
Cache Conscious Algorithms for Relational Query Processing*

Ambuj Shatdal Chander Kant Jeffrey F. Naughton
Computer Sciences Department

University of Wisconsin-Madison
{shatdal,ck,naughton}@cs.wisc.edu

Abstract

The current main memory (DRAM) access
speeds lag far behind CPU speeds. Cache
memory, made of static RAM, is being used
in today’s architectures to bridge this gap. It
provides access latencies of 2-4 processor cy-
cles, in contrast to main memory which re-
quires 15-25 cycles. Therefore, the perfor-
mance of the CPU depends upon how well
the cache can be utilized. We show that there
are significant benefits in redesigning our tra-
ditional query processing algorithms so that
they can make better use of the cache. The
new algorithms run 8%-200% faster than the
traditional ones.

1 Introduction

The DRAM access speeds have not reduced much com-
pared to the CPU cycle time reduction resulting from
the improvements in VLSI technology. Cache memories,
made of fast static RAM, help alleviate this disparity by
exploiting the spatial and temporal locality in the data
accesses of a program. However, programs with poor
access locality waste significantly many cycles transfer-
ring the data to and from the cache memory resulting
in poor CPU performance.

The above observation makes it important that the
algorithms for various relational operations should be
designed to take maximum advantage of the cache mem-
ory. In this paper we study the existing algorithms in

*This research was supported by NSF grant M-9157357.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

terms of their cache performance. We redesign the tra-
ditional algorithms by taking into account the fact that
modern computers have CPU caches. However, this
paper is not about query optimization incorporating the
cache memory as a parameter. In this paper we concen-
trate on the join and aggregation algorithms.

The conventional wisdom in database community is
that query evaluation touches so much data that locality
in data accesses is inherently poor. Further, there is a
widespread but false belief that once data is in memory
it is accessed as fast as it could be. We have challenged
the conventional beliefs by showing that by designing
cache conscious algorithms one can significantly speed
up the CPU processing portion of query processing. For
main-memory database systems (or largely-memory res-
ident database systems) this is very significant. Further,
the recent work by Nyberg et al. [NBC+941 suggests
that the I/O response time can be reduced through the
use of software assisted disk striping thus making the
CPU cost of the query processing dominate i.e. a rela-
tion can be read into the memory faster than it is pro-
cessed. This clearly makes cache optimizations, which
speed up CPU processing, extremely relevant for disk-
resident data also.

In related work, Nyberg et al. [NBC+941 have shown
that for achieving high performance sorting, one should
worry about cache memory. They have emphasized a
large cache and do not explore alternative optimization
techniques. In some sense, our work picks up where
they have left off. We show how we can incorpo-
rate cache memory in the design process of the algo-
rithm and not as an afterthought. We do not argue for
very large caches but show that given any size cache,
our techniques are useful. This paper does not pro-
pose that a completely different algorithm be designed
for each hardware platform. Rather the proposal is that
the same algorithm can be ported on different platforms
after a phase of performance tuning using some cache
profiler.

Once the designer is aware of the presence of cache
and its behavior, some techniques do not seem arcane.

510

However, in general, cache behavior is fairly complex
and one needs to use some cache profiling tool like
cprof [LW94] as an aid to study the cache behavior of
a particular algorithm. Sometimes, we find ourselves
revisiting some of the same optimizations in a differ-
ent guise as made for the memory/disk portion of the
memory hierarchy. At the same time one must note
that these two are not equivalent problems. Among the
major differences are: cache is entirely hardware man-
aged and user has no direct control over what resides in
cache; caches are not fully associative unlike disk cache
in main memory; and lastly we can not, in general, trade
off CPU cycles for improving cache performance which
is the most important difference between memory/disk
and cache/memory optimizations.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews cache memories. Section 3 de-
scribes some known techniques for cache optimizations.
In section 4 we present the query processing algorithms
and study how cache optimization helps. Section 5 of-
fers our conclusions.

2 Overview of Cache Memories

Cache memories are small, fast static RAM memories
that improve program performance by holding recently
referenced data [Smi82]. Memory references satisfied by
the cache, called hits, proceed at processor speed; those
unsatisfied, called misses, incur a cache miss penalty
and have to fetch the corresponding cache block from
the main memory. The management of the cache is done
entirely by the hardware with no direct user control.

Unlike other levels of the memory hierarchy, caches
are sometimes divided into instruction-only and data-
only caches. Separate caches offer the opportunity of
optimizing each cache separately. In this study we con-
strain ourselves to data cache performance.

Caches are characterized by three major parameters:
Capacity (C), Block Size(B) and Associativity (A).

Capacity A cache’s capacity (C) simply defines the
total number of bytes it may contain.

BlockSize The block size (B) determines how many
contiguous bytes are fetched on each cache
miss. A cache block exploits spatial locality by
(pre-)fetching multiple contiguous words (thus re-
ducing chances of a future miss), a cache block,
whenever a miss occurs.

Associativity Associativity refers to the numbers of
unique places in the cache a particular block may
reside in. If a block can reside in any place in the
cache (A=C/B) we call it a fully-associative cache,
if it can reside in exactly one place (A=l) we call it

direct mapped, if it can reside in exactly A places,
we call it A-way set associative. In associative
caches, LRU replacement policy is used to decide
which cache block will be replaced. Most caches,
in practice, are either direct mapped or have very
small set-associativity.

Cache misses can be categorized into following three
disjoint types [HS89]. The relation of the cache miss
types to the cache characteristics is also described.

Compulsory A reference that misses because it is the
very first reference to a cache block is classified
as a compulsory miss. By definition, compulsory
misses can not be reduced without changing the
basic algorithm. However, larger cache block size
will decrease the number of compulsory misses as
more data will be prefetched in a sequential access
pattern.

Capacity A reference that misses in a fully associative
cache is classified as a capacity miss because the fi-
nite sized cache is unable to hold all the referenced
data. Capacity misses can be minimized by in-
creasing temporal and spatial locality of references
in the algorithm. Increasing cache size also reduces
the capacity misses because it captures more local-
ity.

Conflict A reference that hits in a fully associative
cache but misses in an A-way set associative cache
is classified as a conflict miss. This is because
even though the cache was large enough to hold
all the recently referenced data, its associativity
constraints forced some of the required data out
of the cache prematurely. Conflict misses are the
hardest to remove because they occur because of
address conflicts in the data structure layout and
are specific to a cache size and associativity. Data
structures would, in general, have to be remapped
so as to minimize conflicting addresses. Increasing
the associativity of a cache will decrease the con-
Aict misses.

A cache profiler like cpmf [LW94] finds the cache
behavior of an algorithm by simulating all data ac-
cesses in the appropriately configured cache. The ad-
dress traces are generated by an instruction level pro-
filer like qpt [Lar93] which are fed to a cache simulator
which %nds the requisite properties of,the data refer-
ences. Cprofclassifies the cache misses in the above cat-
egories by every line of code and by every data structure.
The programmer can view the cache profile and find the
cache behavior of the program in detail. However, since
this simulation is based on virtual addresses, the results
are only approximately true for a physically addressed

511

cache (like the level 2 cache in the DEC 3000) as non-
conflicting virtual.addresses may conflict in a physically
mapped cache. [KH92] shows that this effect is minor
in most cases (especially when virtual address space is
much larger than the cache size, which holds for typical
database applications) and operating systems can use
simple techniques to overcome the problem of introduc-
tion of cache conflicts due to virtual to physical memory
mapping.

3 Optimization Techniques

The main aim of optimizing algorithms for cache mem-
ory is to ensure that as few cache misses occur as possi-
ble without significantly increasing the number of in-
structions executed i.e. the CPU overhead. In this
study, however, we do not concern ourselves with op-
timizations which depend on the exact cache configura-
tion in terms of block size and associativity i.e. we do
not attempt to answer the question how algorithms can
exploit the associativity or block size per se. The rea-
son is that changing block size only affects compulsory
misses, which can not be removed given a particular
cache. Associativity does help remove conflict misses.
However, we find that conflict misses are relatively few
compared to capacity misses and hence not very signif-
icant in terms of performance.

Many opportunities for cache optimization are not at
all obvious at the outset. Many times it is not possible
to find the cache bottleneck in a code by just looking at
it and by looking at the CPU runtime. A cache profiler
is usually needed to find the possibilities for improve-
ment because it localizes the optimization space, i.e. one
could concentrate on thinking of the optimizations so as
to remove the cache misses occuring at that point in the
program. As mentioned earlier, we used cprof for our
studies. In the following sections we study some specific
techniques for removing the cache misses.

3.1 Blocking

In blocking, an algorithm is restructured to reuse
chunks of data that fit in the cache. Take the example
of naive nested loops for computing a non-equijoin. In
case of disk resident databases the reason for switching
to nested loops with blocking is to significantly reduce
disk I/O. However, the motivation to block nested loop
in case of a memory resident relation does not seem
apparent at first because of the (incorrect) belief that
memory accesses are of uniform speed. We found that
blocking indeed improves performance when tuples are
blocked such that a block of tuples fits entirely in the
cache. This is expected because now accesses to the
tuples of inner relation suffer significantly fewer cache

misses as we process a block entirely before discarding
it.

Example 3.1

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

process(aCi1 ,bCjl)

when blocked on array b, will look like

for (bkNo = 0; bkNo < N / BKSZ; bkNo++)
for (i = 0; i < M; i++)

for (j = bkNo*BKSZ; j < (bkNo+l)*BKSZ; j++)
process(a[il,b[j])

which will ensure that the elements of array b in a block
will almost always be in the cache provided BKSZ is
less than the cache size, thus significantly improving
the cache performance. 0

3.2 Partitioning

Another technique is to distribute the data in parti-
tions as in external sorting. These partitions are cre-
ated such that each partition fits in the cache. Alpha-
Sort [NBC+941 uses this technique to speedup the in-
memory sorting. There is an overhead of creating the
partitions but in most cases the benefit gained over-
shadows it. In many database algorithms, a good way
of generating partitions is by hash partitioning the rela-
tions. For example, in joins, hash partitioned partitions
can be joined independently. Consider the simple exam-
ple of sorting:

Example 3.2

quicksort(relationCN1)

is changed to

partition relation into blocks < cache size
for each partition r

quicksort(relation[PARTITIONSIZE]);
merge all the partitions

Now, since the entire partition of the array being sorted
fits in the cache, the quicksort runs significantly faster
as there are few cache misses. This more than compen-
sates for the extra merge step resulting in greater overall
sorting speed (for large enough ,N). This is the essence
of the in-memory AlphaSort [NBC+941 algorithm. 0

Note that blocking and partitioning are distinct tech-
niques. In blocking we restructure the algorithm and
do not change the layout of the data, whereas in par-
titioning we reorganize the layout of the data to make
maximum use of the cache.

512

3.3 Extracting Relevant Data

Reducing the data which needs to be accessed is another
effective technique. In sorting, for example, instead of
sorting whole records one could extract the sorting key
and a pointer to record and use that for sorting. Smaller
size data effectively means that more relevant data can
fit in the cache. One must note that extracting rele-
vant data can also be a memory optimization, in the
sense that less memory has to be accessed (and that it
would be faster, though not as much, even in absence
of a cache). This optimization can be taken a little fur-
ther as in using only key prefixes instead of keys for
sorting [NBC+94].

For example, from a 200 byte record, we could extract
an 12 byte key and a 4 byte pointer to do the sorting.
Sorting with smaller records will be significantly faster
as the cache will not get irrelevant data.

3.4 Loop Fusion

Many a time separate loops operating on a data struc-
ture can be merged resulting in better locality of refer-
ence for the data structure. The example below com-
bines creation of a key pointer array (see above section)
and building a hash table.

Example 3.3

for (i = 0; i < N; i++)
a[iI .key = relation[iI .key;
aCi1 .ptr = relationCi1 .ptr;

for (i = 0; i < N; i++)
insert-in-hashtable(a[i]);

is changed to

for (i = 0; i < N; i++)

a[i] .key = relation[i].key;
a[il .ptr = relation[iI.ptr;
insert-in-hashtable(a[il);

which will improve the likelihood that a[i] is in the cache
when it is inserted in the hash table. •I

3.5 Data Clustering

At the physical database design level, one can cluster
the fields of a tuple in such a way that fields accessed
contemporaneously are stored together. This results
in better spatial locality when the two related ‘fields of
the tuple are accessed. For example, if in a relation a
particular grozcp by attribute always goes with another
attribute on which the aggregation is performed, then
both should be allocated next to each other so that the
access to group by attribute may prefetch the aggrega-
tion attribute of the tuple.

In this study we have concentrated on reducing ca-
pacity misses. Hence our efforts are more focused on im-
proving the temporal and spatial locality of the memory
accesses rather than coming up with an optimal mem-
ory layout of relations.

4 Performance Evaluation

In this section we study: 1. how do we cache optimize
a query processing algorithm and 2. what difference do
these optimizations make.

We ran our performance tests on four different ma-
chines which are representative of the modern trends in
microprocessor technology. These are the DECstation
5000/125, the DEC 3000/300, the HP Apollo 9000/710,
and the SUN Sparcstation 10/51. We used the na-
tive compilers (except the SUN on which we used the
gee) with maximum practical optimization levels. Ta-
ble 1 details the configuration of the machines we used.
Here we must observe that cache access characteristics
depend significantly on the compiler and optimization
level used.

While we assume that the data operated on by the
algorithms is memory-resident, we wanted to approx-
imate the data layout in memory that would result in
reading a page of tuples into a buffer pool. Accordingly,
we stored the tuples in memory in slotted pages; the
overhead of processing tuples in slotted pages (rather
than packed arrays of tuples) is included in all of our
results. Under these assumptions, in practice and in our
study, an algorithm starts its processing on the relations
stored in the buffer pool. The join result is left in the
form of an in-memory join index [Val87]. In section 4.4
we discuss the tradeoffs and options in the generation
of result relation. Furthermore, we incorporated the
optimization of extracting the join attribute (group by
attribute in case of aggregation) from the tuples for the
processing whenever it was appropriate.

For our join algorithms both the relations had 50000
tuples each. Each tuple is 100 bytes long. Relations
were generated in such a manner that each tuple in
the first relation joined with approximately one tuple
in the second. For aggregate processing, the relation
had 100000 tuples of 100 byte length. The number of
groups was 20. In section 4.3 we show that our results
hold even when we vary these parameters. All reported
timings are in seconds.

4.1 Case Study: Optimizing Hash Joins

We describe how we optimized the basic in-memory
hash join algorithm [DK0+84] in detail on the DECsta-
tion 5000/125. We used the cache profiler cprof [LW94]
to gain detailed information about the cache perfor-

513

Machine Microprocessor Data Cache Size
DECstation 5000/125 MIPS R3000 64K

SUN Sparcstation lo/51 SPARC/Viking 16K (on-chip) + 1M
DEC 3000/300 Alpha AXP A 8K (on-chip) + 256K

HP Apollo 9000 Series 700/710 HPPA-RISC 1.1 64K

Table 1: Machine Configurations

mance of the algorithms. That guided us quickly to
the code having poor cache behavior and thus exposed
the opportunities for optimization.

Assume R and S are the two relations (or fragments
of relations of a bigger join) being joined which are now
in the main memory in slotted pages after having been
read from the disk.

The in-memory hash join algorithm works as follows.
First a hash table of the tuples of R is created by hash-
ing on the join attribute. Then the tuples of the relation
S are probed by hashing them on the join attribute and
searching the attribute value in the hash table. Thus the
implementation of the basic hash join algorithm looks
like.

Algorithm 4.1 BaseHash(R,S)

Bui 1 dHashTab 1 e (H[M) ;
jor each s in S

Probe(s, HCRI);

Upon profiling, the algorithm showed significant
number of cache misses. Table 2 shows the cache misses
suffered by each step of the algorithm. Building the

Step camp. capacity conflict Total
Build 37500 118731 2181 158412
Probe 25159 193137 2352 220648
Overall 62659 311868 4533 379060

Table 2: Cache Misses in BaseHash Join

hash table directly on the relation tuples suffers many
cache misses because the entire hash table is unable to
fit in the cache. Also, useless data is brought into the
cache because the cache block prefetching brings in at-
tributes not required for the join computation resulting
in wastage of cache capacity. The probe phase has even
more cache misses because every probe generates a ran-
dom address in the hash table which is unlikely to be
in the cache, coupled with the fact that accessing the
probing tuple itself might result in a cache miss. This is
only worsened by the cache pollution due to prefetching
of irrelevant data since we are building the hash table
from base tuples.

First optimization which seems possible is to do at-
tribute/pointer extraction in the building relation. Note
that the building relation is accessed possibly several
times, once for building and again in the probing phase,
whereas the probing relation is accessed only once.
Thus by doing the extraction, we increase the locality of
accesses in both build and probe phases for the building
relation. The locality improves because now there is no
pollution of the cache which happens due to automatic
prefetching of the spatially contiguous data as in the
base case. This results in the following algorithm.

Algorithm 4.2 Extraction(R,S)

for each r in R
ExtractKeyPointers(r>
BuildHashTable(r)

Probecs, HIRII;

Table 3: Cache Misses in Extraction Join

As evident from the profile in table 3, this algorithm
shows reduced number of cache misses in the build and
the probe phase from the basic algorithms. The over-
head of attribute/pointer extraction is more than com-
pensated for the reduction in cache misses in the build
and probe phases thus reducing the total number of
cache misses. This reduction in cache misses results in
a speedup of 7.2% over the basic hash join.

We still find that there are far too many cache misses
in the building and probing phases. One strategy is to
ensure that the built hash table is always kept in the
cache thus reducing the cache misses in the building and
probing phases. This can be implemented by dividing
the relation into several (hash partitioned) partitions
such that the hash tables built from these partitions
would fit in the cache. This partitioning of the relation
is done along with the attribute/pointer extraction (in

514

both relations). Of course, this incurs the overhead of
creating the partitions and processing them but the im-
provement due to reduction in cache misses more than
compensates for that. Thus we come up with the fol-
lowing algorithm’.

Algorithm 4.3 Partition+dHash(R,S)

ExtractKeyPointers-AndJabtition(R)
ExtractKeyPointers-And-Partition(S)
for each partition i

Buil~ashTable(H[R[i~])
for each s in S[il

Probe(s,HCRCill)

Table 4 shows the cache misses suffered in this al-
gorithm. We note that there are quite many cache
misses in partitioning the relations. However, as ex-
pected, the joining of the partitions themselves suffer
far fewer cache misses as the building and probing par-
titions can be entirely cache resident. With this sharp a
reduction in cache misses we would expect a relatively
large speedup. However, as mentioned before, the extra
processing involved in partition creation and process-
ing reduces some of the advantage thus gained. The
obtained speedup of the algorithm is 6.6%.

Table 4: Cache Misses in PartitionedHash Join

Table 5 summarizes the results of the cache optimiza-
tions for hash join. Here (and elsewhere), speedup in-
dicates the speedup over the basic algorithm.

Algorithm Cache Misses Time Speedup ;I
Table 5: Optimizations for the Hash Join

Note that the number of compulsory cache misses
actually increase with the optimizations. This implies
that an infinite (or no cache) would actually show that

‘A keen observer would note that this is analogous to the
GRACE algorithm [DK0+84] for join processing of disk resident
relations.

the basic algorithm is the best. However, this also
shows the importance of cache optimization, because it
demonstrates that theoretically similar algorithm8 can
have significantly differing performance depending on
the way they utilize the cache. And lastly, it shows that
one can not, in general, tradeoff CPU cycles for cache
optimization as the advantage gained by a decrease in
cache misses can be quickly nullified by the CPU over-
head as evident by the PartitionedHash algorithm.

Finally, we measured the performance of these on the
other machines to show that these techniques are not
specific to any particular machine but hold in general.
The timing speedup obtained on them are given in ta-
ble 6.

Even though we report performance on different ma-
chines, when comparing the relative effect of cache opti-
mizations on different architectures one must be careful
not to ascribe all differences in the performance to prop-
erties of the processor, memory, and its cache. While
these hardware parameters do affect the efficiency of
the optimizations, we also found that factors such as
the compiler used also have as strong an effect-we ob-
served significant differences in the impact of the cache
optimizations within a single machine by varying the
compiler optimization level.

4.2 Other Query Processing Algorithms

We went through the above optimization process for
other query processing algorithms, viz. the sort merge
join, the nested loop join, the hash baaed aggregation
and the sort based aggregation. In this section we de-
scribe the algorithms, point out the optimizations we
made and the speedup obtained on the four machines.

4.2.1 The Sort Merge Join

The in-memory sort merge join [BE771 works as follows.
First, both relations R and S are sorted on the join
attribute by using an efficient sorting mechanism e.g.
quicksort. Then the sorted relations are merged and the
matching tuples are output. As mentioned earlier, we
use the optimization proposed in [NBC!+94] to extract
the join attribute and a pointer to the tuple.

The basic algorithm sorts both the relations and
merges them.

Algorithm 4.4 BaseSort(R,S)

ExtractKeyPointers(R)
ExtractKeyPointers(S)
Sort CR)
Sort 6)
Merge (R,S)

In this algorithm, the sorting suffers several cache
misses because none of the attribute-pointers of R or S

515

Table 6: Speedups obtained on the other machines

are in the cache. First simple optimization which we im-
plemented was to do the sorting immediately after the
attribute/pointer extraction resulting in the following
algorithm.

Algorithm 4.5 ImmediateSort(R,S)

ExtractKeyPointers(R>
sort (It>
ExtractKeyPointers(S>

sort (S>
Merge (R, S>

However, since both R and S are bigger than the
cache, the sorting itself suffers several cache misses. The
optimization is to make (hash partitioned) partitions of
sizes such that the one partition of both relations will
fit in the cache. This significantly reduces the cache
misses suffered in the sorting phase. In the final step,
each partition is merged pairwise. This optimization
is similar to the PartitionedHash join algorithm above
where smaller partitions ensure fewer cache misses.

Algorithm 4.6 PartitionedSort(R,S)

ExtractKeyPointers-AndSartition(R>
for each partition i

Sort (RCil>
ExtractKeyPointers-AndPortition(S>
for each partition i

Sort (Stil>
for each partition i

Merge(R[i’il,S[i.l>

After looking at the cache profile of the PartitionedSort
we notice that the cache misses could be further reduced
in the merge phase by fusing the sorting and merging of
each of the partitions i.e. instead of first sorting all and
then merging all the partitions, we sort and immediately
merge the partitions. This loop fusion results in the
following algorithm.

Algorithm 4.7 ImprovedSort(R,S)

ExtractKeyPointers-And-Partition(R)
ExtractKeyPointers-AndPcrtition(S>
for each partition i

Sort (R[il>
Sort (SCi.l>
Merge(R[iJ,S[i.7>

Table 7 shows the running times and the speedup
shown by the algorithms on the four machines.

We note that the partitioning helps much more in
the case of the sort merge join compared to the hash
join because the sorting operation is much more mem-
ory intensive and computationally expensive i.e. the
reduction in the number of cache misses is much larger
because of the partitioning and the relative overhead of
making the partition is correspondingly much smaller.

4.2.2 Non-equijoin Algorithms: Nested Loops

The nested loop algorithm is the most common way
of handling non-equijoins. The in-memory version of
nested loop is straightforward and takes O(lRI * ISI)
time. In the traditional way of thinking about database
algorithms, we feel that nothing much can be done to
improve the performance of the nested loop join once
the relations are in memory. But we had a lot in store
for us.

The basic algorithm is as follows.

Algorithm 4.8 BaseNestedLoop(R,S)

ExtractKeyPointers(R>
ExtractKeyPointers(S>
for each tuple r in R

for each tuple s in S
if join(r,s> then

produce result

Upon looking at the cache profile, we quickly realized
that we were incurring far too many cache misses than
were necessary. This is because the sequential access
of the inner relation S has poor cache locality. Block-
ing on the inner relation such that each block fits in
the cache improves the locality of access for the inner
relation. This is because the entire block is in cache
while it is processed and therefore it suffers very few
cache misses. In BaseNestedLoop, every access to the
tuples of inner relation will probably result in a cache
miss as the sequential access would replace the tuples
before they could be reused. The blocked nested loop
algorithm is as follows.

516

Table 7: Optimizations for the Sort Merge Join

Algorithm 4.9 BlockedNestedLoop(R,S)

ExtroctKeyPointers(R)
ExtractKeyPointers(S)
for each block b of S

for each tuple r in R
for each tuple s in b

if join(r,s) then
produce result

Table 8 shows the running times and the speed shown
by the algorithms. The reason that the optimization on
SUN lo/51 doesn’t show much improvement is because
of the improved performance of the base case as all the
key pointers fit in the 1MB secondary cache even in the
base case.

4.2.3 Aggregation Algorithms

Aggregation with the group by clause involves more than
a simple scan of the participating relation [Eps79]. We
consider the two popular aggregation algorithms: the
hash based aggregation and the sort based aggregation.

Hash Based Aggregation The in-memory hash ag-
gregation on relation R works as follows. We accumu-
late the result in a hash table by hashing the tuples of
the relation R on the group by attribute and computing
the cumulative sum and count (analogous information
must be kept for other aggregate functions like min). At
first sight, it seems that since there is little computation
required to do the aggregation, there is little room for
improvement. But we were taken by a surprise.

The basic algorithm builds a hash table of the result
relation by hashing tuples of the R relation and accu-
mulates the sum (and count) for aggregation purposes
for every group.

Algorithm 4.10 BaseHash

for each tuple t in R
Hash(t)
Insert/update the hashtable entry for the group

It was natural to attempt the Extraction optimization
for the hash aggregation as it had worked well in the
hash join.

Algorithm 4.11 Extraction(R)

for each tuple t in R
ExtractKeyPointerCt)
Hash(t)
Insert/update the hashtable entry for the group

However, we found that it does not improve the per-
formance of the hash aggregation. The reason being
that in aggregation, the hash table is accessed only once
(which is a compulsory cache miss) and therefore key
pointer extraction does not help. In the join, in con-
trast, the hash table is accessed twice: once for build
and again for probe, the key pointer extraction reduces
the cache misses in the second access thereby improving
the performance. This shows that cache optimizations
can be subtle and specific to a particular algorithm.

We still noticed many cache misses when the aggre-
gation attribute was accessed for accumulating the sum
(and count). We then clustered the two and found a
significant reduction in cache misses and improvement
in performance. Of course, this is not an algorithmic
optimization but something which can be taken care of
at the level of physical database design.

Table 9 shows the running times and the speedup
shown by the algorithms.

Sort Based Aggregation In the traditional sorting
based approach to compute group by aggregation, first
the relation is sorted on the group by attribute thus col-
lecting the tuples of the same group together. Then the
sorted relation is scanned producing tuples per group.
The basic algorithm is then as follows.

Algorithm 4.12 BaseSort

ExtractKeyPointer(R)
Sort CR)
for each t in R

Initialize/update the group entry for the group

Since sorting suffers quite many cache misses, we de-
cided to use the “partitions” optimization for sorting so
that it suffers few cache misses. Hash partitioning is
not really practical here because the number of groups

517

Table 8: Optimizations for Nested Loop Algorithm

Table 9: Optimizations for the Hash Based Aggregation

could be very small. Hence, we make random parti-
tions, sort and do aggregation on each of the partitions.
However, this requires an extra step of merging these
partition aggregates to form the global aggregate. But
we find that this extra overhead is more than compen-
sated by the reduction in cache misses. This two phase
algorithm is as follows.

Algorithm 4.13 TuroPhase(R)

ExtractKeyPointer-AnbPortition(R>
for each partition i

Sort (RCil)
for each t in R[il

Initialise/update the group entry for the group
merge the aggregates obtained in each partition

In the following section we present some parametric
studies we conducted to show that the cache optimiza-
tions hold in significantly varying parameter values.

4.3 Parametric Studies

We study the effect of varying relation size, tuple size
and. the join selectivity on the speedup obtained by the
algorithms. In each category of the algorithms, we show
how the speedup of the most optimal version over the
basic algorithm varies with these changes in parameters
and study its implications.

4.3.1 Varying Relation Size

The speedup of the join algorithms, Extraction hash
join and ImprovedSort sort-merge join, as a function of
relation size is shown in figure 1. We note that whereas
the speedup of the MergedStep hash join algorithm de
creases slightly with increase in relation size, that of
the ImprovedSort sort-merge join improves significantly

with increase in relation size. This is important as it
shows that cache optimizations are of two kinds:

1. Cache optimizations which depend on the fact that

2.

cache would retain a part of the data from previ-
ous temporally close accesses. These do not ensure
that all the data would be in the cache. Hence, the
relative performance gain could decrease with an
increase in problem size. These kind of optimiza-
tions would benefit from a large cache.
Examples of this kind are loop fusion, extracting
relevant data. Since Extraction hash join uses key
pointer extraction and depends on the cache to
keep its data, it suffers a little with increase in
problem size.

Cache optimization which attempt to ensure that
cache would retain all the data while it is being
processed. This is achieved by ensuring that only
that part of the data would be accessed temporally
closely which can be retained in the cache. Hence,
the relative performance gain would increase with
an increase in the problem size. These kind of op-
timization would not benefit significantly from a
larger cache.
Examples of this kind are partitioning, blocking.
Since ImprovedSort uses partitioning its relative
performance gain improves with increasing prob-
lem size.

4.3.2 Varying Tuple Size

With attribute/pointer extraction, we expect that the
performance of the algorithms will not be significantly
affected by change in tuple size. Figure 2 shows that
increase in tuple size does not significantly affect the
speedup of the algorithms.

518

Table 10: Optimizations for the Sort Based Aggregation

Extraction Hash Join ImprovedSort Sort-Merge Join
50 - 50

45 - 45 -

40- 40-

35 - 35-

P P

P- TP-
43 20 - d+ 20 -

15 - 15 -

10 - 10 -

5- 5-

EIKKMI 15ooo 2oooo 25000 3oooo 35000 4ooLxl45ooo 5oooo kYl1500020000250003000035WOOOO4500050000
Relation Size (# tuples) Relation Size (# tuples)

Figure 1: Speedup of Join Algorithms with Varying Relation Size

Extraction Hash Join

“50 loo 150 200 250 300 350 400 50 loo 150 200 250 300 350 400
Tuple Size (in bytes) Tuple Size (in bytes)

Figure 2: Speedup of Join Algorithms with Varying Tuple Size

519

50 _

45 -

40-

35 -

am-
Li-
i%
cn 20 -

Extraction Hash Join 50.

4s -

&M-
?LS-
i%
cn 20 -

Join Improved&t Sort-Merge

5 -

O- O-
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Selectivity Selectivity

Figure 3: Speedup of Join Algorithm with Varying Join Selectivity

4.3.3 Varying Join Selectivity

We define join selectivity as tInnerRelation, . Result Relation[we find

that varying join selectivity also does not affect the
speedup substantially. This is evinced in figure 3.

The results above confirm that the optimizations dis-
cussed in the paper are general and hold in substantially
differing circumstances.

We finally discuss some issues in result generation.

4.4 Generating The Result Relation in
Join Algorithms

There are two main choices regarding result generation
in join algorithms.

1. the result tuple is produced on the fly (e.g. as soon
as a match is found in case of a join).

2. upon finding a match two pointers to the partici-
pating tuples are stored along with a projection list
thus generating an in-memory join index [Val87].
Later, depending upon need, the result is gener-
ated by accessing the pointed to tuples and doing
the projection. This can be considered as lazy eval-
uation of the result relation.

Our experiments show that lazy evaluation of the re-
sult relation is almost as fast on the fly evaluation for
the algorithms considered. This is because the lazy eval-
uation, in general, has better cache behavior than on the
fly generation. Generating the tuples on the fly results
in cache pollution because the generated tuples displace
the data required for join processing itself. Lazy eval-
uation, in contrast, does not pollute the cache but has
the overhead of the join index creation resulting in com-
parable performance of the two approaches. Table 11

shows the above for the DECstation 5000/125 for a few
algorithms.

Table 11: On The Fly vs. Lazy Evaluation

In lazy evaluation, the result generation is indepen-
dent of the actual computation of the join and there-
fore it does not affect the performance of the actual join
computation. One would expect it to result in a fixed
overhead cost dependent only on the characteristics of
the result relation (e.g. size of result tuples, size of re-
sult relation etc.) and independent of the actual join
algorithm used. However our experiments showed this
theoretically “fixed” overhead of lazy evaluation is, in
practice, slightly variable but always within 5% of each
other across the algorithms we studied. This variability
is because of the characteristics of the created join index
which determines the order in which the tuples will be
accessed. In sort merge join, a tuple which is accessed
more than once will have all its accesses together. In
absence of duplicate accesses, the hash join with its se-
quential access of the probing relation tuples will show
slightly better performance. However, since all these
are but secondary effects, their performance impact is
not significant.

Furthermore, in main-memory databases, we need
not ever generate the final tuples but only access
through the resulting pointer structure on the fly. Also,
if the buffer pool is large enough to keep all relations

participating in a multi-way join then we need not gen-
erate complete intermedjate result.

For the reasons mentioned above, we decided not to
generate the actual result relation. Instead, we left the
result in the intermediate pointer format.

5 Conclusions

We have shown that designing algorithms with cache
consideration significantly improves their performance.
This is most noticeable in the more CPU intensive al-
gorithms, e.g. the nested loop algorithm improves by
almost 4 times when we redesign it with the cache in
mind. However, much of the time the opportunities for
improvement are not evident and one has to use a cache
profiler to find the poorly performing parts of the code.

In summary, we have shown that main memory
should not be the end of optimization for database al-
gorithms. Designing algorithms that exploit the cache
has significant performance dividends and this is be-
coming increasingly important for the newer generation
of microprocessors whose performance critically depend
upon effective usage of cache memory. It would be in-
teresting to study how algorithms can exploit specific
cache configurations and conversely what cache config-
urations are better suited for database applications.

Acknowledgements

The authors acknowledge the helpful comments of Paula
Hawthorn, Chris Nyberg, and the referees.

References
[BE771 M. W. Blasgen and K. P. Eswaran. Storage

and access in relational databases. IBM Systems
Journal, 16(4), 1977.

[DK0+84] David J. Dewitt, Randy H. Katz, Frank Olken,
Lenard D. Shapiro, Michael R. Stonebraker, and
David Wood. Implementation techniques for
main memory database systems. In Proceedings
of the ACM SIGMOD International Conference
on Management of Data, pages l-8, June 1984.

[EM’91 Robert Epstein. Techniques for Processing
of Aggregates in Relational Database Systems.
Memorandum UCB/ERL M79/8, Electronics
Research Laboratory, College of Engineering,
University of California, Berkeley, February
1979.

[HS89] Mark D. Hill and Alan Jay Smith. Evaluating
Associativity in CPU Caches. IEEE tinsaca-
tions on Computers, 38(12):1612-1630, Decem-
ber 1989.

[KH92] R. E. Kessler and Mark D. Hill. Page Place-
ment Algorithms for Real-Indexed Caches. ACM
Tkxansactions in Computer Systems, 10(4):338-
359, November 1992.

[Lar93] James R. Larus. Efficient Program Tracing.
IEEE Computer, 26(5):52-61, May 1993.

[LW94] Alvin R. Lebeck and David A. Wood. Cache
Profiling and the SPEC Benchmarks: A Case
Study. IEEE Computer (to appear), June 1994.

[NBC+941 Chris Nyberg, Tom Barclay, Zarca Cvetanovic,
Jim Gray, and Dave Lomet. AlphaSort: A RISC
Machine Sort. In Proc. of the 1994 ACM SIG-
MOD Conf., pages 233-242, May 1994.

[Smi82] Alan J. Smith. Cache Memories. Computing
Surveys, 14(3):473-530, September 1982.

[Val87] Patrick Valduriez. Join Indices. ACM tins-
actions on Database Systems, 12(2):218 - 246,
June 1987.

521

