
Dual-Buffering Strategies in Object Bases

Alfons Kemper Donald Kossmann
Lehrstuhl fiir Informatik Graduiertenkolleg “Informatik und Technik”

Universitgt Passau RWTH Aachen
D-94030 Passau, F. R. G. D-52056 Aachen, F. R. G.

kemper@db.fmi.uni-passau.de kossmann@db.fmi.uni-passau.de

Abstraci

In this work, control strategies for combining
two potentially powerful buffer management
techniques in object bases were devised and
evaluated: (1) buffer pool segmentation with
segment-specific replacement criteria, and (2)
dual buffering consisting of copying objects
from pages into object buffers. Two diien-
sions exist for exerting control on the buffer
pool: (1) the copying time which determines
at what time objects are copied from their
memory-resident home page, and (2) the relo-
cation time which determines when a (copied)
object is to be transferred back to its home
page. Along both dimensions, it is possible
to differentiate between an eager and a lazy
strategy. The extensive experimental results
indicate that lazy object copying combined
with an eager relocation strategy is almost
always superior and significantly outperforms
page-based buffering in most applications.

1 Introduction

In the Eighties, object-oriented database systems
emerged as the potential next-generation database
technology. However, now that the initial “hype” has
vanished the question is whether or not.they can ac-
tually conquer a substantial share of the information

Permission to copy without fee all or pa& of this material ia
granted provided that the copies an not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to npublish, requires a fee
and/or npecipl permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

technology market. A key issues will be performance.
In this work, the particularly crucial issue of main-

memory buffer management in optimizing object-
oriented database systems was addressed. Buffer man-
agement was studied intensively by both researchers
of operating systems [CD73, Den801 and database
management systems [EH84, NFS91, OOW93]-to
name just a few. Buffer pool segmentation has been
studied in the relational context. Segmenting the
buffer pool provides the flexibility to customize the
replacement strategies for particular reference pat-
terns [CD85]. This is even more important in object-
oriented database applications [KM941 which tend
to be computationally more complex and, therefore,
exhibit an even larger variety of different reference
patterns. Consequently, in this work, a segmented
buffer pool organization as used by the DBMIN al-
gorithm [CD851 was adopted.

Most of the work on buffer management assumes
page-based buffering which is then incorporated in
most commercial object-oriented database systems;
e.g., ObjectStore [LLOWSl]. However, this work
shows that in the object-oriented model, the flexibility
of dual buffering [KBC+88, KGBWSO] should be ex-
ploited. This allows buffering entire pages as well as
isolated objects. In this way it is possible to buffer
well-clustered pages that inhabit many application-
relevant objects and, at the same time, to extract (iso-
late) objects from otherwise useless pages.

The work reported here devised and evaluated
control strategies for combining these two poten-
tially powerful buffer management techniques in ob-
ject bases: (1) buffer pool segmentation with segment-
specific replacement criteria, and (2) dual buffering
consisting of copying objects from pages into object
buffers or leaving well-clustered pages intact. Two di-
mensions exist for exerting control on the buffer pooh
(1) the copying time which determines when objects
are copied from their memory-resident home page,
and (2) the relocation time which determines when a

421

Figure 1: Snapshot of a Dual-Buffer Pool
(copied) object is transferred back into its home page.
Along both dimensions, an eager and a laq strategy
were devised. To assess the different control strategies,
an experimental system was built consisting of a page
server [DFMVSO] connected with clients managing a
segmented dual-buffer pool. The extensive experimen-
tal results indicated that lazy object copying combined
with an eager relocation strategy is almost always su-
perior and substantially outperforms pure page-based
buffer management in most applications.

The rest of the paper is organized as follows. Sec-
tion 2 describes the basic concepts of dual buffering in
a segmented buffer pool. Section 3 classifies the var-
ious control schemes for managing a segmented dual-
buffer pool. Section 4 discusses implementation issues.
A quantitative assessment follows: Section 5 describes
the experimentation platform; Section 6 visualizes and
discusses the results of the benchmarks. Section 7 sets
forth the conclusions reached.

2 Dual-Buffer Management

As stated above, work on database buffer management
in the relational context indicates that a segmented
buffer pool outperforms a global buffer pool. Seg-
mentation of the buffer pool allows the use of dedi-
cated replacement strategies for different segments of
the pool; thereby, tuning buffer management for spe-
cific reference patterns as reported, e.g., in [CD85]. In
an object-oriented database system, the (segmented)
buffer could be organized to hold either pages or
objects-in the following called granules.

A pure page-based buffer organization only allows
the maintenance of entire pages-as they are stored
on secondary storage. This scheme potentially suffers
from bad buffer utilization, if the object base is poorly
clustered with respect to the corresponding applica-
tion. The other extreme is a pure object-based orga-
nization in which all objects are extracted from their
home page, i.e., the page on which they are stored on
secondary storage.- This organization can induce an
unnecessarily high overhead for well-clustered pages;

i.e., those pages that contain many relevant objects.
This paper shows that buffer segmentation should

be combined with dual bufering which permits main-
taining entire pages as well as (isolated) objects in the
buffer. Under dual buffering, the buffer pool could be
segmented into page-based and object-based segments,
each of them with a dedicated replacement policy. The
dual-buffer organization permits leaving well-clustered
pages in their entirety in a page-based segment, while
objects located on otherwise “useless” pages can be
extracted and copied into an object-based segment.

Fig. 1 shows a snapshot of a dual-buffer pool. This
buffer is segmented into four segments: two purely
object-based segments osI and OSII, a page-based seg-
ment, ps, and a special segment, global-fie, that is
automatically allocated for every buffer pool and con-
tains both pages and objects. Every granule is con-
tained in one segment at most that keeps the usage
statistics of the granule. For example, the usage statis-
tics for object oidl are kept in segment osI, and for
object oid2 in OS& while the usage statistics of their
home page pidA are independently maintained by seg-
ment ps. The usage statistics of an object are updated
every time an application accesses the object; the us-
age statistics of a page are updated when an object
that is located in the page is accessed for the first time
and the page is accessed to localize this object.

If a granule “leaves” the locality set of a page-based
or object-based segment, it is transferred into the seg-
ment global-free. The segment global-free is used to
maintain granules that are subject to (immediate) dis-
placement as soon as buffer space is needed.

The diagram indicates that page-based and object-
based segments may overlap. For example, object oidl
is contained in OSI and, at the same time, its home
page, pidA, in which it is still located, is contained
in the page-based segment, ps. The overlapping of
page-based and object-based segments reduces copy-
ing overhead and increases buffer utilization. For ex-
ample, objects oid2 and oid3 can be accessed equally
in segment osII. Object aid,!?, however, was copied and
is buffered twice: once, within its resident home page
pidA and once, in the extra copy; in this case, the
(useless) copy of object oid2 is called a duplicate.

The shaded granules in Fig. 1 indicate a modifi-
cation that needs to be flushed upon displacement.
Flushing a (shaded) object whose home page is not
currently memory-resident, requires bringing in this
page, copying the object into the page and then flush-
ing the page.

In a client-server system [DFMVSO], dual buffer-
ing can be incorporated in several ways. Kim et
al. [KBC+88] investigated an object-server architec-
ture in which the server buffers pages and “ships” ob-
jects into the client’s object-oriented workspace. Dual

428

buffering could also be embedded within an object
server; i.e., the object server buffers objects and pages
to reduce the number of page faults in the server. How-
ever, in this work, a page-server architecture was in-
vestigated, since this architecture appears to be used
in most of today’s object base systems [Win93]. In
our prototype, a dual-buffer pool was located in the
(diskless) client workstation to minimize the commu-
nication between client and server, and an (ordinary)
page-buffer pool was located in the server.

3 Classification of Dual-Buffering
Strategies

Effective dual-buffering control strategies must take
two

l

0

dimensions into account:
copying time: This determines at what time-
or more precisely, upon what event-an object is
copied from its memory-resident home page into
an object segment of the buffer pool.

relocation time: This control dimension deter-
mines at what time an object copy-previously
extracted from its home page-is “given up” and,
if necessary because of modification, transferred
back into its memory-resident home page.

In Fig. 2a these two control dimensions are sketched as
time axes. For both dimensions two extremes can be
distinguished, namely an eager and a Zaq strategy.
Combining the two alternatives of either dimension
renders a strategy space for dual-buffer management
whose “corner stones” are indicated by bullets-their
control strategies are outlined in Fig. 2b. Furthermore,
the NOC control strategy, under which no object copy-
ing takes place, is classified as a bullet at the top of
the copying time axis; since no object copying takes
place, no relocation is required.

3.1 Object Copying

3.1.1 Eager Object Copying (EOC)

Under eager object copying (EOC), an object is ex-
tracted from its home page and copied into an object
segment when it is accessed for the first time; i.e., upon
object fault. Thus, access to objects is always carried
out on copies. Under EOC and in order to avoid wast-
ing precious buffer space for idle pages, a buffer pool
should be configured in such a way that the object
segments are large compared to the page segments.

If configured properly, EOC will often reduce the
number of page faults as compared to buffering pages
only (NOC). Derivatives of EOC, therefore, are used
in ORION [KBC+88, KGBWSO], its commercial suc-
cessor, Itssca [Inc93], and in the E Persistent Virtual
Machine (EPVM 2.0) [WD92]. EOC, however, shows

significant drawbacks for particular application pro-
files. For example, in applications that browse sequen-
tially through a large volume of data, the number of
page faults cannot be reduced. For these applications,
EOC copies objects unnecessarily, thereby producing
considerable CPU overhead to allocate main memory
in the buffer pool for the copies. Even worse, if objects
are modified in such a sequential scan, EOC can cause
a tremendous number of additional page faults if the
home pages are displaced before the modified objects
are flushed.

EOC also has poor performance if the object base
is clustered very well. In this case, it is advantageous
to buffer on a per page basis since the clustering al-
gorithm has already considered the application’s ref-
erence pattern [TN91, GKKMk93]. For well-clustered
object bases, EOC will suffer from the copying effort
because the object extraction cannot significantly in-
crease the buffer utilization.

To reduce the drawbacks of EOC but still allow
buffering on a per object basis-whenever useful to
enhance buffer utilization-lazy object copying (LOC)
was devised.

3.1.2 Lazy Object Copying (LOC)

The idea is to copy the objects as late as possible;
i.e., an object is copied only when its home page is
displaced from the buffer pool and it is still member
of the locality set of an object segment.

For sequential scans, the best case of NOC, LOC
performs equally well because no object is copied; in a
sequential reference pattern, pages are accessed more
often than objects and thus, the objects drop out of the
locality set of their object segment before their home
page is displaced. On the other hand, if an application
repeatedly accesses a set of objects that are spread over
a large number of pages, the best use of EOC, LOC
will copy objects as necessary to achieve a good buffer
utilization.

Since copying of objects takes place at the time a
page fault occurs (i.e., when buffer space is allocated
for the new page), the copying of objects is overlapped
with the time the client waits for the new page. On
the other hand, under EOC, objects are copied just
afier a page has been loaded and I/O waiting times
cannot be exploited for object copying.

If objects are modified, however, LOC will not al-
ways perform optimally. To describe the behavior of
LOC in this case, the terms earZy updates of objects
(i.e., while the home page is still resident) and late
updates of objects (i.e., after the displacement of the
home page) are used. If only early updates are carried
out, pure LOC is fine: the modifications are commit-
ted to the database when the page is displaced and

429

copying

l=Y

eager

NOC

LO(

EOc

ERL LOC/LRL

1 alternative
strategies

4
ERL EOC/LRL

relocation

eager

(4

rime

1
a

;
C
0

y”

i-

ii

e

;
e
r

\

s object copying on s object copying on
replacement of replacement of
home page home page

0 relocation on s relocation on re-
reloading of home placement of ob-

page ject

l object copying on
identification

s relocation On

reloading of home
Page

s object copying on
identification

s relocation on re-
placement of ob-
ject

eager

afterwards, no modifications need to be flushed. How-
ever, if early and late updates are carried out, LOC will
flush the home page twice: once, when the home page
is first displaced to commit the early updates, and once
again to flush the late updates. In comparison, EOC
avoids the flushing of early updates, thereby possibly
causing an additional page fault at a later time.

To deal with early and late updates, two deriva-
tives of pure LOC were devised and evaluated. LOC-
precludes the displacement of pages as long as the
page contains modified objects that belong to the lo-
cality set of an object segment; i.e., objects are not
copied from modified pages. The alternative, LOC+,
copies objects as soon as they tie modified for the first
time, rather than waiting until the page is displaced;
thus, LOC+--like EOC-avoids the cost of flushing
the home page for the first time to commit the early
modifications.

3.2 Object Relocation

The relocation control must deal with the event that
an object is extracted from its home page and that the
home page is displaced from the buffer pool; eventu-
ally, it is brought back into the buffer. This is referred
to as reloading in Fig. 2b.

3.2.1 Eager Relocation (ERL)

Under eager relocation (ERL), an object is relocated
regardless whether or not it was modified as soon as
its home page is brought back into the buffer pool.
For example, if the home page of object oid5 is loaded

relocation

Figure 2: Classification Scheme

(b)

into segment ps in Fig. 1 (e.g., to access object oid6
that is not resident), ERL flushes the modifications of
object oid5, marks the page as modified, and gives up
the copy of object oid5 so that segments osII and ps
overlap at the location of object oid5.

In combination with LOC, ERL completely elimi-
nates duplicates; a copy of an object only exists if the
home page is not resident. Furthermore, the number
of page faults due to flushing modified objects is min-
imized.

On the other hand, however, following ERL, some
objects are relocated unnecessarily; e.g., if the home
page of object oid5 is loaded and immediately dis-
placed again, object oidd is relocated and subse-
quently copied unnecessarily. Unnecessary relocation
causes CPU overhead and needless flushing of pages to
the database if an object is modified, relocated, copied
and finally, modified again.

The combination of ERL and EOC appears to fol-
low two contradictory policies: on the one hand, access
should always be carried out on copies (EOC), and
on the other hand, copies are supposed to be given
up as early as possible (ERL). For this reason, the
EOC/ERL strategy could be safely disregarded in the
quantitative evaluation (cf. Section 6). EOC/ERL,
however, represents a “corner stone” in the full range
of possible dual-buffering strategies and is, therefore,
shown in Fig. 2.

3.2.2 Lazy Relocation (LRL)

Lazy relocation (LRL) relocates objects as late as pos-
sible. Once a copy of an object is established, it will

430

not be given up before the object drops out of the lo-
cality set of its object segment and is chosen as a vic-
tim in the segment gZobaZ_free in times of scarce buffer
space.

Whereas ERL is a novel technique, LRL, in conjunc-
tion with eager object copying was already devised in
ORION [KimSO]. I n E d xo us, a late relocation scheme
is also used [WD92]. The objects are copied into vir-
tual memory where they remain until an application
commits. Shortages in’physical main memory are over-
come by the swapping facility of the operating system,
and relocation is carried out collectively for all cached
objects at the co’mmit-time of an application.

Obviously, LRL avoids the unnecessary relocation
of objects. On the other hand, LRL might miss the
last chance to flush a modified object without inducing
a page fault. In addition, buffer utilization is gener-
ally lower because of the duplicates incurred when the
home page of extracted objects is reloaded into the
buffer to access some other object.

3.2.3 Fine-Tuning of Relocation Skategies

As shown in Fig. 2a, there are many possible varia-
tions of relocation strategies. The performance of ob-
ject relocation techniques strongly depends on object
modifications. Two further strategies were devised as
a compromise between LRL and ERL:

1. Relocation of non-modified objects eagerly and
modified objects lazily.

2. Relocation of modified objects eagerly and non-
modified objects lazily.

Although one is the exact opposite of the other,
both make sense. Under the first strategy, the number
of times a page is flushed to the database is reduced
because only pages containing at least one modified
object need to be flushed upon displacement from the
buffer pool. The second strategy reduces the number
of page faults that could occur because of flushing an
object whose home page was displaced.

4 Implementation Issues

In this section, some of the specifics of implementing
dual buffering are addressed.

4.1 Object and Page Descriptors

An application can (directly) access any object that
is in the locality set of any object-based segment, re-
gardless whether the object has been copied or not.
To this end, an object desctiptor is allocated for all
these objects and registered in, a hash table, the so-
called resident object table ROT. An object descrip
tor contains a variety of information; e.g., in the. ref

descdpbx oidl

Figure 3: Object and Page Descriptors

field the main memory address of the resident object
is materialized to carry out the access or for pointer
swizzling [KK93], the cop field indicates whether the
object has been copied, the mod field says whether
the object must be flushed before it may be evicted
because it has been copied and modiied, and the seg
field refers to the buffer segment the object is located
in so that usage statistics can be maintained after the
object has been accessed. A comprehensive descrip-
tion of object descriptors and additional information
they keep (e.g., for locking) is given in [KimSO].

If an application intends to access an object that
is not in the locality set of an object-based segment,
an object fault is induced, and the object’s home page
must be accessed. To this end, a page descriptor is
allocated for every resident page that is in the locality
set of a page-based segment, and the page descriptors
are registered in the resident page table RPT. Again, a
page descriptor keeps all the information to determine
the state of a page in the buffer pool.

Fig. 3 illustrates that the descriptors of objects that
are located in the same home page are chained to a
list.via the nextObj field, and that the descriptor of
the home page is the anchor to thii list via the resObj
field. A similar mechanism was devised in [WD92].
LOC makes use of this chaining to find all the ob-
jects that are copied when a page is displaced. That
is, the chaining allows finding efficiently those objects
that belong to the locality set of some object segment,
that have not been copied yet, and that are located in
the page to be replaced. Furthermore, when a modi-
fied page is flushed to the server, all the modified and
copied objects whose descriptors are chained in this list
are flushed as well-regardless which relocation policy
is used-if the recovery algorithm allows this; i.e., a
STEAL policy is used.

For ERL, all the resident and copied objects located
in a page must be identified when the page is reloaded.
Consequently, the descriptor of a page, i.e, the anchor
of the list to find these objects, must be kept even if
the page has been displaced. The descriptor of a dis-
placed page can be garbage-collected when rdl copies of
objects located in this page have been given up. Fol-
lowing LRL, on the other hand, the page descriptor
can be discarded as soon as the page is replaced.

431

4.2 Main-Memory Allocation

Buffering variable sized objects complicates main
memory allocation significantly. In our prototype and
thus, in the performance experiments, the client’s main
memory was managed by a buddy system [Knu73].
Pages were buffered without any off-cuts. As expected,
EOC suffered more from memory fragmentation than
LOC, since LOC buffered more pages. From the point
of view of the buddy system, RAM utilization was typ-
ically 80% for EOC, 85% for LOC, and always 100%
for NOC. Thus, buffer fragmentation was considerable
for the dual-buffering strategies. As discussed in Sec-
tion 6, however, from a higher point of view, buffer uti-
lization was better in most cases for the dual-buffering
strategies because objects could be buffered without
buffering non-relevant neighboring objects that were
located in the same page. Even though the “gross”
RAM utilization was lower, the “net” buffer utiliza-
tion was typically considerably higher than in a pure
page-based buffer.

4.3 Overlapping Ratio

If LOC is followed, object-based and page-based seg-
ments, and, in particular, object-based segments and
the segment global-free overlap extensively; e.g., in
Fig. 1, segment 0511 and segment gZobaZLj+ee overlap
for objects oidll and oidl2. When buffer space is
scarce, the replacement policy of segment globaLfree
could possibly choose as a victim a page that is very
much involved in this overlapment; e.g., page pidF. As
a result, many objects are copied and .buffer space is

jeven scarcer due to the off-cuts caused by the copies.
To remedy this situation, the overlapping ratio (or)

of a page is defined as the ratio of the total volume of
the objects that are located in the page and belong to
the locality set of some object segment and that have
not been copied relative to the size of the page. In
Fig. 1, the or of page pidF is 1,0.5 for pages pidA and
pidB, and 0 for page pidD. Pages whose or exceeds a
certain threshold (e.g., 0.6) could be precluded from
displacement.

Introducing such a threshold has several advan-
tages: well-clustered pages can be identified, and thus,
copying and relocation of objects located on these
pages can be avoided. Furthermore, it is possible to
preclude the copying of large objects (i.e., objects that
are nearly as big as a page) or big portions of very large
objects.

In general, an optimum choice of the threshold will
depend on how well the object base is clustered for
a specific application. The experiments with vary-
ing thresholds (not reported in this paper) indicated
that very good performance is usually achieved with a
threshold of 0.6. In the range between 0.5 and 0.7, the

threshold did not appear to be a very critical parame-
ter. It should, however, not drop below 0.4 since oth-
erwise, LOC often degenerates to no-copying (NOC),
and it should not be greater than 0.8 to avoid the ef-
fect described above (i.e., buffer space becoming even
scarcer after the eviction of a page).

5 Benchmark Environment

5.1 Software and Hardware Used

The performance experiments were carried out under
SunOS 4.1.3 on two Sun Spare 10 workstations that
were connected by an (isolated) Ethernet. The server
machine had a 424 MB disk drive (model Sun0424)
and the client machine was diskless, i.e., every page
fault in the client’s buffer pool induced a request to
the server.

The server was a page server developed within the
GOM project; in the way it was used, it was very
similar to, e.g., the ‘page server of the Exodus sys-
tem [GroSl]. The server maintained a page-buffer pool
that was restricted to 1000 pages at 4096 bytes which
was approximately half the size of the object base.
Thus, buffer hit ratios in the server were non-trivial.

In the client, objects were accessed on the basis of
physical object identifiers that were 12 bytes long and
contained the object’s permanent address, i.e., page
and slot. In addition, the client contained a dual-
buffer pool applying a buffer allocation scheme that is
characterized as local, static, adaptable by [EH84]. To
make the results more comprehensible, only one appli-
cation was run at a time (single-user mode), and only
one page-based and one object-based segment were al-
located in addition to the globalLfree segment. Their
size was configured as best as possible, given the appli-
cation’s profile and the total size of the client’s buffer
pool. The page-based as well as the object-based seg-
ments were maintained by an LRU replacement policy
whereas for the gZobaZLf?ee segment, a FIFO policy was
applied.

5.2 Benchmark Specification

The performance experiments were carried out us-
ing the Tl (read-only), TZa (few updates), and
T2b (many updates) traversals of the 007 bench-
mark [CDN93]. To determine the response time, ev-
ery run was repeated three times and the average was
taken. In all the experiments reported in this paper,
the benchmark was run against the small 007 object
base; i.e., an object base with 20 CompositeParts and 3
Connections per AtomicPart. In this implementation,
the size of this object ‘base was approximately 2000
pages disregarding the index structures that were not
accessed by the traversals. The results scale to large

432

20 1 I I I I I I I I
200 400 600 800 1000 12Wl400 1600 18002WO

suffer Size [pa!Jee]

Figure 4: Response Time of NOC and Dual Buffering Figure 6: Page Faults of NOC and Dual Buffering
(Cold Tl Traversal, TB-clustering) (Cold Tl Traversal, TB-clustering)

30

25

:: p ‘/,>d

0 ~ f ...” . I* ; .

-10 -/ i
\ _a-

-15 - \ *,N--- -
(/

-20 I I I I I 1 Y I
200 400 600 800 1000 1200 1400 1600 18W2WO

suffer size WeeI

Figure 5: Savings of Dual Buffering
(Cold Tl Traversal, TB-clustering)

object bases and large b’uffer pools as only the ratio of
the object base’s size to the size of the buffer pool is
important.

As pointed out before, clustering has a severe effect
on the performance of buffer management techniques.
Therefore, the following three clusterings were investi-
gated:

Time-of-creation (TOC): The objects were in-
serted sequentially into the object base in the or-
der they were created by the gendb function of
the original E/Exodus implementation of the 007
benchmark. TOC provided very good but not op-
timum clustering.

Type-based (TB): For every type, a (logical) file
was created. Objects were included into the
corresponding file in the order of their time of
creation-again, on the basis of the gendb func-
tion. For the 2’2s and 2’2b traversals, TB-

200 400 600 800 100012001400160018002000
Sulfef Size [pages]

0’ ’
I I I I

200 400 600 800 1000 12001400 1600 18002000
suffer size [pages]

Figure 7: Copying Overhead of Dual Buffering
(Cold Tl Traversal, TB-clustering)

clustering was particularly amenable since these
traversals only modified AtomicParts, and thus,
all the objects that were modified were clustered
together. As a consequence, only a fraction of
the referenced pages was modified and needed to
be flushed whereas under TOGclustering, almost
every page was modified.

RANDOM: Objects were placed randomly into
pages.

6 Performance Experiments

In thii section, the main results of the performance
experiments are presented. The novel copying strat-
egy, (pure) LOC, and its two derivatives LOC- (avoid-
ing the copying of objects from modified pages) and
LOC!+ (copying upon modification), in combination
with lazy and eager relocation, are evaluated and com-
pared to page-based buffering (NOC) and EOC/LRL.

433

2

:
I=

t

P
a

1600

1400

1200

1000

600

600

400

200

0 0
-200 400 600 600 1000 12001400 1600 1600 2000

Suffer Size [pages]
200 400 600 600 1000 1200 1400 1600 1600 2000

Bulfer size [pagee]

Figure 8: Response Time of NOC and Dual Buffering Figure 10: Page Faults of NOC and Dual Buffering
(Cold Tl Traversal, RANDOM-clustering) (Cold Tl Traversal, RANDOM-clustering)

-60

.

-100 ’ I I I I I I I I I
200 400 600 600 1000 1200 1400 1600 1600 2000

Suffer Size [pages]

Figure 9: Savings of Dual Buffering
(Cold Tl Traversal, RANDOM-clustering)

Three different ways to cluster an object base, appli-
cations with and without modifications, and running
the benchmark in cold and in warm buffers were con-
sidered.

6.1 Read-only Applications (Tl Traversal)

Fig. 4 plots against the y-axis the response time for the
cold Tl traversal in the type-based (TB) clustered ob-
ject base for varying buffer sizes in the client (x-axis).
In this experiment, the client’s as well as the server’s
buffer pool were initially empty. Comparing page-
based buffering (NOC) to dual buffering, three cases
can be identified (cf. Fig. 5). If the buffer was very
small (less than 400 pages), most of the objects were
not buffered long enough so that they were replaced
before they were accessed a second time. As a con-
sequence, no performance gain wss achieved by dual
buffering. EOC/LRL was outperformed by more than
10% due to its significant copying overhead (cf. Fig. 7

160000 NOCt

160000 EYE: t-1 . . .
SERL -x.“.-

140000

12ww

1OOOw

60000

60000

40000

20000

200 400 600 600 1000 1200 1400 1600 1600 2000
Buffer Size [pages]

Figure 11: Copying Overhead of Dual Buffering
(Cold Tl Traversal, RANDOM-clustering)

that shows,the number of megabytes copied by the
dual-buffering strategies). On the other hand, the
LOC strategies (combined with LRL as well as ERL)
only copied very few objects because most objects were
evicted from the object buffer’s locality set before their
home page was replaced. In any case, lazy object copy-
ing was also slightly outperformed by NOC for main-
taining usage statistics on a per object basis. In all the
experiments with the Tl traversal, the results of pure
LOC also represented the results of LOC- and LO@
since these three techniques only differ if updates are
carried out.

Compared to NOC, dual buffering was particularly
effective if the buffer was large enough to hold a large
number of objects of the application’s working set and
yet too small to hold all the corresponding home pages.
In Fig. 5, a range from 800 to 1400 pages can be
seen where dual buffering really pays off. In this case,
dual buffering under LOC/ERL reduced the number

434

of page faults by up to 40% (cf. Fig. 6) and the re-
sponse time by a maximum of 30%. Even in this best
case of EOC/LRL, the LOC strategies outperformed
EOC/LRL significantly because LOC avoided copy-
ing objects from pages that were clustered very well;
object copying was overlapped with I/O activity, and
buffer utilization was higher.

When the client’s buffer was almost as large as
the object base (larger than 1600 pages), again, only
marginal gains or none &t all were achieved by dual
buffering. Hardly any objects were copied under LOC
because only few pages had to be replaced from the
client’s (large) buffer’pool and thus, object copying
was seldom initiated. In this case, EOC/LRL suffered
from (unnecessarily) copying every object that was ac-
cessed and from duplicates that induced a considerable
number of page faults. As a result, EOC/LRL was
outperformed.by 20% in the worst case.

For the 007 benchmark, TB-clustering was very
effective. The results for lazy and eager relocation un-
der LOC, therefore, did not differ significantly. This
is due to the fact that the home page of a resident
and copied object was rarely reloaded to access an-
other object that was located in the same page. Be-
cause of the good clustering, objects that were located
in the same page were copied and then replaced to-
gether so that eager relocation seldom took effect. If,
however, the object base was poorly clustered, pages
had to be reloaded several times before all the rele-
vant objects were extracted. In thii scenario, eager
relocation becomes an important issue to avoid dupli-
cates. To illustrate this effect, Fig. 8 plots the response
time of the cold Tl traversal in the randomly clus-
tered 007 object base. LOC/ERL was consistently
the best strategy because it induced the least number
of page faults due to its superior buffer utilization (cf.
Fig. 10). Fig. 11 illustrates how extensively LOC/ERL
copied and relocated objects; e.g., for a buffer of 800
pages the copying overhead was more than 12 times
higher than with LOC/LRL. In these single user ex-
periments, however, the performance drawbacks were
not considerable since much of the object copying was
overlapped with I/O activity.

435

As expected, in the best case, dual buffering outper-
formed NOC at a higher rate (more than 60%) in the
poorly clustered (RANDOM) object base than in the
well-clustered (TB) object base (see Figs. 5 and 9).
For a buffer of 2000 pages, however, EOC/LRL and
LOC/LRL suffered so severely from duplicates that
their buffer utilization even dropped below that of
NOC and their performance was significantly worse.

A buffer management technique is best character-
ized by its space-time product [DenllO]. As an exam-
ple, Fig. 12 shows the space-time products for the
cold Tl traversal in the TB object base. Since a

NOCh-
EOCRRL +-.
Loc/LRL .a--. -
LOCYERL “w- _

6oT ’
I I I 1 I 1 I I

200 400 600 600 1000 1200 1400 1600 1600 2000
Buffer Size [pages]

Figure 12: Space-Time Product
(Cold Tl Traversal, TB-clustering)

Table 1: Minimum Space-Time Products [MB*s]
(Cold Tl Traversal)

TB. TOC RANDOM
NOC 200.5 244.8 743.8

EOC/LRL 188.7 173.5 1348.4
LOC/LRL 163.7 165.6 944.5
LOC/ERL 161.7 167.1 430.9

static buffer allocation scheme was used, the space-
time product was computed by simply multiplying the
response time with the client’s buffer size. For all
dual-buffering techniques, a (local) minimum could be
observed for a buffer of 1200 pages; at this size, the
(object-based) buffer was just large enough to hold
the hot sets. Although a larger buffer reduced the re-
sponse time, it was not economical.

In Fig. 12, .a (global) minimum can be observed for
a buffer of less than 200 pages for all strategies. Run-
ning the Tl traversal in such a small buffer, however,
would result in an unacceptable response time. Ta-
bles 1 and 2, thus, summarizes the minimum space-
time products for a buffer in the range from 1000 to
2000 pages.

For the cold Tl traversal, LOC/ERL was the overall
best technique. Although EOC/LRL and LOC/LRL
reduced the response time in the RANDOM object
base in most cases compared to NOC (cf. Fig. 9), they
were not economical if the system was well-tuned. In
the fairly well clustered TB and TOC object bases,

Table 2: Minimum Space-Time Products [MB*s]

Lot-ILRL -8-q. -
LowERL -M--

SO-

01 I I I I I I I I I
200 400 600 600 1000 12Wl400 1600 1600 2000

Suffer Sire @ages]

Figure 13: Response Time of NOC and Dual Buffering
(Cold T2b Traversal, TB-clustering)

i ;;j $+,.+S ;y “,*cc . ,--

EOCRRL -c-
Lo&-/ML a*-.
Lot-/ERL -w--

-1wI . * , ’ I I I I 1 I
200 400 SW 600 1000 1200 1400 1600 16W2WO

suffer Sire [pages]

Figure 14: Savings of Dual Buffering
(Cold T2b Traversal, TB-clustering)

on the other hand, EOC/LRL should be preferred
to NOC even though it had higher response times in
many cases (cf. Fig. 5).

To determine the space-time products of the warm
traversals, the Tl traversal was run twice in succes-
sion and only the running time of the second run was
measured. Fox dual buffering, most of the object copy-
ing was carried out in the warm-up phase that was
not measured and thus, the speed-up in comparison
to NOC reached its maximum. In addition, no ob-
jects were updated and no object flushing and hardly
any relocation took place during the warm Tl traver-
sal. All the dual-buffering strategies, thus, had almost
identical performances.

6.2 Applications with Updates (T2a and T2b
Traversals)

For. update-intensive applications, EOC/LRL can have
severe performance drawbacks due to the flushing of

12000 ‘\\., k
NOC +

EOCtLRL +-
‘,

1ww ‘*.,
LOC-/LRL -R--,
LOG-/ERL a--

‘.
‘x

01 ’ I 1 I I I I I I
2W 400 SW SW 1000 1200 1400 1600 1600 2000

Suffer Size [pages]

Figure 15: Page Faults of NOC and Dual Buffering
(Cold T2b Traversal, TB-clustering)

1600

1600

NOC+
EOCXRL +-

LOG-/LRL -E--.
Lm--/ERL -n--

1400

1200

1000

SW

600

400

200
200 400 SW 600 1000 1200 1400 1600 1600 2000

Suffer Siie [paaes]

Figure 16: Page Flushes of NOC and Dual Buffering
(Cold T2b Traversal, TB-clustering)

modified objects. Again, it is possible to differenti-
ate between three cases. When the client’s buffer was
small, the home page of a modified object was often
replaced before the object was flushed. As a result,
EOC/LRL induced up to 23% more page faults than
NOC for the cold T2b traversal of the 007 bench-
mark in the TB object base (cf. Fig. 15), and the re;
sponse time was almost twice as high in the worst case
(cf. Fig. 13).

For relatively large buffers (larger than 1600 pages),
object replacement and thus, the flushing of modified
objects was a rare event. But in this case, EOC/LRL
suffered from the same drawbacks as for the Tl traver-
sal. Consequently, EOC/LRL outperformed NOC
only for a buffer of 1200 pages due to its superior buffer
utilization.

On the other hand, the best LOC technique, LOC-
in this experiment, had no significant performance
drawbacks as compared to NOC for the T2b traversal

436

Table 3: Minimum Space-Time Products [MB*& Cold and Warm Traversals with Updates

I I Cold T2a I Cold T2b Warm T2a Warm T2b I
I 1 TB 1 TOC 1 R.AND 1

248.6 ii.8
_-__- TB TOC RAND TB TOC RAND TB TOC RAND

NOC 799.8 251.7 336.2 1039.6 141.6 163.8 681.8 156.3 243.0 873.5
EOC/LRL 221.7 237.4 1404.9 239.4 318.0 1951.3 105.7 108.6 132.7 111.6 202.2 701.2

LOC-/LRL 185.3 244.8 1017.4 182.4 323.4 1382.0 79.1 107.2 124.8 89.0 212.8 474.0
LOC/LRL 209.4 225.1 1057.9 210.5 313.1 1492.6 92.3 108.1 131.1 98.8 196.1 552.1

(see Figs. 14 and 5). On the contrary, the speed-up
was sometimes even larger than for the Tl traversal
because not only were the number of page faults re-
duced but, at the same time, the number of times that
a modified page that was replaced had to be flushed to
the server was also significantly reduced (cf. Fig. 16).
Compared to NOC, EOC/LRL also reduced the flush-
ing of modified pages, but this effect was ruled out by
the other drawbacks.

For the same reasons as in the Tl traversal, hardly
any object copying was carried out under LOC- (and
pure LOC) with small or large buffers. Thus, the
flushing of modified objects was not. critical in these
cases. Furthermore, in the well-clustered TB object
base, again no significant performance gap between
lazy and eager relocation could be observed.

To identify a winner, all the strategies were tuned to
minimize the space-time product. Table 3 summarizes
the resulting minimum space-time products for cold
and warm T2a (few updates) and T2b (many updates)
traversals. Again, the warm traversals were measured
immediately after having carried out a warm-up Tl
traversal which accesses the same objects as the T2a
and T2b traversals.

The trends were very similar to those of read-
only applications (cf. Tables 1 and 2): in any case,
some dual-buffering technique could be found that out-
performed NOC, and for warm traversals, any dual-
buffering technique was more economical than NOC,
if it was well-tuned. When EOC/LRL was used, how-
ever, the gains were often not as striking due to the
drawbacks of flushing modified and copied objects. For
warm traversals in the RANDOM object base, for ex-
ample, EOC/LRL reduced NOC’s space-time product
by only 19.7% for the T2b traversal compared to 84.5%
for the Tl traversal. Sometimes, the gap between the
LOC techniques and NOC also decreased with an in-
creasing number of updates, but in general, the per-
formance of lazy object copying appears to react sig-
nificantly less sensitively to updates than eager object
copying.

In almost every experiment eager relocation had the

best performance. It should, therefore, always be used.
No clear winner, however, could be determined among
LOC-, pure LOC, and LOC+, but the differences were
not large. Pure LOC wss seldom the best technique,
but it was usually not far behind. In the worst case
(cold T2b traversal in the TB object base), LOC/ER,L
was outperformed by only 9.4% by the best strategy
(LOC-/ERL). On the other hand, LOC- was often
too restrictive when copying objects (e.g., for the TOC
object base), and LOC+ was often too eager (e.g., for
the RANDOM object base).

7 Conclusions and Future Work

In this work, control strategies for combining buffer
segmentation with dual buffering were devised and
evaluated. Buffer segmentation was proven effective
by previous work in the relational context because of
the flexibility to employ dedicated replacement policies
for specific reference patterns. Dual bufering extends
the flexibility of buffer segmentation: it ‘permits iso-
lating objects from otherwise infrequently or not used
pages while leaving heavily used pages in the buffer in
their entirety.

Two control dimensions for maintaining such a seg-
mented dual-buffer pool were distinguished: the copy-
ing time and the relocation time. Along both dimen-
sions, an eager and a Zazy strategy as well as alter-
native techniques between these two extremes were
devised. To assess the range of control strategies,
an experimentation platform with exchangeable object
copying and relocation mechanisms was developed.
The experiments carried out with the 007 bench-
mark indicate that lazy object copying (and its deriva-
tives) in conjunction with eager relocation is “the win-
ner.” This combination is very robust (i.e., significant
performance drawbacks as compared to pure page-
based buffering were never experienced) and very often
outperforms page-based buffering substantially (up to
60% savings in running time).

In this assessment, emphasis was made on a rather
simple setting: only two buffer segments in a single-

437

user environment. This scenario was sufficient to
demonstrate the potential of the dual-buffering strate-
gies. In practice, however, buffer pool segmentation
becomes more complex, and tuning is an important
task. Future work will concentrate on showing how
existing buffer allocation algorithms and replacement
policies apply to dual buffering.

Acknowledgements
Carsten Gerlhof designed and implemented the page
server used in the performance experiments. Carl-
Arndt Krapp reviewed a draft of thispaper. We thank
Judith Kossmann for improving the presentation.

References
(CD731 E. G. Coffiau and P. J. Den&g. Operating

S’y.9tem.q Theory. Prentice Hall, Englewood
Cliffs, NJ, USA, 1973.

[CD851 H. T. Chou and D. J. Dewitt. An evaluation
of buffer management strategies for relational
database systems. In Proc. of the Conj. on
Very Large Data Bases (VLDB), pages 127-
141, Stockholm, Sweden, 1985.

[CDN93] M. J. Carey, D. J. Dewitt, and J. F.
Naughton. The 007 benchmark. In Proc.
of the ACM SIGIUOD Conj. on Management
of Data, pages 12-21, Washington, DC, USA,
May 1993.

[Den801 P. J. Den&g. Working sets past and present.
IEEE i%a~ Software Eng., 6(1):64-84; Jan-
uary 1980.

[DFMVQO] D. J. Dewitt, P. Futtersack, D. Maier, and
F. Velez. A study of three alternative
workstation server architectures for object-
oriented database systems. In Proc. of the
Conj. on Very Large Data Bases (VLDB),
pages 107-121, Brisbane, Australia, August
1990.

[EH84] W. Effelsberg and T. Hiirder. Principles of
database buffer management. ACM Tkans.
on Database Systems, 9(4):560-595, 1984.

[GKKMk93] C. GerIhof, A. Kemper, C. Kilger, and
G. Moerkotte. Partition-based clustering in
object bases: from theory to practice. In
Proc. of the Intl. Conj. on Foundations of
Data Organization and Algorithms (FODO),
volume 730 of Lecture Notes in Computer
Science (LNCS), pages 301-316, Chicago, IL,
October 1993. Springer-Verlag.

[GroQl] EXODUS Project Group. EXODUS stor-
age manager architectural overview. Exo-
dus project document, Univ. of Wisconsin -
Madison, November 1991.

[Inc93] Itasca Systems Inc. Technical summary for
release 2.2, 1993. Itasca Systems, Inc., 7850
Metro Drive, MineapoIis, MN 55425, USA.

[KBC+88] W. Kim, N. Ballou, H. T. Chou, J. F.
Garza, D. Woelk, and J. Banerjee. Integrat-
ing an object-oriented programming system
with a database system. In Proc. of the ACM
Conj. on Object-Oriented Programming Sys-
tems and Languages (OOPSLA), pages 142-
152, San Diego, Ca., Sep. 1988.

[KGBWQO] W. Kim, J. F. Garza, N. Ballou, and
D. Woe&. Architecture of the ORION next-
generation database system. IEEE Transac-
tions on Knowledge and Data Engineering,
2(1):1OQ-124, March 1990.

(Kim901 W. Kim. Introduction to Object-Oriented
Databases. The MIT Press, Cambridge, MA,
USA, 1990.

[KK93]

[KM941

[Knu73]

[LLOWQl]

[NFSQI]

[OOW93]

[TNQl]

[WD92]

[Win931

A. Kemper and D. Kossmann. Adaptable
pointer swizzling strategies in object bases.
In Proc. IEEE Conj. on Data Engineering,
pages 155-162, Vienna, April 1993.
A. Kemper and G. Moerkotte. Object-
Oriented Database Management: Applica-
tions in Engineering and Computer Science.
Prentice Hall, Englewood Cliffs, NJ, USA,
1994.

D. E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming.
Addison-Wesley Pub., Reading, MA, US.A,
1973.

C. Lamb, G. Landis, J. Orenstein, and
D. Weinreb. The ObjectStore database
system. Communications of the ACM,
34(10):50-63, 1991.

R. Ng, C. Faloutsos, and T. Se&. Flexible
buffer allocation based on marginal gains. In
Proc. of the ACM SIGMOD Conj. on Man-
agement of Data, pages 387-396, May 1991.

E. J. O’Neil, P. E. O’Neil, and G. Weikum.
The LRU-K page replacement algorithm for
database disk buffering. In Proc. of the ACM
SIGMOD Conj. on Management of Data,
pages 297-306, Washington, DC, USA, May
1993.

M. M. Tsangaris and J. F. Naughton. A
stochastic approach for clustering in object
bases. In Proc. of the ACM SIGMOD Conj.
on Management of Data, pages 12-21, Den-
ver, CO, May 1991.

S. J. White and D. J. Dewitt. A perfor-
mance study of alternative object faulting
and pointer swizzling strategies. In Proc. of
the Conj. on Very Large Data Bases (VLDB),
pages 419-431, Vancouver, B.C., Canada,
August 1992.

M. Winslett. Architecture and performance
for object-oriented DBMSes. Tutorial hand-
outs for the Data Engineering Conference,
1993.

438

