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Abstraci 

In this work, control strategies for combining 
two potentially powerful buffer management 
techniques in object bases were devised and 
evaluated: (1) buffer pool segmentation with 
segment-specific replacement criteria, and (2) 
dual buffering consisting of copying objects 
from pages into object buffers. Two diien- 
sions exist for exerting control on the buffer 
pool: (1) the copying time which determines 
at what time objects are copied from their 
memory-resident home page, and (2) the relo- 
cation time which determines when a (copied) 
object is to be transferred back to its home 
page. Along both dimensions, it is possible 
to differentiate between an eager and a lazy 
strategy. The extensive experimental results 
indicate that lazy object copying combined 
with an eager relocation strategy is almost 
always superior and significantly outperforms 
page-based buffering in most applications. 

1 Introduction 

In the Eighties, object-oriented database systems 
emerged as the potential next-generation database 
technology. However, now that the initial “hype” has 
vanished the question is whether or not.they can ac- 
tually conquer a substantial share of the information 
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technology market. A key issues will be performance. 
In this work, the particularly crucial issue of main- 

memory buffer management in optimizing object- 
oriented database systems was addressed. Buffer man- 
agement was studied intensively by both researchers 
of operating systems [CD73, Den801 and database 
management systems [EH84, NFS91, OOW93]-to 
name just a few. Buffer pool segmentation has been 
studied in the relational context. Segmenting the 
buffer pool provides the flexibility to customize the 
replacement strategies for particular reference pat- 
terns [CD85]. This is even more important in object- 
oriented database applications [KM941 which tend 
to be computationally more complex and, therefore, 
exhibit an even larger variety of different reference 
patterns. Consequently, in this work, a segmented 
buffer pool organization as used by the DBMIN al- 
gorithm [CD851 was adopted. 

Most of the work on buffer management assumes 
page-based buffering which is then incorporated in 
most commercial object-oriented database systems; 
e.g., ObjectStore [LLOWSl]. However, this work 
shows that in the object-oriented model, the flexibility 
of dual buffering [KBC+88, KGBWSO] should be ex- 
ploited. This allows buffering entire pages as well as 
isolated objects. In this way it is possible to buffer 
well-clustered pages that inhabit many application- 
relevant objects and, at the same time, to extract (iso- 
late) objects from otherwise useless pages. 

The work reported here devised and evaluated 
control strategies for combining these two poten- 
tially powerful buffer management techniques in ob- 
ject bases: (1) buffer pool segmentation with segment- 
specific replacement criteria, and (2) dual buffering 
consisting of copying objects from pages into object 
buffers or leaving well-clustered pages intact. Two di- 
mensions exist for exerting control on the buffer pooh 
(1) the copying time which determines when objects 
are copied from their memory-resident home page, 
and (2) the relocation time which determines when a 
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Figure 1: Snapshot of a Dual-Buffer Pool 
(copied) object is transferred back into its home page. 
Along both dimensions, an eager and a laq strategy 
were devised. To assess the different control strategies, 
an experimental system was built consisting of a page 
server [DFMVSO] connected with clients managing a 
segmented dual-buffer pool. The extensive experimen- 
tal results indicated that lazy object copying combined 
with an eager relocation strategy is almost always su- 
perior and substantially outperforms pure page-based 
buffer management in most applications. 

The rest of the paper is organized as follows. Sec- 
tion 2 describes the basic concepts of dual buffering in 
a segmented buffer pool. Section 3 classifies the var- 
ious control schemes for managing a segmented dual- 
buffer pool. Section 4 discusses implementation issues. 
A quantitative assessment follows: Section 5 describes 
the experimentation platform; Section 6 visualizes and 
discusses the results of the benchmarks. Section 7 sets 
forth the conclusions reached. 

2 Dual-Buffer Management 

As stated above, work on database buffer management 
in the relational context indicates that a segmented 
buffer pool outperforms a global buffer pool. Seg- 
mentation of the buffer pool allows the use of dedi- 
cated replacement strategies for different segments of 
the pool; thereby, tuning buffer management for spe- 
cific reference patterns as reported, e.g., in [CD85]. In 
an object-oriented database system, the (segmented) 
buffer could be organized to hold either pages or 
objects-in the following called granules. 

A pure page-based buffer organization only allows 
the maintenance of entire pages-as they are stored 
on secondary storage. This scheme potentially suffers 
from bad buffer utilization, if the object base is poorly 
clustered with respect to the corresponding applica- 
tion. The other extreme is a pure object-based orga- 
nization in which all objects are extracted from their 
home page, i.e., the page on which they are stored on 
secondary storage.- This organization can induce an 
unnecessarily high overhead for well-clustered pages; 

i.e., those pages that contain many relevant objects. 
This paper shows that buffer segmentation should 

be combined with dual bufering which permits main- 
taining entire pages as well as (isolated) objects in the 
buffer. Under dual buffering, the buffer pool could be 
segmented into page-based and object-based segments, 
each of them with a dedicated replacement policy. The 
dual-buffer organization permits leaving well-clustered 
pages in their entirety in a page-based segment, while 
objects located on otherwise “useless” pages can be 
extracted and copied into an object-based segment. 

Fig. 1 shows a snapshot of a dual-buffer pool. This 
buffer is segmented into four segments: two purely 
object-based segments osI and OSII, a page-based seg- 
ment, ps, and a special segment, global-fie, that is 
automatically allocated for every buffer pool and con- 
tains both pages and objects. Every granule is con- 
tained in one segment at most that keeps the usage 
statistics of the granule. For example, the usage statis- 
tics for object oidl are kept in segment osI, and for 
object oid2 in OS& while the usage statistics of their 
home page pidA are independently maintained by seg- 
ment ps. The usage statistics of an object are updated 
every time an application accesses the object; the us- 
age statistics of a page are updated when an object 
that is located in the page is accessed for the first time 
and the page is accessed to localize this object. 

If a granule “leaves” the locality set of a page-based 
or object-based segment, it is transferred into the seg- 
ment global-free. The segment global-free is used to 
maintain granules that are subject to (immediate) dis- 
placement as soon as buffer space is needed. 

The diagram indicates that page-based and object- 
based segments may overlap. For example, object oidl 
is contained in OSI and, at the same time, its home 
page, pidA, in which it is still located, is contained 
in the page-based segment, ps. The overlapping of 
page-based and object-based segments reduces copy- 
ing overhead and increases buffer utilization. For ex- 
ample, objects oid2 and oid3 can be accessed equally 
in segment osII. Object aid,!?, however, was copied and 
is buffered twice: once, within its resident home page 
pidA and once, in the extra copy; in this case, the 
(useless) copy of object oid2 is called a duplicate. 

The shaded granules in Fig. 1 indicate a modifi- 
cation that needs to be flushed upon displacement. 
Flushing a (shaded) object whose home page is not 
currently memory-resident, requires bringing in this 
page, copying the object into the page and then flush- 
ing the page. 

In a client-server system [DFMVSO], dual buffer- 
ing can be incorporated in several ways. Kim et 
al. [KBC+88] investigated an object-server architec- 
ture in which the server buffers pages and “ships” ob- 
jects into the client’s object-oriented workspace. Dual 
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buffering could also be embedded within an object 
server; i.e., the object server buffers objects and pages 
to reduce the number of page faults in the server. How- 
ever, in this work, a page-server architecture was in- 
vestigated, since this architecture appears to be used 
in most of today’s object base systems [Win93]. In 
our prototype, a dual-buffer pool was located in the 
(diskless) client workstation to minimize the commu- 
nication between client and server, and an (ordinary) 
page-buffer pool was located in the server. 

3 Classification of Dual-Buffering 
Strategies 

Effective dual-buffering control strategies must take 
two 

l 

0 

dimensions into account: 
copying time: This determines at what time- 
or more precisely, upon what event-an object is 
copied from its memory-resident home page into 
an object segment of the buffer pool. 

relocation time: This control dimension deter- 
mines at what time an object copy-previously 
extracted from its home page-is “given up” and, 
if necessary because of modification, transferred 
back into its memory-resident home page. 

In Fig. 2a these two control dimensions are sketched as 
time axes. For both dimensions two extremes can be 
distinguished, namely an eager and a Zaq strategy. 
Combining the two alternatives of either dimension 
renders a strategy space for dual-buffer management 
whose “corner stones” are indicated by bullets-their 
control strategies are outlined in Fig. 2b. Furthermore, 
the NOC control strategy, under which no object copy- 
ing takes place, is classified as a bullet at the top of 
the copying time axis; since no object copying takes 
place, no relocation is required. 

3.1 Object Copying 

3.1.1 Eager Object Copying (EOC) 

Under eager object copying (EOC), an object is ex- 
tracted from its home page and copied into an object 
segment when it is accessed for the first time; i.e., upon 
object fault. Thus, access to objects is always carried 
out on copies. Under EOC and in order to avoid wast- 
ing precious buffer space for idle pages, a buffer pool 
should be configured in such a way that the object 
segments are large compared to the page segments. 

If configured properly, EOC will often reduce the 
number of page faults as compared to buffering pages 
only (NOC). Derivatives of EOC, therefore, are used 
in ORION [KBC+88, KGBWSO], its commercial suc- 
cessor, Itssca [Inc93], and in the E Persistent Virtual 
Machine (EPVM 2.0) [WD92]. EOC, however, shows 

significant drawbacks for particular application pro- 
files. For example, in applications that browse sequen- 
tially through a large volume of data, the number of 
page faults cannot be reduced. For these applications, 
EOC copies objects unnecessarily, thereby producing 
considerable CPU overhead to allocate main memory 
in the buffer pool for the copies. Even worse, if objects 
are modified in such a sequential scan, EOC can cause 
a tremendous number of additional page faults if the 
home pages are displaced before the modified objects 
are flushed. 

EOC also has poor performance if the object base 
is clustered very well. In this case, it is advantageous 
to buffer on a per page basis since the clustering al- 
gorithm has already considered the application’s ref- 
erence pattern [TN91, GKKMk93]. For well-clustered 
object bases, EOC will suffer from the copying effort 
because the object extraction cannot significantly in- 
crease the buffer utilization. 

To reduce the drawbacks of EOC but still allow 
buffering on a per object basis-whenever useful to 
enhance buffer utilization-lazy object copying (LOC) 
was devised. 

3.1.2 Lazy Object Copying (LOC) 

The idea is to copy the objects as late as possible; 
i.e., an object is copied only when its home page is 
displaced from the buffer pool and it is still member 
of the locality set of an object segment. 

For sequential scans, the best case of NOC, LOC 
performs equally well because no object is copied; in a 
sequential reference pattern, pages are accessed more 
often than objects and thus, the objects drop out of the 
locality set of their object segment before their home 
page is displaced. On the other hand, if an application 
repeatedly accesses a set of objects that are spread over 
a large number of pages, the best use of EOC, LOC 
will copy objects as necessary to achieve a good buffer 
utilization. 

Since copying of objects takes place at the time a 
page fault occurs (i.e., when buffer space is allocated 
for the new page), the copying of objects is overlapped 
with the time the client waits for the new page. On 
the other hand, under EOC, objects are copied just 
afier a page has been loaded and I/O waiting times 
cannot be exploited for object copying. 

If objects are modified, however, LOC will not al- 
ways perform optimally. To describe the behavior of 
LOC in this case, the terms earZy updates of objects 
(i.e., while the home page is still resident) and late 
updates of objects (i.e., after the displacement of the 
home page) are used. If only early updates are carried 
out, pure LOC is fine: the modifications are commit- 
ted to the database when the page is displaced and 
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afterwards, no modifications need to be flushed. How- 
ever, if early and late updates are carried out, LOC will 
flush the home page twice: once, when the home page 
is first displaced to commit the early updates, and once 
again to flush the late updates. In comparison, EOC 
avoids the flushing of early updates, thereby possibly 
causing an additional page fault at a later time. 

To deal with early and late updates, two deriva- 
tives of pure LOC were devised and evaluated. LOC- 
precludes the displacement of pages as long as the 
page contains modified objects that belong to the lo- 
cality set of an object segment; i.e., objects are not 
copied from modified pages. The alternative, LOC+, 
copies objects as soon as they tie modified for the first 
time, rather than waiting until the page is displaced; 
thus, LOC+--like EOC-avoids the cost of flushing 
the home page for the first time to commit the early 
modifications. 

3.2 Object Relocation 

The relocation control must deal with the event that 
an object is extracted from its home page and that the 
home page is displaced from the buffer pool; eventu- 
ally, it is brought back into the buffer. This is referred 
to as reloading in Fig. 2b. 

3.2.1 Eager Relocation (ERL) 

Under eager relocation (ERL), an object is relocated 
regardless whether or not it was modified as soon as 
its home page is brought back into the buffer pool. 
For example, if the home page of object oid5 is loaded 

relocation 

Figure 2: Classification Scheme 

(b) 

into segment ps in Fig. 1 (e.g., to access object oid6 
that is not resident), ERL flushes the modifications of 
object oid5, marks the page as modified, and gives up 
the copy of object oid5 so that segments osII and ps 
overlap at the location of object oid5. 

In combination with LOC, ERL completely elimi- 
nates duplicates; a copy of an object only exists if the 
home page is not resident. Furthermore, the number 
of page faults due to flushing modified objects is min- 
imized. 

On the other hand, however, following ERL, some 
objects are relocated unnecessarily; e.g., if the home 
page of object oid5 is loaded and immediately dis- 
placed again, object oidd is relocated and subse- 
quently copied unnecessarily. Unnecessary relocation 
causes CPU overhead and needless flushing of pages to 
the database if an object is modified, relocated, copied 
and finally, modified again. 

The combination of ERL and EOC appears to fol- 
low two contradictory policies: on the one hand, access 
should always be carried out on copies (EOC), and 
on the other hand, copies are supposed to be given 
up as early as possible (ERL). For this reason, the 
EOC/ERL strategy could be safely disregarded in the 
quantitative evaluation (cf. Section 6). EOC/ERL, 
however, represents a “corner stone” in the full range 
of possible dual-buffering strategies and is, therefore, 
shown in Fig. 2. 

3.2.2 Lazy Relocation (LRL) 

Lazy relocation (LRL) relocates objects as late as pos- 
sible. Once a copy of an object is established, it will 
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not be given up before the object drops out of the lo- 
cality set of its object segment and is chosen as a vic- 
tim in the segment gZobaZ_free in times of scarce buffer 
space. 

Whereas ERL is a novel technique, LRL, in conjunc- 
tion with eager object copying was already devised in 
ORION [KimSO]. I n E d xo us, a late relocation scheme 
is also used [WD92]. The objects are copied into vir- 
tual memory where they remain until an application 
commits. Shortages in’physical main memory are over- 
come by the swapping facility of the operating system, 
and relocation is carried out collectively for all cached 
objects at the co’mmit-time of an application. 

Obviously, LRL avoids the unnecessary relocation 
of objects. On the other hand, LRL might miss the 
last chance to flush a modified object without inducing 
a page fault. In addition, buffer utilization is gener- 
ally lower because of the duplicates incurred when the 
home page of extracted objects is reloaded into the 
buffer to access some other object. 

3.2.3 Fine-Tuning of Relocation Skategies 

As shown in Fig. 2a, there are many possible varia- 
tions of relocation strategies. The performance of ob- 
ject relocation techniques strongly depends on object 
modifications. Two further strategies were devised as 
a compromise between LRL and ERL: 

1. Relocation of non-modified objects eagerly and 
modified objects lazily. 

2. Relocation of modified objects eagerly and non- 
modified objects lazily. 

Although one is the exact opposite of the other, 
both make sense. Under the first strategy, the number 
of times a page is flushed to the database is reduced 
because only pages containing at least one modified 
object need to be flushed upon displacement from the 
buffer pool. The second strategy reduces the number 
of page faults that could occur because of flushing an 
object whose home page was displaced. 

4 Implementation Issues 

In this section, some of the specifics of implementing 
dual buffering are addressed. 

4.1 Object and Page Descriptors 

An application can (directly) access any object that 
is in the locality set of any object-based segment, re- 
gardless whether the object has been copied or not. 
To this end, an object desctiptor is allocated for all 
these objects and registered in, a hash table, the so- 
called resident object table ROT. An object descrip 
tor contains a variety of information; e.g., in the. ref 

descdpbx oidl 

Figure 3: Object and Page Descriptors 

field the main memory address of the resident object 
is materialized to carry out the access or for pointer 
swizzling [KK93], the cop field indicates whether the 
object has been copied, the mod field says whether 
the object must be flushed before it may be evicted 
because it has been copied and modiied, and the seg 
field refers to the buffer segment the object is located 
in so that usage statistics can be maintained after the 
object has been accessed. A comprehensive descrip- 
tion of object descriptors and additional information 
they keep (e.g., for locking) is given in [KimSO]. 

If an application intends to access an object that 
is not in the locality set of an object-based segment, 
an object fault is induced, and the object’s home page 
must be accessed. To this end, a page descriptor is 
allocated for every resident page that is in the locality 
set of a page-based segment, and the page descriptors 
are registered in the resident page table RPT. Again, a 
page descriptor keeps all the information to determine 
the state of a page in the buffer pool. 

Fig. 3 illustrates that the descriptors of objects that 
are located in the same home page are chained to a 
list.via the nextObj field, and that the descriptor of 
the home page is the anchor to thii list via the resObj 
field. A similar mechanism was devised in [WD92]. 
LOC makes use of this chaining to find all the ob- 
jects that are copied when a page is displaced. That 
is, the chaining allows finding efficiently those objects 
that belong to the locality set of some object segment, 
that have not been copied yet, and that are located in 
the page to be replaced. Furthermore, when a modi- 
fied page is flushed to the server, all the modified and 
copied objects whose descriptors are chained in this list 
are flushed as well-regardless which relocation policy 
is used-if the recovery algorithm allows this; i.e., a 
STEAL policy is used. 

For ERL, all the resident and copied objects located 
in a page must be identified when the page is reloaded. 
Consequently, the descriptor of a page, i.e, the anchor 
of the list to find these objects, must be kept even if 
the page has been displaced. The descriptor of a dis- 
placed page can be garbage-collected when rdl copies of 
objects located in this page have been given up. Fol- 
lowing LRL, on the other hand, the page descriptor 
can be discarded as soon as the page is replaced. 
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4.2 Main-Memory Allocation 

Buffering variable sized objects complicates main 
memory allocation significantly. In our prototype and 
thus, in the performance experiments, the client’s main 
memory was managed by a buddy system [Knu73]. 
Pages were buffered without any off-cuts. As expected, 
EOC suffered more from memory fragmentation than 
LOC, since LOC buffered more pages. From the point 
of view of the buddy system, RAM utilization was typ- 
ically 80% for EOC, 85% for LOC, and always 100% 
for NOC. Thus, buffer fragmentation was considerable 
for the dual-buffering strategies. As discussed in Sec- 
tion 6, however, from a higher point of view, buffer uti- 
lization was better in most cases for the dual-buffering 
strategies because objects could be buffered without 
buffering non-relevant neighboring objects that were 
located in the same page. Even though the “gross” 
RAM utilization was lower, the “net” buffer utiliza- 
tion was typically considerably higher than in a pure 
page-based buffer. 

4.3 Overlapping Ratio 

If LOC is followed, object-based and page-based seg- 
ments, and, in particular, object-based segments and 
the segment global-free overlap extensively; e.g., in 
Fig. 1, segment 0511 and segment gZobaZLj+ee overlap 
for objects oidll and oidl2. When buffer space is 
scarce, the replacement policy of segment globaLfree 
could possibly choose as a victim a page that is very 
much involved in this overlapment; e.g., page pidF. As 
a result, many objects are copied and .buffer space is 

jeven scarcer due to the off-cuts caused by the copies. 
To remedy this situation, the overlapping ratio (or) 

of a page is defined as the ratio of the total volume of 
the objects that are located in the page and belong to 
the locality set of some object segment and that have 
not been copied relative to the size of the page. In 
Fig. 1, the or of page pidF is 1,0.5 for pages pidA and 
pidB, and 0 for page pidD. Pages whose or exceeds a 
certain threshold (e.g., 0.6) could be precluded from 
displacement. 

Introducing such a threshold has several advan- 
tages: well-clustered pages can be identified, and thus, 
copying and relocation of objects located on these 
pages can be avoided. Furthermore, it is possible to 
preclude the copying of large objects (i.e., objects that 
are nearly as big as a page) or big portions of very large 
objects. 

In general, an optimum choice of the threshold will 
depend on how well the object base is clustered for 
a specific application. The experiments with vary- 
ing thresholds (not reported in this paper) indicated 
that very good performance is usually achieved with a 
threshold of 0.6. In the range between 0.5 and 0.7, the 

threshold did not appear to be a very critical parame- 
ter. It should, however, not drop below 0.4 since oth- 
erwise, LOC often degenerates to no-copying (NOC), 
and it should not be greater than 0.8 to avoid the ef- 
fect described above (i.e., buffer space becoming even 
scarcer after the eviction of a page). 

5 Benchmark Environment 

5.1 Software and Hardware Used 

The performance experiments were carried out under 
SunOS 4.1.3 on two Sun Spare 10 workstations that 
were connected by an (isolated) Ethernet. The server 
machine had a 424 MB disk drive (model Sun0424) 
and the client machine was diskless, i.e., every page 
fault in the client’s buffer pool induced a request to 
the server. 

The server was a page server developed within the 
GOM project; in the way it was used, it was very 
similar to, e.g., the ‘page server of the Exodus sys- 
tem [GroSl]. The server maintained a page-buffer pool 
that was restricted to 1000 pages at 4096 bytes which 
was approximately half the size of the object base. 
Thus, buffer hit ratios in the server were non-trivial. 

In the client, objects were accessed on the basis of 
physical object identifiers that were 12 bytes long and 
contained the object’s permanent address, i.e., page 
and slot. In addition, the client contained a dual- 
buffer pool applying a buffer allocation scheme that is 
characterized as local, static, adaptable by [EH84]. To 
make the results more comprehensible, only one appli- 
cation was run at a time (single-user mode), and only 
one page-based and one object-based segment were al- 
located in addition to the globalLfree segment. Their 
size was configured as best as possible, given the appli- 
cation’s profile and the total size of the client’s buffer 
pool. The page-based as well as the object-based seg- 
ments were maintained by an LRU replacement policy 
whereas for the gZobaZLf?ee segment, a FIFO policy was 
applied. 

5.2 Benchmark Specification 

The performance experiments were carried out us- 
ing the Tl (read-only), TZa (few updates), and 
T2b (many updates) traversals of the 007 bench- 
mark [CDN93]. To determine the response time, ev- 
ery run was repeated three times and the average was 
taken. In all the experiments reported in this paper, 
the benchmark was run against the small 007 object 
base; i.e., an object base with 20 CompositeParts and 3 
Connections per AtomicPart. In this implementation, 
the size of this object ‘base was approximately 2000 
pages disregarding the index structures that were not 
accessed by the traversals. The results scale to large 
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Figure 5: Savings of Dual Buffering 
(Cold Tl Traversal, TB-clustering) 

object bases and large b’uffer pools as only the ratio of 
the object base’s size to the size of the buffer pool is 
important. 

As pointed out before, clustering has a severe effect 
on the performance of buffer management techniques. 
Therefore, the following three clusterings were investi- 
gated: 

Time-of-creation (TOC): The objects were in- 
serted sequentially into the object base in the or- 
der they were created by the gendb function of 
the original E/Exodus implementation of the 007 
benchmark. TOC provided very good but not op- 
timum clustering. 

Type-based (TB): For every type, a (logical) file 
was created. Objects were included into the 
corresponding file in the order of their time of 
creation-again, on the basis of the gendb func- 
tion. For the 2’2s and 2’2b traversals, TB- 
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Figure 7: Copying Overhead of Dual Buffering 
(Cold Tl Traversal, TB-clustering) 

clustering was particularly amenable since these 
traversals only modified AtomicParts, and thus, 
all the objects that were modified were clustered 
together. As a consequence, only a fraction of 
the referenced pages was modified and needed to 
be flushed whereas under TOGclustering, almost 
every page was modified. 

RANDOM: Objects were placed randomly into 
pages. 

6 Performance Experiments 

In thii section, the main results of the performance 
experiments are presented. The novel copying strat- 
egy, (pure) LOC, and its two derivatives LOC- (avoid- 
ing the copying of objects from modified pages) and 
LOC!+ (copying upon modification), in combination 
with lazy and eager relocation, are evaluated and com- 
pared to page-based buffering (NOC) and EOC/LRL. 
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Figure 9: Savings of Dual Buffering 
(Cold Tl Traversal, RANDOM-clustering) 

Three different ways to cluster an object base, appli- 
cations with and without modifications, and running 
the benchmark in cold and in warm buffers were con- 
sidered. 

6.1 Read-only Applications (Tl Traversal) 

Fig. 4 plots against the y-axis the response time for the 
cold Tl traversal in the type-based (TB) clustered ob- 
ject base for varying buffer sizes in the client (x-axis). 
In this experiment, the client’s as well as the server’s 
buffer pool were initially empty. Comparing page- 
based buffering (NOC) to dual buffering, three cases 
can be identified (cf. Fig. 5). If the buffer was very 
small (less than 400 pages), most of the objects were 
not buffered long enough so that they were replaced 
before they were accessed a second time. As a con- 
sequence, no performance gain wss achieved by dual 
buffering. EOC/LRL was outperformed by more than 
10% due to its significant copying overhead (cf. Fig. 7 

160000 NOCt 

160000 EYE: t-1 . . . 
SERL -x.“.- 

140000 

12ww 

1OOOw 

60000 

60000 

40000 

20000 

200 400 600 600 1000 1200 1400 1600 1600 2000 
Buffer Size [pages] 

Figure 11: Copying Overhead of Dual Buffering 
(Cold Tl Traversal, RANDOM-clustering) 

that shows,the number of megabytes copied by the 
dual-buffering strategies). On the other hand, the 
LOC strategies (combined with LRL as well as ERL) 
only copied very few objects because most objects were 
evicted from the object buffer’s locality set before their 
home page was replaced. In any case, lazy object copy- 
ing was also slightly outperformed by NOC for main- 
taining usage statistics on a per object basis. In all the 
experiments with the Tl traversal, the results of pure 
LOC also represented the results of LOC- and LO@ 
since these three techniques only differ if updates are 
carried out. 

Compared to NOC, dual buffering was particularly 
effective if the buffer was large enough to hold a large 
number of objects of the application’s working set and 
yet too small to hold all the corresponding home pages. 
In Fig. 5, a range from 800 to 1400 pages can be 
seen where dual buffering really pays off. In this case, 
dual buffering under LOC/ERL reduced the number 
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of page faults by up to 40% (cf. Fig. 6) and the re- 
sponse time by a maximum of 30%. Even in this best 
case of EOC/LRL, the LOC strategies outperformed 
EOC/LRL significantly because LOC avoided copy- 
ing objects from pages that were clustered very well; 
object copying was overlapped with I/O activity, and 
buffer utilization was higher. 

When the client’s buffer was almost as large as 
the object base (larger than 1600 pages), again, only 
marginal gains or none &t all were achieved by dual 
buffering. Hardly any objects were copied under LOC 
because only few pages had to be replaced from the 
client’s (large) buffer’pool and thus, object copying 
was seldom initiated. In this case, EOC/LRL suffered 
from (unnecessarily) copying every object that was ac- 
cessed and from duplicates that induced a considerable 
number of page faults. As a result, EOC/LRL was 
outperformed.by 20% in the worst case. 

For the 007 benchmark, TB-clustering was very 
effective. The results for lazy and eager relocation un- 
der LOC, therefore, did not differ significantly. This 
is due to the fact that the home page of a resident 
and copied object was rarely reloaded to access an- 
other object that was located in the same page. Be- 
cause of the good clustering, objects that were located 
in the same page were copied and then replaced to- 
gether so that eager relocation seldom took effect. If, 
however, the object base was poorly clustered, pages 
had to be reloaded several times before all the rele- 
vant objects were extracted. In thii scenario, eager 
relocation becomes an important issue to avoid dupli- 
cates. To illustrate this effect, Fig. 8 plots the response 
time of the cold Tl traversal in the randomly clus- 
tered 007 object base. LOC/ERL was consistently 
the best strategy because it induced the least number 
of page faults due to its superior buffer utilization (cf. 
Fig. 10). Fig. 11 illustrates how extensively LOC/ERL 
copied and relocated objects; e.g., for a buffer of 800 
pages the copying overhead was more than 12 times 
higher than with LOC/LRL. In these single user ex- 
periments, however, the performance drawbacks were 
not considerable since much of the object copying was 
overlapped with I/O activity. 
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As expected, in the best case, dual buffering outper- 
formed NOC at a higher rate (more than 60%) in the 
poorly clustered (RANDOM) object base than in the 
well-clustered (TB) object base (see Figs. 5 and 9). 
For a buffer of 2000 pages, however, EOC/LRL and 
LOC/LRL suffered so severely from duplicates that 
their buffer utilization even dropped below that of 
NOC and their performance was significantly worse. 

A buffer management technique is best character- 
ized by its space-time product [DenllO]. As an exam- 
ple, Fig. 12 shows the space-time products for the 
cold Tl traversal in the TB object base. Since a 
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Figure 12: Space-Time Product 
(Cold Tl Traversal, TB-clustering) 

Table 1: Minimum Space-Time Products [MB*s] 
(Cold Tl Traversal) 

TB. TOC RANDOM 
NOC 200.5 244.8 743.8 

EOC/LRL 188.7 173.5 1348.4 
LOC/LRL 163.7 165.6 944.5 
LOC/ERL 161.7 167.1 430.9 

static buffer allocation scheme was used, the space- 
time product was computed by simply multiplying the 
response time with the client’s buffer size. For all 
dual-buffering techniques, a (local) minimum could be 
observed for a buffer of 1200 pages; at this size, the 
(object-based) buffer was just large enough to hold 
the hot sets. Although a larger buffer reduced the re- 
sponse time, it was not economical. 

In Fig. 12, .a (global) minimum can be observed for 
a buffer of less than 200 pages for all strategies. Run- 
ning the Tl traversal in such a small buffer, however, 
would result in an unacceptable response time. Ta- 
bles 1 and 2, thus, summarizes the minimum space- 
time products for a buffer in the range from 1000 to 
2000 pages. 

For the cold Tl traversal, LOC/ERL was the overall 
best technique. Although EOC/LRL and LOC/LRL 
reduced the response time in the RANDOM object 
base in most cases compared to NOC (cf. Fig. 9), they 
were not economical if the system was well-tuned. In 
the fairly well clustered TB and TOC object bases, 

Table 2: Minimum Space-Time Products [MB*s] 
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Figure 14: Savings of Dual Buffering 
(Cold T2b Traversal, TB-clustering) 

on the other hand, EOC/LRL should be preferred 
to NOC even though it had higher response times in 
many cases (cf. Fig. 5). 

To determine the space-time products of the warm 
traversals, the Tl traversal was run twice in succes- 
sion and only the running time of the second run was 
measured. Fox dual buffering, most of the object copy- 
ing was carried out in the warm-up phase that was 
not measured and thus, the speed-up in comparison 
to NOC reached its maximum. In addition, no ob- 
jects were updated and no object flushing and hardly 
any relocation took place during the warm Tl traver- 
sal. All the dual-buffering strategies, thus, had almost 
identical performances. 

6.2 Applications with Updates (T2a and T2b 
Traversals) 

For. update-intensive applications, EOC/LRL can have 
severe performance drawbacks due to the flushing of 
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Figure 15: Page Faults of NOC and Dual Buffering 
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modified objects. Again, it is possible to differenti- 
ate between three cases. When the client’s buffer was 
small, the home page of a modified object was often 
replaced before the object was flushed. As a result, 
EOC/LRL induced up to 23% more page faults than 
NOC for the cold T2b traversal of the 007 bench- 
mark in the TB object base (cf. Fig. 15), and the re; 
sponse time was almost twice as high in the worst case 
(cf. Fig. 13). 

For relatively large buffers (larger than 1600 pages), 
object replacement and thus, the flushing of modified 
objects was a rare event. But in this case, EOC/LRL 
suffered from the same drawbacks as for the Tl traver- 
sal. Consequently, EOC/LRL outperformed NOC 
only for a buffer of 1200 pages due to its superior buffer 
utilization. 

On the other hand, the best LOC technique, LOC- 
in this experiment, had no significant performance 
drawbacks as compared to NOC for the T2b traversal 
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Table 3: Minimum Space-Time Products [MB*& Cold and Warm Traversals with Updates 

I I Cold T2a I Cold T2b Warm T2a Warm T2b I 
I 1 TB 1 TOC 1 R.AND 1 

248.6 ii.8 
_-__- TB TOC RAND TB TOC RAND TB TOC RAND 

NOC 799.8 251.7 336.2 1039.6 141.6 163.8 681.8 156.3 243.0 873.5 
EOC/LRL 221.7 237.4 1404.9 239.4 318.0 1951.3 105.7 108.6 132.7 111.6 202.2 701.2 

LOC-/LRL 185.3 244.8 1017.4 182.4 323.4 1382.0 79.1 107.2 124.8 89.0 212.8 474.0 
LOC/LRL 209.4 225.1 1057.9 210.5 313.1 1492.6 92.3 108.1 131.1 98.8 196.1 552.1 

(see Figs. 14 and 5). On the contrary, the speed-up 
was sometimes even larger than for the Tl traversal 
because not only were the number of page faults re- 
duced but, at the same time, the number of times that 
a modified page that was replaced had to be flushed to 
the server was also significantly reduced (cf. Fig. 16). 
Compared to NOC, EOC/LRL also reduced the flush- 
ing of modified pages, but this effect was ruled out by 
the other drawbacks. 

For the same reasons as in the Tl traversal, hardly 
any object copying was carried out under LOC- (and 
pure LOC) with small or large buffers. Thus, the 
flushing of modified objects was not. critical in these 
cases. Furthermore, in the well-clustered TB object 
base, again no significant performance gap between 
lazy and eager relocation could be observed. 

To identify a winner, all the strategies were tuned to 
minimize the space-time product. Table 3 summarizes 
the resulting minimum space-time products for cold 
and warm T2a (few updates) and T2b (many updates) 
traversals. Again, the warm traversals were measured 
immediately after having carried out a warm-up Tl 
traversal which accesses the same objects as the T2a 
and T2b traversals. 

The trends were very similar to those of read- 
only applications (cf. Tables 1 and 2): in any case, 
some dual-buffering technique could be found that out- 
performed NOC, and for warm traversals, any dual- 
buffering technique was more economical than NOC, 
if it was well-tuned. When EOC/LRL was used, how- 
ever, the gains were often not as striking due to the 
drawbacks of flushing modified and copied objects. For 
warm traversals in the RANDOM object base, for ex- 
ample, EOC/LRL reduced NOC’s space-time product 
by only 19.7% for the T2b traversal compared to 84.5% 
for the Tl traversal. Sometimes, the gap between the 
LOC techniques and NOC also decreased with an in- 
creasing number of updates, but in general, the per- 
formance of lazy object copying appears to react sig- 
nificantly less sensitively to updates than eager object 
copying. 

In almost every experiment eager relocation had the 

best performance. It should, therefore, always be used. 
No clear winner, however, could be determined among 
LOC-, pure LOC, and LOC+, but the differences were 
not large. Pure LOC wss seldom the best technique, 
but it was usually not far behind. In the worst case 
(cold T2b traversal in the TB object base), LOC/ER,L 
was outperformed by only 9.4% by the best strategy 
(LOC-/ERL). On the other hand, LOC- was often 
too restrictive when copying objects (e.g., for the TOC 
object base), and LOC+ was often too eager (e.g., for 
the RANDOM object base). 

7 Conclusions and Future Work 

In this work, control strategies for combining buffer 
segmentation with dual buffering were devised and 
evaluated. Buffer segmentation was proven effective 
by previous work in the relational context because of 
the flexibility to employ dedicated replacement policies 
for specific reference patterns. Dual bufering extends 
the flexibility of buffer segmentation: it ‘permits iso- 
lating objects from otherwise infrequently or not used 
pages while leaving heavily used pages in the buffer in 
their entirety. 

Two control dimensions for maintaining such a seg- 
mented dual-buffer pool were distinguished: the copy- 
ing time and the relocation time. Along both dimen- 
sions, an eager and a Zazy strategy as well as alter- 
native techniques between these two extremes were 
devised. To assess the range of control strategies, 
an experimentation platform with exchangeable object 
copying and relocation mechanisms was developed. 
The experiments carried out with the 007 bench- 
mark indicate that lazy object copying (and its deriva- 
tives) in conjunction with eager relocation is “the win- 
ner.” This combination is very robust (i.e., significant 
performance drawbacks as compared to pure page- 
based buffering were never experienced) and very often 
outperforms page-based buffering substantially (up to 
60% savings in running time). 

In this assessment, emphasis was made on a rather 
simple setting: only two buffer segments in a single- 
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user environment. This scenario was sufficient to 
demonstrate the potential of the dual-buffering strate- 
gies. In practice, however, buffer pool segmentation 
becomes more complex, and tuning is an important 
task. Future work will concentrate on showing how 
existing buffer allocation algorithms and replacement 
policies apply to dual buffering. 
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