
Persistent Threads

Florian Mat t hes Joachim W. Schmidt

Universitgt Hamburg
Vogt-Kijlln Stral3e 30

D-22527 Hamburg, Germany
{matthes,JSchm~dt}@dbisl.informatik.uni-hamburg.de

Abstract

Persistent threads are a database program-
ming concept particularly well-suited for a.p-
plications that manage long-term, distributed
or cooperative activities. We introduce per-
sistent threads as a novel form of bindings
from data in persistent object stores to ac-
tivated code and relate them to existing bind-
ing concepts found in database programming.
We also describe the integration of persis-
tent threads into a polymorphically-typed
database language and its supporting layered
system architecture with particular emphasis
on abstractly-defined thread representations
which support thread analysis, optimization
and portability.

1 Introduction

A noticeable trend in database research and database
system development is an increased interest in behav-
ioral and procedural aspects of information systems.
Data models that describe dynamic processes in addi-
tion to static data structures are capable of capturing
more of the application semantics as exemplified by
object-oriented models like Taxis, ADAPLEX, Galileo
or Fibonacci. Similarly, database systems that support
procedures, methods, rules or triggers in addition to
persistent data values are capable of factoring-out pro-
cedural code from individual application programs into

Permission to copy without fee all or parf of this material is
granted provided ihat the copies are noi made or distribried for
direct commercial advaniage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying ia by perk&on of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or rpecial permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

shared databases. The positive effects of eliminating
integrity checking, database event detection, exception
handling, or user interface management code from ap-
plication programs on the overall system consistency
and application programmers’ efficiency have been de-
scribed amply in the literature. Consequently, one can
perceive a shift from passive data stores to more active
persistent object systems.

In this paper we focus on the intricate binding issues
on the borderline between “active code” and “passive
data” that arise in persistent object systems as soon
as one gives up the classical separation between short-
lived transactions expressed in a host language and
long-lived data stored in a database. More specifi-
cally, we provide a classification scheme for bindings
from code to persistent data and vice versa and we
investigate bindings from persistent data and code to
threads, which exhibit an interesting duality. On the
one hand side threads can be viewed as activities that
can be created, executed, synchronized, suspended,
terminated, etc. Alternatively, they can be viewed as
passive data that. can be stored persistently, annotated
with attributes, associated with other persistent data
structures, moved between nodes in a network, and
manipulated by computations.

This duality makes persistent threads a key tech-
nology for future persistent object systems and for ap-
plications that manage long-term, distributed or co-
operative activities like computer-aided design, work-
group communication and workflow management. Un-
fortunately, this duality also invalidates many design
assumptions on which today’s volatile thread imple-
mentations are based. Therefore, we also discuss
in some detail implementation aspects of persistent
thread bindings.

The specific persistent thread model presented here
has been developed within the context of the persistent
programming environment Tycoon’ [MS93, Mat931
where it serves as an abstract model to shield pro-

‘Typed Communicating Objects in Open eNvironments.

403

grammers and application-oriented tools from details
of the underlying system implementation (object store,
database language evaluator, scheduler, recovery sub-
system) while being sufficiently low-level to support
a variety of (possibly application-defined) scheduling
and activity management strategies.

The paper is organized as fo!lows: In section 2 we
introduce a terminology for the description of bind-
ings to data, code and threads in persistent systems
which we use throughout the paper. We then review
briefly the evolution of database languages in terms of
their binding patterns between data, code and threads.
We argue that the expressiveness and usability of a
database system model is related directly to the or-
thogonality of its binding patterns. In section 4 we.r
propose a next step in the evolution of database lan-
guages by introducing the concept of first-class bind-
ings to threads. We argue that an explicit and orthog-
onal handling of threads naturally leads to the con-
cept of persistent threads, a systems abstraction suit-
able for novel high-level models for long-term activity
management. Finally, in section 5 we report on our
implementation of persistent threads in the Tycoon
system based on an abstractly-defined store protocol,
code representation and thread semantics.

2 Bindings in persistent systems

In this section we introduce a terminology for the de-
scription of bindings to data, code and threads in per-
sistent systems which we will use throughout the pa-
per.

A binding is an association between a name and a
computational entity from a specific semantic domain
[Str67]. We also say that a name is bound to a compu-
tational entity. An environment is a (possibly ordered)
collection of bindings. Names are used to identify enti-
ties in an environment. Different names can be bound
to the same entity (sharing, aliasing). The details
of this identification process (static scoping, dynamic
scoping, user-defined conflict resolution) and mecha-
nisms to manipulate environments (import/export, in-
heritance, record extension, imperative update) are ir-
relevant for the purpose of this paper.

Entities can be atomic (like integers or booleans) or
structured (like records, objects or functions). Struc-
tured entities typically consist of environments. For
example, the fields of a record lead to bindings from
field names to other entities. Therefore, bindings can
be used to model (recursive) relationships between en-
tities.

Entities can be flat (like records) or nested (like
functions in Algol-like languages). In a nested entity,
names bound in a global outer environment are auto-
matically visible in a local inner environment. As will

be seen in sections 3.1 and 3.3, the semantics of bind-
ings from and to (dyna.mically) nested entities requires
particular a.ttention.

Entities can be transient (like local program vari-
ables) or persistent (like database tables). Virtually
all database systems restrict environments of persis-
tent entities to contain only bindings to other persis-
tent entities since bindings to volatile entities would
lead to “dangling references”. Such constraint vio-
lations are avoided in many systems by a transitive
reachability rule: Every entity reachable from a per-
sistent entity becomes persistent, too. In reachability-
based systems, there is a so-called “persistent root en-
vironment”, for example, the set of all globally-defined
database names in 02 [BDK92]. An entity is made
persistent by making it reachable through chains of
bindings (e.g., database definition, class extent) start-
ing from this persistent root environment.

The following three categories of structured entities
are of particular interest in extended (higher-order)
database modeling:

Persistent Data (D) describe the persistent state
of an information system by a collection of computa-
tional entities related through bindings. The structure
(types) of the persistent entities and their bindings are
described by a database schema.
persDB=database

peter=[age=30, married=true, boss=NULL],
paul=[age=30, married=true, boss=persDB.peter], . . .
persons={persDB.peter, persDB.paul, . . .)

end
In this example, the name persDJ3 is bound to

a database, i.e. a persistent environment that stores
bindings for the database variable names peter, paul
and persons. For example, paul is a name bound to a
record (an environment with three bindings). One of
these bindings associates the name boss to the record
identified by the name peter within the environment
persDB. The set bound to the name persons defines
an environment of anonymous bindings.

Code (C) is a description of operation sequences
that query and update volatile or persistent entities
and bindings.
procedure changeBoss(pers:Pers) =

pers.boss:=persDB.paul;
transaction changeAll() =

for each p in persDB.persons do changeBoss(
Code involves names to describe bindings to other

code (changeBoss referenced in the body of changeAll),
bindings to persistent data (persDB.persons, persDB.-
Paul), and bindings to volatile data (p, pers). In
statically-scoped languages, the binding of a name in a
code fragment to a matching name in its environment
is determined by a textual analysis of the code and of
the database schema.

404

Conceptual Model Language Model Implemeutation Model
entity variable data
behavior function code
activity continuation thread
relationshiD name bindine

Figure 1: Corresponding notions at different levels of conceptualization

Approach Bindings Description2
database programming C-*D code bound to data
object-oriented databases D-C persistent data bound to code
transactional programming T-G threads bound to code
activity management D+T persistent data bound to threads

Figure 2: Predominant binding patterns (see text)
A Thread (T) is a representation of code in Ihe

process of being executed. A thread describes a single
sequential flow of control in a program. Having multi-
ple threads in a program means that at any instant the
program has multiple points of execution, one in each
of its threads. Unlike operating system processes, mul-
tiple threads can execute within a single (persistent)
address space, permitting multiple threads to access
shared variables in addition to local variables.

It may be helpful to compare our terminology with
corresponding notions in language models and concep-
tual models as summarized in figure 1. Since in this
paper we are interested also in implementation aspects
of persistent threads, we are using a rather system-
oriented terminology. In our setting (as opposed to,
for example, visual programming), the correspondence
between high-level conceptual notions like entities, be-
havior, activities, relationships and their system coun-
terparts (data, code, threads, bindings) is often es-
tablished indirectly via formal language models ex-
pressed in terms of variables, functions, continuations
and names bound in scopes. Our system argument
that threads should be treated as first-class persistent
data could therefore be rephrased in high-level mod-
els by requiring activities to be viewed as first-class
entities that can participate freely in abstractions like
aggregation and classification.

A thread is created by submitting a parameter-
less code fragment (e.g., the body of the transaction
changeAll) and (persistent) data (e.g., per&B) to an
evaluator (eval (ChangeAll, persDB)). As described in
section 5 the semantics of the evaluator can be defined
inductively by rules that map thread states to thread
states and that perform side-effects on data. A thread
state subsumes bindings to the code fragments cur-
rently being executed and a dynamic environment that
records the current bindings from names occurring in

2X bound to Y means that names in entities of category X
are bound to entities of category Y, i.e. that the semantics of
X depend on the semantics of Y.

the code to l&al and .global entities. In most pro-
gramming and query language implementations thread
states are represented as records that reference stacks
of so-called “activation records”, one for each function
or query invocation.

The following thread state describes a snapshot of
the execution of the transaction changeAl against the
database persDB. More precisely, it describes the state
of the transaction while executing the function change-
Boss during the first iteration of the for each loop,
immediately preceding the assignment of the value
persDB.paul to the field boss.
thread1 = [result = persDB.paul, dynamiccontext = [

code=(pers.boss:= result),
localEnv=[pers=persDB.peter],
globalEnv=[persDB=database. . . end],
dynamicContext=[code=(for each p in toVisit

do changeBoss(p
locaIEnv=[p=persDB.peter,

toVisit={persDB.paul,. . . }],
globalEnv=[persDB=database. . . end,

changeBoss=procedure . . .],
dynamicContext = 0]]]

In this example the thread state consists of the re-
sult of the current subexpression (the right-hand-side
of the assignment, i.e., persDB.paul) and a dynamic
context (continua2ion) that describes the code still to
be executed together with the bindings valid within
this code. The next instruction to be executed is the
assignment (pers. boss:= result). The binding of the
parameter name pers can be obtained from the local
environment which has been established on entry to
the function changeBoss. The dynamic context of the
function (the state of its “caller”, i.e. changeBoss) is
captured also by a continuation. On function return,
evaluation continues with the bindings of this continu-
ation. The local variable toVisiC is used to control the
iteration. Since the dynamic context of the transac-
tion changeAl is empty, the thread will terminate on
return from this transaction.

Since entities of each of the three categories above -

405

data, code and threads - may contain bindings, there
are nine possible binding patterns between computa-
tional entities in fully orthogonal object systems. In
figure 2 we list four of these binding patterns which we
regard as “historic” milestones in the development of
persistent system models:

b In database programming languages it is possible
to write algorithmically-complete code that estab-
lishes C+D bindings to persistent data and that
modifies the state of persistent entities and their
relationships expressed as D-D bindings. How-
ever, code is still separated strictly from persis-
tent data in the sense that reverse bindings are
not supported.

D This restriction is lifted in object-oriented
databases where D+C bindings extend the se-
mantics of data entities to also include code frag-
ments (method code) which express behavioral as-
pects. Similarly, in active databases it is possible
to attach code (conditions and actions) as triggers
to persistent data (relations, classes).

D In multi-user (database) systems there are multi-
ple concurrent user sessions accessing shared data
via transactional code. Each active transaction
corresponds in our terminology to a single thread
that is bound (via a T-+C binding) to applica-
tion code which in turn is bound to shared (per-
sistent) data. However, threads are strictly sepa-
rated from persistent data and code in the sense
that a thread cannot access (query, store, update)
the set of code or data bindings held by itself or
by other threads.

D In this paper we argue that threads understood
as dynamic environments of bindings are highly
relevant for novel, activity-oriented applications
and, therefore, should gain first-class status in
future database models and not be hidden be-
hind a specific built-in binding pattern (transac-
tions). As detailed in section 4.3, mechanisms to
establish bindings from code, from data, and from
threads to threads are very helpful to manage co-
operative and distributed activities. In particular,
D+T bindings from names in persist,ent data to
threads naturally lead to the concept of persistent
threads in reachability-based persistent systems,
which we regard as highly relevant to long-term
aciivity management.

The semantics and implementation of pure D-D
bindings like the binding of persDB.pau1.bos.s to
persDB.peter in persDB and of pure C&C bindings
like the binding of the name changeBoss in the func-
tion changeAll are sufficiently well understood that
we restrict ourselves in the following discussion to the
binding patterns highlighted in figure 2.

3.1 Binding names in code to persistent data

All database management systems with a program-
ming language interface support C-+D bindings. In
a third-generation langua.ge, a C-D binding to a
database is established at program run-time using an
explicit operation similar to the SQL connect state-
ment. C-D bindings to individual elements in a
database collection are established using explicit cur-
sor manipulation operations, typically embedded into
program loops.

In fourth-generation languages like Ingres/Windows
4GL or PL/SQL and in database programming lan-
guages like DBPL [SM94] or E [RCS93], the outer-
most program environment already contains bindings
to persistent. entities which are therefore directly acces-
sible in statements and expressions. Moreover, these
languages provide bulk data types [MS911 with opera-
tions that work on collections of (anonymous) bindings
at once. As a consequence, programming with persis-
tent bulk data in these languages is a$ effortless as
programming with volatile data in 3GLs.

3.2 Binding names in persistent data to flat
code

406

An object in an object-oriented database can be mod-
eled as an environment of bindings and a (hidden) ob-
ject identifier.
peterObj:PersonObject=object age=30, married=true,

boss=NULL,
changeBoss=method(newBoss:PersonObject)

self.boss:=newBoss
end

Attributes like age, married or boss lead to stan-
dard D-D bindings to persistent state variables while
a method definition is a D+C binding from a method
name (changeBoss) to a code fragment (se1f.boss.z
newBoss). In most object-oriented models, a method
is bound in an environment attached to an object
cJa.ss; however, some systems (e.g., 02) also support
so-called “exceptional objects” where methods can be
overridden by bindings established on a per-object ba-
sis. Message names in code, like ChangeBoss in the
dot expression peterObj.changeBoss(. . .), are bound

3 From data-oriented modeling to
object-orientation

In this section we review briefly the evolution of
database languages in terms of their binding patterns.
We argue that the expressiveness and usability of a
database system model is related directly to the or-
thogonality of its binding patterns and that, in ret-
rospect, many ad-hoc binding restrictions found in
database systems are simply based on the choice of
an improper implementation technology.

dynamically to matching method code identified by
D+C bindings attached to the object itself (peter-
Obj), its class (PersonObject) or its transitive super-
classes.

D+C bindings are also supported by active
database systems where it is possible to bind a trigger
consisting of a condition (a code fragment, that returns
a boolean value) and an action (a code fragment that
performs a side-effect) to a persistent data structure
(typically a global collection variable). Views as at-
tribute values in Postgres and “viewers” as proposed
in [SMR+93] are a third form of D-4 bindings that
attach code fragments (returning bulk data values) to
individual persistent data items.

D+C bindings add a new dimension to data mod-
eling since it becomes possible to attach behavior
to shared and persistent data and to adopt a data-
centristic execution model. In this view, the ap-
plication logic is no longer hard-wired statically in
“structured” application code that drives the passive
database system via read/write instructions. Instead
of this, the application logic can be divided into se-
mantically rich and loosely coupled conceptual classes
attached to persistent data structures, and the appli-
cation system is “driven” by messages dispatched dy-
namically by the DBMS.

In all systems mentioned so far, the code participat-
ing in a D+C binding has to come from a flat environ-
ment.. For example, the object-oriented programming
languages Eiffel, C++, Modula-3 and Trellis as well as
the object-oriented database systems ObjectStore and
02 have syntax and scope rules that make it impos-
sible to bind a function that is nested within another
function as a method to a database object. As a con-
sequence, the only bindings available inside method
code are static global D-+D or D-C bindings, and
dynamic bindings established via explicit method ar-
guments (newBoss), and the dynamic binding of the
distinguished identifier self to the receiver of the mes-
sage. Analogous restrictions hold for stored database
procedures written in fourth-generation languages and
triggers in active databases.

The rationale behind these restrictions is to simplify
the implementation of D-C bindings.

A more elegant implementation of D-4 bindings to
flat code is achieved in object-oriented database sys-
tems like 02 that manage executable code in the object
store itself. In these systems D-C and D--+D bindings
are implemented uniformly as intra-object-store bind-
ings exploiting the concept of persistent object iden-
tity.

3.3 Binding names in persistent data to
nested code

The increased modeling power of orthogonal D-C
bindings that also handle nested code correctly has
been demonstrated by higher-order programming lan-
guages like Lisp, Scheme, Standard ML, Dylan and
Haskell (higher-order functions) but also by Smalltalk
(first-class blocks) and CLOS. As a consequence there
is a clear evolution in the family of higher-order
database languages from PS-algol [AMSS], Napier88
[DCBM89], P-Quest [MMS92], Fibonacci [AGO911 to
Tycoon [MS921 allowing programmers to treat func-
tions, procedures and transactions as first-class com-
$utational entities tha.t can be passed as arguments,
returned as results, and embedded into persistent data
structures.

Here, we focus on the semantics of D-4 bindings
to nested code and do not discuss the relative advan-
tages of full higher-order models over plain object-
oriented models (see [SM93]). The following simple
example shows a parameterized transaction disallow-
Boss that overrides an existing method binding defined
for the message changeBoss of a person object thisPer-
son. The new D-C binding relates changeBoss to a
nested method code fragment that depends on the pa-
rameter value thisBoss of its enclosing transaction.
transaction disnllowBoss(

thisPerson,thisBoss:PersonObject)=begin
let oldMethod=thisPerson.changeBoss
thisPerson.changeBoss:=method(newBoss:PersonObject)

if newBoss!=thisBoss then oldMethod(newBoss)
else raise illegalBossException end

end
This transaction can be called with person objects

as arguments, for exa.mple, to raise an exception if
paulObj is to become the boss of peterObj or if an
attempt is made to delete the boss of paulObj:
disaJlowBoss(peterObj, pau/Obj)
disalJowBoss(paulObj, NULL)

A correct representation of the D-C binding for the
name changeBoss has to consist not only of a binding
to the nested method code but it has also to record
the environment of global C+D bindings valid for the
nested code (bindings for the pa.rameter thisBoss and
the variable oldi%lethod of the enclosing transaction).
Such a [code, environment]-pair is called a (function)
closure. The two transactsion calls above yield the fol-
lowing closures:
peterObj.changeBoss=[

code=(if newBoss!=thisBoss then . . . end),
globalEnv=[thisBoss=paulObj,oldMethod=. . .]]

paulObj.changeBoss=[
code=(if newBoss!=thisBoss then . . . end),
globalEnv=[thisBoss=NULL,oldMethod=. . .]]
The code bound to peterObj.changeBoss.code and

407

paulObj.changeBoss.code is shared, however, since the
global environments differ the execution of the method
code in these different environments has different se-
mantics.

4 Activity-oriented programming with
persistent threads

Based on the discussion of the previous section we pro-
pose a next step in the evolution of database languages
by introducing the concept of first-class bindings to
threads. The concept of threads (continuations, ses-
sions, running transactions) is either non-existent or
only implicitly available in today’s database systems.
We argue that an explicit and orthogonal handling of
threads naturally leads to the concept of persistent
threads, a systems abstraction suitable for novel high-
level models for long-term activity management.

4.1 Threads in persistent systems

As mentioned in section 2 (see also figure 2), threads
and T-C bindings already exist implicitly in trans-
actional multi-user DBMSs. For example, running
transactions in a DBMS correspond to isolated threads
(bound to transaction code) that are activated, sus-
pended or aborted under the control of a centralized
scheduling “master thread” that gains control when-
ever these threads access shared database entities. On
an implementation-level, a transaction descriptor in
the scheduling subsystem is a record that aggrega.tes
bindings to a (suspended or running) thread with ad-
ditional information relevant for synchronization pur-
poses, like the shared (read-only) bindings and the ex-
clusive (updated) bindings held by the thread, bind-
ings to other threads waiting for resources of this
thread, or the cost of the operations executed by the
thread so far. Database systems (like Ingres) that sup-
port named checkpoints inside transa.ctions provide
an additional mechanism to store multiple “frozen”
thread states that can be reactivated at the user’s dis-
cretion.

Novel transaction models (see, e.g., [BK91, SR93])
propose to give “power users” the ability to extend
the semantics of the “master thread” by introducing
additional scheduling concepts like lock modes and by
triggering the execution of user-defined code fragments
whenever two threads access a shared persistent object
concurrently. This code can use an algorithmically-
complete language to decide when to abort, suspend
or notify the conflicting threads.

While threads managed by a DBMS scheduler a.re
volatile (they are limited to the lifetime of their corre-
sponding operating system processes), a limited form
of persistent threads can be found in the (single-user)
persistent higher-order systems Napier88 [DCBM89]

and PQuest [MMS92] that have an atomic stabilize
operation. This operation can be called anywhere in-
side a program to define a consistent persistent sys-
tem state. This state not only consists of the global
database state variables but also includes the state of
the program evaluator. If a system crash occurs dur-
ing program execution, the execution can be resumed
in the state valid at the last stabilize operation.
procedure p(x:Int) =

begin stabilizeo, print(“leave p, x=“, x) end
procedure main0 =

begin print(“call p”), p(3), print(“; end”) end
For example, assuming that during the execution of

main the system crashes after returning from p, On
system restart, program execution would resume with
the first statement a.fter the stabilize operation, and
the output would be leave p, x=3; end.

To summarize, these systems already have a hid-
den persistent thread functionality that is, however,
severely limited to a single top level thread.

4.2 Threads as first-class persistent entities

In this section we illustrate how threads fit as first-
class computational entities into persistent object sys-
tems. Our presenta.tion is based on the thread ab-
straction available in the Tycoon system, a polymor-
phic persistent programming environment developed
in the FIDE project by our group at Hamburg Univer-
sity [MS93, Mat93].

In Tycoon, computational entities (data, code,
threads) are either bound in the scope of individual
programs or in the scope of persistent modules. The
execution of a Tycoon program code c invoked from
an operating-system shell leads to the creation and
execution of a Tycoon thread bound to c in an ini-
tial environment that contains CAD bindings from all
module names imported by c to corresponding linked
persistent module values.

Users or applications at the operating-system
level can create independent Tycoon threads running
against a shared set of persistent modules. Conceptu-
ally, the computa.tiona.1 entities of all Tycoon threads
and modules reside in a common persistent object
store. This seamless integration of volatile and per-
sistent store simplifies the access to databases rep-
resented as persist*ent modules. Furthermore, it fa-
cilitates the exchange of data, code and threads be-
tween threads via shared variables. These variables are
bound in the scope of persistent modules and are typ-
ically protected by synchronization mechanisms like
transactional locks, semaphores, mbnitors, or message
queues.

The following simplified excerpt of the Tycoon sys-
tem library interface Thread defines the basic function-
ality of a corresponding module thread which exports

408

a parameterized abstract data type thread. T and oper-
ations to inspect, create and execute multiple threads
from within Tycoon programs.
interface Thread export
T(R <:Ok) <:Ok

(* T(R) is the type of threads that on termination
return values of type R. *)

Let State = Tuple case suspended, running,
terminated, aborted, blocked end

(* An enumeration of the possible thread states. *)
new&R <:Ok code :Fun(:I):R input :I) :T(R)

(* Return a new, suspended thread to execute
code(inpu t). *)

seJf(R <:Ok) :T(R)
(* Return the current thread. *)

copy(R <:Ok thread :T(R)) :T(R)
(* Return a shallow copy of thread. The execution

of thread does not affect copy(thread).
However, entities bound in the code executed by
thread and copy(thread) are shared. *)

run(R <:Ok thread :T(R)) :Ok
(* If thread is suspended then resume execution

until execution terminates, aborts with an exception,
is suspended or blocked. thread and self0 execute
concurrently. *)

state(R <:Ok thread :T(R)) State
(* Return the state of thread that may change

dynamically if running or suspended. *)
join(R <:Ok thread :T(R)) :R

(* Block until thread terminates or aborts. Return
the result or propagate its exception. *)

end
The module thread encapsulates the representa-

tion of threads, the semantics of the Tycoon evaluator
(threadrun, see section 5) and the details of the map-
ping from threads to physical processing units. Since
some versions of the Tycoon system are baaed on per-
sistent object stores which allow multiple workstations
to access a Tycoon object store concurrently, multi-
ple physical processing units (workstations) may be
involved in thread execution.3

The type thread.T and all functions exported from
the interface above are polymorphic, i.e. they have an
explicit type parameter R that has to be instantiated
with a subtype of the trivial “top type” Ok [MS92].
Threads are polymorphic data structures since they
can describe the execution of code that returns va.l-
ues of an arbitrary result type R. This type R has to
match the return type of the code function passed as
an argument to the thread.new function.

As a minimal example of (volatile) thread pro-
gramming, the following Tycoon program creates a
thread t to evaluate the function code that returns
a value of type Int. This result is computed by adding
the statically-bound data value and the dynamically-

3Currently, a call thread.run(:R t) executes t and self() on
the same processing unit .

bound parameter value.
import thread :TJiread
let da& :Jnt = 3
let code(parameter :Jnt) :Jnt = data + parameter
let t :thread.T(lnt) = thread.new(:lnt :Int code 4)
thread.run(:lnt t)
let result :Int = tJrread.join(t) (* + 7 *)

Remember that the thread bound to t is a first-
class entity in Tycoon - it can be passed as a func-
tion argument, returned from a function, bound to a
name in the scope of a persistent module, exported to
a portable data file, or sent across a communication
channel.

The generalization of first-class threads from
volatile to persistent has the following semantic im-
plications:

4.3

The definit,ion of persistence has to be revised. In
addition to all persistent modules also all active
threads act as “roots of persistence”. Moreover,
the tra.nsitive reachability rule introduced in sec-
tion 2 has to be extended to also include TdC,
T+D and T-T bindings.
The semantics of the shallow and deep copy op-
eration has to be extended properly to values of
type thread.T.
In activity-intensive applications, it is desirable to
be able to attach additional information to thread
values (user id, transaction group id, access rights,
authenticat#ion key, parent thread, . . .). This ex-
tensibility is achieved in Tycoon by adding a set:
ond type parameter D to the thread signature. A
value of type thread.T(D R) is a thread that com-
putes a value of type R and that has a descrip-
tor attribute of t,ype D. Descriptors are exploited
heavily by higher-level scheduling and activity-
management algorithms but can also be made vis-
ible to application-level code.

Programming with persistent threads

Having threa.ds as computational entities in a database
language, programmers can benefit from the potential
of multi-threa.ded progra.mming [Nelgl], like

D a better exploitation of existing processing re-
sources (e.g., workstation clusters or multi-
processor workstations);

D a better support for multiple activities of hu-
man users within a single application (e.g., a
database query tool can process multiple indepen-
dent queries);

D a reduced latency of operations by deferring re-
organization tasks (e.g., an insertion into an in-
dex structure returns control to the caller imme-
diately and spawns a sepa.ra.te thread to perform
the index reorganization if necessary);

409

D a better responsiveness of servers in distributed
systems by allocating multiple server threads to
handle client requests.

By making a thread reachable from persistent data
(persistent modules) and by checkpointing the state of
the persistent store it becomes possible to protect long-
running activities from system failures. After a crash,
the thread can be restarted explicitly in the state that
was valid at the last checkpoint.

More importantly, persistent threads support di-
rectly an activity-oriented style of information system
modeling as promoted by scripts in Taxis [BMS93],
by process-centered specifications in Estelle, Lotos or
SDL [Tur93], or by (visual) process languages of work
flow management tools like Regatta [Swe93].

As a highly simplified example, a paper submitted
to a workshop can be represented by the following data
type that contains a (persistent) thread attribute:
Let Paper=Tuple title,authors,abstract,text :String

reviewer:Person rating:Rating
refereeActivity:thread.T(Ok)

end
From the viewpoint of the PC chair, each paper has

to be reviewed individually, and the set of submitted
papers has to undergo the following reviewing activity.
for each p in db.submissions do

p.refereeActivity:= thread.new(:Paper :Ok
reviewpaper p)

thread.run(:Ok p.refereeActivity)
end
joinAll(select p.refereeActivity from p in db.submissions)

Reviewing the set of all submitted papers is mod-
eled by creating and executing one p.refereeActivity
per paper p which can then run concurrently with-
out interference. Standard query language notations
can be used to perform bulk operations on sets of
threads, for example, to wait until all threads attached
to db.submissions have terminated. The user-defined
function joinAl takes a sets of threads and blocks the
current thread until all of the threads have terminated.
let joinAll(threads :set.T(thread.T(Ok))) :Ok =

for each t in threads do thread.join(:Ok t)
end

The activity of individual reviewer assignment and
reew recording is modeled by the following code:
let r’eviewPaper(p :Paper) :Ok = begin
repeat p.reviewer:=chooseReviewer(availableReviewers)
until acceptedByReviewer(p.reviewer p)
sendPaperToReviewer(p.reviewer p)
try p.rating:= waitForReview(p.reviewer)
when reviewerNotAvailableExc then reviewPaper
end

end
Contrary to current database practice, the progress

of the reviewing process is not captured by a passive
relational table that stores a state attribute for each

paper which is then updated by separate transactions
to values like unassigned, assigned, se&Out, returned,
. . . . Instead of this, an activity- and goal-oriented
script modeled by database language code describes
directly the possible states and state transitions. This
example makes use of several control structures (loop,
recursion, exception handling) for sequential activities
and uses threads for long-term concurrent activites.
Note that the thread above depends crucially on global
bindings (to parameter values, global data, and global
code).

In this example, thread synchronization has to be
employed to coordinate parallel activities (the assign-
ment of reviewers to individual papers that implies
access to the shared variable availableReviewers) and
to wait for the termination of subactivities.

Persistent threads do not lead necessarily to an im-
perative, detetministic style of activity management.
Instead of this, higher-level activity models can be sup-
ported directly by factoring-out synchronization tasks
(parallelDo, tryOne atomicDo, compensatingDo)
from applications into higher-order thread libraries.

5 On thread implementation and for-
malization

Several important requirements on persistent thread
implementations differ substantially from volatile
thread implementations, for example:

1.

2.

3.

4.

5.

6.

Thread state representations have to be made re-
locatable and portable in the sense that states
need to be abstractly interpretable without ref-
erence to a specific machine architecture (e.g.,
SPARC register files).
It is desirable to have automatic garbage collec-
tion that reclaims the storage of terminated or
orphaned threads.
It is necessary to formalize in sufficient detail the
effects of thread execution on shared entities in
the persistent store, in particular, if these entities
have a complex structure. Only then reliable sup-
port can be provided for concurrency, recovery, or
garbage collection.
Store access in distributed persistent memory has
different performance characteristics than store
access in centralized shared-memory architec-
tures.
In data-intensive applications, the thread state
can va.ry dramatically in size, for example, to
accommoda.te the numerous temporary bindings
that arise during query evaluation. Clearly, sim-
ple thread implementations based on fixed-sized
stacks are not acceptable.
Built-in schedulers have to be able to work with
a number of persistent threads that may exceed

410

the number of volatile threads by two to three
numbers of magnitude.

In this section, we first report on our implementa-
tion of persistent threads focusing on the issues (1)
through (4) since the remaining investigations are be-
yond the scope of this paper. We then sketch thread
formalization with a clear emphasis on abstract rep-
resentations of machine code (Tycoon Machine Lan-
guage, TML), machine states and on explicit modeling
of machine-store interactions (Tycoon Store Protocol,
TSP).

In our experience, a formalization on an appropri-
ate level of abstraction and with an intensive flavor
of “constructivity” is absolutely essential for any good
implementation of a conceptually rich system abstrac-
tion, such as persistent threads.

5.1 The Tycoon thread implementation

The Tycoon thread implementation is divided into
subtasks solved by three distinct layers of the Tycoon
system architecture:

1. The Tycoon compiler front end performs the type
checking and code generation of application pro-
grams. Due to the polymorphic nature of Ty-
coon’s type system, no extensions of the Tycoon
compiler front end are required to support user-
defined type constructors like thread.T(R) de-
scribed in section 4.2.
Tycoon uses a uniform (tagged) polymorphic data
representation. Therefore, no modifications to the
Tycoon code generator are required to support
operations on first-class persistent threads. The
binding of the operations thread.new, threadzun,
etc. to processor-specific compiled C code imple-
menting thread creation, thread execution etc. is
accomplished by standard Tycoon language mech-
anisms.

2. The Tycoon compiler generates abstra.ct ma-
chine code (TML). For every hardware architec-
ture there is a separate Tycoon evaluator, imple-
mented as an interpreter or a pair of a target ob-
ject code generator and a runtime library that dy-
namically loads the target code into the process
address space. The execution of Tycoon threads
is performed by TML evaluators that read code
held in the Tycoon object store and that are able
to store their evaluation state in a portable for-
mat in the object store. Thereby, it is possible
to exchange suspended evaluator states between
different hardware architectures and to represent
thread bindings by standard object store identi-
fiers with the usual sharing semantics.

3. The Tycoon object store allows evaluators to ab-
stract from the lifetime and storage details of all

Load. Vnlallk Prwm# Atmwy
;~-~ --..----; ;fr;-~ -____---;

pJ~i=gj

C-------------I c ___-_________ I
i---------‘-------------------
, Pool Of Plwd stem aqwta

--.

Figure 3: Interaction between TML threads
computational entities (data, code, threads). The
store encapsulates buffer management, garbage
collection, cache coherence management and re-
covery management. Tycoon evaluators access
the Tycoon store via an abstract store protocol
(TSP) implemented as a collection of standard-
ized C functions.

Figure 3 shows the interaction between multiple
Tycoon threads accessing a shared persistent object
store (possibly partitioned into disjoint repositories).
It shows two operating-system processes, each execut-
ing a TML evalua.tor tha.t manages a set of Tycoon
threads. Thread states consist of a machine state (a
register set) and a dynamic context of variable size.
Active threads are cached in local process memory.
Furthermore, the object store permits TML evaluators
to fix (pin) persistent objects in local process mem-
ory. It is the object store’s responsibility to ensure the
coherence between thread states and other persistent
objects cached in multiple process address spaces.

5.2 On thread formalization

A thread forma.liza.tion has to define invariants main-
tained by the scheduling operations exported by the
interface Thread (see section 4.3) and it has to spec-
ify the semantics of individual threads by an inductive
definition of the bindings and store side-effects per-
formed for each instruction executed by a thread. The
first issue has been treated already in the literature, for
exa.mple, chapter 5 of [NelSl] gives a complete Larch
specification of the Modula-3 thread package that is
very similar to Tycoon’s Thread interface. Here we
concentrate on the second issue. The TML/TSP spec-
ification sketched in the remainder of this section not
only affects the granularity level on which thread op-
erations (e.g. run, join) are performed, but also the
degree to which further requirements on threads as
enumerated at the beginning of section 5 can be sup-
ported.

Tycoon’s RISC-style TML code representation is
shown in figure 4. This instruction set suffices to im-
plement the full Tycoon language as defined in [MS921
(and similar higher-order programming languages like
Fibonacci or Na.pier88). We are currently moving to an

411

c ::= nop
1 imm(b)
1 lit;
1 1OCi

1;;; I

I Cl b21
1 1OCi + Cl

1 glbicl + ~2
1 Cl[CZ] + c3

I v?a Cl c2 c3

lXnc1

I co(c1 . ..cn)

1 Cl ; c2

I lOOPC1
Iexitcl ’
I trap ~1 with li do ~2

I raise cl
I builtin(op)(cl . . . cn)
I alt CO of
bl + il . . . b, + i, do
cl...,cnelsecn+l

po operation
base value access
literal value access
local variable access
parameter value access
function closure value access
object store variable access
local variable assignment
function closure’ initialization
object store assignment
function closure allocation
local variable allocation
function application
sequential evaluation
repeated evaluation
loop termination
exception handling
exception generation
builtin function application

multi-way case analysis

Figure 4: Abstract TML syntax

even more reduced, continuation-passing style (CPS)
[App92] code representation that simplifies the static
and dynamic program analysis and optimization tasks
that are performed by the compiler, run-time query
optimizer and thread scheduler (side-effect analysis,
sharing analysis, inlining, dead code elimination, etc.)
[GBM94]. However, CPS code needs to be normalized
(closure converted, exception converted) prior to exe-
cution to achieve good executions on standard hard-
ware architectures.

The semantics of TML programs involves syntac-
tic entities that are denoted by indexed (i, j, R, n, m)
variable names as follows:
TML instructions (see Fig. 4): c E Code
Base values: b, lit, g, p, 1 E BVal = 2 U {nil}
Local environments: L = [lo . . . Ik] E Lot
Dynamic environments:

E=[lit go...g,, po...pm]~ Em
Evaluation results:

v E Val = SVal U {ok, exception(p), exit(p)}
The semantics of a Tycoon object store is defined

as a partial mapping from a domain of (tagged) object
identifiers Ref (disjoint from the set of base values
BVal) to fixed-sized arrays of state values. A state
value is either an object identifier or a base value.
Object identifiers: r, lit E Ref
State values: so, 1, p, g E SVal = BVal U Ref

Object stores: S E Store =(Ref x 2 2 SVal)

x(Ref e Code)

x(Ref 2 2)
For example, the operation hit returns the store

value (0, {}, {}) while the store operation new is de-

PO

P’

P

I I I

Figure 5: The TML machine model
fined by

new((StV, StC, StS), n) = (StV’, StC, StS’)

where

r $ Dom(StV)

StV’ = StV + {(r,O) H nil} + {(P, 1) H nil} +

. . . + {(r, n - 1) H nil}

StS’ = StS+{r-n}

It takes a store (StV,StC,StS) and a size n and re-
turns a new store that contains a new, nil-initialized
store vector of size n that can be identified by its
unique OID r. The remaining store operations get,
set, newclosure, fixexecute are defined analogously.

The state of a TML thread executing a Tycoon
function f consists of a quadruple E, S, L, c where E
aggregates a reference to an immutable vector lit (that
holds the string, longreal, . . . literals of f), the im-
mutable global bindings go,. . . , g,, of f, and the im-
mutable actual parameter po, . . . , pm of f. S describes
the current state of the object store. L describes
those local bindings in f that are inaccessible to other
threads, and c describes the instruction of f that is
currently being executed. Figure 5 depicts the rela-
tionship between these thread components.

The precise semantics of each TML instruction can
now be described by its impact on TML thread states
and by the operations executed on the persistent ob-
ject store [Mat931 (structured operational semantics
[Plo$l]). This semantic definition is “constructive” in
the sense that it provides a precise starting point for
the implementation of TML interpreters.

The evaluation of a TML instruction is described
using the following notation:

The execution of the (composite) instruction c in a dy-
namic context E, an object store state 4 with local

412

state variables ~51 leads to an object store state &, lo-
cal state variables Lz apd an evaluation result V. This
definition implies that an instruction cannot modify
its dynamic context E.

For example, the deduction rule [Eva] seql defines
that the execution of the sequential composition cl ; 122
in an environment E, against a store S1, with local
state variables L1 is equivalent to the evaluation of
cl in this thread state returning a (possibly modified)
object store S2, a (possibly modified) set of local state
variables Lz, and a value II, followed by the execution
of c2 in this modified environment, again returning a
(modified) object store Ss, (modified) state variables
LB, and a value v’.

[Eval SeqJ
E, SI, Ll I- ~1 3 (S2, ~52,~)

~9, S2, ~52 I- ~2 * (S3r ~53,~‘)

E, SI, LI I- cl ; c2 =+ (S3, LB, v’)

Note that the evaluation result v of the first instruc-
tion is discarded and that the evaluation result of the
instruction sequence is the result v’ of the second in-
struction. This is typical for an imperative program-
ming style, where statements do not compute a result
but simply perform side-effects on the store.

The semantics of TML function applications is de-
fined as follows: In a first step, an object store ref-
erence r is computed which identifies a function clo-
sure in the object store S2 with code c’, literals lit
and global variable bindings go . . .g,,. In a next step,
the actual parameters po . . .p,,, are evaluated (strict
left-to-right evaluation order). The code c’ is exe-
cuted in a newly-allocated dynamic context consisting
of lit, go . ..gn and po...pm. After c’ has been eval-
uated, the dynamic context of the calling function is
restored as it has been left behind by the evaluation
of the last argument.

E,Sl,Ll t--*(Sz,Lz,r)

fixexecute(S2, r) = (c’, lit, go,. . . , gn)

E,Si+l,Li+l~Cij(Si+3,Li+J,Pi) i=O...?78

[lit go . . . g* po . . . p,], snlts, La+3 t- c’ * (S, Lnt4, v)
E, SI, LI I- c(co . . . Cm) * (S, Lmt3, w)

A complete definition ot the Tycoon thread evalu-
ation semantics using the above notation is given in
[Mat93].

6 Concluding remarks

This paper gives an abstract view of the evolution of
database models and languages in terms of bindings
between code, data and threads. We argue that the
next logical step in this evolution is an improved sup-
port for activity-oriented applications by introducing

first-class persistent threads. We also report on our
work in formalizing, implementing and using persis-
tent threads in the polymorphic Tycoon database pro-
gramming environment.

Our distinction between nine patterns of bindings
in persistent systems makes it possible to classify
database systems based on their support for persistent
data, object, and activity management. Moreover, our
presentation of the pitfalls encountered in the imple-
mentation of C+D and D-+C bindings in existing sys-
tems is intended as a hint to implementois of D+T
bindings not to under-estimate the intrinsic complex-
ity of persistent threads and to realize the relative sim-
plicity of the proposed Tycoon execution model and its
implementation architecture.

Finally, it should be noted that persistent threads
are an expressive and efficient, but rather low-level
concept for tbe management of cooperative activi-
ties. Therefore, we are currently investigating related
database synchronization and communication models
that have been proposed in the literature [GMSU,
Reu89, BDS+93] and how such models can be realized
as polymorphic libraries encapsulating Tycoon’s per-
sistent threads. This approach to a flexible reconcilia-
tion of system and user needs has proved to be highly
successful in modern programming and operating en-
vironments which offer several higher-level models like
monitors, ACID transactions, transactional RPCs and
communicating processes on a common, standardized
thread abstraction available on multiple system plat-
forms [POSSO, OSF93].

Acknowledgements

This research is supported by ESPRIT Basic Research,
Project FIDE, #G309 and by a grant from the German
Israeli Foundation for Research and Development (BuU
data classification, I-183 060).

References
[AGO911

[AM851

hv9~1

[BDI<93]

A. Albano, G. Ghelli, and R. Orsini. A Re-
lationship Mechanism for a Strongly Typed
Object-Oriented Database Programming Lan-
guage. In Proceedings of the Seventeenth Inter-
national Conference on Very Large Databases,
pages 565-575, 1991.

M.P. Atkinson and R. Morrison. First class
persistent procednres. A CM Transactions on
Programming Languages and Systems, 7(J),
October 1985.

A. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

F. Bancilhon, C. Delobel, and P. Kanellakis.
Building an Object-Oriented Database System:
The Story of 02. Morgan Kaufmann Publiih-
ers, 1992.

413

[BDSt93] Y. Breibart, A. Deacon, H.-J. Schek. A. Sheth,
and G. Weikum. Merging Application-
centric and Data-centric Approaches to Sup-
port Transaction-oriented Multi-system Work-
flows. ACM SIGMOD Record, 12(3):23-30,
September 1993.

[BK91] N.S. Barghouti and G.E. Kaiser. Concur-
rency control in advanced database applica-
tions. ACM Computing Surveys, 23(3):269-
317, September 1991.

[BMS93] A. Borgida, J. Mylopoulos, and J. Schmidt.
The TaxisDL Software Description Language.
In M. Jarke, editor, Database Application En-
gineering with DAIDA, pages 65-84. Springer-
Verlag, 1993.

[DCBM89] A. Dearle, R. Connor, F. Brown, and R. Mor-
rison. Napier88 - A Database Programming
Language? In Proceedings of the Second Inter-
national Workshop on Database Programming
Languages, Portland, Oregon, June 1989.

[GBM94] A. Gawecki, Mathiske. B., and F. Matthes.
The Tycoon Machine Language TML: An
Optimizable Persistent Program Representa-
tion. DBIS Tycoon Report 103-94, Fachbereich
Informatik, Universitiit Hamburg, Germany,
March 1994.

[GMS87] H. Garcia-Molina and I<. Salem. Sagas. In
Proceedings of the ACM-SIGMOD Interna-
tional Conference on Management of Data,
San Francisco, California, pages 249-259, May
1987.

[GR93] J. Gray and A. Reuter. Transaction Process-
ing - Concepts and Techniques. The Morgan
Kaufmann Series in Data Management Sys-
tems. Morgan Kaufmann Publishers, 1993.

[Mat931 F. Matthes. Persistente Objektsysteme: In-
tegrierte Datenbankentwicklung und Program-
merstellung. Springer-Verlag, 1993. (In Ger-
man.).

[MMS92] F. Matthes, R. Miiller, and J.W. Schmidt.
Object Stores as Servers in Persistent, Pro-
gramming Environments - The P-Quest Ex-
perience. FIDE Technical Report Series
FIDE/92/48, FIDE Project Coordinator, De-
partment of Computing Sciences, University of
Glasgow, Glasgow G128QQ, July 1992.

[MS911 F. Matthes and J.W. Schmidt. Bulk Types:
Built-In or Add-On? In Database Program-
ming Languages: Bulk Types and Persistent
Data. Morgan Kaufmann Publishers, Septem-
ber 1991.

[MS921 F. Matthes and J.W. Schmidt. Definition of
the Tycoon Language TL - A Preliminary
Report. Informatik Fachbericht FBI-HH-B-
160/92, Fachbereich Informatik, Universitit
Hamburg, Germany, November 1992.

[MS931 F. Matt.hes and J.W. Schmidt. System Con-
struction in the Tycoon Environment: Ar-
chitectures, Interfaces and Gateways. In
P.P. Spies, editor, Proceedings of Euro-Arch’93
Congress, pages 301-317. Springer-Verlag, Oc-
tober 1993.

[Nel91] G. Nelson, editor. Systems programming with
Modula-3. Series in innovative technology.
Prentice Hall, Englewood Cliffs, New Jersey,
1991.

[OSF93] OSF. OSF DCE Administration Guide - Core
Components. Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

[Plo81] G.D. Plotkin. A structural appraoch to oper-
ational semantics. DIAMI FN 19, Computer
Science Department, Aarhus University, 1981.

[POS90] Portable Operating System Interface for Com-
puter Environments (POSIX). Federal infor-
mation processing standards publication NBS
FIPS-PUB-151-1, National Bureau of Stan-
dards, 1990.

[RCS93] J.E. Richardson, M. J. Carey, and D.T Schuh.
The design of the E Programming Lan-
guage. AClM Transactions on Programming
Languages and Systems, 15(3):494-534, July
1993.

[Reu89] A. Reuter. ConTracts: A Means for Extend-
ing Control Beyond Transaction Boundaries.
In Third International Workshop on High Per-
formance Transaction Systems, 1989.

[SM93] J.W. Schmidt and F. Matthes. Lean Languages
and Models: Towards an Imeroperable Kernel
for Persistent Object Systems. In Proceedings
of the IEEE International Workshop on Re-
search Issues in Data Engineering, pages 2-16,
April 1993.

[SM94] J.W. Schmidt and F. Matthes. The DBPL
Project: Advances in hfodular Database Pro-
gramming. (to appear in Jounal ‘Information
Systems’), 1994.

[SMRt93] I<. Subieta, F. Matthes, A. Rudloff, J.W.
Schmidt, and I. Wetzel. Viewers: A Data-
World Analogue of Procedure Calls. In Pro-
ceedings of the Nineteenth International Con-
ference on Very Large Databases, Dublin, Ire-
land, August 1993.

[Str67] C. Strachey, editor. Fundamental concepts
in programming languages. Oxford University
Press, Oxford, 1967.

[Swe93] K.D. Swenson. Visual Support for Reengineer-
ing Work Processes. In Proceedings of the Con
ference on Organitutional Computing Systems,
COOCSW. ACM Press, 1993.

[Tur93] K. Turner, editor. Using Formal Description
Techniques, An Introduction to Estelle, Lotos
and SDL. Wiley series in communication and
distributed systems. John Wiley & Sons, 1993.

414

