walls” there. 

6 Conclusions 

A join index hierarchy approach has been proposed 
and investigated here for efficient navigation through a 
sequence of object classes in object-oriented databases. 
The join index hierarchy organizes a set of (direct and 
indirect) join index nodes into a hierarchy. Three kinds 
of join index hierarchies are proposed and studied. Our 
analysis and performance study show that partial join 
index hierarchy has reasonably small space and update 
overheads and speeds up query processing consider- 
ably in both forward and backward navigations. 

Join index hierarchy is an interesting indexing 
structure which could be a promising candidate at 
solving “pointer chasing” problems in object-oriented 
database query processing. More experiments need to 
be conducted in the performance study of join index 
hierarchies. Furthermore, it is interesting to compare 
and/or integrate the join index hierarchy method with 
other object query optimization techniques, such as 
read-ahead buffering [ll] and complex object assem- 
bly [51. 
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