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Abstract 
In this paper we address the problem of devising a set of 
indexes for a nested object hierarchy in an object-oriented 
database to improve the overall system performance. It is 
noted that the effects of two indexes could be entangled 
in that the inclusion of one index might affect the benefit 
achievable by the other index. Such a phenomenon is 
termed index interaction. Clearly, the effect of index 
interaction needs to be taken into consideration when a 
set of indexes is being built. The index selection problem 
is first formulated and four index selection algorithms are 
evaluated via simulation. The effects of different objective 
functions, which guide the search in the index selection 
algorithms, are also investigated. It is shown by simulation 
results that the greedy algorithm which is devised in light 
of the phenomenon of index interaction performs fairly well 
in most cases. Sensitivity analysis for various database 
parameters is conducted. 

Index Term: Object-oriented databases, indexing, 
nested object hierarchy, index interaction. 

1 Introduction 

Due to the increasing demand for sophisticated data 
modelling capabilities by many database applications, 
object-oriented databases (OODB’s) have recently at- 
tracted a significant amount of attention in academic 
and industrial communities [5, 11, 141. As opposed to 
the query-based (typically SQL) approach used by re- 
lational databases,’ an OODB renders efficient access 
to pointer-based data structures by permitting direct 
manipulation of data via program control. However, 
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it has been noted in [M] that declarative data access 
is desirable in OODBs since it not only offers ease of 
programming but also allows the database system to 
improve the query processing for faster query execu- 
tion. 

Unlike the query optimisation in a relational database 
which has well-developed theoretical results, query pro 
cessing in an OODB is still in its infancy [lo]. The 
problem is complicated due to the lack of universally- 
accepted data models and query languages [15]. In 
a “flat” (or first normal form, in relational database 
terminology) data model, an attribute can only be a 
primitive data type. However, in object-oriented data 
models the value of an attribute of one object may be a 
set of values or another object. This nesting of objects 
through attributes leads to the nested object hieramhy 
[8], also known aa the &ass-attribute hieTarchy [3]. An 
example of a nested object hierarchy is extracted from 
[3] and shown in Figure 1, where an attribute of any 
class can be viewed as a nested attribute of the root 
class. Note that the nested object hierarchy is intrin- 
sically different from the class hierarchy. In such an 
OODB environment, how to utiliee the pointer-based 
data structures to devise proper indexing schemes and 
retrieve objects efficiently has been identified as a very 
important issue to further improve the system perfor- 
mance [ll, 121. 

Several indexing schemes have been proposed for 
nested attribute queries [l, 2, 3, 8, 9, 131. Three in- 
dex organisations for use in the evaluation of a query 
in an OODB are introduced in [3]. As an extension to 
[3], performance of path indexes for queries containing 
several predicates is evaluated in [2]. In [9] query pro- 
cessing in an OODB system is improved by maintaining 
separate structures to redundantly store objects which 
are frequently traversed by database queries. A hy- 
brid indexing technique, called a generalised index, is 
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Figure 1: An example for nested object hierarchy. 

proposed in [8] to support class hierarchy with complex 
and primitive objects. Indexing in Gemstone OODB ia 
described in [13]. In [6], an optimal index configuration 
for a path is achieved by splitting the path into sub- 
path8 and optimally indexing each subpath. It is noted 
that most of these prior Works only considered indexing 
along a single path in a nested object hierarchy. How- 
ever, a8 will be shown later, the effects of two indexes 
could be entangled. Specifically, the inclueion of one 
index could a&t the benefit achievable by the other 
index. Such a phenomenon is termed index interaction 
in this paper. A detailed example for index interaction 
is given in Section 3.3. Clearly, the effect of index inter- 
action need8 to be taken into consideration when a ad 
of indexes is being built. Note that while affecting the 
indexing in a single query path, the index interaction 
phenomenon has a larger performance impact when the 
global effect of indexing multiple query path8 is con- 
sidered. However, whereas building an index along a 
single path ha8 been extensively studied, the problem 
of building a set of indexes for a group of queries while 
considering index interaction, despite its importance, 
ha8 not been fully explored. This is mainly due to the 
inherent difficulty of this problem, since when many in- 
dexes are evaluated as a whole, the interaction among 
indexes significantly complicates the method to evalu- 
ate their costs and benefit8 globally. Note that as the 
granularity of data object8 in an OODB becomes finer 
and the database schema tends to be more sophisti- 
cated nowadays, it ha8 become increasingly important 
to explore the effect of building a eet of indexee. 

Consequently, we address in thie paper the problem 
of devising a set of indexes for a neated object 

hierarchy with its given profile’ 80 a8 to improve 
the overall performance for executing a group of 
queries. Performance is measured using the metric8 
of retrieval, update and storage costs. Specifically, we 
shah focus on a common type of query, called the nested 
attribute query: Select all object8 of a certain class 
that have a nested attribute equal to a given value. 
An example of such a path query is given in Figure 
2. The index selection problem is first formulated 
and some important parameters are identified. Then, 
four index selection algorithm8 for queries in a nested 
object hierarchy are presented, i.e., a naive acheme, an 
algorithm based on profit ordering, a greedy algorithm, 
and then a more sophisticated look-ahead one. The 
naive scheme essentially correspond8 to a random 
inclusion of indexes, which is used for a comparison 
purpose. The algorithm on profit ordering sort8 
the profits of individual indexes in descending order 
firat, and then include8 as many indexes as possible 
according to the sorted index liet, subject to the storage 
constraint. The greedy algorithm is similar to the one 
on profit ordering in that it also includes as many 
indexes as possible baaed on a sorted index list, but 
different from the latter in that the sorted index list 
used by the greedy algorithm is revised after every 
inclusion of an index, thus taking index interaction into 
consideration. The look-ahead algorithm goes beyond 
the greedy algorithm by looking ahead to evaluate 
the combined benefit of several indexes before adding 
one into the index list. In addition, three objective 
functions, which guide the search in the index selection 
algorithms, are alao propoeed. A detailed description 
of index selection algorithm8 and objective function8 
can be found in Section 3. 

To conduct the performance study, an OODB system 
simulator is coded in C++ to model the detail of 
data retrieval8 under different indexed environments. 
The four index selection algorithm8 and the three 
objective functions are comparatively evaluated. To 
conduct a sensitivity analysis for various parameters, 
different values for the storage constraint for indexing, 
update and storage cost& and attribute selectivity 
are employed in the simulation and their effects are 
evaluated. It is shown by simulation result8 that 
deepite their maintenance cost, indexes provide a net 
benefit over a wide range of database parameters. It is 

‘The profile of a nerted object hierarchy include8 the 
cardimdity of each clam, the relectivity of each attribute, a 
certain amount of 8torage available for indexing, and some other 
information on acce88 phtterm. 
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Figure 2: An example path query: select vehicle 
where manufacturer division location = “city name.” 

observed that the greedy algorithm devised performs 
fairly well in most cases, which in fact agrees with 
the very nature of index interaction we identify in this 
study. We not only conduct an extensive performance 
study for index selection algorithms, but also explore 
the effect of index interaction to deal with this global 
optimiration problem. 

This paper is organised as follows. Notation, 
cost model and assumptions are given in Section 2. 
Index selection algorithms and objective functions are 
described in Section 3. Performance study is conducted 
in Section 4. This paper concludes with Section 5. 

2 Notation and Assumptions 
As pointed out in [3], an important element common 
to an OODB is the view that the value of an attribute 
of an object can be an object or a set of objects. A 
class C(1) consists of a number of attributes, and the 
value of an attribute A of an object belonging to class 
C(1) can be an object or a set of objects belonging to 
another class C(2). The class C(2) is called the domain 
of attribute A of class C(1). Certainly, C(2) may in 
turn consist of a number of attributes whose domains 
are other classes. A path in the nested object hierarchy 
is represented as ‘c( l).A( l).A(2) . . . .A(n), where C( 1) 
is the class whose objects will be retrieved based on 
the nested attribute lookup. A(1) is an attribute of 
C(1) and A(i) is an attribute of the class associated 
with C(l).A(l).A(S). . ..A(i - l), for i = 2.. .n. We 
denote the length of the path by n. For example, 
in the path “vehicle.manufacturer.division.location,” 
C(1) is “vehicle,” A(1) is “manufacturer,” A(2) is 
Udivision,” and A(3) is “location.” A nested index 
on the path vehicle.manufacturer.division.location will 

associate a distinct value of the location attribute, 
say “Ann Arbor”, with a list of object identifiers of 
vehicles, each of which has its manufacturer that is an 
instance of the company class whose division’s location 
is ‘Ann Arbor.” 

The OODB system considered in this study has 
read-only queries and also retrievals/updates using 
program controlled traversals. Note that queries can be 
quite complex, involving many attributes and Boolean 
combinations of lookup conditions. As mentioned 
earlier, we focus on a common type of query, called the 
nested &tribute query: “Retrieve all objects of class 
C(1) such that C(l).A(l).A(2).....A(n) = v,” where 
v is a given value of interest. This has been referred 
to as the implicit join operation in the literature [2]. 
Note that despite their simplicity, such queries form 
building blocks for more complex queries, and it is 
thus very important to implement them efficiently. 
Updates by traversals are modeled by considering the 
update costs for those attributes on the path indexes 
being maintained. Insertions and deletions are modeled 
similarly. For example, with an index from Division to 
Vehicle in Figure 2 the following query can be answered 
efficiently. 

Ql: select vehicle where manufacturer division 
location = “Ann Arbor” 

The formulas we use in this study for the retrieval, 
update and storage costs of an index are basically the 
same as those for nested indezes on a B-tree impk 
mentation described in [3], with some modifications. 
Readers interested in the derivation of these formulas 
are referred to [3]. The difference between the formulas 
in [3] and those in this study lies in the estimation of 
the average number of instances of class C( 1) that have 
the same value for the nested attribute A(n). (Such a 
number is denoted by Ic(1, n).) Note that it is assumed 
in [3] that there are no partial instantiations of C(l), 
and the formula of h( 1, n) is thus simplified in [3]‘. 
Such an assumption is not made in this paper. As a 
result, we employ the original formula for &(l, n) with- 
out resorting to any simplification. Such an assump 
tion relaxation in fact allows us to take into account the 
object reference topologies of different database popu- 

lThe formulak(l,n) = n;=, k(i), for the average number of 
instances of clau C(1) that have the same value for the nested 
attribute A(n), ir aimpl%ed to IC(l)I/IA(n)l in [3] under the 
awumption that there are PO partial imtantiatiom of C(1). Note 
that k(i) is the average number of instances of class C(i) that 
have the same value for the nested attribute A(i). 
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lations in our simulation study, thus leading to more 
general results. The database and system parameters 
used in the cost formulas for the indexes are summa- 
rized in Table 6 of Section 4 where the performance 
study is conducted. 

Same as other related studies, some assumptions are 
made to facilitate our discussion. First,, all attributes 
are bidirectional. Explicitly, for each attribute link 
from class C(i) to class C(j), there is a Teueme 
reference from C(i) to C(i). Also, all key values have 
the same length, which in turn means that all nonleaf 
index records have the same length in all indexes. 
The values of an attribute are uniformly distributed 
among the objects of the class which defines that 
attribute [7]. In addition, each attribute is equally 
likely to be updated and all attributes have the same 
selectivity. Note that these assumptions are mainly 
made to ease our implementation as well as to simplify 
our discussion, and are believed not to affect the 
relative merits of the index selection methods we shall 
evaluate in this paper. 

3 Index Selection Schemes 

In this section we describe the objective functions and 
the index selection algorithms that we shall evaluate. 
The index selection problem can be viewed as a search 
problem where the search space consists of all possible 
subsets of indexes. All the indexing schemes select 
indexes to optimize the objective function employed, 
subject to the constraint that the indexes included 
cannot consume more than a specified amount of 
storage. Three objective functions will be presented 
in Section 3.1, four index selection algorithms are 
described in Section 3.2, and illustrative examples are 
given in Section 3.3. 

3.1 Objective Functions 

We shall evaluate three different objective functions 
which guide the search for candidate indexes. The 
first objective function is baaed on profit., the second 
is based on return ratio, and the third is a combined 
version of the first two. These objective functions are 
applied to individual indexes to decide which index 
should be included into the set of selected indexes. 

l The objective function on “profit,” denoted by P(e), 
is based on the difference between the correspond- 
ing reduction in the retrieval cost provided by the 
index and the associated increase in the update 
cost. In other words, P(I) corresponds to the ra 

duction in the global dynamic cost due to the in- 
clusion of index I, where the dynamic cost mealis 
the sum of the retrieval cost of database queries and 
the update cost for indexes in response to database 
updates. Note that because of the phenomenon of 
index interaction this value varies as the selected 
index set changes. Specifically, we have, 

P(I) = retreivaLbenefit(1) - update-cost(I). 

The objective function on “return ratio,” denoted 
by R(s), is baaed on the ratio of P(e) to the storage 
cost of the index. It can be seen that by taking 
into account the amount of storage required by an 
index, this function will prefer small indexes than 
large ones. 

R(I) = P(I) 
storage-cost(l) ’ 

In order not to penalize large indexes unnecessarily 
when there is a lot of storage available, a mixed 
objective function ikf(.), which according to the 
amount of storage available, adaptively selects its 
formula to evaluate indexes, is also employed in our 
study. A&(.) is formulated as below. 

M(I) = 
P(I) if ..~:~2~;;~Eage ’ cr, 
R(I) otherwise, 

where 0 < a! 5 1 denotes a threshold for the 
ratio of the remaining storage to the original 
available storage. M(1) is initially the same as 
P(I). However, when such a ratio on the remaining 
storage is less than cy, meaning that there is no large 
amount of storage available, M(I) will be used, 
instead of P(I), as the objective function for index 
selection such that storage can henceforth be used 
more prudently. 

3.2 Four Index Selection Algorithms 

3.2.1 Naive algorithm (NV) 

As mentioned earlier, the naive algorithm (NV) is used 
for a comparison purpose. NV tries to include as 
many indexes with positive profits as possible, until 
the amount of available storage is exhausted. 

3.2.2 Algorithm on profit ordering (PO) 

Clearly, indexes included could be more profitable than 
those selected by NV if some provisions are made 
during the index selection. The algorithm on profit 
ordering (PO) will first statically evaluate the objective 
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function values for all the indexes and sort indexes in 
descending order of these values. PO then selects from 
the sorted index list as many indexes as allowed by the 
available storage in a topdown manner. 

3.2.3 Greedy algorithm (GD) 

This greedy algorithm (GD) used is essentially a greedy 
search applied to the index-subset search space. GD 
also sorts indexes according to their objective function 
values first. Then, at each step, GD adds the most 
profitable index to the current set of selected indexes, 
and revises the objective function values for all the 
remaining indexes, thereby taking the index interaction 
into account. GD can be outlined below, where S is the 
set of selected indexes and A is the set of remaining 
indexes. 

Algorithm GD: Greedy index selection 
Input: Set A of all indexes and the objective 

function F. 
Output: Set of indexes to be built. 
s := 0; 
repeat ( 

Evaluate the objective function values for all 
indexes in A - S; 

Let I be the index with the maximal objective 
function value; 

if F(I) 2 0 return S; 
s= SU(I}; 
A = A - {I}; 

3 

3.2.4 Lookahead algorithm (LH) 

Note that GD may choose a locally optimal solution 
and overlook those that are globally better. To remedy 
this, lookahead schemes, which explore more search 
space before making a decision on determining which 
index to be included into the selected set, are employed. 
Basically, by considering the effect of adding more than 
one index to the curient set of indexes, the index chosen 
for inclusion can be thought of as the one that could 
lead to a better solution a few steps later. Based on 
this concept of looking ahead, we can obtain a family 
of search algorithms, denoted by LH(m,n), where tn 
and n are two parameters associated with the search 
complexity. Let S be the current set of selected indexes. 
In each step, LH(m,n) considers the effect of adding 
to S an index subset which has a cardinality less than 
or equal to n and is made up of the m best indexes. 
After the effects of all such index subsets are evaluated, 

the most beneficial index subset is identified. Then, 
within this most beneficial index subset, the most 
beneficial index is added into S. Suppose we have four 
indexes to be considered, and (il, ir, i*, is) denotes 
the descending order of the objective function values of 
these four indexes. LH(3,2) will consider the benefits 
of the six index sets: (iz), {il), (id), (ia, il), (iz, i43, 
and (ir, i43. Suppose {iz, il) is the most beneficial one 
among them. Then the more beneficial one of il and il 
will be included into S. Formally, LH can be described 
as follows, where the objective function F could be P 
(on profit), R (on return ratio), or M (mixed) described 
in Section 3.1. 

Algorithm LH: Lookahead(m,n) index selection 
Input: Set A of all indexes and the objective 

function F. 
Output: Set of indexes to be built. 
s := 0; 
repeat ( 

Evaluate the objective function values for all 
indexes in A - S; 

Sort indexes in A - S according to the 
descending order of their objective function 
values; 

Let L be the first m indexes in the sorted 
index list; 

Identify all subsets with cardinalities no greater 
than n from L. 
Let T be the set of all such subsets. 

Let IS be the subset with the maximal 
objective function value among T; 

if F(IS) 2 0 return S; 
Let I be the index with the maximal objective 

function value among those in IS. 
S=SU(l); 
A = A - (13; 

3 

3.3 Illustrative Examples 

To illustrate the algorithms we described thus far, 
consider the schema graph in Figure 3 where queries 
q1 and qa have occurrence frequencies 0.8 and 0.2, 
respectively. Suppose that the four indexes (ir, is, 
is, ia) shown in Figure 3 are the four most beneficial 
ones to consider for these queries. Let the maximal 
storage available for indexing be 12. Also, assume that 
the update cost, storage cost and retrieval benefit of 
each index are those given in Table 1. Note that the 
retrieval benefit is the reduction in the retrieval cost 
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Figure 3: Schema graph with queries and indexes. 

Index Update Cost Storage Retrieval Benefit 
il 0.25 6 3 
i2 0.2 4 2 
i3 0.1 2 2 
i4 0.2 5 2 

Table 1: The costs, storage overheads and retrieval 
benefits for the four example indexes. 

for a query utilising that index. It can be seen that 
query ql benefits from neither ir nor ia. Based on this 
profile, we shall show the operations of NV, PO, GD 
and LH(4,2), assuming the objective function on profit 
is employed. 

Algorithm NV: First, consider algorithm NV. NV 
tries to include as many of these indexes as possible. 
Since the storage for indexing is limited to 12, it 
follows from Table 1 that the final selection by NV 
is (ir, ia,is}. It can then be seen that q1 saves three 
units of retrieval cost by using ir (i.e., from 7 steps that 
are required without using indexes to 4 steps by using 
ii), and qs saves two units of retrieval cost by using ia. 
The reduction in retrieval cost of the queries provided 
by this index set is 0.8 x 3 + 0.2 x 2 = 2.8. Note that is 
is redundant since q1 can be evaluated with a lower cost 
by ir, and that ir and ia cannot be used together to 
evaluate ql. Also, qs only benefita from ia. The update 
cost of the selected index set is 0.25 + 0.2 + 0.1 = 0.55. 
The overall reduction in the cost resulted from using 
(ir, il, is} is thus 2.8 - 0.65 = 2.25. 

By sorting the indexes according to the descending 
order of their objective function values, PO obtains 
(il, i4, i2, i3). It then selects as many indexes as 
possible from the top of the sorted list. Subject to 
the available storage 12, it can be verified that the 
final selection by PO is (ir, ia). The reduction in 
retrieval cost of the queries provided by this index set 
is 0.8 x 3 + 0.2 x 2 = 2.8. The update cost of the 
selected index set is 0.25 + 0.2 = 0.45, and the overall 
reduction in the cost resulted from using (ir, id) is thus 
2.8 - 0.45 = 2.35. 

Algorithm GD: In the first iteration of the greedy 
algorithm the retrieval benefits and the objective 
function values for these indexes are the same as those 
shown in Table 1. Index ir has the maximal value for 
the objective function and is thus added to the set of 
selected indexes. Hence, we have S = (ir), and the 
retrieval benefits of the remaining indexes are revised 
accordingly. The objective function values after the 
inclusion of ir are shown in Table 3. Note that selecting 
il reduces the benefits of il and G, showing the effect 
of index interaction. Index is now has the maximal 
objective function value and is thus added to S in the 
second iteration, leading to S = (ii, is). 

Algorithm PO: Next, consider the index selection In the third iteration, the benefits for the remaining 
algorithm. based on profit ordering. Table 2 indicates indexes are again m-evaluated and there is actually no 

Retrieval Benefit Objective Function 

Table 2: The original objective function value for each 
index. 

Index Retrieval Benefit Objective Function 
i2 0.8 x 0 + 0.2 x 0 = 0 0 - 0.2 = -0.2 
i3 0.8 x 0 + 0.2 x 2 = 0.4 0.4 - 0.1 = 0.3 
i 4 0.8 x 0 + 0.2 x 2 = 0.4 0.4 - 0.2 = 0.2 

Table 3: The objective function values for indexes after 
ir is selected by GD. 

the retrieval benefit and the objective function value 
(i.e., retrieval benefit - update cost) for the four indexes 
prior to any index selection. 
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change for the objective function values of il and il. 

Note that at this point, set S uses 6 + 2 = 8 units 
of storage. Since the maximal storage allowed is 12, 
there are only 4 units of storage available. Because 
i4 is the only beneficial index remaining and needs 
a storage of 5, GD terminates at this stage, giving 
S = {ii, is}. The update cost of the selected index 
set is 0.25 + 0.1 = 0.35. The reduction in the query 
retrieval cost is 0.8 x 3 + 0.2 x 2 = 2.8. The overall 
reduction in the cost resulted from using (ir, is} is thus 
2.8 - 0.35 = 2.45, larger than those resulted from NV 
and PO. 

Algorithm LH: Now, consider the application of 
LH(4,2) to this problem. In contrast to considering 
individual indexes as GD, LH(4,2) takes into consider- 
ation all subsets of the set (ir, is, is, id) of cardinality 
less than or equal to two. The four singleton sets cor- 
responding to the four indexes will have their costs and 
benefits identical to those shown in Table 1. In addi- 
tion, the following subsets of indexes are evaluated in 
Table 4. 

The set (is, i4) has the largest objective function 
value among all the candidate sets, and is therefore 
selected as the set IS. After i2 and i4 in IS being 
evaluated, id is included into S for its better perfor- 
mance. It is worth mentioning that the lookahead has 
led us to select id first, which has a smaller individual 
objective function value than il. Given S = (id}, we 
obtain the results in Table 5 by revising the be&t 
numbers. Next, it is obtained from Table 5 that the 
set (is, is} is the one with mtimal objective function 
value to be chosen as IS, which in turn leads to the 
inclusion of ia. Thus, S = (is, id}, 

Following the above procedure, is will be added 
into S in the next iteration, completing the search 
by LH(4,2). The final solution obtained by LH(4,2) 
is S = {&,is,&}. This set has an update cost of 
0.2 + 0.2 + 0.1 = 0.5, and the overall reduction in the 
query evaluation cost is 0.8 x (2 + 2) + 0.2 x 2 = 3.6, 
meaning that the net benefit of utilising {ia, ia, ir} is 
3.6 - 0.5 = 3.1, larger than those resulted by the 
previous schemes. As a matter of fact, it can be verified 
that the solution by LH(4,2) is the optimal one for the 
given database profile. 

4 Performance Study 

We conduct a performance study for index selection 
algorithms in this section. The methodology employed 

Figure 4: Schema graph used in the simulation. 

is described in Section 4.1. Experiments and their 
results are shown in Section 4.2. Different values for 
the amount of storage for indexing, the update and 
storage costs, and the attribute selectivity are used 
in the simulation to conduct a sensitivity analysis for 
these parameters. 

4.1 Methodology 

An OODB system simulator is built in C++ to model 
the detail of data retrievals under different indexed 
environments. The input to the simulator consists 
of a schema graph and a number of logical database 
parameters. Using these database parameters, the 
database population for our simulation is randomly 
generated. However, since we believe OODB schema 
graphs have certain important properties that random 
graphs do not possess in general, the schema graph 
is not generated randomly. Instead, we employ in 
our simulation the schema graph shown in Figure 4, 
which is essentially based on the one reported in the 
007 benchmark [4], except two modifications. First, 
for ease of exposition, we do not consider the effect 
of subtyping which is in fact orthogonal to the main 
theme of this study. Hence, the superclass of two 
classes in the benchmark in [4] is represented as a 
separate class, denoted by an extra node (node 9) 
in Figure 4. Second, we have included an additional 
attribute, represented by the arc between node 1 and 
node 6 in Figure 4, in order to have large cycles in the 
schema graph, thus providing more general results. 

Note that each edge actually represents a pair of at- 
tributes, i.e., the forward attribute and the correspond- 
ing reverse reference. A path query is specified by a 
path in the schema graph. Since the schema graph 
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Index set Retrieval Benefit Objective Function 
(il, is} 0.8 x 3 + 0.2 x 2 = 2.8 2.48 - (0.25 + = 1.95 
(il, i3) 

0.2) 
0.8 x 3 + 0.2 x 2 = 2.8 2.48 - (0.25 + = 2.45 0.1) 

{il, i4) 0.8 x 3 + 0.2 x 2 = 2.8 2.48 - (0.2 + 0.25) = 2.35 
{ia, i3) 0.8 x 2 + 0.2 x 2 = 2 2 - (0.2 + 0.1) = 1.7 
{hid} 0.8 x (2 + 2) + 0.2 x 2 = 3.6 3.6 - (0.2 + 0.2) = 3.2 
(h,i4} 0.8x2+0.2x(2+2)=2.4 2.4-(0.2+0.1)=2.1 

Table 4: The objective function values of index subsets of cardinality no greater than two. 

Index set Retrieval Benefit Objective Function 
fill 0.8 x 1 + 0.2 x 0 = 0.8 0.8 - 0.25 = 0.55 I 
(iSI 0.8 x 2 + 0.2 x 0 = 1.6 1.6 - 0.2 = 1.4 
{ia) 0.8 x 0 + 0.2 x 2 = 0.4 0.4 - 0.1 = 0.3 

(il,ia} 0.8 x 2 + 0.2 x 0 = 1.6 
{il,i3) 0.8x1+0.2x2=1.2 

1.6 1.2-(0.25+0.1{=0.85’ - 0.25+ 0.2 = 1.15 

is, i3 } 0.8 x 2 + 0.2 x 2 = 2.0 2.0 - (0.2 + 0.1) = 1.7 

Table 5: The objective function values for LH(4,2) after i4 is included. 

is actually a multigraph, there can be many differ- 
ent queries with the same starting and ending nodes. 
Queries are randomly generated as follows. First, the 
query length is randomly determined between the pa- 
rameters C&en,+, and QZen,,,,,. Then, the starting 
node of the query is randomly selected from those in 
the schema graph. A path is thus formed by a ran- 
dom walk in the schema graph, which starts from the 
starting node and moves via a random outgoing arc 
to its neighboring node in each step until the path 
length is reached. The number of queries generated 
is equal to a predetermined number, NumQueries. 
Each query is assigned a frequency for its occurrence 
in such a way that the sum of all the frequencies is 
equal to one. Node cardinalities and sires are deter- 
mined randomly from the ranges [Car&n, Curd,& 
and [Size,i, , Size,,,], respectively. Similarly, arc up 
date frequencies art randomly assigned such that their 
sum is equal to one. Each attribute is assigned with 
a selectivity, k, which corresponds to the ratio of the 
number of different attribute values to the cardinality 
of the target class. Simulation parameters and their 
typical values are given in Table 6. 

4.2 Experiments and Their Results 

Four algorithms, NV, PO, GD and LH, will be 
comparatively studied in Section 4.2.1. Three objective 
functions are evaluated in Section 4.2.2. The effect 

Figure 5: Performance of four index selection schemes. 

of update frequency and storage overhead is studied 
in Section 4.2.3. Due to the nature of random 
generation, two simulation runs based on the same set 
of parameters might yield different results. Therefore, 
for the same set of data, several simulation runs are 
performed, and the final statistics are obtained by 
averaging those from all runs. 
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Parameter Typical Value Meaning 
NumQueries 10 number of aueries nenerated 

..___~ 
512 ’ 

1 node size range (bytes) 
:n ratio of retrieval queries to updates 

valFrac 0.8 attribute selectivitv 
arcInsFrac 0.3 
arcDelF’rac 0.2 
arcUpdFrac 0.5 
OIDL 8 
kl 8 
kll 2 
rl 2 

I 

fraction of arc modifications that are insertions 
fraction of arc modifications that are deletions 
fraction of arc modifications that are updates 
length of object identifier 
key length 
size of key-length field 
size of record-lennth field 

nuid 
P 

2 size of “number if OIDs” field 
4096 Datze size 

PP 
d 

(4 
I 146 

1 page pointer size 
I order of a nonleaf node 

fanout 1 218 average fanout from a nonleaf B-tree node 

Table 6: Values of some database and system parameters used in the simulation. 

4.2.1 Comparison for index selection 
algorithms 

Four algorithms, NV, PO, GD and LH, are compara- 
tively studied. Recall that NV corresponds to a random 
inclusion of indexes, and PO selects indexes according 
to their individual profits without dynamically revising 
those profits. In contrast, CD revises the profits of all 
the remaining indexes after every inclusion of an index, 
thus taking index interaction into account. At the cost 
of higher search complexity, LH evaluates the profits 
of indexes several steps ahead before their potential in- 
clusion into the index lit. Performance of four index 
selection schemes using the objective on profit3 is given 
in Figure 5, where the ordinate is the ratio of the dy- 
namic cost with indexing to that without indexing and 
the abscissa denotes the amount of storage overhead 
allowed4. Recall that the dynamic cost is the sum of 
the retrieval cost of database queries and the update 
cost for indexes in response to database updates. 

It can be seen from Figure 5 that the dynamic 
cost required by an indexed system is in general 
decreasing as the amount of storage available for 

‘Rem&s from using the other two objective functions do not 
provide additional insights, and are thus omitted here. 

‘For clarity, the amount of storage overhead allowed indicated 
in the abscissa is the one nommlisedby the original database rise. 

indexing increases, meaning that more improvement 
on the dynamic cost can be achieved by allowing a 
larger storage for indexing. Failing to consider the 
effect of index interaction, NV and PO are clearly 
outperformed by GD and LH. In this experiment LH 
is implemented as LH(IO,50), a very extensive search, 
which we believe will mostly lead to the optimal 
solution. However, it can be seen that even with the 
high search order of LH, GD performs fairly close to 
LB, except when the amount of storage for indexing is 
small, showing that GD is very practically useful and 
the necessity of employing a high order search needs 
further justification. More insights into the reason for 
the good performance of GD will be provided in Section 
4.3. Nevertheless, when the amount of storage for 
indexing is small, meaning that only very few indexes 
could be built, LH outperforms GD for its prudent 
selection for indexes. 

4.2.2 Comparison for the objective functions 

Three objective functions, which guide the search for 
profitable indexes, are evaluated. The effects of the 
three objective functions are shown in Figure 6, where 
GD is used and the parameter Q for M(s) is chosen to 
be 0.5 for its good performance. It can be seen from 
Figure 6 that the mixed objective function M(a), which 
based on the amount of storage available, adaptively 
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Figure 6: Comparison of three objective functions. Figure 8: Storage overhead by indexing schemes. 

Figure 7: The effect of indexing for different storage 
overheads. 

selects its formula to evaluate indexes, emerges as the 
winner. It is interesting to see that P(.) performs 
better than R(.), except when the amount of storage is 
small. Clearly, when the amount of storage is limited, it 
is important to consider the storage overhead to select 
indexes. On the other hand, when there is an adequate 
amount of storage available it is better to consider 
the profit than the return ratio for index selection. 
Note that for the same amount of available storage for 
indexing, P(.) usually includes a few indexes with large 
profits, whereas R(.) tends to include more indexes, 
each of which, though consuming a fewer amount of 
storage, is less profitable. The more indexes, the more 
severe the effect of index interaction could be, thus 
accounting for the results in Figure 6. 
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4.2.3 Effect of update frequency and storage 
overhead 

Indexing in the nested object hierarchy could be costly 
in terms of the storage required and the update cost 
incurred. In this experiment we study the effect of 
varying the amount of storage allowed and also that of 
varying the retrieval-update ratio on the performance 
of indexing. Basically, indexing will facilitate query 
retrieval, but incurs an additional update cost in 
response to database updates. The relative dynamic 
cost for different storage overheads allowed for indexing 
is shown in Figure 7, where different retrieval-update 
ratios are investigated under GD with the objective 
function M(q). It is again observed that increasing 
the amount of storage allowed increases the benefit of 
indexing in general. However, this benefit is essentially 
bound by the update rate. For a retrieval-update ratio 
of 32, which corresponds to an environment with a high 
update rate, it can be seen from Figure 7 that having 
more storage does not yield any improvement since the 
solution index set is bound by the update cost. As 
the retrieval-update ratio increases, meaning that the 
relative update ratio decreases, the solutions tend to 
become more storage-bound, and having more storage 
thus yields better solutions. 

Figure 8 shows the actual storage used by the 
selected indexes. It can be seen that having fewer 
updates leads to a better solution up to the point where 
the solution becomes storage-bound. As a matter of 
fact, it can be verified from Figure 8 that as the 
amount of storage increases and also as the update 
rate increases, the ratio of the actual storage used to 
the maximal storage allowed (i.e., the slope of a curve) 
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decreases. 

5 Conclusion 

We studied in this paper the problem of devising 
a set of indexes for a nested object hierarchy to 
improve the overall system performance. Performance 
was measured in terms of the retrieval, update and 
storage costs of an indexed system. The index 
selection problem was first formulated and four index 
selection algorithms were evaluated via simulation. 
The effects of objective functions, which guide the 
search for candidate indexes, were also investigated. 
It has been shown by simulation results that GD 
which is devised in light of the phenomenon of index 
interaction performs fairly well in most cases, which in 
fact agrees with the very nature of index interaction 
we identified in this study. Sensitivity analysis for 
various parameters was conducted. We not only 
conducted an extensive performance study for index 
selection algorithms, but also explored the effect of 
index interaction to deal with this global optimization 
problem. 
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