
Including Group-By in Query Optimization 

Surajit Chaudhuri Kyuseok Shim* 
Hewlett-Packard Laboratories 

Palo Alto, CA 94304 
chaudhuri@hpl.hp.com, shim@cs.umd.edu 

Abstract 

In existing relational database systems, processing 
of group-by and computation of aggregate func- 
tions are always postponed until all joins are per- 
formed. In this paper, we present transformations 
that make it possible to push group-by operation 
past one or more joins and can potentially reduce 
the cost of processing a query significantly. There- 
fore, the placement of group-by should be decided 
based on cost estimation. We explain how the tra- 
ditional System-R style optimizers can be modified 
by incorporating the greedy conservative heuristic 
that we developed. We prove that applications of 
greedy conservative heuristic produce plans that 
are better (or no worse) than the plans gener- 
ated by a traditional optimizer. Our experimental 
study shows that the extent of improvement in 
the quality of plans is significant with only a mod- 
est increase in optimization cost. Our technique 
also applies to optimization of Select Distinct 
queries by pushing down duplicate elimination in 
a cost-based fashion. 

1 Introduction 

Decision-support systems use the SQL operation of 
group-by and aggregate functions extensively in for- 
mulating queries. For example, queries that create 
summary data are of great importance in data ware- 
house applications. These queries partition data in 

*Work done while the author was visiting Hewlett-Packard 
Laboratories. Author’s current address: Division of Research 
and Statistics, Federal Reserve Board, Washington, D.C. 20551. 

Permission to copy without fee all or part of this mat&al is 
granted provided that the copies aTe not made OT distributed fOT 

direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appea+, and notice ia 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT to republish, requites a fee 
and/or special permission from the Endowment. 

Proceedings of the 20th VLDB Conference 
Santiago, Chile, 1994 

several groups (e.g., in business sectors) and aggregate 
on some attributes (e.g., sum of total sales). A recent 
study of customer queries in DB2 [TM911 and other 
surveys [LCW93] h ave found that the group-by con- 
struct occurs in a large fraction of SQL queries used 
in decision-support applications. Therefore, efficient 
processing and optimization of queries with group-by 
and aggregation are of significant importance. Unfortu- 
nately, this problem has so far received little attention. 
For a single-block SQL query, the group-by operator 
is traditionally executed after all the joins have been 
processed. Such “two-phase” execution of aggregate 
queries is a consequence of the fact that the optimizers 
concentrate on selection, projection and join operators 
only. Conventional relational optimizers do not exploit 
the knowledge about the group-by clause in a query, 
beyond including the grouping columns in the list of 
interesting orders during join enumeration (discussed 
in Section 4). In this paper, we present significant new 
techniques for processing and optimization of queries 
with group-by. 

1.1 Motivating Application 

Our examples are taken from a data warehouse appli- 
cation that analyzes trends in order placement. We 
have simplified the presentation for ease of exposition. 
A company has a set of business divisions. Each di- 
vision belongs to a sector. Each product belongs to a 
division. For a given product, there is a fixed process- 
ing overhead for every order. An order is placed by a 
dealer. For every order, the name of the product and 
the amount and the date of sale are registered. Finally, 
for every dealer, the state and the street address are 
recorded. Thus, the relations and the attributes in the 
schema are: 

Division(divid, sectorid) 
Product(prodid, overhead, divid) 
Order(orderid, prodid, dealerid, amount, date) 
Dealer(dealerid, state, address) 

354 



1.2 Transformations 

We make the key observation that since a group-by re- 
duces the cardinality of a relation, an early evaluation 
of group-by could result in potential saving in the costs 
of the subsequent joins. We present an example that 
illustrates a transformation based on the above obser- 
vation. An appropriate application of such a transfor- 
mation could result in plans that are superior to the 
plans produced by conventional optimizers by an order 
of magnitude or more. 

Example 1.1: Let us consider the query that com- 
putes the total sales for each sector of the company. 
Traditionally, this query is computed by taking the 
join among Division, Product and Order, subse- 
quently doing a group-by on sectorid and computing 
Sum(amount.). However, the following alternative plan 
is possible. First, we group-by the Order relation on 
the attribute prodid before joining the relation with 
Product. In other words, we first compute the total 
sales for each product before the join. If each prod- 
uct has a large number of orders, then the above step 
may lead to a significant reduction in the size of the 
relation and hence in the cost of the subsequent join 
with Product. Next, we can group-by the resulting re- 
lation on divid. Intuitively, this computes the total 
sales achieved by each division. Finally, we join the 
resulting relation with Division and do a (residual) 
group-by on sectorid. I 

In the above example, a single group-by in the tra- 
ditional execution tree is replaced by multiple group- 
by operators in an equivalent execution plan and the 
grouping is done in stages, interleaved with join. In this 
paper, we will present other transformations as well. A 
simpler case of transformation is where the group-by 
operator in the given query is moved past joins, but is 
not broken up in stages. In such cases, the execution 
plan contains only one group-by but there are multi- 
ple alternatives in the execution plan where it may be 
placed. Furthermore, by maintaining the count of the 
tuples that were in the coalesced group, we can push 
down the group-by when neither of the above transfor- 
mations apply. We will discuss such generalized trans- 
formations as well. 

1.3 Optimization 

The transformations that push down the group-by op- 
erator past joins must be judiciously applied depending 
on the query and the database. The following exam- 
ple shows that such transformations cannot be used 
blindly. 

Example 1.2 : Consider Example 1.1 again. As- 
sume that every product has a large number of 

orders and each division markets many products. 
For such statistics, the ordering of the joins in 
the traditional plan could be (from left to right) 
(Division W Product) W Order. The alternative exe 
cution plan suggested in Example 1.2 is attractive for 
such a database since the early group-by operations 
could result in a significant reduction in cardinality 
of the relations. However, the join ordering in the al- 
ternative plan is different from that in the traditional 
plan. In the former, the Order relation, after group-by, 
joins with Product. Subsequently, the resulting rela- 
tion (possibly after another group-by) is joined with 
Division. This shows that the decision to push down 
group-by operations influences the join order. Also, an 
early application of a group-by operator is not always 
optimal. Thus, if there are only a few orders for every 
product and each division markets a few products only, 
then the alternative plan could perform worse than the 
traditional plan. I 

The optimizer needs to identify where it can COT- 
rectly place a group-by operator that can be evaluated 
early. Moreover, as the above example shows, its deci- 
sion whether or not to push the group-by operator past 
the joins must be cost-based. Since the transformations 
affect the ordering of joins, their applications need to 
be considered in conjunction with the task of choosing 
a join order. 

Since the optimization of queries with group-by can- 
not be treated in isolation, it is imperative that we 
incorporate our techniques in the framework of con- 
ventional optimizers. The System R style optimization 
algorithm [S*79] is used in commercial systems and so 
we will use that as the prototypical conventional op- 
timizer. Integration of our optimization ideas in the 
conventional optimizer raises the following two issues. 
First, what effect does it have on the size of the exe- 
cution space? Next, how do we extend the search al- 
gorithm, taking into account the trade-off between cost 
of optimization and the improvement in the quality of 
plans? 

We note that duplicate elimination can be viewed as 
a special case of group-by where no aggregates are com- 
puted and the group-by is on all columns of the projec- 
tion list. It has been recognized [DGK82, PHH92] that 
pushing down duplicate elimination past join could re- 
sult in saving the cost of processing Select Distinct 
queries for Select-Project-Join expressions. However, 
as in pushing down group-by, the decision to push 
down duplicate elimination interacts with the order- 
ing of joins. Therefore, our optimization algorithm 
for group-by applies to the problem of placing dupli- 
cate elimination operators in the execution plans for 
Select Distinct queries that may not even have ex- 
plicit group-by clauses. 

355 



1.4 Related Work 

In a recent paper pL93], Yan and Larson identified a 
transformation that enables pushing the group-by past 
joins. Their approach is based on deriving two queries, 
one with and the other without a group-by clause, from 
the given SQL query. The result of the given query is 
obtained by joining the two queries so formed. Thus, 
in their approach, given a query, there is a unique al- 
ternate placement for the group-by operator. Observe 
that the transformation reduces the space of choices 
for join ordering since the ordering is considered only 
within each query. Our transformations vastly general- 
ize their proposal and also avoids the problem of the re- 
duced search space for join ordering. For example, the 
alternative execution suggested in Example 1.1 cannot 
be obtained by transformations in pL93]. 

Prior work on group-by has addressed the problem 
of pipelining group-by and aggregation with join [D87, 
K182b] as well use of group-by to flatten nested SQL 
queries [K82, D87, G87, M92]. But, these problems are 
orthogonal to the problem of optimizing queries con- 
taining group-by that we are addressing in this paper. 

1.5 Outline 

Section 2 discusses the preliminary concepts and as- 
sumptions. In Section 3, we define the proposed trans- 
formations. Section 4 is devoted to the optimization 
algorithm. In Section 5, we discuss the experimental 
results using our implementation of the optimizer. The 
results in this section demonstrate that incorporating 
the transformations in the traditional cost-based opti- 
mizer is practical and results in significant improvement 
in the quality of the plan produced. 

2 Preliminaries and Notation 

2.1 Query 

We will follow the operational semantics associated 
with SQL queries [DD93, ISO92]. We assume that the 
query is a single block SQL query, as below. 

Select All <columnlist> AGGl(bl)..AGGn(bn) 
From <tablelist> 
Where condl And cond2 . . . And condn 
Group By coll,..colj 

The WHERE clause of the query is a conjunction of simple 
predicates. SQL semantics require that <columnlist> 
must be among ~011,. . co1 j . In the above notation, 
AGGl. .AGGn represent built-in SQL aggregate functions. 
In this paper, we will not be discussing the cases where 
there is a HAVIBG and/or an OBBBB BY clause in the 
query. We will also assume that there are no nulls in 
the database. These extensions are addressed in [CS94]. 

We refer to columns in {bl, ..bn} as the aggregating 
columns of the query. The columns in (~011, ..colj} 

are called grouping columns of the query. The func- 
tions {AGGI, ..AGGn} are called the aggregating func- 
tions of the query. For the purposes of this paper, we 
will assume that every aggregate function has one of 
the following forms: Sum(colname), Hax(colname) or 
Min(colname). Thus, we have excluded Avg and Count 
as well as cases where the aggregate functions apply on 
columns with the qualifier Distinct. In Section 3.4, 
we will discuss extensions of our techniques. 

2.2 Extended Annotated Join Trees 

An execution plan for a query specifies choice of access 
methods for each relation and an ordering of joins in 
the query. Traditionally, such an execution plan is rep- 
resented syntactically as an annotated join tree [S*79] 
where the root is a group-by operation and each leaf 
node is a scan operation. An internal node represents 
a join operation. The annotations of a join node in- 
clude the choice of the join method, as well as the se- 
lection conditions and the list of projection attributes. 
We assume that the selection conditions are evaluated 
and projections are applied as early as possible. The 
optimization problem is to cho 
from its execution space. 

T 
e a plan of least cost 

For optimization efficiency, 
the execution space is often restricted to be the class 
of left-deep join trees. These are annotated join trees 
where the right child of every internal node is a leaf. 

The transformations that we propose introduce 
group-by operators as internal nodes. Therefore, we 
define extended annotated join trees which are anno- 
tated join trees except that a group-by may also occur 
as an internal node. Likewise, we can define extended 
left-deep join trees. These are trees subject to the same 
restrictions as the traditional left-deep join trees. For 
example, in Figure 1, tree (a) denotes a left-deep join 
tree, whereas trees (b) and (c) are extended left-deep 
join trees since the group-by occurs as an internal node 
in these trees. Finally, note that we mark the scan 
nodes by the name of the relation. 

2.3 Group-By as an Operator 

We assume that a group-by operator in an extended 
join tree is specified using the following annotations: 
(a) Grouping Columns (b) Aggregating Columns. The 
meaning of these annotations are analogous to the cor- 
responding properties for the query (See Section 2.1). 
In reality, we need somewhat more elaborate annota- 
tions, including aggregating functions, but such details 
are not germane to our discussion here. We consider the 
question of determining the annotations of a group-by 
node if we place it immediately above a join or a scan 
node n. 

Definition 2.1: Join columns of a node n are columns 
of n that participate in join predicates that are evalu- 

356 



ated at ancestor nodes of n. Required columns of a node 
n are its join columns and the grouping columns of the 
query. I 

Definition 2.2: Candidate aggregating columns of a 
node n are columns of n which are aggregating columns 
of the query but are not among required columns of the 
node. 1 

Observe that the columns of node n that are needed 
for subsequent processing are among required columns 
and candidate aggregating columns. In other words, 
these are the only columns that will be retained af- 
ter projection is applied at node n. Definition 2.2 
has an important subtlety. It excludes aggregating 
columns that will participate in future join predicates 
(and therefore, occur among required columns). Such 
columns can not be aggregated at node n, but must be 
retained until the join predicates are evaluated. 

The annotations of a group-by node that is placed 
above a join or a scan node n will be defined as (1) The 
set of grouping columns is the set of required columns 
of n. (2) The set of aggregating columns is the set 
of candidate aggregating columns of n. Thus, given a 
node n, the specification of the group-by node that may 
be placed immediately above it is unique. Note that 
the annotations are such that all columns that can be 
correctly aggregated immediately after the node n are 
aggregated by the group-by following n. 

Example 2.3: Let us consider tree (a) in Figure 1. 
The required columns of the scan node for Order 
are { dealerid, prodid}. The candidate aggregating 
column of the scan node for Order is amount. In- 
deed, tree (b) shows an extended execution tree where 
a group-by node with the above specifications has 
been placed above Order. Consider a variant of the 
query in tree (a) with the added selection condition 
Order.amount > Product.overhead. In such a case, 
the column amount of Order is among the required 
columns and cannot be aggregated (unlike in tree (b)) 
until the join with Product is completed. 1 

Several implementations of group-by are possible. 
For example, a group-by may be implemented by sort- 
ing the data on the grouping columns of the group-by 
node. Such an implementation is particularly useful 
if order-by is used in the SQL query in conjunction 
with group-by. Another popular alternative is based 
on hashing where the data stream is hashed on the 
grouping columns of the operator. Subsequently, the 
data is sorted within each bucket. Such an implemen- 
tation ensures grouping but no ordering on the data. 
Also, scan and group-by operations can be combined 
by using index structures. A detailed discussion ap- 
pears in [CS94]. 

2.4 Duplicate Elimination as an Operator 

Duplicate elimination operation may be pushed down 
to any node of the annotated join trees. However, the 
challenge is to decide on applications of duplicate elim- 
ination in a cost-based way. Consider Select-Project- 
Join expressions that have the following form (note 
that we do not require such queries to have a group- 
by clause). 

Select Distinct <columnlist> 
From <tablelist> 
Where condl..condn 

We observe that duplicate elimination is a spe- 
cial case of a group-by operator with no aggregating 
columns and columns in <columnlist> as its grouping 
columns. Therefore, optimization techniques developed 
in this paper apply directly for cost-based application 
of duplicate elimination. We refer the reader to [CS94] 
for further details. 

3 Transformation of Annotated Trees 

We say that two annotated join trees are equivalent for 
a given schema if they result in the same sets of an- 
swers over every database. In this section, we present 
transformations that generate an equivalent extended 
left-deep tree from a given left-deep tree. We show 
three transformations of increasing generality. In the 
first transformation, the extended left-deep tree is ob- 
tained by simply moving the group-by operator from 
the root to an internal node. In the second transfor- 
mation, the single group-by in the left-deep tree is re- 
placed by multiple group-by operators in the extended 
left-deep tree. The final transformation generalizes the 
previous transformations by maintaining the count of 
the tuples in the groups that are coalesced. 

3.1 Invariant Grouping 

The intuition behind the invariant grouping transfor- 
mation is to identify one or more nodes n on the given 
left-deep tree such that we can obtain an equivalent ex- 
tended left-deep tree from the given left-deep tree by 
moving the group-by operator to just above the node 
n. We call this transformation invariant since the anno- 
tations of the group-by operator. in the given left-deep 
tree are not modified by the transformation. 

We observe that in the traditional left-deep tree, the 
grouping columns and the aggregating columns of the 
group-by operator are the grouping columns and ag- 
gregating columns of the query respectively. Therefore, 
from Section 2.3, it follows that for this group-by op- 
erator to be placed immediately above a scan or a join 
node n, the candidate aggregating columns of n and the 
required columns of n must be the aggregating columns 

357 



compute nml(amolmt) Join Join 
Group By dealerid, pmdid 

I 
A A 

foreign key Join Product compute. sum(amolmt) PKxhlct 

joTA 
A 

Group By dealerid, pmdid 

compute alun(aInouot) Deala I 
Join Product Group By dealerid, pmdid Join 

A I A 
order DC?& order order Dealer 

(a) Plan 1 (b) Plan 2 (c) Plan 3 

Figure 1: Invariant Grouping Transformation 
of the query and the grouping columns of the query re- 
spectively. In that case, any two tuples that belong 
to different groups in an early evaluation of the group- 
by, must also belong to different groups in the answer 
as well. However, to ensure equivalence to the given 
left-deep tree, the subsequent joins should not result in 
more than one answer tuples that belong to the same 
group and need to be coalesced. The above condition is 
satisfied if the joins subsequent to the group-by are on 
columns that are foreign keys, as explained below. A 
foreign key can join with at most one tuple in the refer- 
enced relation and therefore contributes to at most one 
tuple in the answer. Therefore, if all joins subsequent 
to group-by are on foreign keys, then for every group 
formed by the early group-by, either every tuple that 
were in that group fails to produce any answer tuples, or 
every tuple produces exactly one answer tuple. Thus, 
the subsequent joins do not result in multiple tuples 
belonging to the same group in the answer relation and 
the extended annotated join tree is equivalent to the 
given left-deep tree. The following definition identifies 
such nodes n that have the invariant grouping property. 

Definition 3.1: A node n of a given left-deep tree has 
the invariant grouping property if the following condi- 
tions are true: 

1. Every aggregating column of the query is a candi- 
date aggregating column of n. 

2. Every join column of n is also a grouping column 
of the query. 

3. For every join-node that is an ancestor of n, the 
join is an equijoin predicate on a foreign key col- 
umn of n. 

Theorem 3.2: If a node n in a lefl-deep tree ‘T has 
the invariant grouping property, then the extended left- 
deep tree T’obtained by moving the group-by node in I 
as the parent of n is equivalent to T. 

From Definition 3.1, it follows that if a node n in a 
left-deep tree has the invariant grouping property, so 
do its ancestors. In other words, nodes that have the 

invariant grouping property form a chain and an equiv- 
alent extended annotated join tree may be obtained by 
moving the group-by operator to any one of the nodes 
in that chain. This observation is significant from the 
point of view of execution space of the optimizer. Fi- 
nally, note that placing a group-by at more than one 
nodes with the invariant grouping property is compu- 
tationally redundant. 

Example 3.3: Consider the query that computes for 
each dealer in California and each product from 
Telecom division, the dollar value of the orders placed 
last month. Tree (a) in Figure 1 is a left-deep join 
tree for this query. We have not shown the predi- 
cates in the figure. Intuitively, the first join checks 
whether the dealer is in California and the second 
join checks whether the divid is Telecom. We observe 
that for the node Order in tree (a) the required columns 
({dealerid, prodid}) are the grouping columns of the 
query, the candidate aggregate column ({amount}) is 
the aggregating column of the query and the future 
join predicates are equi-join on foreign keys (dealerid, 
prodid respectively). Therefore, Order has the invari- 
ant grouping property and so does its ancest 

P 

rs. From 
Theorem 3.2, it follows that tree (b) and t ee (c) in 
Figure 1 are equivalent to tree (a). Intuitively, tree (b) 
corresponds to the alternative execution plan where for 
every product and every dealer, the sum of the orders is 
computed. Next, by joining the grouped relation with 
Dealer and Product, we retain only those groups that 
correspond to dealers in California and products that 
are marketed by Telecom division respectively. 1 

3.2 Simple Coalescing Grouping 

The simplicity of invariant grouping transformation is 
remarkable since it enables us to move down the group- 
by operator without any modification to the annota- 
tions of the operator. However, applicability of invari- 
ant grouping requires satisfying conditions in Defini- 
tion 3.1. Simple coalescing grouping generalizes invari- 
ant grouping by relaxing these conditions. 

Like invariant grouping, simple coalescing grouping 
property is also useful for performing early group-by, 

358 



compute slml(amolmt) 
Group By sectorid 

I 
IOiO 

A 
JOiU Division 

/&A 
Product 

~putenrmo 

Group By sectorid 
I 

JOiO 

A 
Compuk .m(amount) Division 

Group By diiid 
I 

JOh 

A 
cInnpukaum(amolmt) Product 

Group By pmdid 

I 
Grdcr 

compute &U(amolmt) 
Group By sectorid 

I 
JOin 

A 
JOin Diviiion 

A 
Gmymksm(amomt) Roduct 

Group By prodid 
I 

or&r 

(a) Plan 1 @)aaz 

Figure 2: Simple Coalescing Grouping 
but may require an additional group-by subsequently 
that coalesces multiple groups. Thus, as a consequence 
of application of simple coalescing, multiple group-by 
operators may replace the single group-by in a left-deep 
tree to yield an equivalent extended left-deep tree. As 
mentioned in the introduction, such a transformation 
could help obtain an execution plan that is superior to 
a plan produced by a traditional optimizer by an order 
of magnitude or more. 

(c) Plan 3 

gating columns of the query are candidate aggregating 
columns of the node n. I 

It follows that if a node n has the simple coalesc- 
ing grouping property, then so does all its ancestors 
in the left-deep join tree. The following theorem says 
that placing group-by operators on one or more nodes 
along a chain of nodes with simple coalescing group- 
ing property creates an extended left-deep tree which 
is equivalent to the given left-deep tree. Let us begin by considering the possible effect of 

an early group-by on a node in an execution tree that 
does not satisfy condition (2) of Definition 3.1. In such 
a case, the tuple corresponding to the coalesced group 
may result in more than one tuples in the output rela- 
tion that agree on the grouping columns of the query. 
For example, if g is the grouping column of the query 
but if (g, g’) are the grouping columns of the node n, 
then, in the final result, all groups that agree on the 
same value of g must be coalesced. The effect of relax- 
ing condition (3) of Definition 3.1 is similar. Therefore, 
to push down group-by when conditions (2) or (3) of 
Definition 3.1 is not true, we must be able to subse- 
quently coalesce two groups that agree on the grouping 
columns. Fortunately, for the built-in SQL aggregate 
functions Agg (e.g., Sum) that we are considering (See 
Section 2.1), an aggregate over a bag of tuples may be 
computed from the aggregates computed from parti- 
tions of the bag:’ 

Ads u S’> = Agd WdS), AgdS’)N (1) 

where S and S’ are arbitrary bags and U denotes union 
of the bags. Thus, two groups can be coalesced by an- 
other application of group-by. We now formally define 
the property of simple coalescing grouping of a node in 
a left-deep tree. 

Definition 3.4: Given a left-deep tree, a node n has 
the simple coalescing grouping property if all aggre- 

Theorem 3.5: If a node n in a left-deep tree ‘T has the 
simple coalescing grouping property, then the extended 
lefl-deep tree 7’ obtained from I by adding one or more 
group-by operator immediately above n or its ancestors 
is equivalent to T. 

Thus, the theorem provides the optimizer with op- 
portunities for alternate placements of the group-by op- 
erators. Notice that the extended left-deep tree con- 
tains the group-by node that was present in the given 
left-deep tree. Therefore, additional group-by nodes 
along the chain are semantically redundant. However, 
in contrast to invariant grouping, multiple applications 
of the group-by operator along a chain of nodes are not 
computationally redundant but results in “stagewise” 
grouping, as the following example illustrates. 

Example 3.6: Let us reconsider Example 1.1 where 
the grouping and aggregation were done in a “stage- 
wise* fashion. In Figure 2, the node Order does not 
satisfy the invariant grouping property since it does 
not have the column sectorid. . However, since the 
aggregating column of the query (amount) is also the 
candidate aggregating column of Order, it does sat- 
isfy the simple coalescing grouping property. From 
Theorem 3.5, it follows that tree (b) is equivalent to 
tree (a). Observe that the multiple applications of 
group-by are not computationally redundant. The suc- 
cessive group-by operators compute the sum of orders 

359 



for each product, division and sector respectively. No- 
tice that tree (c) provides a variant where no group-by 
node is placed following join with Product. However, 
tree (c) is equivalent to tree (a) as well. 1 

A node with the invariant grouping property is a spe- 
cial case of a node with the simple coalescing grouping 
property. Therefore, if we can recognize that a group- 
by operator introduced by a simple coalescing transfor- 
mation is placed at a node with the invariant grouping 
property, we know that all subsequent group-by nodes, 
if any, are computationally redundant. 

3.3 Generalized Coalescing Grouping 

The scope of early grouping can be further extended if 
we do not require that all aggregating columns of the 
query are present in the node where an early group-by 
operator is placed. 

Example 3.7: Let us consider the query that com- 
putes for every product, the overhead expenses incurred 
by that product due to orders in the last month. The 
traditional plan is obtained by taking the join between 
Order and Product. Subsequently, the result relation is 
grouped on prodid and the aggregate Sum(overhead) 
is computed. Intuitively, another alternative plan is to 
count the number of orders for each product and to 
multiply that number by overhead to obtain the total 
overhead for that product. Thus, we can do a group- 
by on the Order relation with prodid as the grouping 
column before taking the join with Product. The total 
overhead for sales of a prodid can be computed dur- 
ing the join by multiplying the the value of overhead 
with the number of Order tuples for that prodid that 
were coalesced into a single tuple by the application of 
group-by to Order. Note that Order does not satisfy 
the simple coalescing grouping property since the ag- 
gregating column of the query is overhead, which is not 
among the columns of Order. This example represents 
a significant family of queries where the referencing re- 
lation (Order) has a foreign key that connects it to the 
referenced relation and we aggregate on an attribute of 
the latter (Product). We refer to the such queries as 
foreign relation’aggregate queries. I 

To get an informal understanding of generalized coa- 
lescing, assume that the traditional plan is to apply an 
aggregate function Agg function on column S.a after 
obtaining the result of R W S. However, we can group 
the relation R on its join columns to obtain the relation 
RI and then join it with S. Assume that a tuple s of S 
joins with a tuple r of R’ that was obtained by coalesc- 
ing N tuples of R. For simplicity, assume that r is the 
only tuple s joins with. In that case, the function Agg 
needs to be applied to the bag consisting of N copies of 
the tuple s (denoted Ns). Fortunately, for SQL built-in 

functions, the result of Agg(Ns) can be derived from 
the result of Agg({s}) as the following identities show: 

Hin(Ms) = s, Hax(Hs) = s, Avg(ls) = s 
Sum(r!h) = 19*s, collnt(*)(as) = H 

Thus, by keeping the count N of the coalesced group, 
and using the identity, the result of aggregation over 
the coalesced group can be derived. We now present a 
formal account of generalized coalescing property. The 
transformation is applicable if every aggregate function 
Agg in the query has the property that there is a func- 
tion f such that Agg(Ns) = f(n, s). 

Our proposal for supporting generalized coalescing 
requires extensions to the group-by and join operations, 
as discussed below. 

General Group-By: This is the augmented group- 
by operator, which in addition to grouping also 
ensures that the output stream has a special at- 
tribute Group-Count that carries the size of each 
coalesced group in the data stream. If the data 
stream already has a Group-Count attribute, then 
the values in that column are summed for each co- 
alesced group. 

Aggregate Join: This is the same as the tradi- 
tional join, except that it also handles a join with 
a stream that has the Group-Count attribute by 
using the identities on aggregates listed above. 

Example 3.8: Example 3.7 illustrates a generalized 
coalescing transformation. In the second alternative 
plan, the group-by on Order that precedes the join 
with Product is a general group-by operator and in- 
troduces a Group-Count field for each coalesced group. 
Thus, if a certain product PO01 has 4 orders, then the 
Group-Count of the coalesced group of tuples in Order 
for PO01 is 4. The join between Order and Product is 
an aggregate join since it applies the identity Suzr(lpo) 
= II * o where II is the value of the Group-Count col- 
umn of the relation after performing a general group-by 
on Order and o is the value of overhead attribute. I 

Theorem 3.9 Given a left-deep tree 7, for every node 
n, an e&ended lefl-deep tree obtained from T by the 
following modijIcations is equivalent to T. 

l Replace every join node that is an ancestor ojn by 
an aggregate join. 

l Place one or more general group-by nodes imme- 
diately above (as the parent of) n or any of its 

ancestor nodes. 

The restriction that general group-by operators be 
placed only along a chain is not central and the general- 
ization of the above theorem is straight-forward [CS94]. 

360 



G 

R5 

At R4 

R3 

RI Rz 

(3 (a) 

With respect to Theorem 3.9, it is worth noting that 
in case the functions on aggregating columns that ap- 
pear in any ancestor of node n are among Max, Hin and 
Avg, then the column Group-Count is not necessary. 
Also, aggregate joins on the chain may degenerate to 
traditional joins when certain conditions are true. Gen- 
eralized coalescing is also useful in optimizing queries 
without group-by [CS94]. 

3.4 Discussion on Transformations 

We have presented transformations that are of increas- 
ing generality and complexity. The applicability of the 
transformations are indicated in Figure 3. The subtree 
marked A denotes that all aggregating columns of the 
query occur in that subtree. A node marked G repre- 
sents an application of group-by. Tree (a) represents 
a left-deep tree obtained by a traditional optimizer, 
tree (b) denotes a tree that has a chain of nodes (dotted 
circles) where invariant grouping property holds. The 
dotted circles indicate that the group-by operator may 
be placed in only one of the dotted nodes. Nodes in 
tree (c) have the simple coalescing property and thus 
multiple group-by operators may appear along a chain. 
Tree (d) shows that in a generalized coalescing trans- 
formation, a group-by operator may be placed even if 
not all aggregating columns of the query are candidate 
aggregating columns (e.g., in Figure 3). 

Note that although we have presented the transfor- 
mations in the context of left-deep trees, the transfor- 
mations apply to bushy annotated join trees with ob- 
vious generalizations [CS94]. 

In Section 2.1, we said that we are considering only 
the SQL built-in functions Max, Min and Sum. While all 
three transformations that we proposed apply for these 
aggregate functions, the generalized coalescing trans- 
formation also handles Avg and Count(*) correctly by 
using Group-Count. 

Let us also consider our earlier assumption that 
we require aggregates on columns to be qualified by 
All’ (e.g., Sum (All amount.)). This restriction is 
easily relaxed. First, note that the invariant group- 
ing transformation is applicable on aggregates quali- 

1 This is the default specification in SQL. 

Figure 3: Comparison of Transformations 
fied by Distinct as well. Next, for simple and gener- 
alized coalescing, if there are aggregates in the query 
with Distinct qualifiers, we can consider the Distinct 
columns as part of the grouping columns of the query 
from the point of view of our transformations. Thus, 
while aggregates on these columns are not computed 
during an early grouping, we can still use our transfor- 
mations for remaining aggregates that have the qualifier 
All. 

We note that an invocation of a group-by operator 
is redundant if the set of required columns functionally 
determines the rest of the columns. In such a case, each 
group is a singleton. This is an important case that the 
optimizer must recognize in order to avoid generating 
redundant alternatives. 

Finally, for a single block Select Distinct query 
without any group-by, the duplicate elimination oper- 
ator may be pushed down to all join and scan nodes 
and their applications are not computationally redun- 
dant. Thus, we model duplicate elimination as a simple 
coalescing transformation. The condition for simple co- 
alescing grouping property is trivially satisfied for such 
queries for all nodes in any left-deep tree since there 
are no aggregating columns. 

4 Optimization Algorithm 

The transformations of Section 3 translate an execu- 
tion tree into an equivalent extended execution tree. 
As Example 1.2 shows, the decision whether to apply a 
transformation or not must be made by the optimizer 
in a cost-based fashion. However, such choice also inter- 
acts with join ordering. Therefore, we need to consider 
what modifications are needed to the algorithm [S*79] 
that chooses an optimal join order. ,The algorithm de- 
scribed in this section incorporates the invariant group- 
ing and the simple coalescing transformations over ex- 
tended left-deep join trees. Extensions to incorporate 
generalized coalescing are described in [CS94]. 

4.1 Traditional Approach 

The aim of the optimizer is to produce an execu- 
tion plan of least cost from a given execution space. 
Traditionally, the execution space has been limited to 

361 



left-deep join trees (See Section 2.2) which correspond 
to linear orderings of joins. The well-known algo- 
rithm [S*79] to choose an optimal linear ordering of 
joins in the query uses dynamic programming. A query 
(say Q) is viewed as a set of relations (say, {Ri..&}) 
which are sequenced during optimization to yield a join 
order. The optimization algorithm proceeds stagewise, 
producing optimal plans for subqueries in each stage. 
Thus, for Q, at the ith stage (2 5 i 5 n), the opti- 
mizer produces optimal plans for all subqueries of Q 
of size i (i.e., subqueries that consist of join of i re- 
lations). Consider a subquery Q’ of size i + 1, The 
steps in the function Enumerate are followed to find its 
optimal plan. 

Function Enumerate 
l.forallRi,Sjs.t&‘=SjU{Rj}do 
2. Pj := joinPZan(optPlan(S~), Rj) 

3. end for 
4. ~ptPZan(Q’) := MinCostj (pj) 

In steps 1 and 2, all possible ways in which a plan for 
Q’ can be constructed by extending an optimal plan 
for a subquery of size i (i.e., Sj) are considered. Note 
that Rj is the remaining relation that occurs in Q’. 
The function joinPlan creates the plan for joining a re- 
lation with another intermediate (or a base) relation. 
Thus, access methods and choice of join algorithms are 
considered in joinPlan. In step 4, MinCost compares 
the plans constructed for Q’ and picks a plan with the 
least cost. It can be shown that the above algorithm 
is optimal with respect to the execution space of left- 
deep trees. We refer the reader to [S*79, GHK92] for 
more details. The soundness of the above enumeration 
algorithm relies on the cost model satisfying principle 
of optimality [CLRSO]. Thus, violation to the princi- 
ple of optimal&y requires further extensions. Such vi- 
olation can occur because presence of an appropriate 
order on relations can help reduce the cost of a sub- 
sequent sort-merge join since the sorting phase is not 
required. For example, consider the query {RI, R2, Rs} 
with predicates R1.a = R2.b and R2.b = R3.c. Let P 
be a suboptimal plan for {RI, R2) that is sorted on the 
join column b (e.g., sort-merge was the join method in 
P). Since b is al,so the join column in the subsequent 
join with R3, the ordering on P may lead to an opti- 
mal plan for {RI, R2, Ra). Thus, P is used to obtain 
an optimal plan for the query although it was not op- 
timal for the subquery. In order to take into account 
the violation of principle of optimality due to the ef- 
fect of ordering on cost, the notion of interesting orders 
was proposed in [S*79]. An order is interesting if it 
is on grouping or join columns of the query since such 
orders may be useful in a future join or a group-by op- 
eration. The only interesting orders that are generated 
are those that are due to choice of a join method (e.g., 
sort-merge) or existing physical access paths. Thus, an 

optimizer generates only a small number of interesting 
orders. Cost comparison takes place among plans with 
the same interesting orders. Since a suboptimal plan 
with an interesting order may result in a future opti- 
mal plan, an unique optimal plan for every generated 
interesting order is retained. Also, if some plan with 
an interesting order is cheaper than the plan with no 
interesting orders, then the latter is discarded. 

4.2 Execution Space of Extended Left Deep 
Trees 

In order to incorporate the transformations involving 
group-by, the optimizer considers the space of extended 
left-deep trees as its execution space where group-by as 
well as join may occur as internal nodes. Unfortunately, 
the resulting execution space is considerably larger than 
the traditional execution space of left-deep trees with 
interesting orders, for the following two reasons. 

First, In addition to ordering the joins, the optimizer 
must also decide the placement of group-by operators. 
As a consequence, two plans (extended left-deep trees) 
over the same set of relations may now differ not only in 
the interesting order, but also in the sequences of group- 
by operators that have been applied. For example, a 
plan for {Order,Product,Division} is incomparable 
to a plan obtained for the join between Division and 
the relation obtained by application of a group-by fol- 
lowing the join of Order and Product. Therefore, over 
the same set of relations and for the same interesting 
order, more than one optimal plans need to be stored. 
A better understanding of the space of alternative ex- 
ecutions can be gained by considering the representa- 
tion of plans. Unlike the traditional case, a query can 
no longer be viewed as a set of relations to be linearly 
ordered. However, simple coalescing transformations 
have the property that if more than one group-by op- 
erators are applied (with intervening join nodes) then 
the resulting relation is the same as obtained by ap- 
plying simply the last group-by operator2. Therefore, 
for optimization over extended left-deep trees, a query 
(or a subquery) can be viewed as a list (R, S) where R 
and S are sets of relations such that the last group-by 
operator was applied after the join of all relations in 
R and subsequently, the resulting relation was joined 
with all relations in the set S. A special case is (R, (}) 
where the group-by is applied after joining all relations 
in R. 

Next, the space of potential interesting orders is also 
much larger compared to the traditional case if group- 
by operators are implemented using sorting (see Sec- 
tion 2.2). Intuitively, it is because orders that reduce 
the cost include not only the orders useful for the re- 
maining join predicates and grouping columns of the 

2 Although the resulting relations are the same, the cost of the 
two plans may be different. 

362 



query, but also grouping columns (in all possible major 
to minor ordering) of possible group-by operators that 
may follow the subplan. To understand why that is so, 
let Gi and Gz be two group-by operators, implemented 
using sorting, that are applied one after another with 
intervening join operators that preserve the order cre- 
ated by Gi. If the choice of major to minor ordering 
of grouping columns for sorting in Gi is such that it 
ensures that the stream is also sorted on the grouping 
columns of Gz, then the cost of evaluating G2 is sim- 
ply that of coalescing and evaluating aggregates, and 
no sorting is needed to form groups. Thus, the space 
of all possible major to minor orderings of all possi- 
ble group-by operators is potentially large. These two 
factors make the cost of any simple-minded enumera- 
tion of extended left-deep join trees prohibitive. We 
defer a complete analysis of the effect of the above two 
factors on the size of the execution space to the full 
paper [CS94]. 

4.3 Greedy Conservative Heuristic 

The optimization technique that we propose is greedy in 
that it applies group-by if it yields a better plan locally. 
The technique is conservative from the point of view of 
the time it spends in optimizing a query. 

The greedy conservative heuristic places a group-by 
preceding a table scan or a join if and only if it results 
in a cheaper plan for that scan or join. In other words, 
we modify Step 2 in Enumerate to construct optimal 
plans for the following three cases and the plan with 
the least cost among them (for the same interesting or- 
der) is chosen: (a) (Sj, {Rj}), i.e., an application of a 
group-by to relation Sj prior to the join with Rj. (b) 
({Rj}, Sj), i.e., an application of a group-by operator 
on Rj prior to the join with Sj (c) Step 2 of Enumerate, 
i.e., no application of group-by at all, but simply tak- 
ing the join of Rj with Sj. (Incidentally, the optimizer 
has to check also whether plans (a) and (b) are seman- 
tically correct. For example, both (a) and (b) can not 
be simultaneously correct if only the simple coalescing 
transformation is used.) Observe that the above greedy 
strategy has a very significant payoff from the point of 
view of reducing optimization cost. By locally choos- 
ing between the use and nonuse of group-by, a query 
can be viewed as a set of relations for which there is 
a unique plan for every interesting order. This is no 
different from the traditional case! 

To complete our description of the optimization al- 
gorithm, we also need to specify what major to mi- 
nor orderings of grouping columns will be considered 
by the optimizer in alternatives (a) and (b) above if 
a sort-based implementation of group-by is used. In 
greedy conservative heuristic, we have chosen to gener- 
ate a single major to minor ordering for the group-by 
operator. The ordering is determined by the method 

used to join Rj and Sj: 

1. For sort-merge, choose a major to minor ordering 
that is same as that for the join node. 

2. Otherwise, if the group-by is on the outer relation 
of join, then choose grouping columns of the query 
to be the major sort columns. 

We consider (2) since many join methods (e.g., nested 
loop) preserve the ordering of the outer relation. If all 
subsequent joins preserve the order introduced by (2), 
then no sorting is needed in the remainder of query 
evaluation. If neither (1) nor (2) is true, then the choice 
of major to minor ordering may be determined by cost 
of sorting, or, in the absence of a detailed cost model, 
an arbitrary order is chosen. Our strategy for picking 
the major to minor ordering leads to very conservative 
increase in the number of interesting orders generated. 
Note that interesting orders in (1) are also generated 
by the traditional optimizer. Therefore, our optimizer 
may generate at most one additional interesting order 
only (if (2) is applicable). Thus, we have also avoided 
the problem of generating too many interesting orders. 

Example 4.1: Consider the following SQL query: 

Select Sum(R.a) 
From R,S,T 
Where R.b = S.b and S.c = T.c 
Group By R.d 

The simple coalescing transformation enables pushing 
group-by to the relation R prior to doing the scan with 
grouping columns {R.b, R.d}. While considering the join 
between R and S, the choice between evaluating or not 
evaluating an early group-by will be considered and 
the cheapest plan will be retained for joining with T. 
Let us now consider the plans that are generated by 
the greedy conservative heuristic while considering the 
join between R and S with an early group-by. Assume 
that nested loop and sort-merge are the only two meth- 
ods. In that case, we will consider the major to minor 
ordering (R.d, R.b) for nested loop and (R.b, R.d) 
for sort-merge. These will be the candidate plans with 
early group-by. I 

We have discussed how greedy conservative heuristic 
ensures that the search space is reasonable. In the fol- 
lowing section, we will present experimental study that 
indicates that the increase in the optimization cost is 
indeed modest. For a detailed analysis, see [CS94]. We 
now discuss two other important aspects. First, we ex- 
plain why for I/O-based cost models, the plan produced 
by greedy conservative is never more expensive than 
those obtained by using traditional algorithm. More- 
over, experimental results indicate that the extent of 
improvement in the quality of plans is significant. Next, 

363 



we show how we can integrate greedy heuristic with a 
System-R style optimizer. 

Optimality: While the formal treatment of optimal- 
ity results on greedy conservative heuristic appears 
in [CS94], we will sketch the intuitive proof why the 
plans obtained by greedy conservative are no worse 
than those obtained by the traditional optimization al- 
gorithm for cost models based on I/O cost. To be pre- 
cise, we can show the above result for cost models that 
satisfy the following property: 

l For the same interesting order, the cost of a group- 
by is a monotonic function of only the size of the 
relation to be grouped. 

There are two observations that hold the key to op- 
timality. First, by definition, the greedy conservative 
heuristic ensures that if we choose to do an early group- 
by, then the local cost of the application of group-by fol- 
lowed by the join (or scan) is no more than doing only 
a join. Next, application of a group-by never increases 
the size of the relation. Therefore, it follows from the 
assumption we have just made about the cost model 
that the greedy conservative heuristic never adds to the 
cost of the group-by at the final step (if any). Finally, 
note that the greedy conservative heuristic retains all 
the interesting orders generated by the traditional op- 
timizer. Therefore, the plan chosen by the greedy con- 
servative heuristic is never worse than the traditional 
plan. 

Rcsidual-qroupby sectaid 

Join_groupby prodid Division 
with mmhmount~ 

Figure 4: Implementation of Group-By 
Ease of Integration: For incorporating the greedy con- 
servative heuristic, we needed only modest extensions 
to our existing optimizer since the option of an early 
group-by can be considered in conjunction with choice 
of access methods and join algorithms. We view the 
group-by operator that precedes join as a new access 
path that needs to be considered. Thus, we model the 
join and the preceding group-by as a single operator 
Joingroupby. Such an operator will be considered 
during Step 2 of Enumerate. However, there may still 
need to be a Residualgroupby operator that succeeds 
all the join operators. Thus, the extended left-deep tree 
in Figure 2 (Plan 2) can be represented in terms of the 

above two operators as in Figure 4. The benefits of 
the above style of modeling is that the extensions are 
similar to that needed for adding alternative implemen- 
tations for join and scan. Finally, in order to predict the 
costs of alternatives correctly, the implementation de- 
tects cases where a group-by is redundant (Section 3.4) 
and cases where a set of group-by nodes introduced 
by simple coalescing satisfies invariant grouping (Sec- 
tion 3.2). 

4.4 Cost Models 

Note that the transformations presented in this paper 
are not dependent on the specificity of the cost model. 
Also, the only extension to the traditional cost model 
that we need is in estimating the number of tuples of 
the relation after a group-by. For a group-by with a 
single grouping column, the number of groups is equal 
to number of distinct values in that column. However, 
for multi-column group-by, we need to develop an esti- 
mate for the number of groups. Since we wanted to be 
conservative in pushing an early group-by, we adopted 
a cost model that discourages early grouping by pro- 
viding a guaranteed overestimation of the number of 
groups: 

l It is assumed that the grouping columns are in- 
dependent. The number of distinct values are es- 
timated to be the minimum of the following two 
quantities: (a) Number of tuples in the relation 
(b) Product of the number of unique values in the 
grouping columns. 

Any optimal plan obtained using this cost model can 
perform no worse than a traditional plan. Therefore, 
the choice of such a cost model is justified. However, 
by being less conservative, more realistic estimates of 
the number of groups are possible. An example of such 
a cost model is where we assume that the number of 
distinct values equals the maximum value of the cardi- 
nality among all the grouping columns. In other words, 
we assume that the columns have a “hierarchical” or- 
dering. 

5 Experimental Study 

In the last section, we have shown that the greedy 
conservative heuristic never does worse than the tra- 
ditional optimizer. In order to get a sense of how 
much better it does in terms of the quality of plans 
and what the corresponding optimization overhead is, 
we did an experimental study. We achieved statisti- 
cally significant improvement in the quality of plans 
with a modest increase in the optimization cost. The 
experiments were conducted using our current imple- 
mentation of the optimizer. The optimizer considers 
several join methods (nested-loops, merge-scan, and 

364 



Figure 5: Study of Performance Metrics 
simple and hybrid hash-join). A detailed description 
appears in [CS94]. 

5.1 Framework 

The conventional and the modified optimization algo- 
rithm were executed on queries with group-by clause 
consisting of equality joins. The sizes of these queries, 
which were generated randomly, ranged from one to 
six joins. Among all attributes participating in the 
query, 10% of attributes were chosen randomly and 
made either group-by attributes or aggregation at- 
tributes. At least one attribute was assigned as the 
grouping and another as the aggregation column of 
the query. We borrowed the experimental framework 
from [IK90, INSS92, K91] and we review some of the 
important details of that framework here. A randomly 
generated relation catalog where relation cardinalities 
ranged from 1000 to 100000 tuples was used. The num- 
ber of unique values in each column was between 10% to 
100% of the cardinality of that relation. Each relation 
had four attributes and one attribute was randomly 
chosen to be the primary key for each relation. Either 
a relation was physically sorted, or there was a @-tree 
or a hashing primary index on the key attribute. For 
each nonkey attribute, there was a 50% probability of 
having a secondary index on that attribute. In our 
experiment, only the cost for number of I/O (page) ac- 
cesses [CS94, IK90, K91] was accounted. 

5.2 Performance Metrics 

For each choice of the query size and the parameters of 
the experiment, we chose to report the following four 
quantities as, indexes of comparison of the quality of 
plans produced (Figure 5). 

The average ratio represents the average of the ra- 
tio of cost of the optimal plan produced by the tradi- 
tional optimizer and the cost of the plan obtained by 
our extended optimization algorithm. Thus, a factor 
1.37 indicates that on average, the plan produced by 
the traditional optimizer costs 37% more than the cost 
of the plan obtained from the modified optimizer. 

The % diflerence tells us how often the plan pro- 
duced by the modified optimizer was better than the 
plan produced by the traditional optimizer. Observe 

that our result of Section 4 assures us that the greedy 
conservative is never worse. 

The average ratio (diff) metric is similar to average 
ratio, except that we compute the average only over 
data points where the traditional and the modified al- 
gorithms differ. Intuitively, this metric represents the 
average extent of benefit when the modified optimizer 
produced a different plan. 

The mat ratio parameter measures the largest differ- 
ence between the optimal plan of the traditional opti- 
mizer and the modified algorithm. Thus, it is maximum 
value among the ratios of cost of optimal plans of the 
traditional to that of our modified algorithm. 

The other factor that we studied is the relative in- 
crease in the cost of optimization. For this comparison, 
we have presented two parameters: average number of 
plans stored in the traditional algorithm, and average 
number of more plans that were stored by the modified 
algorithm. 

5.3 Observations 

We generated queries from one to six joins with our ex- 
perimental set-up. For each kind, 1500 or more queries 
were generated. We ensured that the enough number 
of trials were carried out so that the average ratio pa- 
rameter was estimated with 5% error with a confidence 
of 95%. The following observations were made: 

(1) The average ratio and average ratio (diff) indi- 
cated that our plans were significantly better than the 
traditional algorithm. (2) The number of plans main- 
tained by the modified algorithm was modest. (3) Fi- 
nally, the results show that there is a significant benefit 
of incorporating the transformation even when we as- 
sumed the conservative cost model which discourages 
group-by. 

6 Conclusion 

In this paper, we have presented new transformations 
that make it possible to push group-by past join op- 
erations. The advantage of early group-by is possible 
reduction in the sizes of the relations. We have pre- 
sented three transformations of increasing generality 
and have shown their soundness. We observed that the 
proposed transformations must be applied in a cost- 

365 



based fashion and applications of such transformations 
may influence the join order. Therefore, we addressed 
the question of how the transformations can be incor- 
porated in System-R style dynamic programming algo- 
rithm, which is used widely in commercial optimizers. 
We proposed a greedy conservative heuristic that con- 
strains the search space while ensuring that the enu- 
meration based on the heuristic never arrives at a plan 
that is worse than the one produced by the traditional 
optimizer. Experimental results indicate that the plan 
chosen by our modified algorithm outperforms plans 
produced by the traditional optimizer without signifi- 
cant optimization overhead. Our solution also provides 
a simple optimization technique to push down dupli- 
cate elimination for Select Distinct queries and to 
ensure that the plans obtained by pushing down du- 
plicate elimination are no worse than the traditional 
plans. 

We have provided techniques to process and optimize 
single block queries with aggregates and grouping that 
are practical, easy to adopt and yet efficient. For the 
in-house data warehouse applications, such techniques 
helped processing of queries significantly. 

7 Acknowledgement 

The optimization and the processing issues in data- 
warehouse application were brought to our attention by 
Mark Sturdevant of Hewlett-Packard Corporate Data 
Management group. The discussions with and sugges 
tiona from Umesh Dayal were very useful. Thanks are 
due to Waqar Hasan, Ravi Krishnamurthy and Marie- 
Anne Neimat for their help. 

References 

[CLRSO] Cormen T., Leiserson C., Rivest R.L. Introduc- 
tion to Algorithms, MIT Press, 1990. 

[CS94] Chaudhuri S., Shim K. “The promise of Early 
Aggregation,” HPL Technical Report, 1994. 

[DD93] Date C. J., Darwen H. “A Guide to the SQL 
Standard: A User’s Guide,” Addison-Wesley, 
1993. 

[DGK82] DayaI U., Goodman N., Katz R. H., “An Ex- 
tended Relational Algebra with Control over Du- 
plicate Elimination,” Proc. of the First ACM 
Symposium on Principles of Database Systems, 
pp. 117-123, 1982. 

P871 DayaI U. “Of Nests and Trees: A Unified Ap- 
proach to Processing Queries that contain sub 
queries, aggregates and quantifiers,” in Proceed- 
ings of the 13th VLDB, Aug 1987. 

[GHK92] Ganguly S., Hasan W., Krishnamurthy R. 
“Query Optimization for Parallel Execution,” in 
Proceedings of the l99,2 ACM-SIGMOD Confer- 
ence on the Manage ment of Data. 

P871 Ganski R. A., Wong H. “Optimization of Nested 
Queries Revisited,” in Proceedings of 1987 ACM- 
SIGMOD Conference on Management of Data, 
San Francisco, May 1987. 

[INSS92] Ioannidis Y., Ng R., Shim K., SeIIis T., “Para- 
metric Query Optimization,” in Proceedings of 
the 18th International VLDB Conference, Van- 
couver, Canada, August 1992 

WOI Ioannidis Y., Kang Y., “Randomized Algorithms 
for Optimizing Large Join Queries,” in Proceed- 
ings of the 1990 ACM-SIGMOD Conference on 
the Management of Data, Atlantic City, NJ, May 
1990. 

[Is0921 ISO. Database Language SQL ISO/IEC, Docu- 
ment ISO/IEC 9075:1992. Also available as ANSI 
Document ANSI X3.135-1992. 

Wll Kw, Y., “Randomized Algorithms for Query 

W21 

[K182b] 

Optimization”, Ph.D. Thesis, University of Wis- 
consin, Madison, WI, April 1991. 

Kim W. “On Optimizing an SQL-like Nested 
Query,” in ACM Transactions on Database Sys- 
tems, 7(3):443-469, Sep 1982. 

Klug A. “Access Paths in the ABE Statistical 
Query Facility,” in Proceedings of 1982 ACM- 
SIGMOD Conference on the Management of 
Data. 

[LCW93] 

NJ21 

Lu H., Chan C. C., Wei K. K. “A Survey of Usage 
of SQL,” SIGMOD Record, Vol 22, No. 4, 1993. 

Murahkrishna M. “Improved Unnesting Algo- 
rithms for Join Aggregate SQL Queries,” in Pro- 
ceedings of the 18th VLDB, 1992. 

[PHH92] 

[s*79] 

Pirahesh H., HeIIerstein J. M., Hasan W. “Exten- 
sible/Rule Based Query Rewrite Optimization in 
Starburst,” in Proc. of the 1992 ACM SIGMOD 
Conference on Management of Data, June 1992. 

Sehnger P. G. et.aI. “Access Path Selection in 
a Relational Database Management” in Proc. of 
the ACM SIGMOD Conference on Management 
of Data, June 79, pp.23-34. 

[TM911 

w931 

Tsang A., Olschanowsky M. “A Study of 
Database 2 Customer Queries,” IBM Santa 
Teresa Laboratory, TR-03.413. 

Yan W. P., Larson P. A., “Performing Group-By 
before Join,” International Conference on Data 
Engineering, Feb. 1993, Houston. 

366 


