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Abstract 

This paper presents an approach to the de- 
velopment of a practical deductive object- 
oriented database (DOOD) system baaed 
upon the integration of a logic query language 
with an imperative programming language in 
the context of an object-oriented data model. 
The approach is novel, in that a formally de- 
fined data model has been used as the start- 
ing point for the development of the two lan- 
guages. This has enabled a seamless integra- 
tion of the two languages, which is the cen- 
tral theme of this paper. It is shown how the 
two languages have been developed from the 
underlying data model, and several alterna, 
tive approaches to their integration are pre- 
sented, one of which has been chosen for im- 
plementation. The approach is compared with 
other examples of language integration in a 
database context, and it is argued that the 
resulting system overcomes a number of im- 
portant challenges associated with the devel- 
opment of practical deductive object-oriented 
database systems. 
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1 Introduction 

Designers of novel database systems and languages 
are often faced with situations in which compromises 
have to be made in the context of seemingly conflict- 
ing goals. In the case of data models, the addition 
of new constructs makes the model more expressive, 
but also increases its complexity. In the case of query 
languages, increases in the power of a language often 
complicate its underlying semantics or impact upon 
the nature/practicality of effective optimisation (e.g. 
the addition of update mechanisms to Datalog requires 
extensions to its frxpoint semantics, and the associated 
addition of control structures may limit opportunities 
for optimisation [CGTSO]). As a result of this ten- 
sion, database programming languages have been pro- 
posed which have very different areas of strength and 
weakness, and thus individual languages are suited to 
particular data management tasks, but not to others. 

One strategy which has been adopted to overcome 
the weaknesses of particular approaches for certain 
tasks has been to integrate different programming 
paradigms for use with databases. The nature of such 
systems is considered further in section 2, where a 
number of examples are presented, but the broad idea 
is that an integrated system may be greater (in some 
sense) than the sum of its constituent parts. This pa- 
per presents a database programming system in which 
a logic query language ROLL (Rule Object Logic Lan- 
guage) is integrated with an imperative programming 
language ROCK (Rule Object Computation Kernel) in 
the context of a common underlying data model (OM). 
The overall architecture of the system is presented in 
figure 1. The resulting system supports a range of 
standard object-oriented mechanisms for structuring 
both data and programs, while allowing different and 
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complementary programming paradigms to be used for 
different tasks, or different parts of the same task. 

The focus in this paper is on the integration of 
the logic query language with the imperative manip- 
ulation language, rather than on the association of 
the logic query language with the underlying data 
model (as described in [FWP94]) or the relationship 
between the imperative language and the underlying 
data model (as described in [FBPW93]). These com- 
ponents, ROLL, ROCK and OM are introduced in sec- 
tion 3 to give a context for the consideration of the 
integration issues presented in section 4. 

After the integration has been presented, a valid 
question which remains unaddressed is the effective- 
ness of the resulting system as a DOOD. In section 5 
the integrated system (ROCK k ROLL) is discussed 
in the context of the issues raised by [UllSl], where it is 
argued that there are significant obstacles which must 
be overcome by any system which is to be fully deduc- 
tive and fully object-oriented. We believe that ROCK 
& ROLL successfully addresses the issues raised by 
Ullman, in a way which yields a practical DOOD sys- 
tem. Conclusions are presented in section 6. 

Figure 1: Relationship between the principal camps 
nents in the architecture. 

2 Related Work 

Many proposals have been made for systems which 
integrate different languages for manipulating per& 
tent data. Indeed, the notion of impedance mismatch 
in both its aspects (type system mismatch and evalu- 
ation strategy mismatch) was put forward to charac- 
terise certain ways in which an ‘integration’ may be 
less than seamless. The impedance mismatch is likely 
to manifest itself most strongly where the languages 
which are being used together were developed indkpen- 
dently (e.g. when SQL is embedded in C), although 

most recent proposals that exploit integration involve 
languages which were designed with subsequent inte- 
gration in mind. The following are criteria against 
which an integration can be judged: 

Evaluation strategy compatibility. This criterion 
is part of the standard impedance mismatch, and 
indicates whether the evaluation strategies used 
by the two languages are compatible. 

Type system uniformity. This criterion indicates 
whether all values which are first-class citizens in 
one language are first-class citizens in the other. 

Type checker capability. This criterion indicates 
whether or not strong compile-time type checking 
is carried out across the interface between the two 
languages. 

Syntactic consistency. This criterion indicates the 
degree to which the syntaxes of the integrated lan- 
guages are consistent. The syntaxes are sure not 
to be identical, but in a syntactically consistent in- 
tegration a similar syntax should be used on both 
sides of the interface to perform similar tasks (e.g. 
compare two strings, invoke a method). 

Bidirectionality. This criterion indicates whether 
or not it is possible for each language to call the 
other, or whether one is essentially embedded in 
the other. 

Table 1 indicates the extent to which a number of 
systems satisfy these criteria, the specific systems be- 
ing described briefly in what follows. The symbol w 
in Table 1 indicates that the criterion is partially sat- 
isfied. 

coral++ [SRsS93] is essentially an interface from 
the deductive database system Coral to C++, 
whereby C++ objects can be accessed from Coral 
programs using some conservative extensions to 
the Coral language. Because two independently 
developed systems have been combined, the inte- 
gration is not particularly seamless. 

Embedded-SQL [Dat90] is the principal means by 
which complete applications are developed using 
the relational model, the query language SQL be- 
ing embedded in an imperative language such as 
C. This is essentially a mechanism for allowing im- 
perative programs to access and update relational 
databases rather than an attempt at a smooth in- 
tegration. 

Glue-Nail [PDR91] is a combination of the logic 
query language NAIL! with the imperative pro- 
gramming language Glue in the context of an es- 
sentially relational data model. In common with 
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Table 1 - Characterising Seamlessuess of Language Integration 
System Evaluation strategy Type system Type checker Syntactic Bidirectiouality 

compatibility uniformity capability consistency 
Coral++ X X X a X 

Embedded-SQL X 

Glue-Nail 
$ 

: 

X X X 

PFL 
Raleigh 

:: 
7 

ROCK & ROLL 

ROCK & ROLL, such an approach avoids com- 
plicating the semantics of the logic language with 
update facilities, but also allows modification of 
the underlying database. The fact that Glue was 
designed specifically as an update language for 
NAIL! means that the impedance mismatch can 
be minimised. 

of costs/benefits associated with reorientation remains 
an issue for future examination. 

PFL [PS91] is a lazy functional programming lan- 
guage with an embedded query language con- 
struct influenced by logic query languages. 

Raleigh [KR91] is an imperative database program- 
ming language with a functional flavour, into 
which can be embedded query language state- 
ments based upon select and for each con- 
structs. 

The process of integrating two intrinsically differ- 
ent languages inevitably leads to the introduction of 
a paradigm mismatch. The paradigm mismatch con- 
cerns the efficacy of-the integration, and introduces 
two further issues which are relevant to the utility of 
an integration: 

Complementarity, which indicates whether an in- 
tegrated system is likely to be significantly more 
useful than its individual components. 

Reorientation, which indicates how straightfor- 
ward it is for a programmer to switch between 
the two paradigms in a single application. 

These measures are considerably more subjective 
than those considered earlier in this section in con- 
nection with the impedance mismatch (which is prin- 
cipally concerned with the way in which an integra 
tion is engineered, rather than its desirability), but 
fully as important to the users of a system. For ex- 
ample, the integration of Glue with NAIL! in Glue- 
Nail increases the functionality of the NAIL! system 
by allowing updates while preserving the semantics 
of NAIL! for query processing, and thus the two lan- 
guages can be considered to be complementary. It is 
less clear, however, that the integration of a logic query 
language with a functional programming language in 
PFL has led to significant gains - for example, neither 
language supports updates or I/O. The measurement 

The work presented here is also related to other re- 
search on deductive object-oriented databases. Con- 
sideration of ROCK & ROLL as a DOOD is de- 
ferred until section 5, a more comprehensive review 
of approaches to the design of DOODs being given in 
[FPWB92]. 

3 ROCK & ROLL 

This section describes the components of ROCK & 
ROLL - the data model, imperative programming lan- 
guage and logic query language. Each of these com- 
ponents can be considered to be quite conventional - 
an important theme of the work presented here is that 
it is possible to smoothly integrate these three com- 
ponents without sacrificing the characteristic virtues 
of any of them, and without introducing radical new 
concepts as part of the integration process. 

3.1 The Data Model - OM 

A brief informal account of the model is now given with 
the purpose of providing an introduction to the termi- 
nology used later in the paper. Atomic values and 
compound data items are called primary objects and 
secondoy objects respectively. Each object is assigned 
an object type, and every secondary object has a unique 
object identifier. The object-oriented model informally 
described below has been formalised in [FWP93] as a 
class of first-order theories [Men87] called objedt the- 
oties (OTs) of which every legal database state is a 
logical model. Thii section gives an informal overview 
of the concepts used to model an application domain 
both structurally and behaviourally. 

A type definition can describe references of two 
kinds. The first kind of reference definition is used 
to model the properties of the type. This results, for 
each type, in a possibly empty set of type names which 
are the attributes of the type. This is slightly uncon- 
ventional, in that the type name given for each prop 
erty both names the property and specifies which val- 
ues it may hold. As an example of some property 
definitions, the following code fragment indicates that 
a roadsegment has two properties, a startJunction 
and an endJunction. 
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type roadsegment 
properties : 

StartJunction, endJunction; 
. . . 

end-type 

The second kind of reference definition, which is re- 
ferred to as the construction of the type, is used to 
distinguish the fundamental structural characteristic 
of a type from its other stored properties. A type can 
be structured by association, sequentiation or aggre- 
gation, which support the modelling of sets, lists and 
tuples, respectively. For example, the following type 
definition indicates that a polygon, while having the 
attribute area, has as its construction a sequence of 
segment objects (represented by square brackets): 

type polygon 
properties: 

area: 
[ segment I 
interface : 

perimetero: real; 
. . . 

end-type 

An object type may also declare a behavioural in- 
terface. For example, the definition of polygon in- 
cludes the specification of the signature of the method 
perimeter which returns a real result. The actual 
definition of a method is specified in the class which 
corresponds to the type - every type is associated with 
a single class which has the same name as the type. 
The int.ention is that the type specifies.all that a user 
of the type needs to know in order to use the type, 
while method code and other implementation details 
are specified in the class (for examples of type and 
class definitions see sections 3.2 and 4.2.2). Methods 
are defined in a context which supports overloading, 
overriding and late binding. 

Schema diagrams for the data’ model can be con- 
st.ructed using the following notation. Secondary ob- 
ject types are represented using rectangles, primary 
object types using ellipses, and operations using rect- 
angles with rounded corners. Labelled directed edges 
represent modelling features thus: 0 - attributes, Q 
- specialisation, @ - aggregation, @ - association, 
and @ - sequentiation. This notation is used to de- 
scribe part of a geographic database in figure 2. In this 
example, a polygon is constructed from a sequence 
of segment objects, has a stored attribute area, and 
the operations adjacent, connected, and perimeter. 
The type landparcel is a subtype of polygon. This 
schema will be used in examples throughout the paper. 

3.2 The Imperative Programming Language - 
ROCK 

The database programming language allows both per- 
sistent and transient data to be created and manipu- 
lated in a uniform way. ROCK is based on the data 
model described in section 3.1, and is a strongly typed 
imperative object-oriented database programming lan- 
guage. 

ROCK can be regarded ss the conjunction of a 
data definition language for schema declarations, and a 
data manipulation language that allows operations to 
be performed on persistent or transient objects. The 
types which can be defined using the data definition 
language are exactly those which are supported by the 
data model described in section 3.1. The data ma 
nipulation language provides constructs for processing 
such data, and thus is suitable for the development 
of complete applications. The facilities supported are 
comparable to those of other object-oriented database 
programming languages, and include: 

the object creation operator new 

assignment 

I/O operations (read, write, . . .) 

control structures such as selection (if then 
else), iteration (while, foreach) and blocks 
(begin end). The f oreach construct provides for 
iteration over the instances of a class or over the 
elements of an association or sequentiation. 

All control structures have a mode of operation in 
which they return an‘object, or a set of objects in the 
case of the‘iterative constructs. 

Operations on objects are classified into two groups: 
built-in (or system generated) and methods (or user- 
defined). The model of computation adopted in both 
cases is the messaging one, where the symbol ‘Q” is 
the message sending’operator. The message recipient 
is an object ezpression, that is, an expression in the 
language which evaluates to an object. For example, 
the following expression assigns to the variable s the 
result of sending the message get-startJunction to 
the roadSegment rs. 

a := get,startJunction@rs 

Message sends can be nested, and inside a method, 
messages can also be sent to self and super. Support 
for encapsulation is strict, i.e. the structure of ob- 
jects can only be accessed through operations, whether 
system-generated or user-defined. 

l System-generated operations 

466 



Figure 2: Schema diagram for a fragment of a geographic database 
For each property-attributed to a type and 
for each coordinate in an aggregate construc- 
tion, the compiler generates a pair of methods 
whose names are those of the corresponding prop 
erty/coordinate prefixed respectively by get- and 
put- These methods allow the object referenced 
by a property/coordinate to be retrieved or up- 
dated, and their visibility is determined by that 
of the corresponding property/coordinate. 

l User defined operations 

User defined operations are given in the form of 
methods. Methods have a visibility which is ei- 
ther public or private. Private methods are not 
accessible from outside the definition of a class, 
while public methods are. The signatures of pub- 
lic methods are defined in the interface part of the 
corresponding type definition. 

To illustrate class and method definition, consider 
the definition of the class polygon, associated with the 
t,ype polygon defined in section 3.1: 

class polygon 
perimeter0 : real 
begin 

var per: real; 
foreach s in self do 

per := per + 1engthQs; 
per 

end 
. . . 

end-class 

The method perimeter calculates the perimeter 
of the polygon by summing the result of the leagth 
method on each of the segments in the sequence from 
which the polygon is constructed - the foreach loop 
iterates over all the segment objects in this sequence; 
the type of s is inferred. 

The model of persistence defines the class as the 
unit of persistence, and therefore provides for the per- 
sistence not only of data but also of code. The type 
definition corresponding to a persistent class persists 
along with the class, as do its instances. Persistent 
class and type definitions do not need to be rewritten 
in a program which uses them in order to verify consis- 
tency - it is only necessary for a program to name the 
persistent environments in which the appropriate in- 
formation is stored. Other classes and types referenced 
from a persistent class or its associated type must also 
be persistent. The support for persistence is uniform, 
that is, the degree of persistence of the objects manip- 
ulated by a program does not affect the ways in which 
the objects can be manipulated. 

3.3 The Logic Language ROLL 

ROLL is a Horn clause language. Familiarity with the 
latter subclass of first-order languages is assumed at 
the level of [CGTSO]. 

The ROLL alphabet consists of (typed) logic vari- 
ables, (typed) constant symbols, and predicate sym- 
bols, but does not include function symbols. The set 
of constant symbols is the set of names of primitive 
objects, i.e. values (e.g. 5, “Edinburgh”, true). Note 
that there is no need for object identifiers to appear 
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as constant symbols in ROLL expressions, as specific 
objects are either passed into a ROLL expression from 
ROCK, or are retrieved from the extensional database. 

The set of predicate symbols is the set of operation 
names declared by operation interfaces. It follows that 
ROLL queries abide by strict encapsulation. 

A ROLL term 7 is either a ROLL constant or a 
(logical) z:ariable. A ROLL atom has the form: 

,3(fl.... , 7-,-$.@a == fn 

where 3 is an (n + 1)-ary ROLL predicate symbol, 
each pi* 1 5 i 5 n, is a ROLL term, and cr is a ROLL 
term appearing as the (n + 1)-th argument of /3. 

The first form is used when the operation /3 is im- 
plemented in ROLL, which requires no distinction to 
be made between input and output parameters. A 
ROLL atom of the above form is read as “send the 
mtssage 3 with the arguments 71,. . . , r,, to the object 
a”. An operation interface /I : TI x . . . x T, is assumed 
to be defined, such that each ri denotes an instance of 
Ti. where T: < Z, the type subsumption relationship 
being expressed in the schema. 

The second form is used when p is implemented in 
ROCK, where the (optional) result is explicitly dis- 
tinguished from any input parameters. An operation 
iuterface 0 : Tl x . . . x Tn-l + T, is assumed to exist, 
such that each ri denotes an instance of T/, where T/ 
5 z. In this case, the result of evaluating the ROCK 
method 3 with the given parameters is unified with 
f, 

If n = 0 then /3@cw z&f /3()&. The above forms 
exist to support the integration of ROCK & ROLL, as 
discussed further in section 4. 

-4 ROLL literal L is a ROLL atom A or a negated 
ROLL atom -A. A ROLL clause is a disjunction of 
literals of which at most one is positive. A clause con- 
taining a single literal is called a wit clause. The 
notion of a ROLL fact (a positive unit clause) though 
well-defined [FWP93], is not relevant in the context of 
the ROCK & ROLL system because the asserted facts 
t,hat describe the state of an object at any point in 
time are encapsulated and are only made available in 
computations as responses to message-sends. A ROLL 
rule is a clause with exactly one positive literal and 
with at least one negative literal. The positive literal 
is referred to as the head, the set of negative literals 
is referred to as the body. Finally, a ROLL query is 
a clause containing negative literals only. The usual 
convention is followed of rewriting a clause as a re- 
verse implication, i.e. head ‘:-’ body, and replacing 
conjuncbions by commas. 

3.3.1 Example Query 

The following is an example of a ROLL query which 
retrieves as bindings for P the polygon objects with an 
area less than 5 and a perimeter greater than 100. 
The operator == denotes unification, which is used in 
this case to unify the result of a ROCK message send 
with a ROLL variable. 

get,areaQP == Area, perimeter@P == Perim, 
Area < 5, Perim > 100. 

This example uses a number of facilities which bear 
explanation: ROLL queries and methods are strongly 
typed, and a type inference system is used to infer 
types for logic variables - for example, that the logic 
variable P is associated with the type polygon is in- 
ferred from the fact that the methods getarea and 
perimeter are applicable to objects of type polygon 
(the type inference algorithm used is comparable to 
that of SML [MTHSO]); in this example there is no 
explicit iteration over the instances of polygon - the 
ROLL query evaluator optimises a query, and plants 
iterators within the evaluation graph wherever there is 
no other way of obtaining a binding for a logic variable 
associated with an object type. 

3.3.2 Example Rules 

The following example rules implement the operation 
connected as a relationship indicating which polygons 
are directly or indirectly connected to each other. The 
operation adjacent uses a rule to define a binary rela- 
tionship between polygons, indicating that two poly- 
gons are adjacent if they have a common segment. 
The rules for connected define the transitive closure 
of adjacent. The rule head is defined as shown to re- 
flect the object-oriented structuring of the clause base, 
as discussed further in section 4.2.2. 

adjacent(PolyB)QPolyA :- 
PolyA 0 PolyB, 
get.-mewberQPolyA == Segment, 
get~emberQPolyB == Segment. 

connected(PolyZ)OPolyA :- 
adjacent(PolyZ)QPolyA. 

connected(PolyZ)OPolyA :- 
adjacent (PolyB)QPolyA, 
connected(PolyZ)QPolyB. 

In practice, although the notion of a ROLL pro- 
gram as a finite set of ROLL clauses, is well- 
defined [FWP93], it is not relevant in the context of 
the ROCK & ROLL system because, in the integrated 
language, ROLL programs are defined in the context of 
classes as methods, using the syntactic form described 
in section 4.2.2. 
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4 Integrating SLOCK & ROLL 

Many imperative database programming languages 
provide support for the development of complete data 
int,ensive applications, but lack comprehensive facili- 
ties for the expression of declarative queries. This is 
unfortunate, as it is clear that the advanced appli- 
cations with which such systems are often associated 
do benefit from the presence of declarative query lan- 
guages. Other systems emphasise the query language 
and thus tend to provide less fully integrated appli- 
cat,ion development facilities, which is also a loss, as 
databases which are commonly accessed through query 
interfaces are often also manipulated by complex pr- 
grams. 

In the light of this, the integration of the imper- 
ative and logic languages is clearly important to the 
effectiveness of the overall system - it is not sufficient 
to support two distinct language interfaces, it is nec- 
essary to make both languages available to application 
programmers so that the most appropriate approach 
can be selected for each part of a complex task. As 
the two languages have been derived from a common 
dat,a model, and therefore have a common type system, 
the process of integrating them without introducing 
the impedance mismatch has been considerably eased. 
The integration involves the following aspects: 

1. Embedding of ROCK in ROLL. To keep the ap- 
proach sound, only side-effect free methods can 
be invoked from within the logic language . 

2. Embedding ROLL in ROCK. The logic language 
can be used from within the imperative one 
to query data as well as for method definition. 
ROCK can embed any expression in the logic lan- 
gua.ge ROLL as long as an appropriate type can 
be inferred for that expression. 

4.1 Embedding ROCK in ROLL 

ROLL may invoke any ROCK method as long as the 
method is side-effect free. A method is defined to be 
side-effect, free if it does not update, directly or in- 
directly, any non-local data. Any method which may 
it,self update non-local data or which is overridden by a 
met,hod which may update non-local data is considered 
t.o have side-effects. The classification of a method ac- 
cording to this criterion is determined at compile time. 

ROCK object names may be referenced, prefixed by 
an exclamation mark (!~varname>), within a ROLL 
query. In this setting, ROCK object names denote log- 
ical con&ants. Examples of such references are given 
in section 4.2. 

4.2 Embedding ROLL in ROCK 

There are two ways in which ROLL can be used from 
ROCK. One is to express queries, and the other is 
to define methods. Neither query formulation nor 
method definition are allowed to break encapsulation. 

4.2.1 Querying 

A ROLL query expression belongs to the syntactic 
class of object expressions of ROCK, and can therefore 
be used in any context in which an object expression 
is appropriate. Hence, it is possible to pose a query on 
the result of another query, and to query both persis- 
tent and non-persistent data. 

Queries invoked from ROCK are written enclosed 
within square brackets. A query comprises two parts 
separated by a vertical bar: an optional projection 
expression, and a query body. The query body is a 
ROLL goal. There are three different forms of query 
depending on the nature of the projection: 

1. [ ROLL goal] 

This form of query, with an empty projection, re- 
sults in a boolean value being returned. The re- 
sult is true if a proof can be found of the ROLL 
goal, otherwise the result is false. For example, 
the following query returns true if the segment 
object referenced by the ROCK variable s starts 
at a point with coordinate values (0,O): 

Cget,pointl@!s - Point, 
get,xCoordinate@Point - 0, 
get,yCoordinateQPoi - 01 

2. [ any proj 1 ROLL goal] 

In this non-deterministic form of query, proj re- 
turns a single value which is either a single object 
(primary or secondary) or an aggregation of such 
objects. If the ROLL goal retrieves multiple val- 
ues, one is chosen as the result. For example, 
in the following statement, a road of roadType 
l4otoruay is assigned to the ROCK variable resi. 

var resl : road; 
. . . 
resl := [any Road I 

get,roadType@Road - ‘Wotorvay”1; 

In the following example, the declaration and the 
assignment are combined in a single statement, in 
which resi is declared as a variable, the type of 
which is inferred from the logic language expres- 
sion . 

var resl := [any Road I 
get_roadTyPeORoad - tWotoruay”l ; 
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It is possible to project aggregate results as shown 
in the following example, where r&2 is inferred 
to have a type which is an aggregate of a road 
and a roadlame. 

var res2 := [any <Road,Bame> I 
get_roadTypeQRoad *= Wotoruay", 
get_roadNameQRoad == Name]; 

3. [ { proj } 1 ROLL goal] 

In this case, all the projected objects which sat- 
isfy the goal are collected in an association. For 
example, the following query assigns to res3 the 
set of polygon objects which have an area greater 
than 100: 

var res3 := C {Poly) I get-area0Poly == Area, 
Area > 100 I ; 

A query must satisfy the condition that all variables 
which occur in the projection also occur in the goal 
that constitutes the body of the query. 

4.2.2 Method definition using ROLL 

In the integrated system, methods can be defined us- 
ing the logic language as well as the imperative one. 
Method definitions in ROCK include a complete spec- 
ification of formal parameters, specifically names and 
types of input parameters, plus the type of the result. 
However, this conflicts with the way in which rules are 
defined in logic languages, where there is no explicit 
distinction between input and output parameters - a 
single rule can be called with different binding pat- 
terns. thereby allowing greater flexibility. A central 
aim for the integration of ROCK and ROLL has been 
to retain the static type checking of ROCK without 
sacrificing the call-time binding flexibility of ROLL. 
The following approaches were considered for support- 
ing the definition of methods using ROLL. 

1. The most straightforward approach to supporting 
methods written in ROLL is to use the querying 
mechanism described in section 4.2.1 in the body 
of a st,andard ROCK method. For example, the 
following code fragment defines a method owners 
attached to road which, given an availability, 
returns the set of owner objects associated with 
the landparcels with the given availability 
which are located beside the road to which the 
message has been sent: 

class road 
. . . 
owners(theAvai1: availability): {owner) 
begin 

CCOvner3 I 
get,roadQLoc *- self, 
get,landParcelQLoc == Land, 
get,availabilityQLand - !theAvail, 
get-ownereland == Ovner 

1; 
end 

end-class 

This approach is directly supported by features 
described earlier in this paper, and has the ad- 
vantage that there is no additional syntax as- 
sociated with the definition of ROLL methods. 
However, there is no means of calling the ROLL 
method with different parameters bound - for ex- 
ample, it is not possible to run the method ‘back- 
wards’ to find the road objects given an owner 
and an availability because the method signa 
ture specifies which values are to be supplied and 
which returned. Thus a different method has to 
be defined for each binding pattern, leading to a 
proliferation of method definitions which are only 
implicitly identified as being logically equivalent. 

2. An alternative (discarded) approach, which con- 
tinues to use the standard ROCK method defini- 
tion facilities, but which avoids the duplication of 
ROLL code in different methods involves the defi- 
nition of rules separately from the methods which 
use them. For example, the following code frag- 
ment implements the same method as that given 
above, except that the rule is defined in the con- 
text of a flat clause base: 

ovners(Road,Ouner,Avail) :- 
get,roadQLoc == Road, 
get,landParcelQLoc *= Land, 
get,availability@Land - Avail, 
get-ovner@Land == Ovner. 

. . . 
class road 

. . . 
ouners(theAvai1: availability): {owner) 
begin 

CCOvner3 I 
ovners(self,Ouner,!theAvail)l; 

end 
end-class 

The advantage of this approach is that the same 
rule may be invoked from different methods and 
with different parameters bound. However, it 
has a number of disadvantages: there is likely to 
be a proliferation of ROCK method definitions 
which are essentially wrappers for ROLL rules; 
the clause base is not organ&d using the object- 
oriented facilities of the model; private attributes 
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and methods are inaccessible to rules which are 
defined separa&ly from classes; and an additional 
persistence scheme is required for rules, as they 
are no longer defined in particular classes. 

3. The preferred approach, and that which has been 
implemented (along with (1) which comes for 
free), supports the flexible invocation of rules, but 
introduces a revised syntax for method definition 
specifically for ROLL rules which does not indi- 
cate which parameters are for input and which are 
for output. For example, the method associated 
with the same ROLL goal as defined in (1) and 
(2) can be specified this: 

class road 
. . . 
ovners(ovner,availability) 
begin 

ovners(Ouner,Avail)QRoad 
get,road@Loc == Road, 
get,landParcel@Loc - 
get-availability0Land 

:- 

Land, 
== Avail, 

get_ovnerQLand == Ovner. 
end 

end-class 

This method is then always invoked from within 
t,he query structure specified in section 4.2.1. As 
the method definition does not distinguish be- 
tween input and output arguments, the query 
form specifies which method parameters will be 
supplied when the method is invoked and which 
parameters will be collected as bindings to form 
the solution to the query. For example, the fol- 
lowing statement assigns to res3 the set of owner 
objects with the availability object theAvail 
associated with the road object theRoad: 

var res3 := [(Ovner) I 

In a deductive relational database (DRDB), an inten- 
sional path relation can be defined which is the tran- 

ovners(Ovner,!theAvail)O!theRoad)l; 
sitive closure of arc thus: 

4.3 Assessing the Integration 

In section 2 a number of criteria are presented by which 
an integration of two languages can be assessed. In 
ROCK & ROLL, approaches (1) and (3) from the pre- 
vious section have been implemented. As indicated 
in Table 1 (in section 2), the integration in ROCK & 
ROLL satisfies the five criteria associated with the en- 
gineering aspects of an integration, namely evttluation 
strategy compatibility, type system uniformity, type 
checker capability, syntactic consistency and bidirec- 
tionality. Clearly a paradigm mismatch remains, but 
it can be argued that the two languages are highly 
complementary, one supporting the declarative, rule- 
based retrieval of information, and the other support- 
ing a procedural approach to data retrieval, algorithm 
definition, input/output, and updates. The effective- 
ness of the combination is being evaluated in the con- 
text of a geographic information systems application 
[AWP93]. 

5 ROCK & ROLL as a DOOD 
This section examines the extent to which ROCK & 
ROLL can be considered to be an effective deductive 
object-oriented database. This is done by showing how 
certain issues raised in [UllSl] are addressed in ROCK 
& ROLL, and by indicating how the approach taken 
compares with other proposals for DOODs. 

5.1 Overcoming Ullman’s Objections 

The following issues are raised in [Ul191] as presenting 
significant obstacles to the development of a DOOD: 

5.1.1 Identity of objects obtained by different 
proofs. 

To illustrate an alternative call pattern, the fol- 
lowing statement assigns to res4 the set of 
road objects associated with the omer ob- 
ject theowner and the availability object 
theAvail: 

var res4 := CCRoadI I 
ovners(!theOvner,!theAvail)QRoad)l; 

This approach enables the clause base to be or- 
ganised in an object-oriented manner, facilitates 
overloading and overriding of ROLL method defi- 
nitions, permits access to the private properties of 
a class from ROLL methods, and supports flexible 
call-time binding. 

path(X,Y) :- arc(X,Y) 
path(X,Y) :- path(X,Z), arc(Z,Y) 

Where the arc relation is finite, the derived path re- 
lation will also be finite, even where the arc relation 
contains cycles. This is because the path relation is 
built as a set of values, which leads to different deriva- 
tions of a path being treated as a single path tuple. 
It is argued by Ullman that where object identity is 
treated seriously by a DOOD, each result derived for 
the path relation must be given a unique identifier, 
leading to multiple objects which represent the same 
path, and thus to the derivation of an infinite number 
of paths whenever arc contains cycles. This, however, 
is only a problem when the intermediate results of a 
derivation are represented aa objects. 
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In ROCK & ROLL, path can be represented as a 
method as follows, where arc is represented as an ob- 
ject attribute: 

path(Y)QX :- get-arc(Y 
path(Y :- path(Z)@X, get-arc(Y)QZ 

No new objects are created during execution of this 
method, rather pairs of existing objects which are 
reachable through the arc attribute are collected 
within the rule evaluator. After rule execution has 
completed a single collection object is created to hold 
all the solutions to the query. For example, the follow- 
ing statement assigns to res a new object which is an 
association of the objects which are reachable from the 
ROCK variable x according to the definition of path: 

res := ICY) 1 path(Y)@!x] 

5.1.2 Dynamic Typing and Ad-Hoc Queries. 

In a DRDB, the definition of an intensional relation 
has the effect of adding a new ‘type’ to the schema. 
For example, the rule defined above introduces a new 
(intensional) relation path. The new path relation can 
subsequently be used directly by other definitions be- 
cause the standard relational operators are directly ap- 
plicable to it. Ullman argues that the increased com- 
plexity of type systems in object-oriented databases, 
and the possibility of understanding an object in-terms 
of its behaviour rather than its structure, makes it 
impractical to allow the incremental addition of rules 
which effectively produce new types as a result. 

In the context of ROCK & ROLL, two points can 
be raised to counter Ullman’s case. The first is that 
the definition of a new ROLL method does not add any 
new type to the system. For example, the above defini- 
tion of the ROLL method path expands the signature 
of t.he type to which it is attached, but the number of 
types remains the same. The second is that the way 
in which such a method is used determines which new 
types are required, and that alternative approaches are 
available. For example, if the ROLL method is only 
used directly from other ROLL methods then the inter- 
mediate result of the method does not need a new type 
to be defined, as discussed in point (1) above. If the 
ROLL method is called from ROCK, then it is indeed 
necessary to assign the result of the method to a typed 
variable. If the typed variable is local to the computa- 
tion, then its type can be inferred directly within the 
context where it is used, and there is no need for a 
global type. For example, the following program de- 
clares the variable res, assigns to it the result of an 
invocation of the path method, and prints the value 
of the pos attribute of each object in res: 

var res := ICY) 1 path(Y)@!xl; 
foreach o in res do write get-pos@o, nl; 

By contrast, if the result of the derivation is to per- 
sist, and must be associated with some user-defined 

behaviour, then it is indeed necessary to define a new 
type with properties, an interface, etc. The extension 
of this type can then be constructed from the results 
of ROLL methods. 

This flexible response to Ullman’s case means that 
there is little or no overhead associated with the def- 
inition of types for temporary values, and that the 
programmer has the option of defining comprehensive 
types and classes for structuring the results of a ROLL 
method if this is what is required. 

5.1.3 Optimising declarative queries and 
rules. 

Queries and rules in DRDBs can be optimised using 
a range of techniques, effective optimisation being im- 
portant to the practicality of a declarative language. 
Ullman suggests that optimisation in DRDBs is practi- 
cal because of the generic and well understood seman- 
tics of the algebraic operations which are applicable to 
relations, and that the presence of user-defined opera- 
tions (methods) in OODBs precludes effective optimi- 
sation. 

In ROCK & ROLL, methods written using ROLL 
are logic programs on a par with Datalog. Indeed, 
the semantics of ROLL is defined by a mapping onto 
Datalog in the context of the set of first-order axioms 
which describe the data modelling constructs of OM 
[FWP93]. This means that ROLL programs can be 
optimised using variations on the techniques proposed 
for use with Datalog. The optimisation of ROLL using 
a technique based upon static filtering [KL90] is de- 
scribed in [BFP+94]. In this approach, RULL queries 
and methods are represented using a graph structure 
through which constraints can be pushed in a bid to 
minim& the size of intermediate data sets. This es- 
sentially overcomes Ullman’s objection by allowing the 
optimiser to look inside, and indeed to optimise, meth- 
ods which are implemented using ROLL. If a ROLL 
method invokes a ROCK method, then the ROCK 
method is treated as a black box which, given a mes- 
sagk recipient and an appropriate number of parame- 
ters, returns a result. 

5.2 Comparison With Other DOOD Propos- 
als 

Proposals have been made for DOODs with widely dif- 
ferent starting points and emphases [FPWB92], only 
a few of which are mentioned here because of limited 
space. 

The most fundamental departure from earlier work 
on deductive databases is characterised by F-logic 
[KL89], where a new logic is proposed incorporating 
such object-oriented features as inheritance and a no- 
tion of identity. However, it is far from clear how such 
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a logic can be implemented efficiently, and the seman- 
tics provided for the language-make no attempt to al- 
low for state change, as required in practical database 
systems. 

An alternative approach builds more directly upon 
earlier work on DRDBs by. extending the semantics 
of Datalog with constructs such as identity and inheri- 
tance [AbiSO, CCCR+SO]. Such proposals benefit from 
the extensive research on the design and implementa- 
tion of DRDBs, but generally have limited semantic 
data modelling facilities, and logic language semantics 
complicated by the introduction of updates. Similar 
strengths and weaknesses can be obtained by an al- 
ternative approach in which a DOOD language is im- 
plemented by mapping it onto an existing deductive 
database system [BM92]. 

The above proposals significantly play down the 
role of an independently defined data model as the 
basis from which languages can be defined with dif- 
ferent operational semantics. Other such proposals 
are LLO [LO911 and ORLOG [JL93]. Both are in- 
spired by F-logic into postulating a higher-order syn- 
tax, which. provides undeniably elegant solutions in 
certain cases, but is difficult for occasional users to 
fully grasp. The higher-order approach also incurs the 
penalty of a less than intuitive declarative semantics. 
In the case of LLO this implies few clues as to how an 
operational semantics can be implemented as the basis 
for query evaluation, a problem that ORLOG bypasses 
by rewriting into LDL [NT89]. 

ConceptBase [JJRSO], a powerful KBMS built 
around the Telos language, also advocates deductive 
and object-oriented layers in a single system architec- 
ture. In particular, the variant of Telos used in Con- 
cept.Base has its expressiveness restrained to that of 
Datalog like ROLL. However, in ConceptBase,methods 
can only be written using deductive rules, and’there- 
fore the range of applications that can be implemented 
using only ConceptBase is much more restricted than 
one can implement in ROCK & ROLL. 

6 Conclusions 

This paper has described the integration of a logic 
query language with an imperative programming lan- 
guage in the context of a semantically expressive 
object-oriented data model. It has been shown how 
the resulting system satisfies a number of criteria by 
which interfaces between languages can be judged, 
and how the integrated system overcomes certain chal- 
lenges posed in [UllSl] to the developers of DOODs. 

The system which results from the integration re- 
tains the strengths of its components and adds to these 
strengths the following benefits which derive from their 
co-existence: 

Data described using the data model can be pro- 
cessed or analysed using two different and com- 
plementary programming styles. 

The facility to manipulate data using au imper- 
ative programming language has been obtained 
without sacrificing the effectiveness of the query 
language. 

The semantics of the logic language has not been 
complicated by the introduction of update state- 
ments, and yet the database can be effectively rn* 
nipulated using fully integrated facilities. 

The impedance mismatch, relating to both type 
system and evaluation strategy, has been over- 
come. 

6.0.1 Current Position 

The ROCK & ROLL system is being implemented us- 
ing EXODUS, and in particular the persistent C++ 
system E [CDG+SO]. A functionally complete imple- 
mentation of ROCK 8z ROLL has been completed, and 
work is underway on the implementation of an opti- 
miser for ROLL queries and rules. 
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