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Abstract. Expert database systems extend the functionality 
of conventional database systems by providing a facility for 
creating and automatically executing Condition-Action rules. 
While Condition-Action rules in database systems are very 
powerful, they also can be very diicult to program, due to 
the unstructured and unpredictable nature of rule processing. 
We provide methods for static analysis of Condition-Action 
rules; our methods determine whether a given rule set is guar- 
anteed to terminate, and whether rule execution is confluent 
(has a guaranteed unique final state). Our methods are based 
on previous methods for analyzing rules in active database 
systems. We improve considerably on the previous methods 
by providing analysis criteria that are much less conservative: 
our methods often determine that a rule set will terminate 
or is confluent when previous methods could not. Our im- 
proved analysis is based on a “propagation” algorithm, which 
uses a formal approach based on an extended relational al- 
gebra to accurately determine when the action of one rule 
can affect the condition of another. Our algebraic approach 
yields methods that are applicable to a broad class of expert 
database rule languages. 

1 Introduction 

In the past decade there has been a surge of interest in 
adding rule processing to database systems. Deductive 
database systems use logic rules to provide an expres- 
sive query facility [9,24]. Active database system use 
Event-Condition-Action rules to provide reactive behav- 
ior [15]. In this paper we focus on what we refer to as 
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ezpert database systems. An expert database system is a 
conventional database system extended with a facility for 
creating and automatically executing Condition-Action 
rules. Expert database systems originated by coupling 
a rule processor for a production rule language such as 
OPS5 [7] to a conventional DBMS; thii approach is taken 
in, e.g., [23]. More recently the prevalent approach has 
been to build rule processing directly into the database 
system. Examples of recent or ongoing projects in ex- 
pert database systems are [6,11,12,13,21]. Note that 
some systems described as active database systems actu- 
ally use the Condition-Action rule paradigm, and hence 
fall into the class of expert database systems as we use 
the term here; examples of such systems are [14,22]. 
Since expert database systems evolved from production 
rule systems such as OPS5 and are closely related to ac- 
tive and deductive database systems, the techniques pre- 
sented in this paper certainly can be adapted for other 
database rule paradigms. 

While expert database systems are very powerful, de- 
veloping even small applications can be a diicult task, 
due to the unstructured and unpredictable nature of rule 
processing. During rule processing, rules can activate 
and deactivate each other, and the intermediate and fi- 
nal states of the database can depend on which rules 
are activated and executed in which order. It is highly 
beneficial if the rule programmer can predict in advance 
some aspects of rule behavior. This can be achieved by 
providing a facility that statically analyses a set of rules, 
before instaIling the rules in the database [l]. Static rule 
analysis can form the basis of a design methodology and 
programming environment for expert database systems. 

As has been observed in the past [1,17,25], two impor- 
tant and desirable properties of rule behavior are termi- 
nation and confluence. A rule set is guaranteed to termi- 
nate if, for any database state and set of modifications, 
rule processing cannot continue forever (i.e. rules cannot 
activate each other indefinitely). A rule set is confluent 
if, for any database state and set of modifications, the 
final database state after rule processing is independent 
of the order in which activated rules are executed. 

In this paper we propose a generally applicable algo- 
rithm for determining when the action of one rule can af- 
fect the condition of another rule. The algorithm uses an 
extension of relational algebra to model rule conditions 
and actions. Essentially, the algorithm “propagates” one 
rule’s action through another rule’s condition to deter- 
mine how the action may affect the condition; hence, 
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we call it the Propagation Algorithm. The Propagation 
Algorithm is useful for analysing termination since it 
can determine when one rule may activate another rule. 
The Propagation Algorithm also is useful for analyzing 
confluence since it can determine when the execution 
order of two rules is significant. The Propagation Algo- 
rithm determines these properties much more accurately 
than previous methods, e.g. [1,16]. In addition, since we 
take a general approach based on relational algebra, our 
method is applicable to most expert database systems 
that use the relational model. 

1.1 Previous Related Work 

In traditional expert systems, i.e. production rule sys- 
tems such as OPS5 [7], predicting properties such as ter- 
mination and confluence is of less importance than in the 
database environment. Consequently, to qur knowledge 
there has been little work on rule analysis in traditional 
expert systems. 

In the database context, [16,26] give methods for an- 
alyzing Condition-Action rules that are similar to the 
rules we consider. However, the goal of their work is 
to impose restrictions on rule sets so that confluence (a 
%nique fixed point” in their model) is guaranteed; we in- 
stead provide techniques for analyring the behavior of ar- 
bitrary rule sets. In addition, the methods in [16,26] have 
been shown to be weaker than the methods in [1], which 
in turn are weaker than the methods we present here. 
The methods in [l] are developed in the context of the 
Starburst Rule System, which uses an Event-Condition- 
Action (active database) rule model. Their technique 
for analysing rule interaction relies on a shallow com- 
parison of the actions performed by one rule and the 
events and conditions of another rule. We improve on 
this approach significantly by using a formal algebraic 
model that allows us to accurately analyse the interac- 
tion between rules using the semantics of rule conditions 
and actions. In an initial report we applied our approach 
to termination only [3]; here we refine the techniques in 
[3] and propose a general framework for analysis of both 
termination and confluence. 

In other related work, [25] analyres rule behavior in 
the context of object-oriented active database systems. 
Their work focuses on differences between instcmce- 
oriented and set-oriented rules (we consider only set- 
oriented rules in this paper) and on decidability prop 
erties for rule analysis. Their rule model is rather re- 
stricted, in that rule actions (methods) can only mod- 
ify data selected by the corresponding rule condition, 
and deletions and insertions seem to be disallowed. The 
properties of confluence and of termination within some 
fixed number of steps are shown to be decidable us- 
ing an approach based on “typical databases”; a typ 
ical database contains all possible data instances that 
could affect the outcome of rule processing. The rule 
set is “run” over the typical database and the outcome 
is checked for the desired properties. This approach is 
clearly infeasible in practical applications, so lower com- 
plexity algorithms are proposed, but the details and ap 
plicability of these algorithms are not clarified. 

A rather different approach to rule analysis is taken in 
a recent paper [17], where Event-Condition-Action rules 
are reduced to term rewriting systems, and known anal- 
ysis techniques for termination and confluence of term 
rewriting systems are applied. The rule model they use 
is quite different from ours, and it is unclear whether 
a general relational rule model such as ours can be ex- 
pressed as a term rewriting system. However, in the 
future we plan to explore the relationship between these 
different approaches. 

Our Propagation Algorithm is closely related to the 
problem of independence of queries and updates, ad- 
dressed in, e.g., [18]. [18] gives an algorithm for detecting 
if the outcome of a query, expressed as a Datalog pro- 
gram, can be affected by a given insertion or deletion. 
For analysing expert database rules, we need a some- 
what stronger technique: when a query and update are 
not independent, we need to know whether the update 
adds to, removes from, or modifies the result of the query. 
Furthermore, while the algorithm presented in [18] ap 
plies to more general queries than we consider here (e.g. 
recursive queries), their model for database updates is 
considerably simpler than ours. 

Finally, our Propagation Algorithm is somewhat re- 
lated to incrementa evaluation, as in [4,19,20]: both 
problems address the effect of a database modification 
on a relational expression. However, incremental evalu- 
ation techniques are designed for run time, when the ac- 
tual modifications are known, while our techniques apply 
at compile time, when the modifications are expressed as 
database operations. 

1.2 Outline of the Paper 

In Section 2 we present our algebraic Condition-Action 
rule language and provide several examples that are used 
throughout the paper. Section 3 contains the Propaga- 
tion Algorithm, examples of its application, and a cor- 
rectness Theorem. In Sections 4 and 5 we apply the 
algorithm to the analysis of termination and confluence, 
respectively; again, several examples are included. In 
Section 6 we draw conclusions and outline future work. 

2 Algebraic Rule Language 

A rule in our language has a condition and an ac- 
tion. Rule conditions are expressed as queries over the 
database; rule actions are database modifications. We 
use a language in which conditions and actions are both 
represented by relational algebra expressions. In this 
section we describe the extensions to relational algebra 
that are required to represent general rule conditions and 
actions. Then we specify the syntax of our rule language 
using this algebra, and we describe the semantics of rule 
processing in our model. Finally, we give several exam- 
ples of how Condition-Action rules may be represented 
in our algebraic language. 

2.1 Algebraic Operators 

Based on [8], we define an extension to relational algebra 
that allows us to represent any queries that are express- 
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I Onerator 11 Descrintion I z I 1 

D$ semijoin with predicate p 
w3p not-exists semijoin with predicate p 

QAI;AI attribute rename 
E[X = ezpr] attribute extension and expression evaluation 

AIX = alA\: Bl attribute extension and annrenate function evaluation 

Table 1: Additional algebraic operators 

ible in SQL (or Quel), with the exception of the handling 
of duplicates and ordering conditions. We also introduce 
an extension that allows us to represent the SQL data 
modification operations insert, delete, and update. 

Our extended relational algebra includes the basic re- 
lational algebra operators select (u), project (r), Croat- 
product (x), natud join (W), union (U), and differ- 
ence (-), which we do not elaborate on here; see [24]. 
The first two lines of Table 1 present useful operators 
derived from the basic operators, while the next three 
lines present additional operators that we use. In the 
table, X and A denote attributes, B, Al, and Aa de- 
note attribute lists, a is an aggregate function, and 
ezpr is an expression (explained below). In line 1, 
El wp & = ~rchema(E&@l x &)); h be 3, a r+ 
names the attributes in hst Al as Aa. In the remainder of 
the paper, we adopt the shorthand notation ELK Ea and 
El ‘~3 Ez to denote El mcp E2 and El wyP E2 when pred- 
icate p equates all attributes in both schema and 
schemu(E~) (similar to the natural join). We now dis- 
cuss the other operators in more detail, then we present 
the modification operations. 

21.1 Not-Exists Semijoin 

The not-eziata semijoin operator, KY,,, is introduced 
to concisely express negative subqueries as they are ex- 
pressed in SQL (e.g. not exists); negative subqueries 
appear frequently in rule definitions [lo]. The not-exists 
semijoin operator is defined as: 

El ‘xyp E2 = El - (El wp E2) 

Note that we could instead define the relational differ- 
ence operator in terms of not-exists semijoin: El - Ez = 
El “3 Ez (with renaming of attributes in El and Ez as 
necessary). Hence, for convenience, we consider only the 
not-exists semijoin and not the difference operator in the 
remainder of the paper. 

2.1.2 Aggregate Functions and Expression 
Evaluation 

The attribute e&en&n operators allow us to extend 
a relational expression E with a new attribute; this ap 
preach is used for aggregate functions and for motica- 
tion operations. We have: 

l The E operator, which computes expressions applied 
to each tuple of E 

l The A operator, which computes aggregate functions 
(e.g. max, min, avg, sum, cnt) over partitions of E 

E is a unary operator applied to a relational expression 
E producing a result with schema schema(E) U (X}. 
Recall from Table 1 that the E operator is expressed as: 

w = ezpr]E 
ezpr is an expression evaluated over each tuple t of E 
(a conventional expression involving attributes of t and 
constants) yielding one value for each tuple; this value is 
entered into the new attribute X for each tuple of E. For 
details of similar operators see [8]; examples are given in 
later sections. 

A is also a unary operator applied to a relational ex- 
pression E producing a result with schema schema(E) U 
(X}. Recall from Table 1 that the A operator is ex- 
pressed as: 

A[X = a(A); B]E 
B defines a set of attributes on which the result of E ia 
partitioned; each group in the partition contains all the 
tuples with the same B value. a is an aggregate function 
that is applied to the (multiset of) values contained in 
the projection of each partition on attribute A, yielding 
one value for each partition; this value is entered into 
the new attribute X for each tuple of the partition. The 
attributes B are optional: when B is omitted, no group 
ing is performed, and the aggregate function a is applied 
to the entire result of E, yielding one value; that value 
is entered into the new attribute X for each tuple of E. 
For details see [B]. 

2.1.2 Modification Operations 
We represent data modification operations in rela- 

tional algebra by characterising the operations in terms 
of the database state they produce. Table 2 presents 
inserts, deletes, and updates by indicating the algebraic 
expressions that are used to denote the operations, and 
the way iu which these expressions are applied to a re- 
lation R to produce a new value for R. In the table, 
A,, denotes the attributes of R that are updated, 4 
denotes primed versions of these attributes (explained 
below), and A, = schema(R) - A,,. 

Insert operation. An insert operation is denoted by 
a relational expression Ei,,,. Ei,,, produces the tuples to 
be inserted (either a set of constant tuples or the result 
of an algebraic expression). The schema of Ei,,, must 
coincide with the schema of R. 

Delete operation. A delete operation is denoted by 
a relational expression E&i. Edel produces the tuples to 
be deleted. The schema of E&r must coincide with the 
schema of R. 

477 



Update operation. An update operation is denoted 
by a relational expression &,,j. &,,,a has schema 
schema(R) U Ah, where attributes AL contain the new 
values for the updated attributes A,,. As convention, 
the new values for the updated attributes are always 
assigned the corresponding “primed” attribute names. 
That is, if attribute A E A,, is updated, then the new 
value for A is assigned to attribute A’. A typical way to 
express &,,j is: 

E =pd = E[AL, = ezprl] &[A:, = ezpra] . . . 

&[4, = expr,] EC 
where EC is an expression producing the tuples to be 
updated (i.e. the “selection condition” of the update 
operation). The schema of EC must coincide with the 
schema of R. E[ALi = ezpri] evaluates expression expi 
on each tuple of EC and assigns the result to the new at- 
tribute ALi. Although this is a useful form, in its gener- 
ality &,,d can be any relational expression with schema 
schemu( R) U AL. 

As specified in Table 2, the new state of R after the 
update operation is the union of two terms: 

1. The first term R MT Eup,j includes in the result all 
tuples in R that are not modified by the update op 
eration. 

2. The second term aA;;AZ(rAV,A:Eup,j) includes in the 
result the original values for the non-updated at- 
tributes of the modiied tuples and the new values 
for the modified attributes, with the primed attribute 
names replaced by the original attribute names. 

Given a relational expression E (say) with schema 
schemta(R) u A;, we often need the corresponding ex- 
pression that is compatible in schema with R and con- 
tains either the pre-updated (old) or the updated (new) 
values for the modified attributes. For convenience we 
will use the abbreviations pdd(E) = T,~~~~~(E)-A;E 
and P~&E) = QA:;A,(~,~~~~~(E)-A,E). 

2.2 Rule Syntax and Semantics 

A Condition-Action rule in our language is defined as: 

E cond + Eoct 

where: 

9 &ond states the rule’s condition as an expression in 
our extended relational algebra. 

l Eact states the rule’s action as a data modification 
operation expressed using Ein., E&l, or &,a as 
given in Table 2.l 

‘For simplicity, we consider rules with a single action here, 
although many expert database systems allow rules with a 

When this rule is evaluated, the condition &,,,a is true 
if and only if Econd - E$fd # 0, where EfAd denotes 
the result of &,,,,j the last time the rule was evaluated 
during rule processing. If the rule has not previously 
been evaluated, then Et!d = 0. That is, informally, the 
condition is true whenever the query produces “new” tu- 
ples. This is identical to the interpretation of conditions 
in the Condition-Action rules of, e.g., Ariel [14], RPL 
[ll], and set-oriented adaptations of OPS5 [13]; it also is 
similar to the way many Event-Condition-Action rules 
appear to be programmed in practice [lo]. 

The action Eact is a normal data modification oper- 
ation executed on the current database state. In some 
expert database systems, e.g. [13,14], a rule’s action im- 
plicitly operates only on the data “selected” by the con- 
dition, rather than on the entire database. We could use 
a similar rule model here, but it would complicate the 
syntax and semantics and has no bearing on our analysis 
methods; see Section 6 for further discussion. 

Rule processing is invoked after some set of user or 
application modifications to the database. The basic al- 
gorithm for rule processing is: 
repeat until no rule has a true condition: 

select a rule r with a true condition; 
execute r’s action 

In this paper, we do not consider the effect of a con- 
flict resolution policy for selecting among multiple rules 
with true conditions [15]. However, as an extension to 
our framework we plan to incorporate conflict resolution 
using rule priorities; see Section 6. Note also that the 
“granularity” of rule processing invocation with respect 
to database modifications [15] is irrelevant here in the 
context of rule analysis. 

2.5 Examples 

In this section we give the algebraic representation of five 
rules. These rules will be used as examples throughout 
the paper. All five rules refer to the following relations: 

ACCT(num,name,bal,rate) 
CUST(name,address,city) 
LOW-ACC(mm,name,date) 

Relation ACCT contains information on a bank’s ac- 
counts, while relation CUST contains information on the 
bank’s customers. Relation LOW-ACC contains all ac- 
counts with a low balance, including the date on which 
the balance became low. We assume that the first at- 
tribute is a key for each relation, although our method 
does not rely on this assumption. 

sequence of actions. Our methods easily extend to multiple 
actions, usually simply by applying the method once for each 
action [2]. 

Table 2: Algebraic description of insert, delete, and update operations 
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Example 2.1: Rule bad-account states that if an ac- 
count has a balance less than 500 and an interest rate 
greater than O%, then that account’s interest rate is 
set to 0% In our language the rule is expressed as 
E cond --, Eupd with: 

E emad =~bal~at~(~ba1<soo~rat~>oACCT) 
E rpd = i?[rate’ = O]E, 
E, = %al<SOO hrate>OACCT 

Example 2.2: Rule raise-rate states that if an ac- 
count has an interest rate greater than 1% but less than 
2%, then the interest rate is raised to 2%. In our lan- 
guage the rule is expressed as &,,,a --+ l&,d with: 

E mad =%ats(%at e>lmate&CCT) 
E -pd = &[rate'= 23Ec 

EC =urate>l hrate<SCT 

Example 2.2: Rule SF-bonus states that when the 
number of customers living in San Francisco exceeds 
1000, then the interest rate of all San Francisco cus- 
tomers’ accounts with a balance greater than 5000 and 
an interest rate less than 3% is increased by 1%. In our 
language the rule is expressed as $&,,,a + &,a with: 

E cond = 

~city,C("C>iOOO(AIC = cnt’t(nsna)l(~eityI,sFICUST))) 
E rpd = &[rate’ = rate + i]E, 
E, = 

(Qbal>5000 hrate<3ACCT)~~,e(ucity.:‘SF’CUST) 
where name abbreviates ACCT.name = CUST.name. 

Example 2.4: Rule add-bad states that if an account 
has a balance less than 500 and is not yet recorded in the 
LOW-ICC relation, then the information on that account 
is inserted into the LOW-ACC relation, “time-stamped” 
with the current date. In our language the rule is ex- 
pressed as &,,d + Einr with: 

E cm&d = ~n~,bal((~al<6OOACCT) %~-m Lou-Act) 

E* 198. = &[date = today()] 
~n~pame((~al<s0oACCT)~<7rrmLOW-ACC) 

where num abbreviates ACCT.num = LOW-ACC.num and 
today0 is a system-defined function returning the cur- 
rent date. 

Example 2.S: Rule del-bad states that if an account 
in the LOW-ACC relation has a balance of at least 500 in 
the ACCT relation, then the account is deleted from the 
LOW-ACC relation. In our language the rule is expressed 
as &,,,,d --f Edel with: 

Ecmd = ~u(LOU-ACCD%~ (~al~S@CCT)) 

E&l =LOW-ACC~,,,,(Q~~~,~OOACCT) 

where num abbreviates LOW-ACC .mm = ACCT .nnm. 

3 The Propagation Algorithm 

We describe a general algorithm that uses syntactic anal- 
ysis to predict how a database query (i.e. a rule condi- 
tion) can be affected by the execution of a data modifl- 
cation operation (i.e. a rule action). The outcome of our 

Propagation Algorithm is sero or more of the operations 
insert, delete, and update, characterising how the result 
of the query may change due to the execution of the mod- 
ification: If the algorithm produces an irwert operation, 
then the query may contain more data after the mod-‘ 
iflcation; if the algorithm produces a delete operation, 
then the query may contain less data after the modiflca- 
tion; if the algorithm produces an update operation, then 
the query may contain updated data after the modifica- 
tion; if no operations are produced, then the result of 
the query cannot change due to the modification. The 
operations produced by our algorithm are represented 
as relational expressions in the same way that we alge- 
braically represent data modification operations in rule 
actions, except here the modifications apply to arbitrary 
relational expressions instead of only to single relations, 

The algorithm tahes as input a rule condition C and 
a rule action A, both expressed in extended relational 
algebra as defined in Section 2. As an initial filter, if the 
condition C does not reference the relation modified by 
A, then clearly A cannot affect the result of C. Oth- 
erwise, A is “propagated” through a tree representation 
of C’S query. The leaves of the tree are relations, and 
one of these leaves corresponds to the relation R that 
is modiiled by A. (For simplicity here we assume there 
is only one reference to R in condition C; our method 
can easily be extended to handle multiple references [2].) 
Action A is propagated from the affected relation up 
the query tree, and it may be transformed into one or 
more different actions (modification operations) during 
the propagation process. To describe the propagation, 
we give formal rules specifying how arbitrary actions are 
propagated through arbitrary nodes of the tree. After 
each propagation through a node in the tree, the actions 
obtained are checked for ‘konsistency” (explained next). 
Inconsistent actions are discarded, while consistent ac- 
tions are further propagated. The propagation process 
continues until the root of the query tree is reached or 
all actions have been discarded as inconsistent. At each 
point during the propagation process, the actions asso- 
ciated with a node N in the tree indicate the actions 
that may occur to N’s subtree as a result of perform- 
ing the original action A. Hence, the consistent actions 
that reach the root of the tree describe how the original 
action A may affect condition C. 

An action produced by the propagation process is con- 
sistent when the algebraic expression describing the ac- 
tion does not contain contradictions, i.e. it is satisfiable. 
Satisfiability of relational expressions is undecidable in 
the general case, so we can give sufficient but not neces- 
sary conditions for satisfiability of the expressions rep 
resenting the propagated actions. However, for many 
expressions that arise in practice we can see trivially 
whether the expression is satisfiable (as in examples be- 
low), and for some classes of expressions we can verify 
&i&ability using the tableau method in [24].’ 

‘Note that a “conservative” test for satiefiabiity t not 
really alimitation here,Bince our entire approachisbased on 
eyntacticanalysis and henceisconservative: whenanexpres- 
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Node 
II 
11 Applicability 1 

Propagated action: Eiz, --* E,yiii, 
Resulting expre88ion 

- I -.m. -.I.- J-a 

insert into & Es?; = EI w,, E;;, 

Et wfi Ez insert into & E,yi = EiE, M3p & 
insert into & Eg: = El wp Et” SW, 

aA,;A,E E”’ = OAIIAIE;:s 1%. 
E[X = ezpr]E IF=* tn. = E[X = ezpr]E;;, 
A[X = u(A); B]E B = 0 E”’ sm. = Ej:. W A[X = a(A)](E u E;:,) 

E-t r-d = (A[X’ = a(A)](E u Ej:,)) W (A[X = a(A)]E) 
B#@ E+ *ma = E;;, w A[X = a(A); B](E u z:,) 

at &,, = (( A[X’ = a(A); B](E u E&)) W (/t[X = a(A); B]E)) w<p(B) E::. 

Table 3: Insert action propagation 

The rules for propagation are given in tables based on 
the hind of incoming action: insert, delete, and update 
actions in Tables 3,4, and 5 respectively. Each row in the 
tables contains the propagated action(s), EOUt, as a func- 
tion of the incoming action, E’“, and the relational oper- 
ator in the query tree. The column labeled “Applicabil- 
ity condition” specifies when different propagation rules 
are used for different cases. In the tables, Al, As, and 
B are attribute lists, Ajn = schemcr(E~) n schemu(E2), 
AE, = schmaa(E~), A, are the updated attributes, A,, 
and A, are the attributes involved in predicate p and 
expression expr respectively, p’ = CYA,;A~P and expr’ = 
(XA,;A:eXpr, p(B) equates all attributes in list B, and 
p’(&~) equates all attributes in ALB with the corre- 
sponding B attributes. Since the natural join, Cartesian 
product, and union operators are symmetric, without 
loss of generality we assume that the first operand is 
modified; analogous rules apply for modifications to the 
second operand. Observe that aggregate functions re- 
quire, in addition to the incoming action, the entire re- 
lational expression E to which the aggregate function is 
applied. 

The formulas given in Table 5 don’t tahe into account 
the internal structure of selection predicates and update 
expressions. In the case of simple predicates (compar- 
isons between an attribute and a constant3) and simple 
arithmetic update expressions (addition or subtraction 
of constants from an attribute), in many cases it is possi- 
ble to eliminate some of the propagated actions. For ex- 
ample, consider the propagation of the update A = A+ 1 

sion is satisfied we determine only that the condition may be 
aRected, not that the condition necessarily will be affected. 

‘Actually, any expression that involves non-updated at- 
tributes and constants can be considered as a constant in 
this context. 

Arithmetic update expression 
predicate addition subtraction other 

. An = k, A, # k Eypd E npd E npd 

An > k, %I 2 k: Eder E. - .tt# 
At < k, At I k Einr he1 - 

Table 6: Eliminated actions 

through the operation Q&5. Intuitively, this update 
will never cause tuples to be deleted from the expression 
rooted in U&5. Thus, the propagated delete operation 
can be eliminated. Table 6 shows the actions that can be 
eliminated in the different cases. In the table, “other” in- 
dicates an arbitrary arithmetic expression, which in the 
case of an equality or non-equality predicate still allows 
an update action to be eliminated. 

3.1 Examples 

We give two examples of the Propagation Algorithm ap 
plied to rules from Section 2.3. In each example, we 
analyre the effect of one rule’s action on another rule’s 
condition by fully describing the propagation process and 
the satisfiability test. 

Example 3.1: Consider condition Second in rule bad- 
account (Example 2.1) and the update action in rule 
SF-bonus (Example 2.3). The input to the algorithm is: 

C = ~al,rata(Qba1<~00 Arate>&‘CT) 
A = EIpd = &[rate’ = rata + 1) 

(Obal>SOOO hratcr<3(ACClb<no~=SF-cwt)) 
where name abbreviates ACCT .name = CUST.name and 
SF-cud abbreviates Ocity,,SF,CUSTw Using Table 5, the 
propagation of E+ through the selection operation in 
C yields insert and update actions (the delete action is 
eliminated, see Table 6). We have: 
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QpE 

rA1 E 
El W & 
& x 3% 
El u & 

QA~;A$ 

&[X = ezpt]E 

Applicabiity 
condition 

-- 

Propagated action: E$ + Ez&,,, 
Resulting expression 

A[X = a(A); B]E B = 0 Em* de1 = 
on* 

Pzl W (A[X = a(A)]E). 
! 

E rsd = (A[X’ = a(A)](E MT Eg#)) W (A[X = a(A)]E) 
B#0 * E,“, = E;z, W A[X = o(A); B]E 

E out 
rud = ((A[X’ = u(A); B](E MI Ek,)) cd (A[X = a(A); B]E)) MdBl Ezl 

Table 4: Delete action propagation 

EL = ~~e~((oba1<500~rat~~>oElpd)~~ 
(Qbal<SOO~rate>O Ew)) 

ELpd = (Qbal<SOO a-ate+&+) w 
(%al<SOO mte>oElpd) 

In both cases, predicates bal < 500 and bal > 5000 
(the latter from Eupd) are contradictory, so both expres- 
sions Ei,,, and EL,,,, are unsatisfiable. Intuitively, action 
A operates on data not read by condition C. We con- 
clude that action A cannot affect condition C. 

Example 3.2: Consider condition &,,,d in rule bad- 
account (Example 2.1) and the update action in rule 
raise-rate (Example 2.2). The input to the algorithm 
is: 

C= ~balEate(Qbal<soohrate>oACCT) 
A = EIpd = E[rate’ = 21(uratte>l hrate<2ACCT) 

The propagation of &,,d through the selection operation 
in C yields insert, delete, and update actions: 

E! if&s = ~34(‘7ba1<500 nrate~>oE+dD<~ 
(aba1<500 mate>OErpd)) 

E:e~ = Po~d((Oba1<500~rate>OErpd)~~ 
b'ba1<500~rate~>O~wd) 

E’ -( rpd - Qbalc5OOhrate'>O E )w =pd 
(Qbal<SOO aata>OErpd) 

These expressions do not contain contradictory predi- 
cates, thus they may be satisfiable and the propaga- 
tion continues. The propagation of Ei,,,, ELe,, and EL,, 
through the projection operation in C yields: 

E!’ *7&. = ~alyat&=, 
EL, = ~al,ratJ& 

All three expressions are satisfiable, thus action A can 
affect the result of condition C. Furthermore, Em,, Eier, 

and EzPd describe the actions that can be performed on 
C as a result of the execution of A. 

3.2 Correctness of the Algorithm 
The following Theorem states the correctness of the 
Propagation Algorithm. Due to space constraints, the 
proof of the Theorem is omitted here. A proof sketch 
appears in [5] and a complete proof appears in [2]. 

Theorem 3.1: Let Q be the query tree correspond- 
ing to a relational expression C and let A be an action 
performed on a relation in (2. Let E”“’ be the actions 
produced at the root of Q by application of the propa- 
gation rules in Tables 3-5. E““’ describes a superset of 
all actions that can be performed on expression C as a 
result of executing the original action A. 0 

4 Termination Analysis 

Recall the rule processing loop from Section 2.2. Ter- 
mination for a rule set is guaranteed if rule processing 
always reaches a state in which no rule has a true condi- 
tion. Notice that, according to the semantics in Section 
2.2, after the first execution of each rule r, r’s condi- 
tion is true again if and only if new data satisfies the 
condition. Hence, informally, rule processing does not 
terminate if and only if rules provide new data to each 
other indefinitely. 

We say that a rule rl may activate a rule rr if execut- 
ing ~1% action may cause new data to satisfy rr’s condi- 
tion. We analyre termination by building an Activation 
Graph. In the graph, nodes represent rules, and directed 
edges indicate that one rule may activate the other. If 
there are no cycles in the graph, then rule processing is 
guaranteed to terminate [1,3]. Hence, the core of termi- 
nation analysis is determining when an edge should be 
included in the graph, i.e. when one rule may activate 
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E at 
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Table 5: Update action propagation 
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another rule. The more accurately we can make this de- 
cision, the more accurately we can analyze termination. 

We use our Propagation Algorithm to decide when an 
edge ri -+ rj belongs in the Activation Graph. Note that 
rules may activate themselves, so ri = rj is included in 
the analysis. TO detect if ri may activate rj, the Prop 
agation Algorithm is applied to rj’s condition C and 
ri’s action A. If the algorithm yields an insert or up- 
date operation, then ri may provide new data satisfying 
rj’~ condition. Thus, ri may activate rj, and the edge 
ri * rj belongs in the graph. If only a delete operation 
or no operation is produced by the algorithm, then ri 
cannot provide new data to rj’s condition, and the edge 
is not included in the graph. 

Our use of the Activation Graph is similar to, e.g., [l, 
lo], but our approach is far less conservative since we 
exploit the algebraic structure of conditions and actions 
to accurately determine when edges belong in the graph. 

4.1 Examples 

Consider the rules from Section 2.3. We present two 
examples where we apply our analysis techniques to de- 
termine that a pair of rules does not produce a cycle 
in the Activation Graph, i.e. the rules cannot activate 
each other indefinitely. In both of these examples, the 
technique in [l] is unable to determine that these rules 
terminate. 

Example 4.1: Consider rule bad-account (Exam- 
ple 2.1) and rule raise-rate (Example 2.2) that here 
will be called rl and rs respectively. Both rule con- 
ditions reference attribute rate, and both rule actions 
update rate. Hence, intuitively (and according to the 
method in [1]), the two rules might activate each other 
indefinitely. We have shown in Example 3.2 that rz’s 
action may provide data to rl’s condition (since insert 
and update operations are produced by the Propagation 
Algorithm), thus the edge rr 4 r1 belongs in the Acti- 
vation Graph. Now we use the Propagation Algorithm 
to determine if rr may activate rr. The input to the 
algorithm is: 

C=~rate(urate>lhrate<2 ACCT) 

A = Espd = &irate' = OI(%al<600 mata>dCCT) 

The propagation of &,,,a through the selection operation 
in C yields: 

Ei'ms = Prr=u((urate,>lhratgr<2Erpd)P<J 
( grate>1 aate&tpd)) 

E’ upd - - (Uratel>l Aratw<PEwd) W 
("rate>lhrate<2 Elpd) 

EL =Pold(("rat~>lhrat0<2Erpd)~<l 
( Qrate+i ~rat.e~<&pd)) 

Since predicates rate’ > I and rate’ = 0 (the latter 
from &@) are contradictory, expressions Ei,, and Eipd 
are not satisfiable and hence are discarded. The prop 
agation of E&, through the projection operation in C 
yields: 

ELr=~rratJLr 

which is satisfiable. Thus, rl’s action may result in a 
deletion of tuples from rr’s condition. However, since 
neither an insert nor an update action is produced, rl 
cannot activate r2, the edge rl -+ rs is not included in 
the Activation Graph, and we conclude that rules rl and 
r2 wilI always terminate. 

Example 4.2: Consider rule add-bad (Example 2.4) 
and rule del-bad (Example 2.5) that here will be called 
rl and rr respectively. Here again, intuitively (and ac- 
cording to the method in [l]), the two rules might ac- 
tivate each other indefinitely. We use the Propagation 
Algorithm to determine if rl may activate r2. The input 
to the algorithm is: 

C = m~(Low-ACc K<n+m (~al>sooACCT)) 
A = E;,. = E[date =today()] 

(~~p~~((~al<SOOACCT)~~~nmrLOY-ACC)) 

where nurn abbreviates LOW-ACC .num = ACCT .num. The 
propagation of Eim, through the semijoin operation in C 
yields: 

Eln, =(E[date=today()] 
(mum,name(~o~-baID<I,,, LOW-C))) 

DC ,,,,,,, high- bal 

where low-bal abbreviates Q~~<sooACCT and high-bal 
abbreviates q,al,sooACCT. This expression is not sat- 
isfiable, since it requires a tuple with a given mm value 
to satisfy both predicates bal < 500 and bal 1 500. 
Hence, rl cannot activate r2, edge rl -+ r2 is not in- 
cluded in the Activation Graph, and rules rl and r2 are 
guaranteed to terminate. 

5 Confluence Analysis 

Recall again the rule processing loop from Section 2.2. 
In each iteration, there may be multiple rules eligible 
for execution, since more than one rule may have a true 
condition. A rule set is confluent if the final state of 
the database does not depend on which eligible rule is 
chosen for execution at any iteration. 

To formally describe confluence and confluence anal- 
ysis, we introduce the notion of a rule execution state 
and a rule ezecution sequence. Let R be the set of rules 
under consideration. 

Definition 6.1: A rule execution state S is a pair 
(db, RA), where db is a state of the database and RA s R 
is a set of activated rules. 0 

Definition 5.2: A rule ezecution sequence is a sequence 
CT consisting of a series of rule execution states linked by 
(executed) rules. A rule execution sequence is complete if 
the last state is (db, 0), i.e. the last state has no activated 
rules. A rule execution sequence is valid if it represents 
a correct execution sequence: only activated rules are 
executed, and pairs of adjacent states properly represent 
the effect of executing the corresponding rule; for details 
see [1,2]. 0 

We now define confluence in terms of execution se- 
quences. 
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Definition 5.3: A rule set is conjluent if, for every ini- 
tial rule execution state S (corresponding to an initial 
database and set of .modifications), every valid and com- 
plete rule execution sequence beginning with S has the 
same final state. 0 

Clearly we cannot use this definition directly to an- 
alyre confluence, since it requires the exhaustive verifi- 
cation of all possible execution sequences for all possible 
initial states. We give sufficient conditions for confluence 
based on the commutativit~ of rule pairs. Two rules ri 
and rj commute if, starting with any execution state S, 
executing pi followed by rj produces the same execution 
state as executing rj followed by ri. The conditions for 
commutativity require that the two rules cannot activate 
or deactivate each other,’ and their actions can be exe- 
cuted in either order. These conditions are stated in the 
following Lemma, whose proof is obvious [l]. 

Lemma 5.1: Distinct rules ri and rj commute if: (1) 
fi’s action cannot affect the outcome of ‘i’s condition 
(i.e. fi can neither activate nor deactivate rj); (2) exe- 
cuting ri’s action cannot change the effect of executing 
rj’s action; (3) conditions (1) and (2) with i and j re- 
versed. 0 

Note that even though conditions (l)-(3) are not neces- 
sarily satisfied when ri = rj, it is the case that a rule 
always commutes with itself. 

We state two Lemmas, followed by the main Theorem 
on confluence. The proofa are omitted due to space con- 
straints; all proofs appear in [5]. The first Lemma states, 
under the assumption of commutative rules, that two 
execution sequences with the same initial state and exe- 
cuted rules have the same final state; the second Lemma 
states, again under the assumption of commutativity, 
that two sequences with the same initial state must have 
the same executed rules. 

Lemma 5.2: Let all pairs of rules in R commute. Let 
~1 and ~2 be two valid and complete rule execution se- 
quences with the same initial state, such that the same 
rules are executed in 01 and a2 although not necessarily 
in the same order. Then crl and cr2 have the same final 
state. 0 

Lemma 6.3: Let all pairs of rules in R commute. Let 
u1 and uz be two valid and complete rule execution se- 
quences with the same initial state. Then the same rules 
are executed in CQ and ~2. 0 

Based on these Lemmas, the following Theorem 
presents a sufficient condition to guarantee confluence 
of a rule set. 

Theorem 6.1: A rule set R is confluent if all pairs of 
rules in R commute. 0 

The requirement for confluence in Theorem 5.1 may 
seem rather strong, but there is no way to weaken this 

‘Rule vi deactivatea rule ri if ti’s action deletes all new 
data satisfying vi’s condition. 

requirement in a rule model without a more sophisti- 
cated conflict resolution policy or priorities among rules. 
We believe this argues for the importance of rule pri- 
orities, which we plan to investigate in this context as 
future work. Notice also that, in the case where no rule 
can activate itself, the confluence requirement as stated 
in Theorem 5.1 trivially implies termination, since the 
pairwise commutativity of all rules includes the require- 
ment that no rule activates another rule. However, if 
one or more rules can activate themselves, then conflu- 
ence does not imply termination. 

Commutativity of rule pairs forms the basis of most 
methods for analyring confluence of database rules, e.g. 
[1,25]. The remainder of this section describes our tech- 
nique for determining commutativity of rule pairs. Since 
commutativity itself is a %ubroutine” to proving conflu- 
ence, our commutativity analysis technique also can be 
applied in other contexts, e.g. [l]. Needless to say, we 
use our Propagation Algorithm to analyse commutativ- 
ity, exploiting the algebraic description of rule conditions 
and actions to yield a much more accurate analysis tech- 
nique than, e.g., [l]. 

To guarantee commutativity of two rules ri and rj, we 
must verify conditions (l), (2), and (3) in Lemma 5.1. 
For (l), we determine that ri cannot activate rj exactly 
as we have done for termination; recall Section 4. To 
show that ri cannot deactivate rj, we must show that ri’s 
action A cannot “take away” data from rj’s condition C. 
It is easy to see that action A can take away data from 
condition C only if the Propagation Algorithm applied 
to A and C produces a delete operation. Hence, one 
application of the Propagation Algorithm is sufficient for 
verifying (1). 

For (2), we must determine ifri’s action & can change 
the effect of rj’s action Aj. We do this by transforming 
action Aj into a condition Cj such that if the result of 
condition Cj cannot be affected by the execution of A, 
then & cannot change the effect of action Aj. We then 
apply the Propagation Algorithm to analyre Ai and Cj: 
if the algorithm produces 0, then & cannot change the 
effect of Aj; if the algorithm produces one or more of 
insert, delete, or update, then Ai may change the effect 
of Ajs 

Consider how condition Cj is derived from action Aj. 
If Aj is an insert operation, then Aj = Einr is a condition 
describing the inserted data, hence we let Cj = Ein.. 
Similarly, if Aj is a delete operation, then Aj = Edel 
is a condition describing the deleted data, and we let 
Cj = -!&l. Suppose Aj is an update operation on at- 
tribute A, defined by &,a = E[A’ = expr]E,.5 We start 
with the “selection condition” E,. Cj is the projection 
of E, onto all attributes referenced within EC together 
with all attributes referenced in the E operation (both 
A and the attributes referenced in ezpr). If any of these 
attributes can be affected by the execution of Ai, then 
4 may change the effect of Aj’s update; if not, then 

‘The extension to multiple updated attributes is obvious. 
Note that here we require updates to be specified with explicit 
use of E,; this does not limit expressiveness. 
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Ai cannot change the effect of Aj. By using the pro- 
jection here, rather than the entire expression EC, we 
ignore modifications to attributes that do not affect the 
evaluation of EC or the assignment of the new values to 
the updated attribute. 

Finally, we analyze (3) by reversing the roles of ri and 
rj in the analysis of (1) and (2). 

5.1 Examples 

Consider the rules from Section 2.3. We present two 
examples where we apply our analysis techniques to de- 
termine that a pair of rules are commutative (and hence 
the set of these two rules is confluent). In both of these 
examples, the technique in [l] is unable to determine 
that these rules commute. 

Example 5.1: Consider rule bad-account (Exam- 
ple 2.1) and rule SF-bonus (Example 2.3), that here will 
be called rl and rz respectively. Both rules reference 
attribute rate and both update this attribute. Hence, 
intuitively (and according to the method in [l]), the two 
rules may not commute. We first analyze the effect of 
ri’s action on rr. Since Q’S condition does not reference 
the relation updated by ri, rl’s action trivially cannot 
affect rz% condition. We use the Propagation Algorithm 
to analyze the effect of ri’s action on the condition cor- 
responding to rr’s action: i?bal,rate,nmz,city E The c. 
input to the algorithm is: 

C~~al~at~pam~.citp(obal~SOOO~rate~3 
(ACClb<,,,(u,ity=,SF,CUST))) 

A = &+,d = E[rate’=OI(~ba1<~~1 mate>OACW 

The propagation of E,,,,d through the semijoin operation 
in C yields: 

E’ rpd - - &,d w rrcme (ucity=,SFtmST) 

The propagation of EL,, through the selection operation 
in C yields: 

In all three expressions, predicates bal > 5000 and bal 
C 500 (the latter from E,,zd) are contradictory, so the 
expressions are unsatisfiable. Hence, the Propagation 
Algorithm produces no actions and we conclude that ex- 
ecuting ri’s action cannot change the effect of r2’s action. 

A similar analysis reveals that r2’s action cannot affect 
ri’s action, and we have already shown in Example 3.1 
that rz’s action cannot affect ri’s condition. Hence, we 
conclude that rules ri and r2 commute. 

Example 5.2: Consider rule add-bad (Example 2.4) 
and rule del-bad (Example 2.5) that here will be called 
rl and rz respectively. We have already shown in Ex- 
ample 4.2 that rl’s action cannot affect r2’s condition. 

An analogous analysis shows that ri’s action cannot af- 
fect the condition corresponding to rz’s action, i.e. E&l. 
Consider the effect of rule t-2 on rule rl. We first ap 
ply the Propagation Algorithm to rz’s action and ri’s 
condition. The input to the algorithm is: 

C = ~n~,bal((Qbal<SooACCT) s<7-- LOW-ACC) 
A=E&l= LOY-ACC~,,(Q~~~~~~~ACCT) 

where num abbreviates LOW-ACC .num = ACCT .num. The 
propagation of E&r through the P<y operation in C 
yields: 

Ei,,, = low-QaW,,, (LOU-ACC*,,, high-q 

where low-bal abbreviates 0b~l<500ACCT and high-bal 
abbreviates ~b~l,500ACCT. This expression is not satis- 
fiable, as it requirgs a tuple with a given num value to sat- 
isfy both predicates bal < 500 and bal 1 600. Hence, 
rz’s action cannot affect q’s condition. An analogous 
analysis shows that rz’s action cannot affect the condi- 
tion corresponding to rl’s action, i.e. Ein,. Hence, we 
conclude that rules rl and r2 commute. 

6 Conclusions and Future Work 

We have defined a representation of Condition-Action 
expert database rules based on an extended relational 
algebra, and we have described a generally applicable al- 
gorithm for analyzing the interactions between one rule’s 
condition (a query) and another rule’s action (a mod%- 
cation). We have shown how this algorithm is applied to 
check termination and confluence for sets of rules. Our 
technique improves considerably upon previous meth- 
ods, because our formal approach allows us to exploit 
the semantics of conditions and actions to analyze the 
interaction between rules. Note that the methods we 
describe also are applicable to rule languages that “pass 
data” from the condition to the action (e.g. [13,14]), 
since our algorithm detects the actual modifications to 
rule conditions (inserts, deletes, and updates), not sim- 
ply the transition between true and false. As in [l], our 
analysis techniques identify the responsible rules when 
termination or confluence is not guaranteed; hence, our 
techniques can be used as the kernel of an interactive 
development tool that helps rule definers develop sets of 
rules that are guaranteed to have the desired properties. 

We plan to extend our rule model and analysis 
techniques to incorporate additional features of expert 
database rules: 

l Rule priorities and conflict resolution. Pri- 
orities restrict the possible execution sequences of 
rules, mahing analysis more complex but perhaps 
more precise. Coupling our accurate analysis of rule 
interactions with the priority-based methods in [l] 
should immediately produce a quite powerful analy- 
sis method for prioritized rules. 

l Different semantics for rule condition evalu- 
ation. In some database rule languages, rule con- 
ditions may be evaluated over the entire database, 
as opposed to considering only “new” data as we 
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have done here. This interpretation yields a differ- 
ent notion of rule activation, since a rule condition 
remains true unless execution of some rule action ren- 
ders it false. 

Events. We can handle Event-Condition-Action 
rules that have a semantics similar to our Condition- 
Action rules, e.g. the event-based rules of Ariel [14], 
with minor modifications to our techniques. (In 
fact, it is our feeling that event-based rules often 
are programmed thii way in practice, e.g. [lo].) 
However, general Event-Condition-Action rules, es- 
pecially those in which the condition is evaluated over 
the entire database, will require a redefinition of rule 
activation (as discussed in the previous point), along 
with corresponding modifications to our method. 

We also hope to use our algebraic rule model and Propa- 
gation Algorithm as the basis for compile-time and run- 
time optimisations to rule processing. 
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