
An Algebraic Approach to Rule Analysis in
Expert Database Systems*

Elena Bar&s+ Jennifer Widom

Department of Computer Science
Stanford University

Stanford, CA 94305-2140
{baralis,widom}Ocs.stanford.edu

Abstract. Expert database systems extend the functionality
of conventional database systems by providing a facility for
creating and automatically executing Condition-Action rules.
While Condition-Action rules in database systems are very
powerful, they also can be very diicult to program, due to
the unstructured and unpredictable nature of rule processing.
We provide methods for static analysis of Condition-Action
rules; our methods determine whether a given rule set is guar-
anteed to terminate, and whether rule execution is confluent
(has a guaranteed unique final state). Our methods are based
on previous methods for analyzing rules in active database
systems. We improve considerably on the previous methods
by providing analysis criteria that are much less conservative:
our methods often determine that a rule set will terminate
or is confluent when previous methods could not. Our im-
proved analysis is based on a “propagation” algorithm, which
uses a formal approach based on an extended relational al-
gebra to accurately determine when the action of one rule
can affect the condition of another. Our algebraic approach
yields methods that are applicable to a broad class of expert
database rule languages.

1 Introduction

In the past decade there has been a surge of interest in
adding rule processing to database systems. Deductive
database systems use logic rules to provide an expres-
sive query facility [9,24]. Active database system use
Event-Condition-Action rules to provide reactive behav-
ior [15]. In this paper we focus on what we refer to as

‘This work was partially performed while the authors were
at the IBM Almaden Research Center, San Jose, CA. At
Stanford this work was supported by the Reid and Polly An-
derson Faculty Scholar Fund and by equipment grants from
Digital Equipment Corporation and IBM Corporation.

‘Permanent address: Dipartimento di Automatica e In-
formatica, Politecnico di Torino, Corso Duca degli Abrursi,
24-10129 Torino, Italy.

Permirrion to copy without fee all or port of thir material ir
granted provided that the copier are not made or dirtributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and ik date appear, and no-
tice is given that copying ir by pew&ion of the Very Large
Data Base Endowment. To copy otherwire, or to republirh,
requirer a fee and/or qecialpennirrionfrom the Endowment.

Proceedings of the 29th VLDB Conference,
Santiago, Chile, 1994.

ezpert database systems. An expert database system is a
conventional database system extended with a facility for
creating and automatically executing Condition-Action
rules. Expert database systems originated by coupling
a rule processor for a production rule language such as
OPS5 [7] to a conventional DBMS; thii approach is taken
in, e.g., [23]. More recently the prevalent approach has
been to build rule processing directly into the database
system. Examples of recent or ongoing projects in ex-
pert database systems are [6,11,12,13,21]. Note that
some systems described as active database systems actu-
ally use the Condition-Action rule paradigm, and hence
fall into the class of expert database systems as we use
the term here; examples of such systems are [14,22].
Since expert database systems evolved from production
rule systems such as OPS5 and are closely related to ac-
tive and deductive database systems, the techniques pre-
sented in this paper certainly can be adapted for other
database rule paradigms.

While expert database systems are very powerful, de-
veloping even small applications can be a diicult task,
due to the unstructured and unpredictable nature of rule
processing. During rule processing, rules can activate
and deactivate each other, and the intermediate and fi-
nal states of the database can depend on which rules
are activated and executed in which order. It is highly
beneficial if the rule programmer can predict in advance
some aspects of rule behavior. This can be achieved by
providing a facility that statically analyses a set of rules,
before instaIling the rules in the database [l]. Static rule
analysis can form the basis of a design methodology and
programming environment for expert database systems.

As has been observed in the past [1,17,25], two impor-
tant and desirable properties of rule behavior are termi-
nation and confluence. A rule set is guaranteed to termi-
nate if, for any database state and set of modifications,
rule processing cannot continue forever (i.e. rules cannot
activate each other indefinitely). A rule set is confluent
if, for any database state and set of modifications, the
final database state after rule processing is independent
of the order in which activated rules are executed.

In this paper we propose a generally applicable algo-
rithm for determining when the action of one rule can af-
fect the condition of another rule. The algorithm uses an
extension of relational algebra to model rule conditions
and actions. Essentially, the algorithm “propagates” one
rule’s action through another rule’s condition to deter-
mine how the action may affect the condition; hence,

475

we call it the Propagation Algorithm. The Propagation
Algorithm is useful for analysing termination since it
can determine when one rule may activate another rule.
The Propagation Algorithm also is useful for analyzing
confluence since it can determine when the execution
order of two rules is significant. The Propagation Algo-
rithm determines these properties much more accurately
than previous methods, e.g. [1,16]. In addition, since we
take a general approach based on relational algebra, our
method is applicable to most expert database systems
that use the relational model.

1.1 Previous Related Work

In traditional expert systems, i.e. production rule sys-
tems such as OPS5 [7], predicting properties such as ter-
mination and confluence is of less importance than in the
database environment. Consequently, to qur knowledge
there has been little work on rule analysis in traditional
expert systems.

In the database context, [16,26] give methods for an-
alyzing Condition-Action rules that are similar to the
rules we consider. However, the goal of their work is
to impose restrictions on rule sets so that confluence (a
%nique fixed point” in their model) is guaranteed; we in-
stead provide techniques for analyring the behavior of ar-
bitrary rule sets. In addition, the methods in [16,26] have
been shown to be weaker than the methods in [1], which
in turn are weaker than the methods we present here.
The methods in [l] are developed in the context of the
Starburst Rule System, which uses an Event-Condition-
Action (active database) rule model. Their technique
for analysing rule interaction relies on a shallow com-
parison of the actions performed by one rule and the
events and conditions of another rule. We improve on
this approach significantly by using a formal algebraic
model that allows us to accurately analyse the interac-
tion between rules using the semantics of rule conditions
and actions. In an initial report we applied our approach
to termination only [3]; here we refine the techniques in
[3] and propose a general framework for analysis of both
termination and confluence.

In other related work, [25] analyres rule behavior in
the context of object-oriented active database systems.
Their work focuses on differences between instcmce-
oriented and set-oriented rules (we consider only set-
oriented rules in this paper) and on decidability prop
erties for rule analysis. Their rule model is rather re-
stricted, in that rule actions (methods) can only mod-
ify data selected by the corresponding rule condition,
and deletions and insertions seem to be disallowed. The
properties of confluence and of termination within some
fixed number of steps are shown to be decidable us-
ing an approach based on “typical databases”; a typ
ical database contains all possible data instances that
could affect the outcome of rule processing. The rule
set is “run” over the typical database and the outcome
is checked for the desired properties. This approach is
clearly infeasible in practical applications, so lower com-
plexity algorithms are proposed, but the details and ap
plicability of these algorithms are not clarified.

A rather different approach to rule analysis is taken in
a recent paper [17], where Event-Condition-Action rules
are reduced to term rewriting systems, and known anal-
ysis techniques for termination and confluence of term
rewriting systems are applied. The rule model they use
is quite different from ours, and it is unclear whether
a general relational rule model such as ours can be ex-
pressed as a term rewriting system. However, in the
future we plan to explore the relationship between these
different approaches.

Our Propagation Algorithm is closely related to the
problem of independence of queries and updates, ad-
dressed in, e.g., [18]. [18] gives an algorithm for detecting
if the outcome of a query, expressed as a Datalog pro-
gram, can be affected by a given insertion or deletion.
For analysing expert database rules, we need a some-
what stronger technique: when a query and update are
not independent, we need to know whether the update
adds to, removes from, or modifies the result of the query.
Furthermore, while the algorithm presented in [18] ap
plies to more general queries than we consider here (e.g.
recursive queries), their model for database updates is
considerably simpler than ours.

Finally, our Propagation Algorithm is somewhat re-
lated to incrementa evaluation, as in [4,19,20]: both
problems address the effect of a database modification
on a relational expression. However, incremental evalu-
ation techniques are designed for run time, when the ac-
tual modifications are known, while our techniques apply
at compile time, when the modifications are expressed as
database operations.

1.2 Outline of the Paper

In Section 2 we present our algebraic Condition-Action
rule language and provide several examples that are used
throughout the paper. Section 3 contains the Propaga-
tion Algorithm, examples of its application, and a cor-
rectness Theorem. In Sections 4 and 5 we apply the
algorithm to the analysis of termination and confluence,
respectively; again, several examples are included. In
Section 6 we draw conclusions and outline future work.

2 Algebraic Rule Language

A rule in our language has a condition and an ac-
tion. Rule conditions are expressed as queries over the
database; rule actions are database modifications. We
use a language in which conditions and actions are both
represented by relational algebra expressions. In this
section we describe the extensions to relational algebra
that are required to represent general rule conditions and
actions. Then we specify the syntax of our rule language
using this algebra, and we describe the semantics of rule
processing in our model. Finally, we give several exam-
ples of how Condition-Action rules may be represented
in our algebraic language.

2.1 Algebraic Operators

Based on [8], we define an extension to relational algebra
that allows us to represent any queries that are express-

476

I Onerator 11 Descrintion I z I 1

D$ semijoin with predicate p
w3p not-exists semijoin with predicate p

QAI;AI attribute rename
E[X = ezpr] attribute extension and expression evaluation

AIX = alA\: Bl attribute extension and annrenate function evaluation

Table 1: Additional algebraic operators

ible in SQL (or Quel), with the exception of the handling
of duplicates and ordering conditions. We also introduce
an extension that allows us to represent the SQL data
modification operations insert, delete, and update.

Our extended relational algebra includes the basic re-
lational algebra operators select (u), project (r), Croat-
product (x), natud join (W), union (U), and differ-
ence (-), which we do not elaborate on here; see [24].
The first two lines of Table 1 present useful operators
derived from the basic operators, while the next three
lines present additional operators that we use. In the
table, X and A denote attributes, B, Al, and Aa de-
note attribute lists, a is an aggregate function, and
ezpr is an expression (explained below). In line 1,
El wp & = ~rchema(E&@l x &)); h be 3, a r+
names the attributes in hst Al as Aa. In the remainder of
the paper, we adopt the shorthand notation ELK Ea and
El ‘~3 Ez to denote El mcp E2 and El wyP E2 when pred-
icate p equates all attributes in both schema and
schemu(E~) (similar to the natural join). We now dis-
cuss the other operators in more detail, then we present
the modification operations.

21.1 Not-Exists Semijoin

The not-eziata semijoin operator, KY,,, is introduced
to concisely express negative subqueries as they are ex-
pressed in SQL (e.g. not exists); negative subqueries
appear frequently in rule definitions [lo]. The not-exists
semijoin operator is defined as:

El ‘xyp E2 = El - (El wp E2)

Note that we could instead define the relational differ-
ence operator in terms of not-exists semijoin: El - Ez =
El “3 Ez (with renaming of attributes in El and Ez as
necessary). Hence, for convenience, we consider only the
not-exists semijoin and not the difference operator in the
remainder of the paper.

2.1.2 Aggregate Functions and Expression
Evaluation

The attribute e&en&n operators allow us to extend
a relational expression E with a new attribute; this ap
preach is used for aggregate functions and for motica-
tion operations. We have:

l The E operator, which computes expressions applied
to each tuple of E

l The A operator, which computes aggregate functions
(e.g. max, min, avg, sum, cnt) over partitions of E

E is a unary operator applied to a relational expression
E producing a result with schema schema(E) U (X}.
Recall from Table 1 that the E operator is expressed as:

w = ezpr]E
ezpr is an expression evaluated over each tuple t of E
(a conventional expression involving attributes of t and
constants) yielding one value for each tuple; this value is
entered into the new attribute X for each tuple of E. For
details of similar operators see [8]; examples are given in
later sections.

A is also a unary operator applied to a relational ex-
pression E producing a result with schema schema(E) U
(X}. Recall from Table 1 that the A operator is ex-
pressed as:

A[X = a(A); B]E
B defines a set of attributes on which the result of E ia
partitioned; each group in the partition contains all the
tuples with the same B value. a is an aggregate function
that is applied to the (multiset of) values contained in
the projection of each partition on attribute A, yielding
one value for each partition; this value is entered into
the new attribute X for each tuple of the partition. The
attributes B are optional: when B is omitted, no group
ing is performed, and the aggregate function a is applied
to the entire result of E, yielding one value; that value
is entered into the new attribute X for each tuple of E.
For details see [B].

2.1.2 Modification Operations
We represent data modification operations in rela-

tional algebra by characterising the operations in terms
of the database state they produce. Table 2 presents
inserts, deletes, and updates by indicating the algebraic
expressions that are used to denote the operations, and
the way iu which these expressions are applied to a re-
lation R to produce a new value for R. In the table,
A,, denotes the attributes of R that are updated, 4
denotes primed versions of these attributes (explained
below), and A, = schema(R) - A,,.

Insert operation. An insert operation is denoted by
a relational expression Ei,,,. Ei,,, produces the tuples to
be inserted (either a set of constant tuples or the result
of an algebraic expression). The schema of Ei,,, must
coincide with the schema of R.

Delete operation. A delete operation is denoted by
a relational expression E&i. Edel produces the tuples to
be deleted. The schema of E&r must coincide with the
schema of R.

477

Update operation. An update operation is denoted
by a relational expression &,,j. &,,,a has schema
schema(R) U Ah, where attributes AL contain the new
values for the updated attributes A,,. As convention,
the new values for the updated attributes are always
assigned the corresponding “primed” attribute names.
That is, if attribute A E A,, is updated, then the new
value for A is assigned to attribute A’. A typical way to
express &,,j is:

E =pd = E[AL, = ezprl] &[A:, = ezpra] . . .

&[4, = expr,] EC
where EC is an expression producing the tuples to be
updated (i.e. the “selection condition” of the update
operation). The schema of EC must coincide with the
schema of R. E[ALi = ezpri] evaluates expression expi
on each tuple of EC and assigns the result to the new at-
tribute ALi. Although this is a useful form, in its gener-
ality &,,d can be any relational expression with schema
schemu(R) U AL.

As specified in Table 2, the new state of R after the
update operation is the union of two terms:

1. The first term R MT Eup,j includes in the result all
tuples in R that are not modified by the update op
eration.

2. The second term aA;;AZ(rAV,A:Eup,j) includes in the
result the original values for the non-updated at-
tributes of the modiied tuples and the new values
for the modified attributes, with the primed attribute
names replaced by the original attribute names.

Given a relational expression E (say) with schema
schemta(R) u A;, we often need the corresponding ex-
pression that is compatible in schema with R and con-
tains either the pre-updated (old) or the updated (new)
values for the modified attributes. For convenience we
will use the abbreviations pdd(E) = T,~~~~~(E)-A;E
and P~&E) = QA:;A,(~,~~~~~(E)-A,E).

2.2 Rule Syntax and Semantics

A Condition-Action rule in our language is defined as:

E cond + Eoct

where:

9 &ond states the rule’s condition as an expression in
our extended relational algebra.

l Eact states the rule’s action as a data modification
operation expressed using Ein., E&l, or &,a as
given in Table 2.l

‘For simplicity, we consider rules with a single action here,
although many expert database systems allow rules with a

When this rule is evaluated, the condition &,,,a is true
if and only if Econd - E$fd # 0, where EfAd denotes
the result of &,,,,j the last time the rule was evaluated
during rule processing. If the rule has not previously
been evaluated, then Et!d = 0. That is, informally, the
condition is true whenever the query produces “new” tu-
ples. This is identical to the interpretation of conditions
in the Condition-Action rules of, e.g., Ariel [14], RPL
[ll], and set-oriented adaptations of OPS5 [13]; it also is
similar to the way many Event-Condition-Action rules
appear to be programmed in practice [lo].

The action Eact is a normal data modification oper-
ation executed on the current database state. In some
expert database systems, e.g. [13,14], a rule’s action im-
plicitly operates only on the data “selected” by the con-
dition, rather than on the entire database. We could use
a similar rule model here, but it would complicate the
syntax and semantics and has no bearing on our analysis
methods; see Section 6 for further discussion.

Rule processing is invoked after some set of user or
application modifications to the database. The basic al-
gorithm for rule processing is:
repeat until no rule has a true condition:

select a rule r with a true condition;
execute r’s action

In this paper, we do not consider the effect of a con-
flict resolution policy for selecting among multiple rules
with true conditions [15]. However, as an extension to
our framework we plan to incorporate conflict resolution
using rule priorities; see Section 6. Note also that the
“granularity” of rule processing invocation with respect
to database modifications [15] is irrelevant here in the
context of rule analysis.

2.5 Examples

In this section we give the algebraic representation of five
rules. These rules will be used as examples throughout
the paper. All five rules refer to the following relations:

ACCT(num,name,bal,rate)
CUST(name,address,city)
LOW-ACC(mm,name,date)

Relation ACCT contains information on a bank’s ac-
counts, while relation CUST contains information on the
bank’s customers. Relation LOW-ACC contains all ac-
counts with a low balance, including the date on which
the balance became low. We assume that the first at-
tribute is a key for each relation, although our method
does not rely on this assumption.

sequence of actions. Our methods easily extend to multiple
actions, usually simply by applying the method once for each
action [2].

Table 2: Algebraic description of insert, delete, and update operations

478

Example 2.1: Rule bad-account states that if an ac-
count has a balance less than 500 and an interest rate
greater than O%, then that account’s interest rate is
set to 0% In our language the rule is expressed as
E cond --, Eupd with:

E emad =~bal~at~(~ba1<soo~rat~>oACCT)
E rpd = i?[rate’ = O]E,
E, = %al<SOO hrate>OACCT

Example 2.2: Rule raise-rate states that if an ac-
count has an interest rate greater than 1% but less than
2%, then the interest rate is raised to 2%. In our lan-
guage the rule is expressed as &,,,a --+ l&,d with:

E mad =%ats(%at e>lmate&CCT)
E -pd = &[rate'= 23Ec

EC =urate>l hrate<SCT

Example 2.2: Rule SF-bonus states that when the
number of customers living in San Francisco exceeds
1000, then the interest rate of all San Francisco cus-
tomers’ accounts with a balance greater than 5000 and
an interest rate less than 3% is increased by 1%. In our
language the rule is expressed as $&,,,a + &,a with:

E cond =

~city,C("C>iOOO(AIC = cnt’t(nsna)l(~eityI,sFICUST)))
E rpd = &[rate’ = rate + i]E,
E, =

(Qbal>5000 hrate<3ACCT)~~,e(ucity.:‘SF’CUST)
where name abbreviates ACCT.name = CUST.name.

Example 2.4: Rule add-bad states that if an account
has a balance less than 500 and is not yet recorded in the
LOW-ICC relation, then the information on that account
is inserted into the LOW-ACC relation, “time-stamped”
with the current date. In our language the rule is ex-
pressed as &,,d + Einr with:

E cm&d = ~n~,bal((~al<6OOACCT) %~-m Lou-Act)

E* 198. = &[date = today()]
~n~pame((~al<s0oACCT)~<7rrmLOW-ACC)

where num abbreviates ACCT.num = LOW-ACC.num and
today0 is a system-defined function returning the cur-
rent date.

Example 2.S: Rule del-bad states that if an account
in the LOW-ACC relation has a balance of at least 500 in
the ACCT relation, then the account is deleted from the
LOW-ACC relation. In our language the rule is expressed
as &,,,,d --f Edel with:

Ecmd = ~u(LOU-ACCD%~ (~al~S@CCT))

E&l =LOW-ACC~,,,,(Q~~~,~OOACCT)

where num abbreviates LOW-ACC .mm = ACCT .nnm.

3 The Propagation Algorithm

We describe a general algorithm that uses syntactic anal-
ysis to predict how a database query (i.e. a rule condi-
tion) can be affected by the execution of a data modifl-
cation operation (i.e. a rule action). The outcome of our

Propagation Algorithm is sero or more of the operations
insert, delete, and update, characterising how the result
of the query may change due to the execution of the mod-
ification: If the algorithm produces an irwert operation,
then the query may contain more data after the mod-‘
iflcation; if the algorithm produces a delete operation,
then the query may contain less data after the modiflca-
tion; if the algorithm produces an update operation, then
the query may contain updated data after the modifica-
tion; if no operations are produced, then the result of
the query cannot change due to the modification. The
operations produced by our algorithm are represented
as relational expressions in the same way that we alge-
braically represent data modification operations in rule
actions, except here the modifications apply to arbitrary
relational expressions instead of only to single relations,

The algorithm tahes as input a rule condition C and
a rule action A, both expressed in extended relational
algebra as defined in Section 2. As an initial filter, if the
condition C does not reference the relation modified by
A, then clearly A cannot affect the result of C. Oth-
erwise, A is “propagated” through a tree representation
of C’S query. The leaves of the tree are relations, and
one of these leaves corresponds to the relation R that
is modiiled by A. (For simplicity here we assume there
is only one reference to R in condition C; our method
can easily be extended to handle multiple references [2].)
Action A is propagated from the affected relation up
the query tree, and it may be transformed into one or
more different actions (modification operations) during
the propagation process. To describe the propagation,
we give formal rules specifying how arbitrary actions are
propagated through arbitrary nodes of the tree. After
each propagation through a node in the tree, the actions
obtained are checked for ‘konsistency” (explained next).
Inconsistent actions are discarded, while consistent ac-
tions are further propagated. The propagation process
continues until the root of the query tree is reached or
all actions have been discarded as inconsistent. At each
point during the propagation process, the actions asso-
ciated with a node N in the tree indicate the actions
that may occur to N’s subtree as a result of perform-
ing the original action A. Hence, the consistent actions
that reach the root of the tree describe how the original
action A may affect condition C.

An action produced by the propagation process is con-
sistent when the algebraic expression describing the ac-
tion does not contain contradictions, i.e. it is satisfiable.
Satisfiability of relational expressions is undecidable in
the general case, so we can give sufficient but not neces-
sary conditions for satisfiability of the expressions rep
resenting the propagated actions. However, for many
expressions that arise in practice we can see trivially
whether the expression is satisfiable (as in examples be-
low), and for some classes of expressions we can verify
&i&ability using the tableau method in [24].’

‘Note that a “conservative” test for satiefiabiity t not
really alimitation here,Bince our entire approachisbased on
eyntacticanalysis and henceisconservative: whenanexpres-

479

Node
II
11 Applicability 1

Propagated action: Eiz, --* E,yiii,
Resulting expre88ion

- I -.m. -.I.- J-a

insert into & Es?; = EI w,, E;;,

Et wfi Ez insert into & E,yi = EiE, M3p &
insert into & Eg: = El wp Et” SW,

aA,;A,E E”’ = OAIIAIE;:s 1%.
E[X = ezpr]E IF=* tn. = E[X = ezpr]E;;,
A[X = u(A); B]E B = 0 E”’ sm. = Ej:. W A[X = a(A)](E u E;:,)

E-t r-d = (A[X’ = a(A)](E u Ej:,)) W (A[X = a(A)]E)
B#@ E+ *ma = E;;, w A[X = a(A); B](E u z:,)

at &,, = ((A[X’ = a(A); B](E u E&)) W (/t[X = a(A); B]E)) w<p(B) E::.

Table 3: Insert action propagation

The rules for propagation are given in tables based on
the hind of incoming action: insert, delete, and update
actions in Tables 3,4, and 5 respectively. Each row in the
tables contains the propagated action(s), EOUt, as a func-
tion of the incoming action, E’“, and the relational oper-
ator in the query tree. The column labeled “Applicabil-
ity condition” specifies when different propagation rules
are used for different cases. In the tables, Al, As, and
B are attribute lists, Ajn = schemcr(E~) n schemu(E2),
AE, = schmaa(E~), A, are the updated attributes, A,,
and A, are the attributes involved in predicate p and
expression expr respectively, p’ = CYA,;A~P and expr’ =
(XA,;A:eXpr, p(B) equates all attributes in list B, and
p’(&~) equates all attributes in ALB with the corre-
sponding B attributes. Since the natural join, Cartesian
product, and union operators are symmetric, without
loss of generality we assume that the first operand is
modified; analogous rules apply for modifications to the
second operand. Observe that aggregate functions re-
quire, in addition to the incoming action, the entire re-
lational expression E to which the aggregate function is
applied.

The formulas given in Table 5 don’t tahe into account
the internal structure of selection predicates and update
expressions. In the case of simple predicates (compar-
isons between an attribute and a constant3) and simple
arithmetic update expressions (addition or subtraction
of constants from an attribute), in many cases it is possi-
ble to eliminate some of the propagated actions. For ex-
ample, consider the propagation of the update A = A+ 1

sion is satisfied we determine only that the condition may be
aRected, not that the condition necessarily will be affected.

‘Actually, any expression that involves non-updated at-
tributes and constants can be considered as a constant in
this context.

Arithmetic update expression
predicate addition subtraction other

. An = k, A, # k Eypd E npd E npd

An > k, %I 2 k: Eder E. - .tt#
At < k, At I k Einr he1 -

Table 6: Eliminated actions

through the operation Q&5. Intuitively, this update
will never cause tuples to be deleted from the expression
rooted in U&5. Thus, the propagated delete operation
can be eliminated. Table 6 shows the actions that can be
eliminated in the different cases. In the table, “other” in-
dicates an arbitrary arithmetic expression, which in the
case of an equality or non-equality predicate still allows
an update action to be eliminated.

3.1 Examples

We give two examples of the Propagation Algorithm ap
plied to rules from Section 2.3. In each example, we
analyre the effect of one rule’s action on another rule’s
condition by fully describing the propagation process and
the satisfiability test.

Example 3.1: Consider condition Second in rule bad-
account (Example 2.1) and the update action in rule
SF-bonus (Example 2.3). The input to the algorithm is:

C = ~al,rata(Qba1<~00 Arate>&‘CT)
A = EIpd = &[rate’ = rata + 1)

(Obal>SOOO hratcr<3(ACClb<no~=SF-cwt))
where name abbreviates ACCT .name = CUST.name and
SF-cud abbreviates Ocity,,SF,CUSTw Using Table 5, the
propagation of E+ through the selection operation in
C yields insert and update actions (the delete action is
eliminated, see Table 6). We have:

480

Node

QpE

rA1 E
El W &
& x 3%
El u &

QA~;A$

&[X = ezpt]E

Applicabiity
condition

--

Propagated action: E$ + Ez&,,,
Resulting expression

A[X = a(A); B]E B = 0 Em* de1 =
on*

Pzl W (A[X = a(A)]E).
!

E rsd = (A[X’ = a(A)](E MT Eg#)) W (A[X = a(A)]E)
B#0 * E,“, = E;z, W A[X = o(A); B]E

E out
rud = ((A[X’ = u(A); B](E MI Ek,)) cd (A[X = a(A); B]E)) MdBl Ezl

Table 4: Delete action propagation

EL = ~~e~((oba1<500~rat~~>oElpd)~~
(Qbal<SOO~rate>O Ew))

ELpd = (Qbal<SOO a-ate+&+) w
(%al<SOO mte>oElpd)

In both cases, predicates bal < 500 and bal > 5000
(the latter from Eupd) are contradictory, so both expres-
sions Ei,,, and EL,,,, are unsatisfiable. Intuitively, action
A operates on data not read by condition C. We con-
clude that action A cannot affect condition C.

Example 3.2: Consider condition &,,,d in rule bad-
account (Example 2.1) and the update action in rule
raise-rate (Example 2.2). The input to the algorithm
is:

C= ~balEate(Qbal<soohrate>oACCT)
A = EIpd = E[rate’ = 21(uratte>l hrate<2ACCT)

The propagation of &,,d through the selection operation
in C yields insert, delete, and update actions:

E! if&s = ~34(‘7ba1<500 nrate~>oE+dD<~
(aba1<500 mate>OErpd))

E:e~ = Po~d((Oba1<500~rate>OErpd)~~
b'ba1<500~rate~>O~wd)

E’ -(rpd - Qbalc5OOhrate'>O E)w =pd
(Qbal<SOO aata>OErpd)

These expressions do not contain contradictory predi-
cates, thus they may be satisfiable and the propaga-
tion continues. The propagation of Ei,,,, ELe,, and EL,,
through the projection operation in C yields:

E!’ *7&. = ~alyat&=,
EL, = ~al,ratJ&

All three expressions are satisfiable, thus action A can
affect the result of condition C. Furthermore, Em,, Eier,

and EzPd describe the actions that can be performed on
C as a result of the execution of A.

3.2 Correctness of the Algorithm
The following Theorem states the correctness of the
Propagation Algorithm. Due to space constraints, the
proof of the Theorem is omitted here. A proof sketch
appears in [5] and a complete proof appears in [2].

Theorem 3.1: Let Q be the query tree correspond-
ing to a relational expression C and let A be an action
performed on a relation in (2. Let E”“’ be the actions
produced at the root of Q by application of the propa-
gation rules in Tables 3-5. E““’ describes a superset of
all actions that can be performed on expression C as a
result of executing the original action A. 0

4 Termination Analysis

Recall the rule processing loop from Section 2.2. Ter-
mination for a rule set is guaranteed if rule processing
always reaches a state in which no rule has a true condi-
tion. Notice that, according to the semantics in Section
2.2, after the first execution of each rule r, r’s condi-
tion is true again if and only if new data satisfies the
condition. Hence, informally, rule processing does not
terminate if and only if rules provide new data to each
other indefinitely.

We say that a rule rl may activate a rule rr if execut-
ing ~1% action may cause new data to satisfy rr’s condi-
tion. We analyre termination by building an Activation
Graph. In the graph, nodes represent rules, and directed
edges indicate that one rule may activate the other. If
there are no cycles in the graph, then rule processing is
guaranteed to terminate [1,3]. Hence, the core of termi-
nation analysis is determining when an edge should be
included in the graph, i.e. when one rule may activate

481

EI M3p Ea

update El, EP’
A,nA,#@ ‘2

= ~~.w((~:;, w<,r &) *3 (Fi;d Mu W)

E =

Em*
Pdd((Et;d wp Es) p<3 (&id wpr Jh))

rd =

update ES,
b

0
A,nA,=B
update ES, E”’
A,nA,#B Ez = (
update El, E”’
A,nA,=l

=A = E:;,w3p&

update EI, IF”+’

A,nA,#0 Ez
= heW((~td w<k’ JW w3 (g:;d w3p Es))
=

Em*
Pdd((E&j DC 3p W 9 (E:;d %pp’ El))

aAl;ArE

update Ea,
A,nA,=l
update ES,

r-d = (E in w
rvd 3p aEa)w(& w<jlp&)

0
EI* ._ -_- . .- --- .

I-K
,. =

A.,ftA,#fl
(El wjp’ e:;d) DC 3 (Bl w3P E;;d)

E 5 = (& tilt E:;d) *3 (EI K3pl E;;d)

AlnA,=kl E”’ rod = QA&,E::d

Al n A. = All, E;: = aAlsA2CW,JAL,E:;d

&[X=erpr]E A,nA,=l E,“: = &[X=ezpr]B~~,
A,nAe#l Em* rmd = &[x = eZJW]&[X’ = eZp+‘]E;;d

A[X=a(A);B]E A, n A=& Eat
A..nB=B

-pd = 6;;d W(A[X =cr(A);B]E)

II
A, 1 A

t
II
II B # 0,

A, 2 A,
A,nB=B

B # 0,
A,nB=ArB

E”’ -Pa = E;;d w((ii[X = ta(A)]E)w(A[X’= a(A)](~m,(E:;d)U
(E rs 3 E:;d))))

E mt
-Pa = (YE =gWlE~w~~W = a(A)lb-(E&&

3 P m 3 D
E at rmdl = E;td W (;i[X = a(Aj$]E) W (A[X’ = a(A);B](P,,eu(E:;d)U

-

E at

(EM3~~a))))

red2 -c- = ((AIX=a(AT;B IE) w (+[X’ = a(A); B](p,ew(E&,)U
(E & 3 Ei;;) jjj bQB) E:rrd) DC3 Eind

E OIL*
rmdl = E;:,, w((AtX =dA);B]E) W (A[X’= a(A);B](p..eu(E%)U

(Eb<3~~dj))) 1 -

E Gut
*Pa = (YE =i&);~]E) W (A[X’ E’(;)$$+dw(E:;d)”

(3
ass

r,d p(B) hp’/A,g) :;d .P

Table 5: Update action propagation

482

another rule. The more accurately we can make this de-
cision, the more accurately we can analyze termination.

We use our Propagation Algorithm to decide when an
edge ri -+ rj belongs in the Activation Graph. Note that
rules may activate themselves, so ri = rj is included in
the analysis. TO detect if ri may activate rj, the Prop
agation Algorithm is applied to rj’s condition C and
ri’s action A. If the algorithm yields an insert or up-
date operation, then ri may provide new data satisfying
rj’~ condition. Thus, ri may activate rj, and the edge
ri * rj belongs in the graph. If only a delete operation
or no operation is produced by the algorithm, then ri
cannot provide new data to rj’s condition, and the edge
is not included in the graph.

Our use of the Activation Graph is similar to, e.g., [l,
lo], but our approach is far less conservative since we
exploit the algebraic structure of conditions and actions
to accurately determine when edges belong in the graph.

4.1 Examples

Consider the rules from Section 2.3. We present two
examples where we apply our analysis techniques to de-
termine that a pair of rules does not produce a cycle
in the Activation Graph, i.e. the rules cannot activate
each other indefinitely. In both of these examples, the
technique in [l] is unable to determine that these rules
terminate.

Example 4.1: Consider rule bad-account (Exam-
ple 2.1) and rule raise-rate (Example 2.2) that here
will be called rl and rs respectively. Both rule con-
ditions reference attribute rate, and both rule actions
update rate. Hence, intuitively (and according to the
method in [1]), the two rules might activate each other
indefinitely. We have shown in Example 3.2 that rz’s
action may provide data to rl’s condition (since insert
and update operations are produced by the Propagation
Algorithm), thus the edge rr 4 r1 belongs in the Acti-
vation Graph. Now we use the Propagation Algorithm
to determine if rr may activate rr. The input to the
algorithm is:

C=~rate(urate>lhrate<2 ACCT)

A = Espd = &irate' = OI(%al<600 mata>dCCT)

The propagation of &,,,a through the selection operation
in C yields:

Ei'ms = Prr=u((urate,>lhratgr<2Erpd)P<J
(grate>1 aate&tpd))

E’ upd - - (Uratel>l Aratw<PEwd) W
("rate>lhrate<2 Elpd)

EL =Pold(("rat~>lhrat0<2Erpd)~<l
(Qrate+i ~rat.e~<&pd))

Since predicates rate’ > I and rate’ = 0 (the latter
from &@) are contradictory, expressions Ei,, and Eipd
are not satisfiable and hence are discarded. The prop
agation of E&, through the projection operation in C
yields:

ELr=~rratJLr

which is satisfiable. Thus, rl’s action may result in a
deletion of tuples from rr’s condition. However, since
neither an insert nor an update action is produced, rl
cannot activate r2, the edge rl -+ rs is not included in
the Activation Graph, and we conclude that rules rl and
r2 wilI always terminate.

Example 4.2: Consider rule add-bad (Example 2.4)
and rule del-bad (Example 2.5) that here will be called
rl and rr respectively. Here again, intuitively (and ac-
cording to the method in [l]), the two rules might ac-
tivate each other indefinitely. We use the Propagation
Algorithm to determine if rl may activate r2. The input
to the algorithm is:

C = m~(Low-ACc K<n+m (~al>sooACCT))
A = E;,. = E[date =today()]

(~~p~~((~al<SOOACCT)~~~nmrLOY-ACC))

where nurn abbreviates LOW-ACC .num = ACCT .num. The
propagation of Eim, through the semijoin operation in C
yields:

Eln, =(E[date=today()]
(mum,name(~o~-baID<I,,, LOW-C)))

DC ,,,,,,, high- bal

where low-bal abbreviates Q~~<sooACCT and high-bal
abbreviates q,al,sooACCT. This expression is not sat-
isfiable, since it requires a tuple with a given mm value
to satisfy both predicates bal < 500 and bal 1 500.
Hence, rl cannot activate r2, edge rl -+ r2 is not in-
cluded in the Activation Graph, and rules rl and r2 are
guaranteed to terminate.

5 Confluence Analysis

Recall again the rule processing loop from Section 2.2.
In each iteration, there may be multiple rules eligible
for execution, since more than one rule may have a true
condition. A rule set is confluent if the final state of
the database does not depend on which eligible rule is
chosen for execution at any iteration.

To formally describe confluence and confluence anal-
ysis, we introduce the notion of a rule execution state
and a rule ezecution sequence. Let R be the set of rules
under consideration.

Definition 6.1: A rule execution state S is a pair
(db, RA), where db is a state of the database and RA s R
is a set of activated rules. 0

Definition 5.2: A rule ezecution sequence is a sequence
CT consisting of a series of rule execution states linked by
(executed) rules. A rule execution sequence is complete if
the last state is (db, 0), i.e. the last state has no activated
rules. A rule execution sequence is valid if it represents
a correct execution sequence: only activated rules are
executed, and pairs of adjacent states properly represent
the effect of executing the corresponding rule; for details
see [1,2]. 0

We now define confluence in terms of execution se-
quences.

483

Definition 5.3: A rule set is conjluent if, for every ini-
tial rule execution state S (corresponding to an initial
database and set of .modifications), every valid and com-
plete rule execution sequence beginning with S has the
same final state. 0

Clearly we cannot use this definition directly to an-
alyre confluence, since it requires the exhaustive verifi-
cation of all possible execution sequences for all possible
initial states. We give sufficient conditions for confluence
based on the commutativit~ of rule pairs. Two rules ri
and rj commute if, starting with any execution state S,
executing pi followed by rj produces the same execution
state as executing rj followed by ri. The conditions for
commutativity require that the two rules cannot activate
or deactivate each other,’ and their actions can be exe-
cuted in either order. These conditions are stated in the
following Lemma, whose proof is obvious [l].

Lemma 5.1: Distinct rules ri and rj commute if: (1)
fi’s action cannot affect the outcome of ‘i’s condition
(i.e. fi can neither activate nor deactivate rj); (2) exe-
cuting ri’s action cannot change the effect of executing
rj’s action; (3) conditions (1) and (2) with i and j re-
versed. 0

Note that even though conditions (l)-(3) are not neces-
sarily satisfied when ri = rj, it is the case that a rule
always commutes with itself.

We state two Lemmas, followed by the main Theorem
on confluence. The proofa are omitted due to space con-
straints; all proofs appear in [5]. The first Lemma states,
under the assumption of commutative rules, that two
execution sequences with the same initial state and exe-
cuted rules have the same final state; the second Lemma
states, again under the assumption of commutativity,
that two sequences with the same initial state must have
the same executed rules.

Lemma 5.2: Let all pairs of rules in R commute. Let
~1 and ~2 be two valid and complete rule execution se-
quences with the same initial state, such that the same
rules are executed in 01 and a2 although not necessarily
in the same order. Then crl and cr2 have the same final
state. 0

Lemma 6.3: Let all pairs of rules in R commute. Let
u1 and uz be two valid and complete rule execution se-
quences with the same initial state. Then the same rules
are executed in CQ and ~2. 0

Based on these Lemmas, the following Theorem
presents a sufficient condition to guarantee confluence
of a rule set.

Theorem 6.1: A rule set R is confluent if all pairs of
rules in R commute. 0

The requirement for confluence in Theorem 5.1 may
seem rather strong, but there is no way to weaken this

‘Rule vi deactivatea rule ri if ti’s action deletes all new
data satisfying vi’s condition.

requirement in a rule model without a more sophisti-
cated conflict resolution policy or priorities among rules.
We believe this argues for the importance of rule pri-
orities, which we plan to investigate in this context as
future work. Notice also that, in the case where no rule
can activate itself, the confluence requirement as stated
in Theorem 5.1 trivially implies termination, since the
pairwise commutativity of all rules includes the require-
ment that no rule activates another rule. However, if
one or more rules can activate themselves, then conflu-
ence does not imply termination.

Commutativity of rule pairs forms the basis of most
methods for analyring confluence of database rules, e.g.
[1,25]. The remainder of this section describes our tech-
nique for determining commutativity of rule pairs. Since
commutativity itself is a %ubroutine” to proving conflu-
ence, our commutativity analysis technique also can be
applied in other contexts, e.g. [l]. Needless to say, we
use our Propagation Algorithm to analyse commutativ-
ity, exploiting the algebraic description of rule conditions
and actions to yield a much more accurate analysis tech-
nique than, e.g., [l].

To guarantee commutativity of two rules ri and rj, we
must verify conditions (l), (2), and (3) in Lemma 5.1.
For (l), we determine that ri cannot activate rj exactly
as we have done for termination; recall Section 4. To
show that ri cannot deactivate rj, we must show that ri’s
action A cannot “take away” data from rj’s condition C.
It is easy to see that action A can take away data from
condition C only if the Propagation Algorithm applied
to A and C produces a delete operation. Hence, one
application of the Propagation Algorithm is sufficient for
verifying (1).

For (2), we must determine ifri’s action & can change
the effect of rj’s action Aj. We do this by transforming
action Aj into a condition Cj such that if the result of
condition Cj cannot be affected by the execution of A,
then & cannot change the effect of action Aj. We then
apply the Propagation Algorithm to analyre Ai and Cj:
if the algorithm produces 0, then & cannot change the
effect of Aj; if the algorithm produces one or more of
insert, delete, or update, then Ai may change the effect
of Ajs

Consider how condition Cj is derived from action Aj.
If Aj is an insert operation, then Aj = Einr is a condition
describing the inserted data, hence we let Cj = Ein..
Similarly, if Aj is a delete operation, then Aj = Edel
is a condition describing the deleted data, and we let
Cj = -!&l. Suppose Aj is an update operation on at-
tribute A, defined by &,a = E[A’ = expr]E,.5 We start
with the “selection condition” E,. Cj is the projection
of E, onto all attributes referenced within EC together
with all attributes referenced in the E operation (both
A and the attributes referenced in ezpr). If any of these
attributes can be affected by the execution of Ai, then
4 may change the effect of Aj’s update; if not, then

‘The extension to multiple updated attributes is obvious.
Note that here we require updates to be specified with explicit
use of E,; this does not limit expressiveness.

484

Ai cannot change the effect of Aj. By using the pro-
jection here, rather than the entire expression EC, we
ignore modifications to attributes that do not affect the
evaluation of EC or the assignment of the new values to
the updated attribute.

Finally, we analyze (3) by reversing the roles of ri and
rj in the analysis of (1) and (2).

5.1 Examples

Consider the rules from Section 2.3. We present two
examples where we apply our analysis techniques to de-
termine that a pair of rules are commutative (and hence
the set of these two rules is confluent). In both of these
examples, the technique in [l] is unable to determine
that these rules commute.

Example 5.1: Consider rule bad-account (Exam-
ple 2.1) and rule SF-bonus (Example 2.3), that here will
be called rl and rz respectively. Both rules reference
attribute rate and both update this attribute. Hence,
intuitively (and according to the method in [l]), the two
rules may not commute. We first analyze the effect of
ri’s action on rr. Since Q’S condition does not reference
the relation updated by ri, rl’s action trivially cannot
affect rz% condition. We use the Propagation Algorithm
to analyze the effect of ri’s action on the condition cor-
responding to rr’s action: i?bal,rate,nmz,city E The c.
input to the algorithm is:

C~~al~at~pam~.citp(obal~SOOO~rate~3
(ACClb<,,,(u,ity=,SF,CUST)))

A = &+,d = E[rate’=OI(~ba1<~~1 mate>OACW

The propagation of E,,,,d through the semijoin operation
in C yields:

E’ rpd - - &,d w rrcme (ucity=,SFtmST)

The propagation of EL,, through the selection operation
in C yields:

In all three expressions, predicates bal > 5000 and bal
C 500 (the latter from E,,zd) are contradictory, so the
expressions are unsatisfiable. Hence, the Propagation
Algorithm produces no actions and we conclude that ex-
ecuting ri’s action cannot change the effect of r2’s action.

A similar analysis reveals that r2’s action cannot affect
ri’s action, and we have already shown in Example 3.1
that rz’s action cannot affect ri’s condition. Hence, we
conclude that rules ri and r2 commute.

Example 5.2: Consider rule add-bad (Example 2.4)
and rule del-bad (Example 2.5) that here will be called
rl and rz respectively. We have already shown in Ex-
ample 4.2 that rl’s action cannot affect r2’s condition.

An analogous analysis shows that ri’s action cannot af-
fect the condition corresponding to rz’s action, i.e. E&l.
Consider the effect of rule t-2 on rule rl. We first ap
ply the Propagation Algorithm to rz’s action and ri’s
condition. The input to the algorithm is:

C = ~n~,bal((Qbal<SooACCT) s<7-- LOW-ACC)
A=E&l= LOY-ACC~,,(Q~~~~~~~ACCT)

where num abbreviates LOW-ACC .num = ACCT .num. The
propagation of E&r through the P<y operation in C
yields:

Ei,,, = low-QaW,,, (LOU-ACC*,,, high-q

where low-bal abbreviates 0b~l<500ACCT and high-bal
abbreviates ~b~l,500ACCT. This expression is not satis-
fiable, as it requirgs a tuple with a given num value to sat-
isfy both predicates bal < 500 and bal 1 600. Hence,
rz’s action cannot affect q’s condition. An analogous
analysis shows that rz’s action cannot affect the condi-
tion corresponding to rl’s action, i.e. Ein,. Hence, we
conclude that rules rl and r2 commute.

6 Conclusions and Future Work

We have defined a representation of Condition-Action
expert database rules based on an extended relational
algebra, and we have described a generally applicable al-
gorithm for analyzing the interactions between one rule’s
condition (a query) and another rule’s action (a mod%-
cation). We have shown how this algorithm is applied to
check termination and confluence for sets of rules. Our
technique improves considerably upon previous meth-
ods, because our formal approach allows us to exploit
the semantics of conditions and actions to analyze the
interaction between rules. Note that the methods we
describe also are applicable to rule languages that “pass
data” from the condition to the action (e.g. [13,14]),
since our algorithm detects the actual modifications to
rule conditions (inserts, deletes, and updates), not sim-
ply the transition between true and false. As in [l], our
analysis techniques identify the responsible rules when
termination or confluence is not guaranteed; hence, our
techniques can be used as the kernel of an interactive
development tool that helps rule definers develop sets of
rules that are guaranteed to have the desired properties.

We plan to extend our rule model and analysis
techniques to incorporate additional features of expert
database rules:

l Rule priorities and conflict resolution. Pri-
orities restrict the possible execution sequences of
rules, mahing analysis more complex but perhaps
more precise. Coupling our accurate analysis of rule
interactions with the priority-based methods in [l]
should immediately produce a quite powerful analy-
sis method for prioritized rules.

l Different semantics for rule condition evalu-
ation. In some database rule languages, rule con-
ditions may be evaluated over the entire database,
as opposed to considering only “new” data as we

485

have done here. This interpretation yields a differ-
ent notion of rule activation, since a rule condition
remains true unless execution of some rule action ren-
ders it false.

Events. We can handle Event-Condition-Action
rules that have a semantics similar to our Condition-
Action rules, e.g. the event-based rules of Ariel [14],
with minor modifications to our techniques. (In
fact, it is our feeling that event-based rules often
are programmed thii way in practice, e.g. [lo].)
However, general Event-Condition-Action rules, es-
pecially those in which the condition is evaluated over
the entire database, will require a redefinition of rule
activation (as discussed in the previous point), along
with corresponding modifications to our method.

We also hope to use our algebraic rule model and Propa-
gation Algorithm as the basis for compile-time and run-
time optimisations to rule processing.

Acknowledgements

Thanks to the members of the Stanford Database Group,
especially Ashish Gupta and Jeff Ullman, for lively and
useful discussions, and to Stefano Ceri for providing the
technical impetus and enabling the collaboration.

References

PI

PI

PI

[4J

t51

PI

t71

P1

PI

A. Aiken, J. Widom, and J.M. Hellerstein. Behavior
of database production rules: Termination, confluence,
and observable determinism. In Proc. ACM SIGYOD
Int’l Conj. on Management of Data, pages 59-68, 1992.

E. Baralis. An Algebraic Approach to the Analyair and
Optimization of Active Databare Ruler. PhD thesis, Po-
iitecnico di Torino, Italy, February 1994.

E. Baraiis, S. Ceri, and J. Widom. Better termination
analysis for active databases. In Proc. Irt Int’l Workrhop
on Ruler in Databare Syrtemr, pages 163-179, 1993.

E. Baralis and J. Widom. Using delta relations to op-
timbre condition evaluation in active databases. Techni-
cal Report Stan-CS-93-1495, Computer Science Depart-
ment, Stanford University, November 1993.

E. Bar&s and J. Widom. An algebraic approach to rule
analysis in expert database systems. Technical Report
Stan-CS-941504, Computer Science Department, Stan-
ford University, February 1994.

D.A. Brant and D.P. Miranker. Index support for rule
activation. In Proc. ACM SIGMOD Int’l Conj. on Man-
agement of Data, pages 42-48, May 1993.

L. Brownston, R. Farrell, E. Kant, and N. Martin. Pro-
gramming Ezpert Syrtemr in OPSS: An Introduction
to Rule-Bared Programming. Addison-Wesiey, Reading,
Massachusetts, 1986.

S. Ceri and G. Gottlob. ‘Ikansiating SQL into relational
algebra: Optimisation, semantics, and equivaience of
SQL queries. IEEE l+anr. on Sojtwan Engineering,
11(4):324-345, April 1985.

S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databared. Springer-Veriag, Berlin, 1990.

PO1

Pll

P21

P31

P41

[I51

[I61

iI81

PI

WI

WI

P21

P31

P41

P51

[261

S. Ceri and J. Widom. Deriving production rules for
constraint maintenance. In Proc. Sizteenth Int’l Conj.
on Very Large Data Bared, pages 566-577, August 1990.

L.M.L. Dekambre and J.N. Etheredge. The ReIation+i
Production Language: A production language for rela-
tional databases. In Ezpert Databare Sgrtemr-Proc.
from the Second Int? Conference, pages 333-351. Ben-
jamin/Cummings, Redwood City, CA, 1989.

H.M. Dewan, D. Ohsie, S.J. Stolfo, 0. Wolfson, and
S. Da Siiva. Incremental database rule processing in
PARADISER. Journal of Intelligent Information Syr-
temd, 1992.

D.N. Gordin and A.J. Pa& Set-oriented constructs:
From Rete rule bases to database systems. In Proc. ACM
SIGMOD Int’l Conj, on Management of Data, pages 60-
67, May 1991.

E.N. Hanson. Rule condition testing and action execu-
tion in Ariel. In Ptvc. ACM SIGMOD Int’l Conj. on
Management of Data, pages 49-58, June 1992.

E.N. Hanson and J. Widom. An overview of production
rules in database systems. The Knowledge Engineering
Review, 8(2):121-143, June 1993.

J.M. Hellerstein and M. Hsu. Determinism in partially
ordered production systems. IBM Aimaden Research
Report BJ 8009, San Jose, CA, March 1991.

A.P. Karadimce and S.D. Urban. Conditional term
rewriting as a formal basis for analysis of active database
rules. In Fourth Int’l workshop on Rerearch Idruer in
Data Engineering (RIDE-ADS ‘94), February 1994.

A. Levy and Y. Sagiv. Queries independent of up
dates. In Proc. Ninetenth Int’l Conj. on Very Large Data
Bared, pages 171-181, August 1993.

X. Qian and G. Wiederhold. Incremental recomputation
of active relational expressions. IEEE %anr. on Knowl-
edge and Data Engineering, 3(3):337-341, Sep. 1991.

A. Rosenthal, S. Chahravarthy, B. Blaustein, and
J. Blakeley. Situation monitoring for active databases.
In Proc. Fifteenth Int’l conj. on Very Large Data Bared,

pages 455464, August 1989.

T. Sellis, C.-C. Km, and L. Raschid. Implementing large
production systems in a DBMS environment: Concepts
and algorithms. In Proc. ACM SIGMOD Int’l Conj. on
Management of Data, pages 404412, June 1988.

E. Simon, J. Kiernan, and C. de Maindreviiie. Imple-
menting high level active rules on top of a relational
DBMS. In Proc. Eighteenth IntS Conj. on Very Large
Data Bared, pages 315-326, August 1992.

A. Tsvieli. On the coupling of a production system shell
and a DBMS. In Proc. Third Int’l Conj. on Data and
Knowledge Bared, pages 291-309, June 1988.

J.D. Uihnan. Principles of Databare and Knowledge-
Bade Syrtemr, Volumer I and II. Computer Science
Press, Rochviiie, Maryland, 1989.

L. van der Voort and A. Siebes. Termination and conflu-
ence of rule execution. In Proc. 2nd Intl Conj. on Injor-
motion and Knowledge Management, November 1993.

Y. Zhou and M. Hsu. A theory for rule triggering sys-
tems. In Advancer in Databare Technology-EDBT ‘go,
Lecture Noted in Computer Science df 6, pages 407-421.
Springer-Veriag, Berlin, March 1990.

486

