
An Effective Deductive Object-Oriented Database
Through Language Integration

Maria L. Barja, Norman W. Paton, Alvaro A.A. Fernandes, M. Howard Williams, Andrew Dinn

Department of Computing and Electrical Engineering,
Heriot-Watt University

F&carton, Edinburgh EH14 4AS, Scotland, UK
e-mail: <marisa,norm,a.lvaro,howard,andrew>@cee.hw.ac.uk

phone: +44-31-449-5111 ; fax: +44-31-451-3431

Abstract

This paper presents an approach to the de-
velopment of a practical deductive object-
oriented database (DOOD) system baaed
upon the integration of a logic query language
with an imperative programming language in
the context of an object-oriented data model.
The approach is novel, in that a formally de-
fined data model has been used as the start-
ing point for the development of the two lan-
guages. This has enabled a seamless integra-
tion of the two languages, which is the cen-
tral theme of this paper. It is shown how the
two languages have been developed from the
underlying data model, and several alterna,
tive approaches to their integration are pre-
sented, one of which has been chosen for im-
plementation. The approach is compared with
other examples of language integration in a
database context, and it is argued that the
resulting system overcomes a number of im-
portant challenges associated with the devel-
opment of practical deductive object-oriented
database systems.

Permission to copy without fee all of part of thi6 maten’al i6
granted provided that the copier are not made or dlttibarted for
direct commercial advantage, the VLDB copqright notice and
the title of the publication and it6 date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to reprb6h, require6 a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

1 Introduction

Designers of novel database systems and languages
are often faced with situations in which compromises
have to be made in the context of seemingly conflict-
ing goals. In the case of data models, the addition
of new constructs makes the model more expressive,
but also increases its complexity. In the case of query
languages, increases in the power of a language often
complicate its underlying semantics or impact upon
the nature/practicality of effective optimisation (e.g.
the addition of update mechanisms to Datalog requires
extensions to its frxpoint semantics, and the associated
addition of control structures may limit opportunities
for optimisation [CGTSO]). As a result of this ten-
sion, database programming languages have been pro-
posed which have very different areas of strength and
weakness, and thus individual languages are suited to
particular data management tasks, but not to others.

One strategy which has been adopted to overcome
the weaknesses of particular approaches for certain
tasks has been to integrate different programming
paradigms for use with databases. The nature of such
systems is considered further in section 2, where a
number of examples are presented, but the broad idea
is that an integrated system may be greater (in some
sense) than the sum of its constituent parts. This pa-
per presents a database programming system in which
a logic query language ROLL (Rule Object Logic Lan-
guage) is integrated with an imperative programming
language ROCK (Rule Object Computation Kernel) in
the context of a common underlying data model (OM).
The overall architecture of the system is presented in
figure 1. The resulting system supports a range of
standard object-oriented mechanisms for structuring
both data and programs, while allowing different and

463

complementary programming paradigms to be used for
different tasks, or different parts of the same task.

The focus in this paper is on the integration of
the logic query language with the imperative manip-
ulation language, rather than on the association of
the logic query language with the underlying data
model (as described in [FWP94]) or the relationship
between the imperative language and the underlying
data model (as described in [FBPW93]). These com-
ponents, ROLL, ROCK and OM are introduced in sec-
tion 3 to give a context for the consideration of the
integration issues presented in section 4.

After the integration has been presented, a valid
question which remains unaddressed is the effective-
ness of the resulting system as a DOOD. In section 5
the integrated system (ROCK k ROLL) is discussed
in the context of the issues raised by [UllSl], where it is
argued that there are significant obstacles which must
be overcome by any system which is to be fully deduc-
tive and fully object-oriented. We believe that ROCK
& ROLL successfully addresses the issues raised by
Ullman, in a way which yields a practical DOOD sys-
tem. Conclusions are presented in section 6.

Figure 1: Relationship between the principal camps
nents in the architecture.

2 Related Work

Many proposals have been made for systems which
integrate different languages for manipulating per&
tent data. Indeed, the notion of impedance mismatch
in both its aspects (type system mismatch and evalu-
ation strategy mismatch) was put forward to charac-
terise certain ways in which an ‘integration’ may be
less than seamless. The impedance mismatch is likely
to manifest itself most strongly where the languages
which are being used together were developed indkpen-
dently (e.g. when SQL is embedded in C), although

most recent proposals that exploit integration involve
languages which were designed with subsequent inte-
gration in mind. The following are criteria against
which an integration can be judged:

Evaluation strategy compatibility. This criterion
is part of the standard impedance mismatch, and
indicates whether the evaluation strategies used
by the two languages are compatible.

Type system uniformity. This criterion indicates
whether all values which are first-class citizens in
one language are first-class citizens in the other.

Type checker capability. This criterion indicates
whether or not strong compile-time type checking
is carried out across the interface between the two
languages.

Syntactic consistency. This criterion indicates the
degree to which the syntaxes of the integrated lan-
guages are consistent. The syntaxes are sure not
to be identical, but in a syntactically consistent in-
tegration a similar syntax should be used on both
sides of the interface to perform similar tasks (e.g.
compare two strings, invoke a method).

Bidirectionality. This criterion indicates whether
or not it is possible for each language to call the
other, or whether one is essentially embedded in
the other.

Table 1 indicates the extent to which a number of
systems satisfy these criteria, the specific systems be-
ing described briefly in what follows. The symbol w
in Table 1 indicates that the criterion is partially sat-
isfied.

coral++ [SRsS93] is essentially an interface from
the deductive database system Coral to C++,
whereby C++ objects can be accessed from Coral
programs using some conservative extensions to
the Coral language. Because two independently
developed systems have been combined, the inte-
gration is not particularly seamless.

Embedded-SQL [Dat90] is the principal means by
which complete applications are developed using
the relational model, the query language SQL be-
ing embedded in an imperative language such as
C. This is essentially a mechanism for allowing im-
perative programs to access and update relational
databases rather than an attempt at a smooth in-
tegration.

Glue-Nail [PDR91] is a combination of the logic
query language NAIL! with the imperative pro-
gramming language Glue in the context of an es-
sentially relational data model. In common with

464

Table 1 - Characterising Seamlessuess of Language Integration
System Evaluation strategy Type system Type checker Syntactic Bidirectiouality

compatibility uniformity capability consistency
Coral++ X X X a X

Embedded-SQL X

Glue-Nail
$

:

X X X

PFL
Raleigh

::
7

ROCK & ROLL

ROCK & ROLL, such an approach avoids com-
plicating the semantics of the logic language with
update facilities, but also allows modification of
the underlying database. The fact that Glue was
designed specifically as an update language for
NAIL! means that the impedance mismatch can
be minimised.

of costs/benefits associated with reorientation remains
an issue for future examination.

PFL [PS91] is a lazy functional programming lan-
guage with an embedded query language con-
struct influenced by logic query languages.

Raleigh [KR91] is an imperative database program-
ming language with a functional flavour, into
which can be embedded query language state-
ments based upon select and for each con-
structs.

The process of integrating two intrinsically differ-
ent languages inevitably leads to the introduction of
a paradigm mismatch. The paradigm mismatch con-
cerns the efficacy of-the integration, and introduces
two further issues which are relevant to the utility of
an integration:

Complementarity, which indicates whether an in-
tegrated system is likely to be significantly more
useful than its individual components.

Reorientation, which indicates how straightfor-
ward it is for a programmer to switch between
the two paradigms in a single application.

These measures are considerably more subjective
than those considered earlier in this section in con-
nection with the impedance mismatch (which is prin-
cipally concerned with the way in which an integra
tion is engineered, rather than its desirability), but
fully as important to the users of a system. For ex-
ample, the integration of Glue with NAIL! in Glue-
Nail increases the functionality of the NAIL! system
by allowing updates while preserving the semantics
of NAIL! for query processing, and thus the two lan-
guages can be considered to be complementary. It is
less clear, however, that the integration of a logic query
language with a functional programming language in
PFL has led to significant gains - for example, neither
language supports updates or I/O. The measurement

The work presented here is also related to other re-
search on deductive object-oriented databases. Con-
sideration of ROCK & ROLL as a DOOD is de-
ferred until section 5, a more comprehensive review
of approaches to the design of DOODs being given in
[FPWB92].

3 ROCK & ROLL

This section describes the components of ROCK &
ROLL - the data model, imperative programming lan-
guage and logic query language. Each of these com-
ponents can be considered to be quite conventional -
an important theme of the work presented here is that
it is possible to smoothly integrate these three com-
ponents without sacrificing the characteristic virtues
of any of them, and without introducing radical new
concepts as part of the integration process.

3.1 The Data Model - OM

A brief informal account of the model is now given with
the purpose of providing an introduction to the termi-
nology used later in the paper. Atomic values and
compound data items are called primary objects and
secondoy objects respectively. Each object is assigned
an object type, and every secondary object has a unique
object identifier. The object-oriented model informally
described below has been formalised in [FWP93] as a
class of first-order theories [Men87] called objedt the-
oties (OTs) of which every legal database state is a
logical model. Thii section gives an informal overview
of the concepts used to model an application domain
both structurally and behaviourally.

A type definition can describe references of two
kinds. The first kind of reference definition is used
to model the properties of the type. This results, for
each type, in a possibly empty set of type names which
are the attributes of the type. This is slightly uncon-
ventional, in that the type name given for each prop
erty both names the property and specifies which val-
ues it may hold. As an example of some property
definitions, the following code fragment indicates that
a roadsegment has two properties, a startJunction
and an endJunction.

465

type roadsegment
properties :

StartJunction, endJunction;
. . .

end-type

The second kind of reference definition, which is re-
ferred to as the construction of the type, is used to
distinguish the fundamental structural characteristic
of a type from its other stored properties. A type can
be structured by association, sequentiation or aggre-
gation, which support the modelling of sets, lists and
tuples, respectively. For example, the following type
definition indicates that a polygon, while having the
attribute area, has as its construction a sequence of
segment objects (represented by square brackets):

type polygon
properties:

area:
[segment I
interface :

perimetero: real;
. . .

end-type

An object type may also declare a behavioural in-
terface. For example, the definition of polygon in-
cludes the specification of the signature of the method
perimeter which returns a real result. The actual
definition of a method is specified in the class which
corresponds to the type - every type is associated with
a single class which has the same name as the type.
The int.ention is that the type specifies.all that a user
of the type needs to know in order to use the type,
while method code and other implementation details
are specified in the class (for examples of type and
class definitions see sections 3.2 and 4.2.2). Methods
are defined in a context which supports overloading,
overriding and late binding.

Schema diagrams for the data’ model can be con-
st.ructed using the following notation. Secondary ob-
ject types are represented using rectangles, primary
object types using ellipses, and operations using rect-
angles with rounded corners. Labelled directed edges
represent modelling features thus: 0 - attributes, Q
- specialisation, @ - aggregation, @ - association,
and @ - sequentiation. This notation is used to de-
scribe part of a geographic database in figure 2. In this
example, a polygon is constructed from a sequence
of segment objects, has a stored attribute area, and
the operations adjacent, connected, and perimeter.
The type landparcel is a subtype of polygon. This
schema will be used in examples throughout the paper.

3.2 The Imperative Programming Language -
ROCK

The database programming language allows both per-
sistent and transient data to be created and manipu-
lated in a uniform way. ROCK is based on the data
model described in section 3.1, and is a strongly typed
imperative object-oriented database programming lan-
guage.

ROCK can be regarded ss the conjunction of a
data definition language for schema declarations, and a
data manipulation language that allows operations to
be performed on persistent or transient objects. The
types which can be defined using the data definition
language are exactly those which are supported by the
data model described in section 3.1. The data ma
nipulation language provides constructs for processing
such data, and thus is suitable for the development
of complete applications. The facilities supported are
comparable to those of other object-oriented database
programming languages, and include:

the object creation operator new

assignment

I/O operations (read, write, . . .)

control structures such as selection (if then
else), iteration (while, foreach) and blocks
(begin end). The f oreach construct provides for
iteration over the instances of a class or over the
elements of an association or sequentiation.

All control structures have a mode of operation in
which they return an‘object, or a set of objects in the
case of the‘iterative constructs.

Operations on objects are classified into two groups:
built-in (or system generated) and methods (or user-
defined). The model of computation adopted in both
cases is the messaging one, where the symbol ‘Q” is
the message sending’operator. The message recipient
is an object ezpression, that is, an expression in the
language which evaluates to an object. For example,
the following expression assigns to the variable s the
result of sending the message get-startJunction to
the roadSegment rs.

a := get,startJunction@rs

Message sends can be nested, and inside a method,
messages can also be sent to self and super. Support
for encapsulation is strict, i.e. the structure of ob-
jects can only be accessed through operations, whether
system-generated or user-defined.

l System-generated operations

466

Figure 2: Schema diagram for a fragment of a geographic database
For each property-attributed to a type and
for each coordinate in an aggregate construc-
tion, the compiler generates a pair of methods
whose names are those of the corresponding prop
erty/coordinate prefixed respectively by get- and
put- These methods allow the object referenced
by a property/coordinate to be retrieved or up-
dated, and their visibility is determined by that
of the corresponding property/coordinate.

l User defined operations

User defined operations are given in the form of
methods. Methods have a visibility which is ei-
ther public or private. Private methods are not
accessible from outside the definition of a class,
while public methods are. The signatures of pub-
lic methods are defined in the interface part of the
corresponding type definition.

To illustrate class and method definition, consider
the definition of the class polygon, associated with the
t,ype polygon defined in section 3.1:

class polygon
perimeter0 : real
begin

var per: real;
foreach s in self do

per := per + 1engthQs;
per

end
. . .

end-class

The method perimeter calculates the perimeter
of the polygon by summing the result of the leagth
method on each of the segments in the sequence from
which the polygon is constructed - the foreach loop
iterates over all the segment objects in this sequence;
the type of s is inferred.

The model of persistence defines the class as the
unit of persistence, and therefore provides for the per-
sistence not only of data but also of code. The type
definition corresponding to a persistent class persists
along with the class, as do its instances. Persistent
class and type definitions do not need to be rewritten
in a program which uses them in order to verify consis-
tency - it is only necessary for a program to name the
persistent environments in which the appropriate in-
formation is stored. Other classes and types referenced
from a persistent class or its associated type must also
be persistent. The support for persistence is uniform,
that is, the degree of persistence of the objects manip-
ulated by a program does not affect the ways in which
the objects can be manipulated.

3.3 The Logic Language ROLL

ROLL is a Horn clause language. Familiarity with the
latter subclass of first-order languages is assumed at
the level of [CGTSO].

The ROLL alphabet consists of (typed) logic vari-
ables, (typed) constant symbols, and predicate sym-
bols, but does not include function symbols. The set
of constant symbols is the set of names of primitive
objects, i.e. values (e.g. 5, “Edinburgh”, true). Note
that there is no need for object identifiers to appear

467

as constant symbols in ROLL expressions, as specific
objects are either passed into a ROLL expression from
ROCK, or are retrieved from the extensional database.

The set of predicate symbols is the set of operation
names declared by operation interfaces. It follows that
ROLL queries abide by strict encapsulation.

A ROLL term 7 is either a ROLL constant or a
(logical) z:ariable. A ROLL atom has the form:

,3(fl.... , 7-,-$.@a == fn

where 3 is an (n + 1)-ary ROLL predicate symbol,
each pi* 1 5 i 5 n, is a ROLL term, and cr is a ROLL
term appearing as the (n + 1)-th argument of /3.

The first form is used when the operation /3 is im-
plemented in ROLL, which requires no distinction to
be made between input and output parameters. A
ROLL atom of the above form is read as “send the
mtssage 3 with the arguments 71,. . . , r,, to the object
a”. An operation interface /I : TI x . . . x T, is assumed
to be defined, such that each ri denotes an instance of
Ti. where T: < Z, the type subsumption relationship
being expressed in the schema.

The second form is used when p is implemented in
ROCK, where the (optional) result is explicitly dis-
tinguished from any input parameters. An operation
iuterface 0 : Tl x . . . x Tn-l + T, is assumed to exist,
such that each ri denotes an instance of T/, where T/
5 z. In this case, the result of evaluating the ROCK
method 3 with the given parameters is unified with
f,

If n = 0 then /3@cw z&f /3()&. The above forms
exist to support the integration of ROCK & ROLL, as
discussed further in section 4.

-4 ROLL literal L is a ROLL atom A or a negated
ROLL atom -A. A ROLL clause is a disjunction of
literals of which at most one is positive. A clause con-
taining a single literal is called a wit clause. The
notion of a ROLL fact (a positive unit clause) though
well-defined [FWP93], is not relevant in the context of
the ROCK & ROLL system because the asserted facts
t,hat describe the state of an object at any point in
time are encapsulated and are only made available in
computations as responses to message-sends. A ROLL
rule is a clause with exactly one positive literal and
with at least one negative literal. The positive literal
is referred to as the head, the set of negative literals
is referred to as the body. Finally, a ROLL query is
a clause containing negative literals only. The usual
convention is followed of rewriting a clause as a re-
verse implication, i.e. head ‘:-’ body, and replacing
conjuncbions by commas.

3.3.1 Example Query

The following is an example of a ROLL query which
retrieves as bindings for P the polygon objects with an
area less than 5 and a perimeter greater than 100.
The operator == denotes unification, which is used in
this case to unify the result of a ROCK message send
with a ROLL variable.

get,areaQP == Area, perimeter@P == Perim,
Area < 5, Perim > 100.

This example uses a number of facilities which bear
explanation: ROLL queries and methods are strongly
typed, and a type inference system is used to infer
types for logic variables - for example, that the logic
variable P is associated with the type polygon is in-
ferred from the fact that the methods getarea and
perimeter are applicable to objects of type polygon
(the type inference algorithm used is comparable to
that of SML [MTHSO]); in this example there is no
explicit iteration over the instances of polygon - the
ROLL query evaluator optimises a query, and plants
iterators within the evaluation graph wherever there is
no other way of obtaining a binding for a logic variable
associated with an object type.

3.3.2 Example Rules

The following example rules implement the operation
connected as a relationship indicating which polygons
are directly or indirectly connected to each other. The
operation adjacent uses a rule to define a binary rela-
tionship between polygons, indicating that two poly-
gons are adjacent if they have a common segment.
The rules for connected define the transitive closure
of adjacent. The rule head is defined as shown to re-
flect the object-oriented structuring of the clause base,
as discussed further in section 4.2.2.

adjacent(PolyB)QPolyA :-
PolyA 0 PolyB,
get.-mewberQPolyA == Segment,
get~emberQPolyB == Segment.

connected(PolyZ)OPolyA :-
adjacent(PolyZ)QPolyA.

connected(PolyZ)OPolyA :-
adjacent (PolyB)QPolyA,
connected(PolyZ)QPolyB.

In practice, although the notion of a ROLL pro-
gram as a finite set of ROLL clauses, is well-
defined [FWP93], it is not relevant in the context of
the ROCK & ROLL system because, in the integrated
language, ROLL programs are defined in the context of
classes as methods, using the syntactic form described
in section 4.2.2.

468

4 Integrating SLOCK & ROLL

Many imperative database programming languages
provide support for the development of complete data
int,ensive applications, but lack comprehensive facili-
ties for the expression of declarative queries. This is
unfortunate, as it is clear that the advanced appli-
cations with which such systems are often associated
do benefit from the presence of declarative query lan-
guages. Other systems emphasise the query language
and thus tend to provide less fully integrated appli-
cat,ion development facilities, which is also a loss, as
databases which are commonly accessed through query
interfaces are often also manipulated by complex pr-
grams.

In the light of this, the integration of the imper-
ative and logic languages is clearly important to the
effectiveness of the overall system - it is not sufficient
to support two distinct language interfaces, it is nec-
essary to make both languages available to application
programmers so that the most appropriate approach
can be selected for each part of a complex task. As
the two languages have been derived from a common
dat,a model, and therefore have a common type system,
the process of integrating them without introducing
the impedance mismatch has been considerably eased.
The integration involves the following aspects:

1. Embedding of ROCK in ROLL. To keep the ap-
proach sound, only side-effect free methods can
be invoked from within the logic language .

2. Embedding ROLL in ROCK. The logic language
can be used from within the imperative one
to query data as well as for method definition.
ROCK can embed any expression in the logic lan-
gua.ge ROLL as long as an appropriate type can
be inferred for that expression.

4.1 Embedding ROCK in ROLL

ROLL may invoke any ROCK method as long as the
method is side-effect free. A method is defined to be
side-effect, free if it does not update, directly or in-
directly, any non-local data. Any method which may
it,self update non-local data or which is overridden by a
met,hod which may update non-local data is considered
t.o have side-effects. The classification of a method ac-
cording to this criterion is determined at compile time.

ROCK object names may be referenced, prefixed by
an exclamation mark (!~varname>), within a ROLL
query. In this setting, ROCK object names denote log-
ical con&ants. Examples of such references are given
in section 4.2.

4.2 Embedding ROLL in ROCK

There are two ways in which ROLL can be used from
ROCK. One is to express queries, and the other is
to define methods. Neither query formulation nor
method definition are allowed to break encapsulation.

4.2.1 Querying

A ROLL query expression belongs to the syntactic
class of object expressions of ROCK, and can therefore
be used in any context in which an object expression
is appropriate. Hence, it is possible to pose a query on
the result of another query, and to query both persis-
tent and non-persistent data.

Queries invoked from ROCK are written enclosed
within square brackets. A query comprises two parts
separated by a vertical bar: an optional projection
expression, and a query body. The query body is a
ROLL goal. There are three different forms of query
depending on the nature of the projection:

1. [ROLL goal]

This form of query, with an empty projection, re-
sults in a boolean value being returned. The re-
sult is true if a proof can be found of the ROLL
goal, otherwise the result is false. For example,
the following query returns true if the segment
object referenced by the ROCK variable s starts
at a point with coordinate values (0,O):

Cget,pointl@!s - Point,
get,xCoordinate@Point - 0,
get,yCoordinateQPoi - 01

2. [any proj 1 ROLL goal]

In this non-deterministic form of query, proj re-
turns a single value which is either a single object
(primary or secondary) or an aggregation of such
objects. If the ROLL goal retrieves multiple val-
ues, one is chosen as the result. For example,
in the following statement, a road of roadType
l4otoruay is assigned to the ROCK variable resi.

var resl : road;
. . .
resl := [any Road I

get,roadType@Road - ‘Wotorvay”1;

In the following example, the declaration and the
assignment are combined in a single statement, in
which resi is declared as a variable, the type of
which is inferred from the logic language expres-
sion .

var resl := [any Road I
get_roadTyPeORoad - tWotoruay”l ;

469

It is possible to project aggregate results as shown
in the following example, where r&2 is inferred
to have a type which is an aggregate of a road
and a roadlame.

var res2 := [any <Road,Bame> I
get_roadTypeQRoad *= Wotoruay",
get_roadNameQRoad == Name];

3. [{ proj } 1 ROLL goal]

In this case, all the projected objects which sat-
isfy the goal are collected in an association. For
example, the following query assigns to res3 the
set of polygon objects which have an area greater
than 100:

var res3 := C {Poly) I get-area0Poly == Area,
Area > 100 I ;

A query must satisfy the condition that all variables
which occur in the projection also occur in the goal
that constitutes the body of the query.

4.2.2 Method definition using ROLL

In the integrated system, methods can be defined us-
ing the logic language as well as the imperative one.
Method definitions in ROCK include a complete spec-
ification of formal parameters, specifically names and
types of input parameters, plus the type of the result.
However, this conflicts with the way in which rules are
defined in logic languages, where there is no explicit
distinction between input and output parameters - a
single rule can be called with different binding pat-
terns. thereby allowing greater flexibility. A central
aim for the integration of ROCK and ROLL has been
to retain the static type checking of ROCK without
sacrificing the call-time binding flexibility of ROLL.
The following approaches were considered for support-
ing the definition of methods using ROLL.

1. The most straightforward approach to supporting
methods written in ROLL is to use the querying
mechanism described in section 4.2.1 in the body
of a st,andard ROCK method. For example, the
following code fragment defines a method owners
attached to road which, given an availability,
returns the set of owner objects associated with
the landparcels with the given availability
which are located beside the road to which the
message has been sent:

class road
. . .
owners(theAvai1: availability): {owner)
begin

CCOvner3 I
get,roadQLoc *- self,
get,landParcelQLoc == Land,
get,availabilityQLand - !theAvail,
get-ownereland == Ovner

1;
end

end-class

This approach is directly supported by features
described earlier in this paper, and has the ad-
vantage that there is no additional syntax as-
sociated with the definition of ROLL methods.
However, there is no means of calling the ROLL
method with different parameters bound - for ex-
ample, it is not possible to run the method ‘back-
wards’ to find the road objects given an owner
and an availability because the method signa
ture specifies which values are to be supplied and
which returned. Thus a different method has to
be defined for each binding pattern, leading to a
proliferation of method definitions which are only
implicitly identified as being logically equivalent.

2. An alternative (discarded) approach, which con-
tinues to use the standard ROCK method defini-
tion facilities, but which avoids the duplication of
ROLL code in different methods involves the defi-
nition of rules separately from the methods which
use them. For example, the following code frag-
ment implements the same method as that given
above, except that the rule is defined in the con-
text of a flat clause base:

ovners(Road,Ouner,Avail) :-
get,roadQLoc == Road,
get,landParcelQLoc *= Land,
get,availability@Land - Avail,
get-ovner@Land == Ovner.

. . .
class road

. . .
ouners(theAvai1: availability): {owner)
begin

CCOvner3 I
ovners(self,Ouner,!theAvail)l;

end
end-class

The advantage of this approach is that the same
rule may be invoked from different methods and
with different parameters bound. However, it
has a number of disadvantages: there is likely to
be a proliferation of ROCK method definitions
which are essentially wrappers for ROLL rules;
the clause base is not organ&d using the object-
oriented facilities of the model; private attributes

470

and methods are inaccessible to rules which are
defined separa&ly from classes; and an additional
persistence scheme is required for rules, as they
are no longer defined in particular classes.

3. The preferred approach, and that which has been
implemented (along with (1) which comes for
free), supports the flexible invocation of rules, but
introduces a revised syntax for method definition
specifically for ROLL rules which does not indi-
cate which parameters are for input and which are
for output. For example, the method associated
with the same ROLL goal as defined in (1) and
(2) can be specified this:

class road
. . .
ovners(ovner,availability)
begin

ovners(Ouner,Avail)QRoad
get,road@Loc == Road,
get,landParcel@Loc -
get-availability0Land

:-

Land,
== Avail,

get_ovnerQLand == Ovner.
end

end-class

This method is then always invoked from within
t,he query structure specified in section 4.2.1. As
the method definition does not distinguish be-
tween input and output arguments, the query
form specifies which method parameters will be
supplied when the method is invoked and which
parameters will be collected as bindings to form
the solution to the query. For example, the fol-
lowing statement assigns to res3 the set of owner
objects with the availability object theAvail
associated with the road object theRoad:

var res3 := [(Ovner) I

In a deductive relational database (DRDB), an inten-
sional path relation can be defined which is the tran-

ovners(Ovner,!theAvail)O!theRoad)l;
sitive closure of arc thus:

4.3 Assessing the Integration

In section 2 a number of criteria are presented by which
an integration of two languages can be assessed. In
ROCK & ROLL, approaches (1) and (3) from the pre-
vious section have been implemented. As indicated
in Table 1 (in section 2), the integration in ROCK &
ROLL satisfies the five criteria associated with the en-
gineering aspects of an integration, namely evttluation
strategy compatibility, type system uniformity, type
checker capability, syntactic consistency and bidirec-
tionality. Clearly a paradigm mismatch remains, but
it can be argued that the two languages are highly
complementary, one supporting the declarative, rule-
based retrieval of information, and the other support-
ing a procedural approach to data retrieval, algorithm
definition, input/output, and updates. The effective-
ness of the combination is being evaluated in the con-
text of a geographic information systems application
[AWP93].

5 ROCK & ROLL as a DOOD
This section examines the extent to which ROCK &
ROLL can be considered to be an effective deductive
object-oriented database. This is done by showing how
certain issues raised in [UllSl] are addressed in ROCK
& ROLL, and by indicating how the approach taken
compares with other proposals for DOODs.

5.1 Overcoming Ullman’s Objections

The following issues are raised in [Ul191] as presenting
significant obstacles to the development of a DOOD:

5.1.1 Identity of objects obtained by different
proofs.

To illustrate an alternative call pattern, the fol-
lowing statement assigns to res4 the set of
road objects associated with the omer ob-
ject theowner and the availability object
theAvail:

var res4 := CCRoadI I
ovners(!theOvner,!theAvail)QRoad)l;

This approach enables the clause base to be or-
ganised in an object-oriented manner, facilitates
overloading and overriding of ROLL method defi-
nitions, permits access to the private properties of
a class from ROLL methods, and supports flexible
call-time binding.

path(X,Y) :- arc(X,Y)
path(X,Y) :- path(X,Z), arc(Z,Y)

Where the arc relation is finite, the derived path re-
lation will also be finite, even where the arc relation
contains cycles. This is because the path relation is
built as a set of values, which leads to different deriva-
tions of a path being treated as a single path tuple.
It is argued by Ullman that where object identity is
treated seriously by a DOOD, each result derived for
the path relation must be given a unique identifier,
leading to multiple objects which represent the same
path, and thus to the derivation of an infinite number
of paths whenever arc contains cycles. This, however,
is only a problem when the intermediate results of a
derivation are represented aa objects.

471

In ROCK & ROLL, path can be represented as a
method as follows, where arc is represented as an ob-
ject attribute:

path(Y)QX :- get-arc(Y
path(Y :- path(Z)@X, get-arc(Y)QZ

No new objects are created during execution of this
method, rather pairs of existing objects which are
reachable through the arc attribute are collected
within the rule evaluator. After rule execution has
completed a single collection object is created to hold
all the solutions to the query. For example, the follow-
ing statement assigns to res a new object which is an
association of the objects which are reachable from the
ROCK variable x according to the definition of path:

res := ICY) 1 path(Y)@!x]

5.1.2 Dynamic Typing and Ad-Hoc Queries.

In a DRDB, the definition of an intensional relation
has the effect of adding a new ‘type’ to the schema.
For example, the rule defined above introduces a new
(intensional) relation path. The new path relation can
subsequently be used directly by other definitions be-
cause the standard relational operators are directly ap-
plicable to it. Ullman argues that the increased com-
plexity of type systems in object-oriented databases,
and the possibility of understanding an object in-terms
of its behaviour rather than its structure, makes it
impractical to allow the incremental addition of rules
which effectively produce new types as a result.

In the context of ROCK & ROLL, two points can
be raised to counter Ullman’s case. The first is that
the definition of a new ROLL method does not add any
new type to the system. For example, the above defini-
tion of the ROLL method path expands the signature
of t.he type to which it is attached, but the number of
types remains the same. The second is that the way
in which such a method is used determines which new
types are required, and that alternative approaches are
available. For example, if the ROLL method is only
used directly from other ROLL methods then the inter-
mediate result of the method does not need a new type
to be defined, as discussed in point (1) above. If the
ROLL method is called from ROCK, then it is indeed
necessary to assign the result of the method to a typed
variable. If the typed variable is local to the computa-
tion, then its type can be inferred directly within the
context where it is used, and there is no need for a
global type. For example, the following program de-
clares the variable res, assigns to it the result of an
invocation of the path method, and prints the value
of the pos attribute of each object in res:

var res := ICY) 1 path(Y)@!xl;
foreach o in res do write get-pos@o, nl;

By contrast, if the result of the derivation is to per-
sist, and must be associated with some user-defined

behaviour, then it is indeed necessary to define a new
type with properties, an interface, etc. The extension
of this type can then be constructed from the results
of ROLL methods.

This flexible response to Ullman’s case means that
there is little or no overhead associated with the def-
inition of types for temporary values, and that the
programmer has the option of defining comprehensive
types and classes for structuring the results of a ROLL
method if this is what is required.

5.1.3 Optimising declarative queries and
rules.

Queries and rules in DRDBs can be optimised using
a range of techniques, effective optimisation being im-
portant to the practicality of a declarative language.
Ullman suggests that optimisation in DRDBs is practi-
cal because of the generic and well understood seman-
tics of the algebraic operations which are applicable to
relations, and that the presence of user-defined opera-
tions (methods) in OODBs precludes effective optimi-
sation.

In ROCK & ROLL, methods written using ROLL
are logic programs on a par with Datalog. Indeed,
the semantics of ROLL is defined by a mapping onto
Datalog in the context of the set of first-order axioms
which describe the data modelling constructs of OM
[FWP93]. This means that ROLL programs can be
optimised using variations on the techniques proposed
for use with Datalog. The optimisation of ROLL using
a technique based upon static filtering [KL90] is de-
scribed in [BFP+94]. In this approach, RULL queries
and methods are represented using a graph structure
through which constraints can be pushed in a bid to
minim& the size of intermediate data sets. This es-
sentially overcomes Ullman’s objection by allowing the
optimiser to look inside, and indeed to optimise, meth-
ods which are implemented using ROLL. If a ROLL
method invokes a ROCK method, then the ROCK
method is treated as a black box which, given a mes-
sagk recipient and an appropriate number of parame-
ters, returns a result.

5.2 Comparison With Other DOOD Propos-
als

Proposals have been made for DOODs with widely dif-
ferent starting points and emphases [FPWB92], only
a few of which are mentioned here because of limited
space.

The most fundamental departure from earlier work
on deductive databases is characterised by F-logic
[KL89], where a new logic is proposed incorporating
such object-oriented features as inheritance and a no-
tion of identity. However, it is far from clear how such

472

a logic can be implemented efficiently, and the seman-
tics provided for the language-make no attempt to al-
low for state change, as required in practical database
systems.

An alternative approach builds more directly upon
earlier work on DRDBs by. extending the semantics
of Datalog with constructs such as identity and inheri-
tance [AbiSO, CCCR+SO]. Such proposals benefit from
the extensive research on the design and implementa-
tion of DRDBs, but generally have limited semantic
data modelling facilities, and logic language semantics
complicated by the introduction of updates. Similar
strengths and weaknesses can be obtained by an al-
ternative approach in which a DOOD language is im-
plemented by mapping it onto an existing deductive
database system [BM92].

The above proposals significantly play down the
role of an independently defined data model as the
basis from which languages can be defined with dif-
ferent operational semantics. Other such proposals
are LLO [LO911 and ORLOG [JL93]. Both are in-
spired by F-logic into postulating a higher-order syn-
tax, which. provides undeniably elegant solutions in
certain cases, but is difficult for occasional users to
fully grasp. The higher-order approach also incurs the
penalty of a less than intuitive declarative semantics.
In the case of LLO this implies few clues as to how an
operational semantics can be implemented as the basis
for query evaluation, a problem that ORLOG bypasses
by rewriting into LDL [NT89].

ConceptBase [JJRSO], a powerful KBMS built
around the Telos language, also advocates deductive
and object-oriented layers in a single system architec-
ture. In particular, the variant of Telos used in Con-
cept.Base has its expressiveness restrained to that of
Datalog like ROLL. However, in ConceptBase,methods
can only be written using deductive rules, and’there-
fore the range of applications that can be implemented
using only ConceptBase is much more restricted than
one can implement in ROCK & ROLL.

6 Conclusions

This paper has described the integration of a logic
query language with an imperative programming lan-
guage in the context of a semantically expressive
object-oriented data model. It has been shown how
the resulting system satisfies a number of criteria by
which interfaces between languages can be judged,
and how the integrated system overcomes certain chal-
lenges posed in [UllSl] to the developers of DOODs.

The system which results from the integration re-
tains the strengths of its components and adds to these
strengths the following benefits which derive from their
co-existence:

Data described using the data model can be pro-
cessed or analysed using two different and com-
plementary programming styles.

The facility to manipulate data using au imper-
ative programming language has been obtained
without sacrificing the effectiveness of the query
language.

The semantics of the logic language has not been
complicated by the introduction of update state-
ments, and yet the database can be effectively rn*
nipulated using fully integrated facilities.

The impedance mismatch, relating to both type
system and evaluation strategy, has been over-
come.

6.0.1 Current Position

The ROCK & ROLL system is being implemented us-
ing EXODUS, and in particular the persistent C++
system E [CDG+SO]. A functionally complete imple-
mentation of ROCK 8z ROLL has been completed, and
work is underway on the implementation of an opti-
miser for ROLL queries and rules.

6.0.2 Acknowledgements

The work that resulted in this paper has been funded
by the UK Science and Engineering Research Coun-
cil through the IEATP programme, and their support
is duly acknowledged. The object manager was im-
plemented by Alia Abdelmoty. We would also like to
thank Dr. Keith G. Jeffery Of’Rutherfdrd Appleton
Laboratory for useful discussions on the subject of this
paper, and Dr. J.M.P. Quitin representing ICL and Mr
Neil Smith of Ordnance Surve) ‘as the industrial part-
ners in the project.

References

[AbiSO] S. Abiteboul. Towards a Deductive Object-
Oriented Database Language. Data & KnowJ-
edge Engineering, 5:263-287, 1990.

[AWP93] A.I. Abdelmoty, M.H. Williams, and N. W.
Paton. Deduction and Deductive Databases
for Geographic Data Handling. In David Abel
and Beng C. Ooi, editors, Advances in Spatial
Databases: Third IntemationaJ Symposium,
SSD ‘93, LNCs 692, pages 443-464. Springer-
Verlag, 1993.

[BFP+94] M.L. Barja, A.A.A. Fernandes, N.W. Ps
ton, M.H. Williams, A. Dinn, aud A.I.
Abdelmoty. Design and Implementation
of ROCK & ROLL: A Deductive Object-
Oriented Database System. In submitted for
publication, 1994.

473

[Bl19’L]

[CCCR+SO]

[CDG+SO]

[CGTSO]

[DatSO]

[DI;1191]

[FBPW93]

[FPWB92]

[Fir-P931

[FWP94]

[JJRSO]

E. Bertino and D. Montesi. Towards a
Logical-Object Oriented Programming Lan-
guage for Databases. In Alain Pirotte, Claude
Delobel, and Georg Gottlob, editors, Ad-
vances in Database Technology - EDBT’92,
LNCS 580, pages 168-183. Springer-Verlag,
1992.

F. Cacace, S. Ceri, S. Crespi-Reghizzi,
L. Tanca, and R. Zicari. Integrating Object-
Oriented Data Modeling with a Rule-based
Programming Paradigm. In Proc. A CM SIG-
MOD Conf., pages 225-236, 1990.

M. Carey, D. Dewitt, G. Graefe, D. Haight,
J. Richardson, D. Schuh, E. Shekita, and
S. Vandenberg. The EXODUS Extensible
DBMS Project: An Overview. In S. Zdonik
and D. Maier, editors, Readings in Object-
Oriented Databases, CA 94303-9953, 1990.
Morgan Kaufman Publishers, Inc.

S. Ceri, G. Gottlob, and L. Tanca. Logic Pro-
gramming and Databases. Springer-Verlag,
Berlin, 1990.

C. J. Date. Introduction to Database Systems,
Volume 1 (5th Edition). Addison-Wesley,
1990.

C. Delobel, M. Kifer, and Y. Masunaga. De-
ductive and Object-Oriented Databases (Sec-
ond International Conference DOOD’91, Mu-
nich). Springer-Verlag, Berlin, 1991.

A.A.A. Fernandes, M.L. Barja, N.W. Paton,
and M.H. Williams. A Deductive Object-
Oriented Database for Data Intensive Appli-
cation Development. In Proc. 11th British
National Conference on Databases, LNCS
696, pages 176-198. Springer-Verlag, 1993.

A. A. A. Fernandes, N. W. Paton, M. H.
Williams, and A. Bowles. Approaches to De-
ductive Object-Oriented Databases. Infor-
mation and Software Technology, 34(12):787-
803, December 1992.

A.A.A. Fernandes, M.H. Williams, and N.W.
Paton. An Axiomatic Approach to Deduc-
tive Object-Oriented Databases. Technical
Report TR93002, Department of Computing
and Electrical Engineering, Heriot-Watt Uni-
versity, April 1993.

A.A.A. Fernandes, M.H. Williams, and N.W.
Paton. A Logical Query Language for an
Object-Oriented Data Model. In N.W. Pa-
ton and M.H. Wiiams, editors, Proceedings
of First International Workshop on Rules in
Database Systems, pages 234-250. Springer-
Verlag, 1994.

M. Jarke, M. Jeusfeld, and T. Rose. Software
Process Modelling as a Strategy for KBMS
Implementation. In [KNNSO], pages 531-550.
1990.

[JL93]

[KL89]

[KL90]

[KNNSO]

[KR91]

[LO911

[Men871

[MTHSO]

[Mum931

[NT891

[PDRSl]

[PS91]

[SRSS93]

[UIISl]

M. Hasan Jamil and Laks V.S. Lakshmanan.
Realizing Orlog in LVL. In [Mum93], pages
45-59, 1993.

M. Kifer and G. Lausen. F-logic: A Higher-
Order Language for Reasoning about Ob-
jects, Inheritance and Scheme. In James Clif-
ford, Bruce Lindsay, and David Maier, edi-
tors, Proc. ACM SIGMOD Conf., pages 134-
146, 1989.

M. Kifer and E. Lozinskii. On Compile-Time
Query Optimization In Deductive Databases
By Means Of Static Filtering. TODS,
15(3):385426, 1990.

W. Kim, J-M Nicolas, and S. Nishio, editors.
Deductive and Object-Oriented Databases
(First International Conference DOOD’89,
Kyoto). North-Holland, 1990.

M.H. Kay and P.J. Rivett. An Overview of
the Raleigh Object-Oriented Database Sys-
tem. ICL Technical Journal, 7:780-798, 1991.

Y. Lou and Z.M. OzsoyogIu. LLO: An Object-
Oriented Deductive Language with Methods
and Method Inheritance. In James Clifford
and Roger King, editors, Proc. ACM SIG-
MOD Conf., pages 198-207, 1991.

E. Mendelson. Introduction to Mathematical
Logic. Wadsworth & Brooks/Cole, 3rd edi-
tion, 1987.

R. Milner, M. Tofte, and R. Harper. The Def-
inition of Standanl ML. MIT Press, 1990.

I.S. Mumick, editor. Proc. Workshop on
Combining Declamtive and Object-Oriented
Databases, Washington, DC, May 1993.

S.A. Naqvi and S. Tsur. A Logical Language
for Data and Knowledge Bases. Computer
Science Press, RockviIIe, MD, 1989.

G. Phipps, M.A. Derr, and K.A. Ross. Glue-
Nail: A Deductive Database System. In
James Clifford and Roger King, editors, Proc.
ACM SIGMOD Conf., pages 308-317, 1991.

A. Poulovassilis and C. Small. A Func-
tional Programming Approach to Deductive
Databases. In G.M. Lohman, A. Sernadii,
and R. Camps, editors, Proc. 17th VLDB,
pages 491-500. Morgan Kaufmann, 1991.

D. Srivastava, R. Ramakrishnan, P. Seshadri,
and S. Sudarshan. Coral++: Adding Object-
Orientation to a Logic Database Language.
In R. Agrawal, S. Baker, and D. Bell, edi-
tors, Proc. 19th VLDB, pages 158-170. Mor-
gan Kaufmann, 1993.

Jeffrey D. UIIman. A Comparison Between
Deductive and Object-Oriented Database
Systems. In [DKMSI], pages 263-277. 1991.

474

