
RP* : A Family of Order-Preserving Scalable Distributed Data Structures 

Witold Litwin Marie-Anne Neimat 
univ. Paris 9 HP Laboratories 

v. HP Labs. k UC Berkeley Palo Alto CA 
wlitwin@cs.berkeley.edu neimat@hpl.hp.com 

Donovan Schneider 
HP Laboratories 

Palo Alto CA 
schneider@hpl.hp.com 

ABSTRACT 

Hash-based scalable distributed data structures (SDDSs), 
like LH* and DDH, for networks of intcmonnected 
ampllters (multicomputers) were shown to open new 
perspectives for fik management. We prcpose a family of 
ordered SDDSs, called P, providing for ordered and 
dynamic files on mutticomputers, and thus for more etlicknt 
pmeessing of range queries and of ordered traversak of files 
The basic algorithm termed RP*K builds the file with the 
same key space partitioning as a Etree, but avoids indexes 
through the use of multi&. The a&nithms, RP*c and 
RP*s enbance throughput for faster network adding the 
indexes on clients, or OII clients and sexve-rs, while eithe-r 
decmsing or avoiding multicast. Rpo files are shown highly 
efficient with access performance exceeding traditional files 
by an order of magnitude or two, an& for non-range queries 
very close to LH*. 

1. INTRODUCTION 

Increased research is being devoted to the use of mass 
produced PCs and WSs, intercomrected through high 
speed networks. The networks typically have bandwith of 
10 Mbis - 1 Gb/s : Ethernet, 100 Mb/s Ethernet, Token 
Ring, FFDI, ATM,... Such configurations are prevalent in 
many organizations. They typically consist of many 
computers, thousands in larger organizations. Terms are 
being coined for computers organized this way, e.g., 
multicomputer, network computer, and distributed 
memory [ILP93], [BZS93]. Cumulative processing and 
storage resources of multicomputers are impressive, and 
often exceed those of a supercomputer. HP Labs today 
has 1300 interconnected workstations with a total of 32 
GB of RAM for applications, and tembytes (TB) of disks. 
The UC Bakeley Soda Hall multicomputer should 
include 500 workstations, delivering 25 Gflops, 64 GB of 
RAM, and about 1 TB of disk storage [C94]. 

A fundamental component of a multicomputer will be 
data structures for files. Traditional data structures will 
not suffice, as multicomputers allow for distributed and 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or dist’buted fm 
direct commercial adwzntage, the VLDB copyright notice and the 
title of the publication and its date appear. and notice is given 
that copying is by permission of the Very Large Database 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 20th VLDB Conference 

Santiago, Chile, 1994 

parallel processing, distributed RAMS allow for very 
large files that otherwise had to be on disks, distributed 
disk files can be extremely large, and scalability is a 
basic requirement. Also, parallel data structures as 
defined for supercomputers will typically not be adequate 
[LNS93]. One class of data structures that is defmed 
specifically for multicomputers are Scalable Distributed 
Data Structures (SDDSs) [LNS93]. An SDDS stores data 
on some sites called servem, and is used from some sites 
called clients, basically distinct, but not necessarily. 
Clients typically retain some file access computation 
parameters, e.g., parameters of the actual dynamic 
function in LH* or DDH, but not the actual records 
[LNS93], [D93]. These parameters create the client’s 
image of the actual file. 

Every SDDS must respect three design requirements. 
First, no central directory is used for data addressing, to 
avoid a hot-spot. Next, a client image can be outdated, 
being updated only through messages, called Image 
Adjustment Messages @MS). These are sent only when 
a client makes au addressing error. A client autonomy is 
preserved in this way, which is a major requirement for 
multicomputers [G88a]. Finally, a client with an outdated 
image can send a key to an incorrect server, in which case 
the structure should deliver it to the right server, and 
trigger an IAM. 

Only hash-based SDDSs have been proposed: LH* 
[LNS93], [LNS93a], DDH [D93], and variants of LH* in 
[VBWY94] and [LNS94b] (except perhaps for just 
announced F(W94]). All generalize popular extensible 
hashing algorithms. A file can start on one computer and 
scale up to practically any number of computers, and any 
size. It can be manipulated by any number of distributed 
clients, and supports parallel queries. It was shown 
that such files can be much faster and larger than 
traditional files. 

Hashing is not order-preserving. If the file is to 
support range queries aud ordered traversals, then 
traditional ordered data structures, e.g., B-trees, are faster 
than traditional hashing structures. Ordered structures 
partition the range of keys in the file in such a way that a 
key and its successor are typically in the same bucket 
(page). A range query then needs to search only a small 
subset of the file, instead of typically all the hashed file. 
An ordered traversal visits each bucket (page) of the tile 
only once. 

Hash-based SDDSs are mom efficient than traditional 
hash files for range queries and general multikey queries, 

342 



through parallel processing [LNS93]. One can 
nevertheless still expect gains from an order-preserving 
SDDS. If a range query retrieves a hundred records, they 
could easily be in the same bucket in a large order- 
preserving SDDS, being then delivered with a single 
message. A hashed SDDS would scatter them into 
different buckets, requiring a hundred reply messages 
instead. Latency delays would make this delivery 
typically much longer than that of the single, although 
longer, message. 

We propose a family of order-preserving, range- 
partitioning, SDDSs called RP* (Range-Partitioning l ). 
It consists of three structures, called RP*n , RP*c and 
RP*s. Their mutual relationship is illustrated in Fig. 1. 

m*N creates the same range partitioning as a B+- 
tree, but without any index. This property is due to the 
use of multicast messages available on most local nets, 
ATMs, and on wireless nets. An RP*c file is an R& 
file plus indexes built on clients through IAMs. The 
indexes allow for point-to-point messaging of key 
searches, inserts and deletes, while multicast is used to 
resolve addressing errors. The major gain is improved 
throughput, especially on gigabit nets. Finally, RP*s adds 
indexes on the servers to further improve throughput. 
Every query can be processed using point-to-point 
messages only. 

As we show, the load factor of an RP* file is the same 
as for a B’ - tree under the same operations. The file can 
scale up to thousands of sites, allowing, for example, for 
a 32 GB RAM file on the HPL domain. Average 
messaging costs are minimal : one message per update, 
and two per key search. Elapsed times are on order of 
millisecond (ms) on a 10 Mb/s net, and under 100 ps on a 
1 Gb/s net, assuming a 100 MIPS CPU. Traditional files 
are not as large and fast, hence RP* schemes are highly 
promiSillg. 

With respect to related work, there was no proposal 
of distributed ordered file structure without an index. 
There were several proposals for parallel distributed B- 
trees, e.g., [MS90], [MS91], [JK93], but none defined an 
SDDS. The indexes existed only on the servers and 
would exhibit a much more limited scalability if applied 
to multicomputers. 

+ servers index cptimal multicast 

+ client index limited multicast 

No index all multicsst 

Fig. 1 Rp+ design tradsoffs 

Section 2 presents m*N, and Section 3 discusses its 
performance. Sections 4 and 5 describe RP*c and RP*s. 

Section 6 compares the algorithms, and relates them to 
LH*. Section 7 concludes the paper. 

2. RP”N 

2.1 Network characteristics 

We consider a typical local network as in Fig. 2. A cable 
called segment comrects several, or hundreds of sites, 
hooked to the cable through controllers. Segments are 
linked through routers which forward non-local 
messages. Sites send messages, usually broken into 
pzckets, e.g., Ethernet packets are at most 1500 bytes. 
Every message is listened to by every controller on the 
segment A message can be of the following type: 

- Point-to-point message. Such messages are retained 
by a single controller and delivered to its site. 

- Multicast message. Such messages have an address 
recognized by several but typically not all controllers. 
They are retained only by these controllers. Other sites 
are not interrupted by their controllers. A typical 
controller can carry a dozen multicast addresses. 

- Broadcast message. Such messages have an address 
recognized by all controllers of the net, and so are 
delivered to all the sites. 

Broadcast messages are the basic type of message on 
wireless networks. As broadcast can be seen as the basic 
case of multicast, we will not name it separately in what 
follows. 

A multicast message traverses a network segment in 
the same time as a point-topoint message. It can deliver 
an operation to several servers in a fraction of the time 
that would be needed if point-to-point messages were 
used. Multicast is most efficient when an operation 
should be performed in parallel on all the servers sharing 
a multicast address. It may even be preferable when the 
operation is destined to only some servers, the l&ring of 
irrelevant sites being performed at the application level. 
However, as it interrupts several sites, such use of 
multicast may impair throughput with respect to poin-to- 
point messaging. The trade-off depends on the 
application. 

A segment allows for one message at a time, but 
different segments can serve their sites in parallel, as 
long as messages at each segment address only sites local 
to the segment. An inter-segment message becomes a new 
message on each segment it traverses. Hence, a message 
traversing k segments takes as much time as at least k 
messages. The network topology is usually chosen to 
make k = 2,3. Even for a thousand-site local net, a few 
routers suffice to directly connect most pairs of segments. 
2,2 

We consider rec& consisting of a key and of non-key 
fields. The key identifies the record and draws its value 
fromalargekeyspacewithatotalorder.Recordsare 
grouped into buckets (pages, blocks...) with a capacity of 
b records, b >> 1. Every bucket is at a different sew 
(site). Logically, records in a bucket are in ascending 
order of keys. The internal organization of the sequence is 
not of concern here. Every bucket has a header with two 
values called respectively minimal and maximal keys, 
noted k and A. The interval (1, A] is called the nmge of 

343 



the corresponding bucket. A bucket can onlv contain a 
bin its range, i.e., h < c s A. 

Fia2 Alocdnetwxk 0 -asiR 

An w*N file initially consists of a single bucket, 
namedbucketO,withk=-03andh=oc.Amulticast 
address can be assigned to the bucket, as well as to all 
potential sites for the file. All initial insertions go to 
bucket 0. When it overfIows, it splits and a new bucket is 
created, termed bucket 1. In general, the new bucket is 
numbered A4 if the file already has M buckets. It is 
assumed that some easy translation exists between bucket 
numbers and physical site addresses, e.g., as for LH* 
[LNS93]. 

Fig 3 illustrates the creation of an RP* file with b = 
4. The file undergoes three splits, under the insertions of 
the most commonly used English words [LELH91]. The 
w*N @it algorithm is as follows: 

RP*N sdit algorithm: 

I. Determine (as for a B-tree) the middle key cm in the mtflcwing 
bucket B. 

2. Attempt the creation of bucket M. Wait for ack, or denial if bucket 
M exiets already. 

3. If creation isdenied, then M + M + 1; go to Step 2. 
1. Copy to bucket M the following content:: 

- The header with : 
h-c,(B); 
A-A(B); 

-everyrecordfromBwithc> cm. 
5. Decease the maximal key in B. 

A-c,(B); 
and remcrve records mosed to bucket M. 

5. BetM +M+l. 

Each split refines the partition of the key space, and 
>f the file, as it partitions the range of the bucket 
undergoing the split into two ranges and two buckets. The 
scheme obviously produces an ordered file. It also fulfills 
the axiom that a bucket contains only the keys in its 
range. 

The ack message in Step 2 is a multicast message. 
Every bucket then increments A4 as in Step 6. The 
creation of bucket M may fail when two buckets split 
concurrently. Steps 2 - 5 can be performed in one or more 
messages, and are discussed in more detail in Section 3.2. 
Step 2 may also propagate the multicast address of the 
file. In Step 5, bucket B waits for an ack from bucket M. 

2.3 File access 

The file is manipulated through the following queties 
issued by client sites. A (single) key query is a key 
search, e.g., get ‘that’, or an exact match update : ‘insert 
‘it’, delete ‘it’, modify ‘that’ <update specs, where the 
<update specs> concern a non-key field of the record, if 
any. Aquerycanbealso: 

- a mnge query : a search of every key c within some 
range [cl. 91 ; q <q; or an update of non-key fields 
in records within the range. 

- a geneml query which is a search for, or update of, 
every record fulfilling a condition on non-key fields of the 
record, and of the record only (hence joins, etc. are 
excluded). 

A client can also perform an (ordered) traversal of 
the file, or of its part. A tmversaf consists of a sequential 
examination of every record in the file, or within some 
range, in ascending (descending) order. The client 
requests the first record, then issues get-next queries. 

In traditional data structures, a key search or an insert 
is an operation on a single record. The availability of 
multicast allows RP* to also offer bulk queries, called b- 
search. b-insert, b-delete. Every bulk query concerns a 
bulk (set) of keys, or records, sent within the query, 
perhaps into different buckets, e.g., insert (‘this’, ‘the&‘, 
‘its’). Bulk operations may provide for better performance 
when the client has a collection of keys to insert or 
search. Application examples are : file restructuring, 
batched updates, sorts, and joins. 
2.4 Alnorithms 
2.4.1 Search and update 

h m*N, evm awn is sent Ush’UZ a mdbSt me&%%?e 
with the file address. Hence it is received by every 
bucket. A server requested to insert key c, performs the 
operation iff k < c s A. The split algorithm partitions the 
key space, hence every c ends up in exactly one bucket. 
Deletions and updates work in a similar way. For the 
client, an update terminates when sent out, unless the 
client specifically requests an ack. 

A bucket receiving a search for c, searches through 
its records iff c is within its range. Only such a bucket 
replies, with its range and the record if found. The client 
termha- when it receives the reply. If the range alone is 
received, the search is an unsuccessfil search for c. 
Every reply is a point-topoint message. 

Ex. Consider the final file in Fig. 3. The search get 
‘thid would be multicast to all four buckets. There would 
be one reply : the range (of, m]. This means an 
unsuccessful search. The update insert ‘this’ would be 
multicast to all buckets. It would only enter the bucket 
with (of, m] range. 

2.4.2 Range and general aueries 

A bucket receiving a range or general update, updates all 
the relevant records. No ack is sent, unless required. A 
bucket receiving a range search replies iff its range 
overlaps the query range. It sends the selected records, if 
any, and its range. The client terminates the search when 

344 



the union of received ranges covers the query range. 
Every key to be selected must be in a bucket with one of 
the received ranges. 

The primary strategy for a general search is that a 
bucket replies iff it fmds qualifying records. The client 
has a timeout t reinitialized after each reply. The client 
terminates the search when t expires. The correctness of 
the result is probabilistic. The choice oft equal to a value 
3 -5 times the expected time of reply from one bucket 
should make the probability of missing a reply negligible. 
An alternative strategy providing a time-independent 
deterministic termination is that every bucket replies 
with its rauge. The client terminates when the tmion of 
ranges reaches (~),a]. 
2.4.3 Traversals 

Buckets BT and B2 are called left and right siblings iff A 
(Bl) = h (B2). The right sibling is the successor of the 
left sibling with respect to the order on the key space. 

A traversal is processed through the delivery to the 
client of one bucket at a time. To find the sibling, m*N 

supports searches for buckets with k = c, or with A = c. 
The client can set c to A or to k of the bucket it has just 
visited,artoh=mtotraversethefilestartingfnnnits 
last bucket. ‘Finally, to locate the starting bucket of the 
traversal in some range [cl, 91, the file supports the 
query retrieving the (single) bucket with 1 < c 5 A. 

2.5 File contraction 

As in a B-tree, the merge operation is the inverse of 
splitting, shrink@ an RP* ftie that underwent many 
deletions. As files rarely shrink in practice, we assume 
no merges in what follows. See [LNS93b] and [LNS94] 
for a discussion of the subject. 

3. RP*N PERFORMANCE 
3.1 Performance measures 

The basic performance factors for an SDDS are the load 
factor, and the access performance, measured in number 
of messages per operation. The messaging costs are 
independent of the network and CPU performauce. When 
these factors are also taken into account one can compute 
elapsed time and throughput. 

For SDDSs, specific performance measures were 
introduced in [LNS93]. Client image size is one concern. 
Also, access perfomrauce may vary between clients, 
because of different images and numbers of IAMs 
received. The access performance measures are : 

- search cost of a new client startiug with the initial 
image, i. e., M= 1, to access an existing static file with 
M>> 1. 

- the number of addressing errors for a new client 
until its image converges to the actual state of the file. 

- the messaging cost of an addressing error, including 
the cost of the IAM. 

- insert costs for each of m clients imerting random 
records at different rates. Less active clients get more 
lAbis, so their performance can be affected. 

Section 3.2 addresses these measures for EP*x. 
3.2 Basic characteristics 

m*N splits generate the same partition of the key space, 
aud of records into buckets, as a B+-tree file with the 
same bucket size and under the same operations. Hence 
the load factor x I bM of an T&P*N file is on the average 
about 70% for x random insertions, and is 50 % for x 
sorted insertions. However, EP*N does not need space for 
an index. 

A particularity of m*N as an SDDS is that there is no 
image of the file at a client site, so there are no 
addressing errors aud no TAMS. Hence, all the associated 
costs are equal to zero. 

An update of a record that does not require a split 
costs one multicast message. A key search costs two 
messages : a multicast and a point-to-point reply. A range 
query selecting k keys requires one multicast, aud triggers 
replies from buckets whose union of ranges covers its 
range. Assuming random inserts, there are n 5 Min 
([k/(O.7b)+l],M) suchbuckets(theconstantlis 
due to the fact that two selected keys can be in different 
buckets). Hence the query requires at most n+l 
messages. Finally, a non-key query selecting k records 
requires at most Mitt (k, M) + 1 messages for the strategy 
with timeeut, and M+ 1 messages fa the exhaustive 
one. 

A split typically requires four messages. In the worst 
case, this cost is higher by 2 f messages, where f is the 
number of failed attempts to create bucket M in Step 2. 
However, this case should be unlikely as splits should be 
infrequent. ln practice, an average cost of an insert using 
random keys, should be: 1 + 4 I(O.7 b) messages, i.e. 
one message. 

345 



The message costs of key inserts and searches are 
independent of M, at least as long as one can ignore 
network topology. This is the case of a typical local net, 

lOMbIs 1 100 Mb/s [ 1 Gbls 

Table 1 and 2. Elapsed times and throughputs of an w*N file 

as we discussed in section 2.1. Furthermore, the storage 
required at a client is also constant, as there is no index. 
h m*N file can thus scale up to every site on a local 
net with constant load and messaging cost performance. 
A RAM bucket at each site can be as large as RAM 
available for the applications, e.g., it can be 32 MB on 
@@Cd Workstations. h w*N kibf file can thus 
potentially scale up to gigabytes, e.g., to 32 GB at HPL or 
Soda Hall configuration as outlined in Section 1. Such a 
file is much larger than a traditional RAM file, and larger 
thau many traditional disk files. Terabyte files are 
possible if buckets are on disks on these sites, at the price 
of increased iie access times. 

3.3 Elapsed times 

The elapsed time to service a query to a PP*N file, and 
the reply if any, consists of the time to traverse the 
network, to process the message by the servers’ and client 
OSs, and to process the records within the m*N 

bucket(s). The elapsed time of a key q is 
% independent of the file size M, as the cost of multi 

to M servers is equal to that of a point-to-point message 
to the bucket with the key, and bucket mg is 
executed in parallel on all servers. As long as the 
transfert time is the dominant factor, the elapsed time of 
range and general queries increases about linearly with 
the number of qualifying buckets. 

Table 1 shows elapsed times that should characterize 
w*N files on poplar nets, generically termed m+&?t (lo 
Mb/s), h-net (100 Mb/s), and g-net (1 Gb/s). Discussion 
of underlying formulas is in [LNS94]. The network model 
is from [G88]. Site speed is accordingly assumed 100 
MIPS, and OS time to process a message is 25 ps (2500 
instructions). A query message with key(s) is assumed 

100 Byte long, except for bulk operations, and a message 
with a record, a reply, or an insert, is assumed 1 KB long. 
We further assume that buckets are in PAM, a bucket 
range check costs 1 pa, an in-bucket search costs 5 ps, an 
update of bucket costs 25 pa, and an in-bucket processing 
of a general query on non-key attributes costs 250 ps 
(25000 instructions). Range and general queries select 10 
records, i.e., only a few, as in TPC-C benchmark. The 
table shows elapsed times for an insert (tl ), a search 
OS), a range query (6 1, a gad query (b 1. ad a 
bulk insert of 1000 keys (& ). There are also the times to 
traverse the network, by an insert (l,, , ), and a search 
(zs, I), computed according to [G88]. These are absolute 
bounds on any algorithm performing these inserts or 
seamhes, regardless of its own efficiency. 

The elapsed times for search and insert are about 1 
ms for an m-net, and under 100 ps for g-net At least one 
or two orders of magnitude are gained over traditional 
disk files of similar size. Similar or greater performance 
gains characterize range and general queries. Bulk 
inserts performance is dominated by transfer time. The 
operation is most useful on g-nets, where, in our case, the 
bulk insert takes seven times less than the corresponding 
1000 individual inserts. The time of a bulk operation can 
decreax further, if messages are comprese as a longer 
message may achieve a much higher compression ratio. 
ln general, for slower nets, elapsed times are dominated 
by the transfer times. So, little can be gamed through 
improvement to query processing speed on sites with 
respect to m*N performance. 

3.4 Throwbut 

The throughput s, is the number of operations o per 
second (o/s) that one can perform at best. Table 2 shows 
throughputs of inserts (s, ), and of searches (s, ) in an 
m*N file with M >> 1. The formulas are in [LNS94]. 
The table also contains the corresponding network 
thtoughputs (si, I ), and (s,, I ) resulting from the times zi, I 
and z,, , , and from the OS time above. Finally, we show 
the percentage of CPU baudwidth that m*N should use 
on a server. 

The vahres of sf and of s, show that m*N can 
sustain a 1000 o/s on m-net, and roughly 22,000 on g-net. 
These fii assume the use of 100% of network 
bandwidth, hence practical fiies will be lower [G88]. 
Notwithstanw, these w*N capabilities are above the 
requirements of most current applications, especially for 
performance on h-nets and g-nets. 

The values of sr,, and of s, I on m-net show that only 
2 - 3 % gain in throughput can result from optimization of 
p*N implementation on a site, e.g., faster in-bucket 
operations. The network throughput is an absolute bound 
on throughput Of any algorithm Over the net. w*N has an 

almost optimal messaging cost Hence, no other range 
partitionins dgoriulm a substantialy outperfor m+N 

on an m-net. 
The 2 -3 % value of %CPU show for m-net that 

w+N files should be very acceptable at a site, as 97 % of 
CPU bandwidth remains available. m*N load should be 

346 



also acceptable at h-net, especially since the 19 % in the 
table corresponds to 7000 o/s. For a g-net however, the 
use of w*N file at full throughput may excessively load 
each site. The reason is that the OS at every server of the 
m*N file must process every message. This OVerhead 

reduces the throughput potential of each server, and 
hence of the multicomputer. 

The ratios si Isi, 1 and s, Is=, , show for a g-net that an 
.algorithm for range partitioning improving a site 
throughput has room to about double the throughput of 
@*N. h the next two s&ion& we hoduce two 
algorithms which respectively reduce, and eliminate the 
use of multicast to attain this goal. 

4. RP*c 

The RP*c algorithm creates an image of the file on the 
client to reduce the use of multicast. The image is a 
collection of bucket ranges and addresses. The client 
issues a point-to-point query whenever the key to search 
or update is in a range in its image. Otherwise, the client 
uses multicast. Multicast is also used by a server that 
receives a point-to-point query with the key out of its 
range, because of an outdated image of the server on a 
client. 
4.1 Image structure and evolution 

The image is a dynamic table T [O,l...]. Initially, T has 
no elements. Every element T(i) encodes an address of a 
bucket and its range. One form of T is an ordered list of 
tuples t = (A, C) , as in Fig. 4. Its structure is similar to 
that of a single B’ -tree node. Here, A is either the 
address of bucket A and C is A (A), or A is null, denoted 
I*‘, and C is k (A’) where A’ is the address that 
immediately follows C in T. Initially, T consists of t = 
(0, a], although this C does not need to be materialized 
in practice. The search for key c is performed as follows. 
Updates work similarly. 

1. The client searches for t E T with the smallest C 
r c. If A (1) * ‘*I, then it sends c to bucket A using a point- 
to-point query. Otherwise, it multicasts the search. 

2. A bucket receiving a search for c tests whether c 
fits its range. If not, and the search is a multicast, it 
terminates. If the search is a point-to-point query, then it 
multicasts the query, including its range and address, let 
it be A, in the message, and terminates. 

3. If / is in the range, then the server performs the 
search, sends back record c if found, its own range, and 
address. If the query was a multicast from some bucket A, 
then it also adds the range of A to the reply (it was 
included in the message from A). It then terminates. 

4. The client receiving a reply to a multicast query, 
fmds a range and an address in the reply, let it be (L, a, 
A). This is an IAM. A reply to a point-to-point query may 
carry two such triplets, which means it is an IAM as 
well. In both cases, the client updates T in the following 
cases, illustrated in Fig. 4. For each IAM, if there is no f 
with C (1) = A, and ?L # -m, then it adds (*, A) to T. Next, 
ifthereisZ=(u,C)withC >AthenifC=m,thenthe 

client sets r to (a, A) and adds (*, 00) to T, otherwise, for 
CC m, it only sets t to (a, A). Next, if there is r = (*, 
A) in Z’, then it sets t to (a, A). Finally, if there is no (a, 
A) in T, then (a, A) is added to T. 

Details of Step 4 are straightforward from Fig. 4. 
The figure illustrates the creation of T for the client 
searching the file in Fig. 3. The search for key ‘it! is sent 
to bucket 0, which then multicasts it. Bucket 2 gets the 
query, processes it, and replies with its range and 
address, and range and address of bucket 0. This leads to 
TI. Then, get ‘that’ is muhicast, and, as a result, returns 
the range of bucket 1, leading to T2. Finally, get ‘in’ is 
multicast, and leads to T3 which contains the actual image 
of the file. From now on, as long as there are no splits, 
the client will only use point-topoint messages for key 
searches and key updates. 

El 000 

0 for + in 2of *co 

Ofor *it 2of la0 

ofix 3m 2of 100 

Fig. 4 EIIohtioa ofRF’* e client N resultisq hn sarchrs fix keys 

it, thmt, in in Ihe tik in Fs. 3. 

For every static tile, an image T will acquire all the 
ranges in the file, provided the searches probe every 
bucket, e.g., through sufficiently many random searches 
in practice. The client then no longer multicasts key 
searches and updates. Splits progressively outdate 
existing images, triggering multicasts and LAMS. Range 
and general queries, and bulk operations do not trigger 
IAMs and continue to use multicast, although point-to- 
point messaging may be more efficient for small ranges. 

4.2 Performance 

L4Ms cause T to grow to M elements, i.e., 0 [M(f, + 
1, )] bytes, where 1 denotes byte sizes of a key and of an 
address. Assuming 1, = 4 and 1, = 40, a thousand bucket 
file requires 44 Kbytes. Such storage requirements are 
easy to meet. 

Once T has the exact image of the file, the client uses 
only point-to-point messages for key searches and 
updates. If A4 is larger, and clients choose buckets 
randomly, the throughputs s1 and s, approach the 
bounds Si, t and Ss,t , possibly leading tO substantidly 

better performance for g-nets, as in Table 2. 
However, addressing errors deteriorate the access 

costs. ln the worst case, a key search or update may need 
three messages, including one multicast, instead of one or 
t~0 messages for I@*N (split CO& iS ignored). A Cknt 

building a file of M buckets, will make M-l addressing 
errors, with about one error every 0.7 b (random) inserts. 
Additional messages, due to the addressing errors, impact 

347 



the average costs accordingly, especially the insert cost 
for smaller b’s, For b >> 1, the average insert cost 
remains one message in practice. The average search in 
this file, by the client that built it up, should similarly 
cost two accesses, as the client!s image will be mostly 
accurate. 

A new client performing searches will also make M- 
l addressing errors. The number of messages per search 
will be the same as for a client with an accurate image, 
but M-l messages will be multicast, instead of point-to- 
point messages. When the client starts, ahnost every 
search will be a multicast, then, more and more will use 
point-to-point messages. Inserts from a new client will 
lead to at least M-l addressing errors, with three 
messages per insert in each case, iitchtding one multicast. 
when T is about empty, almost every search or insert 
triggers a multicast. It is easy to see from Table 2 that 
this may noticeably decrease the throughput of RP*c file 
on a g-net to that of Rp*N file for searches, and even 
under that for inserts. 

If m clients build the file jointly to size M, each will 
generate up to M-l addressing errors, triggering up to 
m times more errors than a single builder would 
encounter. The average performauce of each client will be 
affected with respect to the case of a single one. Slower 
clients will be more affected, as they will make fewer 
inserts for possibly the same number of addressing errors. 

The values of average search and insert costs of an 
RP*c file were determined through simulations. These 
results are discussed in Section 6, comparatively to those 
of other RP* algorithms and LH*. 

5. RP*s 

This algorithm eliminates multicast for key search and 
updates and speeds up the convergence of client images. 
Range and general queries can be multicast or sent using 
point-to-point messages. This allows for an ordered 
SDDS on nets that do not support multicast. 

RP*s is RP*c plus an index on servers. This index, 
called kernel, materializes the actual ranges. It is built by 
the servers, and is transparent to clients. 
5.1 Kernel structure 

The kernel structure is similar to a B+-tree file structure. 
Fig. 5.a, shows a 24evel RP*s tile and Fig. 5.b shows a 
3-level one. Kernel buckets, called nodes, form an m-sty 
tree whose leaves are tile buckets. Every node may 
contain up to m >B 1 keys called separoters ordered by 
key values, and pointers between them. The pointers are 
downward pointers to lower level buckets. Every two 
successive separators define the range of the bucket or 
node pointed to by the pointer between them. The last 
separator of a node does not need to be materialized 
inside the node, since it is in the header. Evay header 
contains a range and a parent pointer that is an upward 
pointer to the parent node (parent pointers do not exist in 
B-trees). These pointers are used when addressing errors 
occur. Nodes can be at sites distinct from those of 

buckets, or they can share these sites. We assume that 
nodes are on distinct sites. 

Even for a large RP*s file, the tree can be 2-level 
only, when the value of m is in the hundreds, or 
thousands. It might however, be more appropriate to 
distribute the separators into smaller nodes, leading to a 
3-level tree. Higher level kernels seem less likely. 

Below, bucket addresses are denoted 0, l,... while 
node addresses are denoteda, b,... 

5.2 File evolution 

Splits are performed on as in RP*n, except for what 
follows. Let c,,, denote the middle key in a bucket or 
node. The first split of bucket 0 creates the first node, let 
it be node a. Node a becomes the root of a 2-level tree, 
with the range (-,a] and the parent pointer ‘*. Bucket 0 
inserts into node a the triplet (0, c,,, , 1). Every further 
split sends to node a the tuple (cm, r), where r is the 
address of the right sibling the split creates. The split also 
forwards the parent pointer a to bucket r. When node a 
is full, it splits, creates a sibling b, and some node c that 
becomes the new root of a 3-level tree, with the range 
(-(x),00], and the parent pointer I*. Node a inserts into 
node c the triplet (a, c, b). Further splits insert into node 
b the tuples (cm, r), etc. 

Fig. 5.a shows node a created by the evolution of the 
file in Fig. 3. It is further assumed that m = 3, and that 
the file undergoes inserts of keys ‘this’ and ‘these’. This 
triggers the overflow of node a and the creation of sibling 
bandofnewrootc,asinFig.5.b. 

The RP*s splitting algorithm can obviously use 
multicast as RR*& It is also possible to eliminate it, e.g., 
through getting the address of a new bucket from a split 
coonGMorlikeforLH*. 

5.3 File access 

A client performing a key query computes the address for 
the key c from its image. A leaf that receives a key search 
or an update with c in its range, performs the operation. 
If c is out of range, then the bucket forwatds c to its 
parent. If c is in the pare& range, it forwatds c to the 
offspring with c in the range. Otherwise, it forwands c to 
its parent, etc., until either a leaf or the root is reached. 
Once the root is reached, the query follows the downward 
pathasinaB+-tree.ThefinalleafsendsanIAMtothe 
client with the subtree visited by c (nodes and downwatd 
pointers, as parent pointers can be outdated, as will 
appear later). The sub-tree is called an IA-tree. The IAM 
can be piggy-backed on the result of the search, as for 
RP?. 

As will be shown later, a client can send c directly to 
a node, instead of a leaf. This is also an addressing error, 
occurring when the client can determine from its image 
that it does not have the address of the correct leaf. The 
address calculation remains similar, but the IAM contains 
only the downward path from the node. 

Range queries can be multicast or sent using point-to- 
point messages. In the latter case, the client sends the 
query to every bucket or node whose range in the image 

348 



overlaps the range of the query. Each message contains 
the range of the bucket that is encoded in the image. If 
the actual range and the received one match, then the 
bucket replies, at least with its range. If the actual range 
is strictly within the received one (and it cannot be 
otherwise without merges), then the bucket forwards the 
query to its parent. The parent forwards the query to the 
appropriate buckets within the remaining range. If this 
range exceeds the node range, then it also forwards the 
query to its parent, etc. All buckets that reply also send 
their ranges. The client collects the replies and terminates 
through the range check as for m*N. A general query 
can be processed similarly. 

5.4 Imane adiustment 

Consider that the client image is encoded in a table T as 
for RF’*c. The following algorithm may be used for the 
image adjustment. The pair (a, s) denotes a pointer a and 
separators followingit,inanodeorinanentryofT.The 
last pointer in a node is, by implication, followed by A, 
i.e., by the upper bound of the range for the node. 

RP”s IA akorithm 

While visiting the IA-tree b&m-up, and keel by I&: 

1. Forevarybottanncdenandevery (a,s)En, mcdifyTcnlyinthe 
fdlcwlllg cases : 

(a)-Ifs$T,thenadd (a,s)toT (atappropriatepodtionwithrespecl 
totheoideron T). 

@)-Else,ifTcontains(a,b);s’cs, then sets’ to s. 
(c) - Else, if T contains ( a: s) where a’# a, then sat a’ to a. 
2. For every ( a, s) in node n at noMan &al of IA-tree, modify 7 

onlyinthefdlcwingcases: 
(a) -Ifs 4 T, then add ( a, s) to T. 
(b) - If T contains ( a: s) where a’~ a, and if s = A (n) L 00, then: 

let.4 bethepredecessordsinfl,andletS’bethepred~r 
ofsin T: 

-ifdsS. then set a’ to a. 

Step1.a bringstoTnewbucketaddressesand 
separators. Step 1 .b updates values of A for buckets with 
addressesalreadyinT. Step1.c updatestheaddressa’ 
forans alreadyinT.Thepair(a,s)inthebottomnode 
of the IA-tree signifies that while s had been the upper 
bound on the key range in bucket a’, it is now the upper 
bound for bucket a. The reason is a past split of bucket a’, 
and, perhaps, a split of right siblings resulting from that 
split. The address u’ can also be a node address brought 
to T by Step 2.a. Step 1.c progressively refines such 
addresses in ?’ to bucket address. To allow for such 
refmements is the rationale for visiting the IA-tree 
bOttOIll-Up. 

Node addresses in T can occur for 2-level kernels and 
higher. An IA-tree can then bring .separators with 
pointers to nodes, some of which are outside the IA-tree. 
This would be the case for instance if the kernel in Fig. 
5.b expanded further to nodes d and e. Then, the first IA- 
tree sent to a new client would bring to T three nodes, 
e.g., (a, c, d), and node c would have separators sb and s. 
thatare1Csandlastkeysinnodesbande,andpointersto 
these nodes. A further IAh bringing, e.g., node b would 

lead to refmement of (b, sb ) in T to some (N, Sb), found 
in node b, where N is a bucket address. 

In a kernel with more than two levels, an IAM can 
bring an address u’ pointing to a node other than the 
bottom node of the kernel. A further IAM that brings 
some (a. s) and fmds (a’, s) in T, should only refine T, 
which means here that it should set a’ to u only if a is the 
address of a node under node a. Otherwise, the 
adjustment would make the search path through the 
kernel longer, and would deteriorate access performance. 
Step 2.b guamntees that every adjustment of T performed 
in such a cam is a refinement. 

Ei 
a :i:i:iii:i:~~:i:i:i:i:i: 

w 
.:.:, ~:,: : : >:...:.:g#:;:; 

0 

of 

Q it 
is 

iii:;ii,;#:;:::::.::>: 
i$z;;;*;;;T; 
..:i.., . . . . . . ..I.. .I :::::::.~:::.:‘::.‘. .: 

2 

. 
B in 

i:i..:i:::~;i ::::::: :.: 
:::::.. . . . . . . . . 
::. .; ..:::: : 

3 

,.,,,,,,,/.,,, :.:.:.:. i.: :.::::.I.: 
c c~i ijiii~: i:i:i+.,:: 

~\’ @I 
*, in , b , 

Fig. 5 An RF, file with (a) 24evel kernel, and 
@) 3-level k me1 

Indeed, only s = A (n) < m could be replicated in a node 
at level higher than that of n. In this case, s”, also 
necessarily brought previously to T from that node, must 
be smaller than or eqaul to every s’ found under that 

349 



node. The latter case occurs when s” and s stayed 
successive separators all thetime, i.e., when bucket a did 
not split since its left sibling was created with A = s’, 
only the sibling underwent perhaps multiple splits. The 
replacement of o’ should be performed only in these 
cases, as Step 2.b does. 
As a result, T contains only bucket addresses or node 
addresses, instead of null pointers as in R.P*c. The client 
that does not have a bucket address for a key, sends the 
query to a node, and so never needs to multicast the key, 
unlike in RP*c. The node is possibly the closest to the 
bucket in the kernel tree. Further IAMs progressively 
bring the missing bucket addresses. A new clicnt!s image 
always eventually converges to the actual range 
partitioning of the file, provided that every bottom-level 
node of the kernel is probed, and that no splits occurred 
during the probing. 
5.5 Kernel adiustment 

When a node n splits, parent pointers to n that should 
point to the new sibling are not immediately refreshed 
(obviously, it would not be efficient to do so). The kernel 
structure itself then needs an adjustment that we call 
kennel udjubnent. This is the situation of bucket 4 in 
Fig. 5.b. A bucket n’ detects the need for adjustment 
when a message comes from its parent. At every such 
message, every node compares its parent pointer n to the 
address where the message comes from. It may also 
detect the need for adjustment when it splits, and sends 
c,,, to its former parent. There, c,,, is found out of range. 
The former parent sends cm to its parent, etc. until c,,, is 
found within the range. Then c, is sent down to the 
actual parent node. This node fimally sends an IAM to 
bucket n’ with the actual parent pointer. 

5.6 Performance 

The load factor of an RP*s file is that of RP*c, except for 
the additional storage for the kernel. As keys are typically 
much shorter than records, this storage should be 
comparatively small, hence the load factor should remain 
about 0.7 in practice (under random inserts). The kernel 
size of a 2-level file is 0 [m ] where m is the node 
fanout. Larger files will likely be 3-level files, hence the 
kernel size should be 0 [M / 0.7 + m]. Assuming as in 
Section4.2 that la = 4 and 1, = 40, a 100 KB kernel 
should suffice for a 1000 bucket file. 

Messaging cost increases in the worst case to: 
1+2(/r-l)+ 1 messagesperkeyinsettorsearchin 

an h-level RP*s tree. 
5 + 2 (h -1) + 5h per split, when the pare& pointer 

is outdated, and a split creates a new root. 
The latter formula assumes the split algorithm using a 

split coordinator and point-tc+point messages only, 
leading to 5 messages per split, instead of 4, if multicast 
were used as for w*N. Note that the worst case split is 
very unlikely. 

The convergence of a new client is much faster than 
for RP*c. The image converges when the client receives 
the ranges for all the bottom-layer nodes. This is one IAM 

for a 2-level tree, as the kernel has only one node. It is 
0 [ [MI (0.7 m)l ] IAMS in general, asslmling random 
inserts. In practice the convqence can be faster, as an 
IAM often brings two bottom nodes with new addresses 
and separators for T. 

The average search and insert performance for RF’*s 

obtained through simulations, are presented in the next 
section. 

6. COMPARATIVE ANALYSIS OF RP” 
FAMILY 

6.1 Messaging costs 

Fig. 6 shows average messaging costs of key inserts and 
searches for RF’* ffies created with bucket size b ranging 
from 50 to 2000. The fanout m for RP*s is m = 100. The 
curves result fmm simulations similar to those performed 
for LH* [LNS93]. LH* messaging costs are plotted for 
comparison. 

Insert costs are total messaging costs to build the file, 
including split messages and IAMs, divided by the 
number of inserts. In these experiments, each file was 
built through insertions of 100,000 random keys. The 
insert costs show excellent perfoimance for all the 
algorithms, under 1.25 messages per insert. As one could 
expect, performance is better for buckets with larger 
capacity, especiahy for b > 100 when the cost drops 
below 1.1 messages per insert. The results also confirm 
that for larger b’s the difference in insert cost between the 
RP* algorithms is negligible. Also, the RP* family 
appears competitive to that of LH*. This demonstrates 
that it is possible to build an SDDS that efftciently 
supports range queries while still maintaining excellent 
performance for key-based queries. 

Within the family, RP*s is always the worst 
performer, although differences become inftitesimal for 
larger b. This is due to extra messages to build the 
kernel, and, intemstmgly, despite much fewer IAMs than 
for RP*c. RP*u is the best performer, performing even 
better than LH*. However, this results from the highest 
use of multicast, thus potentially impacting throughput. 

The search costs are the average costs of new clients. 
The files are populated with 100,000 keys and the clients 
retrieve 1000 random keys in each experiment, start@ 
each time with an empty image of the file. The curves 
confirm the expectations of excellent search performance, 
i.e., 2 messages per search in practice, for all the RF’* 
dgorithms. The m*N optimal performance is hardly a 
surprise. RP*c cost of 2.001 messages per retrieval 
results from the fact that all IAMs are piggybacked on 
reply messages, hence only the first search directed to 
bucket 0, costs three messages, instead of two. This 
explains why RF% search cost is always higher, despite 
faster convergence of the image. 

The search cost of w*N and of RP*c is always 
slightly lower than that of LH+, but LH* messages are 
only point-to-point. RP*s cost is higher for smaller b ‘s. 
For larger b’s, RP*s slightly oulpehms LH*. This is 
due to decreasing file size, as the number of inserts is 

350 



constant in the experiment. For a small file, image 
convergence is faster fcr RP*s than for LH*, leading to 
better performance, as it will be confirmed below. The 
situation reverses as the file size scales-up. 

Searchcost 

2.07 - 

1 2.05 - 

% 

2 2.03 - 

1.99 J I 

0 500 1000 1500 2000 

1.25 ,) 

1 3 

0 500 1000 1500 2000 

Buckei cqncity 

Fig. 6 Search and insert axts of the RP* fimily and of LH* 

6.2 Imaae convergence 

Table 3 shows the number of TAMS that are required for a 
new client of a static file to have its image of the file 
converge to the actual tile state. The client performed a 
series of random searches in files with 100,000 keys, 
built through random inserts, until its image converged. 
m*N does not appear, as it does not maintain an image of 
the file. The results clearly confii the expectations on 
the convergence of RF’*c and of W*s. The former is 
M- 1, the latter is hundred times faster, as the fanout in 
our experiment was set to m = 100. LH* convergence is 
under 0 (log2 M) [LNS93]. 

Tabk 3. Number of XAMs anvil huge convergence 

6.3 Performance of less rctive clients 

In these experiments, there are two clients. Client Cl 
inserts N keys for every key inserted by client CZ ; 
N = 1, 10,100,1000. Split cost is ignored since splits are 
assumed to take place concurrently with inserts, and we 
are intemsted only in the client access cost. When 
compared with the single client case, performance of both 
clients may be affected [LNS93]. Table 4 Summarizes the 
results obtained for the RP* family, and includes, for 
comparison, those of LH*. The insert costs are computed 
for a small and a large b, and various N values. Client CI 
always inserts 100,000 keys. 

The results confinm the expectations. m*N performs 
best, and neither client is affected. Otherwise, greater is 
N, i.e., the less client Cr is active, the more it is affected. 
Equally active clients are both affected, comparing to a 
single client performance, (which is in practice that of 
client Cl for N= 1000). RP*s generally outperforms 
RP*c for both clients, reversing what appeared in Fig. 6 
for a unique client. This results from faster image 
convergence, hence from better accuracy of the RP*s 
images. RP*c performs slightly better only for the least 
active client C2 (N b 1000) for 6 = 50, where the benefit 
of m = 100 fanout fades out. 

The performance loss of RP*c with respect to RP*s 
is always negligible for the faster client Cr. For client CZ, 
Rp*s can be notably faster, e.g., for N = 100 and 
b = 50, and for,N = 1000 and b = 500. Insert costs of 
RF’*& and of RF’*c are always higher than of LH*, 
although in general not much higher. For the RF’*s file 
with with b = 500, the difference is under 2 % regardless 
of N value. However, for client CZ with N +. 100 and 
b = 50, LH’ is notably faster than both algorithms. 

351 



b-50 

b=SOO 

RF-s LOVJ I.009 1.006 1.028 1.m I.123 I.005 1.420 

m*c 1.010 1.010 1.005 I.052 1.005 1.414 l.ws 2040 

RlTl 1.ooo l.m 1.m l.cm Kmo l.ooo I.ooo l.fmo 

LH* 1.003 l.W 1.003 1.013 I.003 1.m 1.003 1.330 

Table 4. Performance of two clients 

6.4 Overall characteristics 

Table 5 sums up the overall characteristics of RP* 
algorithms and of LH*. All other factors are the same for 
RP* algorithms, or about the same, especially the load 
factor and access costs. All the formulas are in order of 
magnitude, the 0 - notation being avoided for simplicity. 
In the throughput formulas, n denotes the throughput of 
the network, and s the throughput of a server. 

The overall conclusion with respect to the RP* family 
is that if the network is of m-net type, I@*N is probably 
the best choice. It reaches almost optimal performance, 
and is the simplest one. If multicast should be limited, or 
throughput is a concern aud the network is an h-net or a 
g-net, then RP*c is the simplest choice. If network is a 
g-net, and high performauce is the major goal, or 
multicasting is not available, RP*s is best choice. RP*s 
Can ah pOtentidy scale up to larger sties than m*N or 
Rp*c. If range partitioning is not required, LH* provides 
better access performance, is simpler, and cau scale up 
even further, as it requires neither index nor multicasting. 

Table 5. Basic characteristics of RP* family and of 
LH* 

7. CONCLUSION 

Hash-based SDDSs were shown very efficient data 
structures for multicomputers. Ordered SDDS add the 
capability of efficient processing of range queries and of 
ascending or descending traversals. The three algorithms 
of the RP* family form an efficient class of ordered 
SDDSs, being faster than traditional ordered structures of 
similar sixes by an order of magnitude or more. 
Depending on the network type, and requirement on 

throughput, the user can choose the algorithm that is best 
suited. 

pP*N proves by its existence that it is possible to 
&sign practical ordered data structures without any 
index. This results from the use of multicast, already 
shown useful for many prominent algorithms, e.g., for the 
Byzantine agreement, and now proves important also for 
data structures. W*C imposes indexes on clients for 
higher throughput on faster networks. RP*s allows for 
the highest performance at the price of the indexes on 
servers and clients. It also allows for au ordered SDDS on 
a network without multicast. 

Future research should concern deeper analysis of 
perfoxmauce of RP* family. The algorithms should be 
implemented, measured, and benchmarked. Numerous 
design decisions omitted above will then also be 
addressed, e.g., the internal organization of buckets, of 
bulks, and of image, the overall organization of file 
management etc. Bulk operations lead to interesting 
generalizations of in-bucket, in-bulk, and in-image 
binary search, to find more efficiently several keys[K93]. 
The overall goal of an implementation of a file system 
able to scale up to a thousand sites is clearly not simple, 
but is probably among most important goals in computer 
science at present. 

Variants keeping only a part of the image, to save 
storage on the client at the price of some deterioration of 
access performance, should be also of interest to mauy 
applications. One should study also ordered SDDSs 
applying ideas in numerous traditional variants of B- 
trees, aud in other ordered structures [S89]. Finally, one 
should analyze the RP* family in the context of database 
query and trausaction processing. 

8. ACKNOWLEDGMENTS 

We thank Jim Davis (HP Labs) and Domenico Ferrari 
(UC Berkeley) for valuable information on broadcast and 
multicast protocols. We also thank John Byers and 
Micah Adler (UC Berkeley) for helpful comments and 
discussions. 

9. REFERENCES 

IBzs931 Bashad, B., Zekauskas, M., Sawdon, W. The 
Midway Distributed Shard Memory System IEEE- 
COMPSAC 1993,528~537. 

vJ31 Culle-r, D. & al. L.qP: Towards a Realistic Model of 
Parallel Computation. ACAMIGPLAN S)mp. on 
Principles and Practice of Parallel Programming, 
1993. 

Pw 

[ChS92] 

Culler, D. NOW: Towards Eveqday Supercomputing 
on a Network of Wakstations. EECS Tech. Rep. UC 
Berkeley, tc app. 

Chambedin, D., Schmuck, F. Dynamic Data 
Distribution(d) in a Shared-Nothing Multipmcessa 
Data Store. VLDB-92,1992. 

Devine, R Design and Implenmntatia~ of DDH: 
Distdmted Dynamic Hashing. Int. Co& on 
Foundations of Dais Organizations, FODO-93. 

352 



P-31 

iJK931 

lP==l 

pNS93a] 

[LNS93b] 

[LNS!W 

[Msw 

INS911 

[PLH@l 

[vBWY94] 

Lecture Noi- in Comp. Se., Springer-Verlag (publ), 
ckt. 1993. 

Gray, J. The Cost of Messages 7th ACM Qmp. on 
Principles ofDistribuiedSystems, 1988. 

Garcia-Molina, H. Kogan, B. Node Autononmy in 
Distributed Systems IEEE-PDIS, 1988,85-93. 

Karp,RM.AGewralizationofBinarySearch. 
AlgorithmP and Data Structures. Lecture Notes in CS, 
Springer-Veflag 1993. Dehne & al (ed.). 

till, B., Widmayer, P. Distributing a search Tree 
Among a Growing Number of m To app. at 
ACM-SIGMOD ht. Co& On Mamgement of Data, 
1994. 

Iftode,L,Li,K,Petemen,KMemorySesvcrsfor 
Mullicompltmr. IEEECOMPSX, 1993,538-547. 

Johnscq T. and P. K&ru~ Lazy Updatws for 
Distributed Sean% Strudu~~ ACM-SIGMOD ht. 
Cbnf On Mamgement of L&a, 1993. 

Litwin, W. Neimat, M-A., S&eider, D. LH* : Linear 
Hashing far Distrhtcd Fika ACM-SIGMOD ht. 
Conj? On Mamgemeni of l&a, 1993. 

Litwin, W., Neimat, M-A., S&eider, D. LH? A 
sallabk Distributed Data stNchlm. (Nov. 1993). 
Submitted for journal pub1 

Litwin, W., Neimat, M-A., S&&de& D. p : a 
Scalabk Distributed Data Structure using Multicast 
(exkndai abstmct) HPL-DTD93-@9, (Sept. 1993). 

Litwin, W., Ncimat, M-A., Sdmeidq D. RP’ : A 
Family of O&s Rawrving Sulabk Di&ributed Data 
Struchuw HPL-DTD-94012, (Feb. 1994). 

Litwin, W., Roumopoubs, N., Levy, G., Hong, W. 
Trie Hashing With controlled Load. IEEETSE, 17,7 
1991,678-691. 

Matsliach, G., Shmueli, 0. Distributing a B+-ttee in a 
loosely coupled ena Inf J+oc. Letten. 34, 
1990,313321. 

Matsliach, G., Shmueli, 0. An Efficient Method far 
Di&ibuting Search Stnu%ues. IEEE-PDIS Co@, 
1991. 

Pen&, W., Lin, J., Hoffman, W. Algorithms fa 
Distri~QueryF%cessinginBm&astLocalArra 
Netwoks. IEEE TKLlE, 1,2, 1989,215-225. 

Sam@ H. The Design and Amlysis of Spalial Data 
struczure3. Add&m-we&y, 1989. 

Viqrakk, R, Breitbart, Y., Weikum, G. Di&ibuted 
Fik Oqa&ation with Scalable Cust/Pafbnnance. 
ETH Tech. Rep., Oct. 1993, to app. at ACM- 
SIGMOD ht. Co& On timgement oflhta, 1994. 

353 


