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Abstract 

This paper introduces a formalism to describe 
the needs and preferences of database users. 
Because of the precise formulation of these 
concepts, we have found an automatic and 
very simple mechanism to incorporate user 
needs and preferences into the query answer- 
ing process. In the formalism, the user pro- 
vides a lattice of domain independent values 
that define preferences and needs and a set 
of domain specific user constraints qualified 
with lattice values. The constraints are au- 
tomatically incorporated into a relational or 
deductive database through a series of syn- 
tactic transformations that produces an anno 
tated deductive database. Query answering 
procedures for deductive databases are then 
used, with minor modifications, to obtain an- 
notated answers to queries. Because prefer- 
ence declaration is separated from data repre- 
sentation and management, preferences can be 
easily altered without touching the database. 
Also, the query language allows users to ask 
for answers at different preference levels. An 
extended example shows how these methods 
are used to handle large quantities of DNA 
sequence data. 
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1 Introduction 

Much work has been done to explore methods to 
handle user preferences in databases (see [CCLSO, 
CDSS]), human computer interaction (see [AWS92]), 
user models (see [McC88, KF88]), artificial intelli- 
gence (see [AP86, Po190, Par87]), and information re- 
trieval. Cooperative answering systems try to enable 
users to receive answers that they are actually seek- 
ing rather than literal answers to the posed questions 
(see [MotSO, GM88, GGMN921). This paper presents 
a complementary approach that incorporates the han- 
dling of user preferences into the query answering pro- 
cedure of a database. A declarative formalism for ex- 
pressing user preferences and needs as a body of infor- 
mation separate from the database is defined. A query 
answering procedure then takes both the preferences 
and the data into account when providing answers. 

The major advantages of the system described here 
are threefold. Preferences can be easily altered with- 
out touching the database. Users can ask for all an- 
swers either with or without the annotation of prefer- 
ence or for all answers that meet some level of prefer- 
ence. Preferences are captured by separate bodies of 
declarative information that can be changed indepen- 
dently. They are: (1) qualitative labels with an or- 
dering expressed as an upper semi-lattice, (2) logical 
statements, and (3) a function for combining prefer- 
ences. 

The notions of need and preference are reflected 
through a lattice of values provided by the user. Lat- 
tice values are used together with logical statements to 
express preferences. As an illustration, consider a trav- 
eler, Kass, who wants to travel from Chicago to Oslo, 
preferably nonstop. If she has to make a stop, she 
would rather stop in Washington, where her boyfriend 
lives than in any other city. She absolutely does not 
want to take direct flights that stop in London. We 
can define a set of annotated user constraints that ex- 
press Kass’ restrictions: 
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nonstop-jlight(A,B,Date,Flighl):good. 
direcl$ighl(A,B,Da~e,Flight):okay. 
indirec2$igh2(A, B,Dale, Flights):bad. 
slopover(Fligh2,Airport):fine 

+ dc-airport(Airport). 
slopover(Fligh2s,Airport):lenible 

+ london-airport(Airport). 
Consider the rule with the annotation terrible. The 

predicate london-airport in the body (to the right of 
the arrow) may be read as “Airport is located in Lon- 
don.” The atom in the head (to the left of the arrow) 
may be read as “The flight Flight involves a stopover 
in Airport.” The entire constraint may be read as 
“Flights that involve a stopover in Airport is terrible 
if the airport is a London airport.” (See [Gaa92] for 
a discussion of natural language descriptions of con- 
straints.) Furthermore, any answer that depends on 
a flight that stops over in a London airport should be 
annotated as terrible. 

In this example, a set of five symbols {terrible, bad, 
okay, good, fine} reflects preference levels. When the 
following order is assigned to the symbols: terrible < 
bad, bad < okay, okay < good, okay < fine, then a 
higher rank indicates a higher preference. As will be 
described in Section 3, any upper semilattice of values 
may be used for ordering the symbols. 

Now, when Kass asks the query “How can I trav- 
el to Oslo from Chicago on May l?“, expressed log- 
ically as, say, c travel(chicago, oslo, (may, 1, Time), 
navelplan), the search space of the query should be 
modified with the constraints so that nonstop flights 
are noted as good; direct flights through Washington 
as fine; flights through any other city, except London 
noted as okay, and so on. Alternatively, she may wan- 
t to ask for flights that are fine or better. Then all 
answers below this level must be discharged. 

Suppose the lattice contains only two values, 
say unacceptable and acceptable with the order 
unacceptable < acceptable. Let the user constraints on 
direct-jlight and nonstop-jlighl be annotated with ac- 
ceptable and the rest with unacceptable. In this case, 
the annotated user constraints reflect Kass’ needs. 

The method for handling user needs and preferences 
is summarized as follows: Once a user has provided a 
lattice of values and a set of user constraints annotat- 
ed with the values, the constraints are automatically 
incorporated into a relational or deductive database 
through a series of syntactic transformations that y;o- 
duces an annotated deductive database. Query an- 
swering procedures for deductive databases are then 
used, with minor modifications, to obtain annotated 
answers to queries. In contrast with earlier work, the 
only burden on users is to express their preferences. 
The separation of preference declaration from data 
representation is achieved through the use of the the- 

ory of annotated logic programs, deductive databases, 
and the series of simple transformations that are in- 
visible at the user level. 

Preliminary background definitions are given in Sec- 
tion 2. Section 3 provides background on annotations 
and discusses the theoretical details of annotated d- 
eductive databases needed for user preferences and 
needs. It also provides a transformation of a nor- 
mal logic program into an annotated logic program. 
Section 5 formally defines annotated user constraints 
and provides a transformation that incorporates a set 
of annotated user constraints into an annotated logic 
program. It also shows that answers obtained from 
the transformed program are properly annotated to 
reflect user preferences and needs as expressed in the 
annotated user constraints and the upper semilattice 
of values. Section 6 discusses how a procedure can 
be defined by which the answers obtained for a query 
are annotated according to the constraints. Section 7 
presents an extended example in which the method- 
s described in this paper are used to handle a large 
body of DNA sequence data. 

2 Background 

Deductive databases are comprised of syntactic infor- 
mation and semantic information [GM78]. The syn- 
tactic information consists of the inlensional database 
(IDB) and the eztensional database (EDB). The IDB is 
a set of clauses, or rules, of the form A + L1, . . . , L,, 
n > 0, where A is an atom and each Li is a literal. 
The EDB is a set of clauses, or facts, of the form A c, 
where A is a ground atom. 

Direct answers to database queries, which are claus- 
esoftheformc&,.. . , B,. are found by using SLD- 
resolution on the query, IDB, and EDB clauses to pro- 
duce a search tree. The root node of the search tree is 
the query clause; each node in the tree is produced by 
applying an IDB rule to the node above. 

The semantic information in a deductive database 
usually consists of a set of inlegrity conslraints (IC), 
of the form Al,. . . , A,,, + Cl,. . . , C,,, where the Ais 
and Cis are atoms whose predicate appears in an 
EDB fact or the head of an IDB rule. An integri- 
ty constraint restricts the states that a database can 
take. For example, the integrity constraint No per- 
son can be both male and female, possibly written as 
c person(X),male(X),female(X), restricts people in 
a database from having two genders. Integrity con- 
straints are considered semantic information rather 
than syntactic information because the constraints on 
a database add no new deductive knowledge to the 
database. 

If we consider semantic information to be informa- 
tion about the information in the database, user con- 
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straints are another form of semantic information. A 
user constraint expresses a state of the database that 
the user wishes to be true of the database. For ex- 
ample, if the user only wants to know about students 
who are enrolled in English 430, she may express a 
constraint like the following: enrolled(X, english490) c 
student(X), indicating that for student(X) to be con- 
sidered true during a search, it must also be true that 
student X is enrolled in English 430; otherwise the user 
constraint is violated in the search. 

Now we are prepared to turn to the investigation of 
how to use annotations to capture and adhere to users 
preferences over database domains. 

3 Annotated Logic Programs and 
Databases 

To enable a user to specify preferences and then receive 
answers according to those preferences, we must be 
able to do the following: 

Allow a user to specify a set of user constraints as 
logical statements in the language of the deductive 
database and rank the constraints according to 
preferences through the annotation. 

Integrate the annotated user constraints into the 
rules and facts of the deductive database to form 
a new annotated deductive database. 

Accept a query from a user and return a set of 
annotated answers. 

Allow the user to annotate queries and receive 
answers that satisfy the annotation. 

First, we must precisely define annotation in log- 
ic programs. In our discussion of annotation, we fol- 
low closely the notation in Kifer and Subrahmanian 
[KS92]. An annotated logic program comprises a set of 
annotated clauses of the from: 

A:(vtBI :PI,...,Bn :/I,,. 

A and the Bs are atoms as usually defined in logic 
programs; a and the ps are annotation terms. A : (Y is 
the head of the annotated clause, and B1 : /?I, . . . , B,, : 
@,, the body. The annotation terms are defined based 
upon an upper semi-lattice 7, a family of total con- 
tinuous functions over 7 and an enumerable set of an- 
notation variables. For our purpose we assume/that 
7 is a complete lattice and denote the lattice ordering 
by 5, the least upper bound operator by U, the great- 
est lower bound by ll, and the top and the bottom 
elements of lattice by T and I respectively. 

The lattice reflects the rankings of the user about 
the importance of states expressed in a user constraint. 

For example, consider the constraints from Section 1. 
They included a constraint about not stopping in Lon- 
don, a constraint about preferring direct flights over 
indirect flights, that is flights with a change of planes, 
and a constraint about preferring nonstop flights over 
direct flights. The user may assign the value terrible 
to the constraint about London and the value bad to 
the constraint about indirect flights, the value okay to 
the constraint about direct flights, and the value good 
to the constraint about nonstop flights. The bottom of 
the lattice is terrible. The lattice is completed with the 
top element very good, and the partial order is given 
by the transitive and reflexive closure of the following 
relation: terrible -=c bad, bad < okay, okay < fine, okay 
< good, fine < very good, good < very good. 

Alternatively, the lattice may be interpreted to re- 
flect the degree of confidence in the statement ex- 
pressed in the constraint. Consider an example from 
the world of molecular biology in which two constraints 
say that hydrophobic amino acids appear on the inside 
of a protein molecule and that hydrophilic amino acids 
wind up on the outside. These states tend to be true 
about protein molecules, but they are not always true. 
So let us annotate the hydrophobic constraint with 
usually and the hydrophilic constraint with almost al- 
ways. Now consider a program that generates alterna- 
tive protein molecule structures. Generated structures 
that have hydrophobic amino acids all on the inside 
and hydrophilic amino acids all on the outside will re- 
ceive the annotation almost always; structures with all 
hydrophobic inside and one or more hydrophilic inside 
will receive the annotation usually. If almost always 
is considered to be of higher confidence than usual- 
ly, the first set of structures will be preferred to the 
second set of structures. See [Pea@, KS92, ?] for fur- 
ther discussion on the relationship between lattices of 
qualifications, probability, certainty and confidence. 

For the lattices, we will initially consider two set of 
continuous functions. 1) For each i 2 1, we will have 
an i-ary function Ui, the natural extension of U to i 
arguments. 2) For each i 2 1, we will have an i-ary 
function fli, the natural extension of I-I to i arguments. 
Whenever it is not ambiguous, we will use U and n in- 
stead of Ui and lli. Hence an annotation term can be 
recursively defined as follows: 1) Any element of 7 is 
an annotation term. 2) Any annotation variable is an 
annotation term. 3) If al, . . . , ai are annotation terms 
then LIi(al, . . . , ai) and n(al,. . . , ai) are complex an- 
notation terms. Nothing else is an annotation term. 
If A is an atom and (Y an annotation term then A : CY 
is called an annotated atom. If (Y is a constant A : a 
is called c-annotated; if (Y is a variable v-annotated. In 
annotated logic programs, complex terms appear only 
in the head of the program clauses; the annotations 
in the bodies are either annotation variables or con- 
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stants. Let C be the language of an annotated logic 
program. The Herbrand base C, HBL:, is the set of all 
ground (non-annotated) atoms. The semantics of an- 
notated logic programs is defined in terms of annotated 
interpretations. An annotated interpretation IA, is a 
binary relation subset of HBL x I such that if a pair 
(A, CY) is in IA then for every p 5 (Y, (A, p) is also in IA. 
We identify an annotated interpretation 1.4 with the 
set of annotated ground atoms {A : al(A,(~) E IA}. 
We can now define salisfac2ion. An annotated inter- 
pretation IA satisfies a ground annotated atom A : (Y, 
IA +A:oiffA:o~IA. ’ 1.4 satisfies a non-ground 
annotated atom A : a iff it satisfies each ground in- 
stance of the annotated atom. IA satisfies an annotat- 
ed program clause iff for each ground instance of the 
clause where each annotated atom in the body of the 
ground clause is satisfied by 1.4 the head of the clause 
is also satisfied. Then an annotated model of an an- 
notated program IIA is an interpretation that satisfies 
each clause in the program. 

There is a natural partial order that can be defined 
between annotated interpretations IA and JA. We say 
that 1~ 5 JA iff for each (A,&) in IA there exists 
(A,/?) in JA such that CY 2 p.’ The next step is to 
extend the Tp operator of van Emden and Kowalski 
[vEK76] to compute the least annotated model of an 
annotated program IIA. 

Definition 3.1 Let IIA be an annotated program. A 
monotonic operator from annotated interpretations to 
annotated interpretations, TnA, is defined as: 

TnA(I~) = 
{A:cu](~~c~‘andA:cu’cBi:/3i,...,B,:/3, 
is a ground instance of a clause in IIA and 

vi, 1 5 i 5 n, (Bi,&) E 1.4) 

We can iteratively find the least annotated minimal 
model by finding the least ordinal 6 such that T,“, (8) = 
T::‘(0). In other words, the least annotated model of 
IIA coincides with the least fixpoint of the operator 
T 

“A ’ 

We want to allow negation in the rules and fact- 
s of a deductive database. This can be easily done 
by extending the concepts of negation in normal logic 
programs to annotated programs. 

We will use the stable model semantics to interpret 
negation in normal logic programs. The stable model 
semantics characterizes the meaning of a normal pro- 
gram by a set of minimal models called stable models, 
which are defined using the Gelfond-Lifschitz transfor- 
mation. This transformation is defined as follows. 

1 Slightly abusing the definition of grounding, we assume that 
complex terms in the mmotations are evaluated to values in 7. 

‘Note that this relation is equivalent to saying that Id c Jd. 

Definition 3.2 [GL88] Let II be a normal logic pro- 
gram and let I be an interpretation. 

II’ = 
{A + BI,. . . , B,I A +- BI,. . . ,B,, notDl,. . . , notD& 
is a ground instance of a clause in II and 

Vi, 1 5 i 5 vn, I k 0;) 

II’ is the Gelfond-Lifschitz transformation of II with 
respect to I. 

The result of the Gelfond-Lifschitz transformation 
is a negation-free (possibly infinite) definite program. 
Stable models for logic programs may now be defined 
as follows. 

Definition 3.3 Let II be a normal program. M is a 
stable model of II iff M is the unique minimal model 
of IIM 

To capture the semantics of stable models into the 
framework of annotated logic programs we will take 
the view of negation that Kifer and Subrahmanian 
refer to as ontological negation. Given an annotat- 
ed interpretation IA, we say that IA b notA : a iff 
1.4 k A : CY, that is, (A, cy) $ IA. 

Definition 3.4 (cf. [GL88]) Let II,4 be an annotated 
normal logic program and let IA be an annotated in- 
terpretation. 

ndrA = 
{(A:cucB1:pl,...,B,:Pn)l 
(A:a + & :pl,. . .,Bn:Pn, notDl:&,. .., notD,:&,,) 

is a ground instance of a clause in & and 
Vi, 1 5 i 5 m, Ia l= notDi : 6i) 

IIAIA is the annotated Gelfond-Lifschitz transforma- 
tion of &t with respect to IA. 

Definition 3.5 (cf. [GL88]) 
Let IIA be an annotated normal program. MA is 

an annotated stable model of IIA iff MA is the least 
annotated minimal model of IIAMA. 

Similar extensions can be done using other seman- 
tics such as the well-founded semantics [VKSSS]. 

4 Transforming from LP to ALP 

We want to allow users to give annotated user con- 
straints for any logic program or deductive database. 
Thus, we must unify the language of user constraints 
and logic programs. First, we define how to transfor- 
m any normal logic program into an annotated logic 
program. Then we show how the model semantics of 
the normal logic program is translated into the model 
semantics of the annotated logic program. 

The transformation of a logic program is as follows: 
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Transformation 1 Let ?r be a (normal) program 
clause: 

A + BI ,..., B,, not& ,..., not&. 

The annotated transformation of ?r is the (normal) an- 
notated clause: 

A : n{u,, . . . , un} 
t B1 : VI,..., B” : un, notCn : I,. . .) note, : I 

where the vi are n distinct annotation variables. We 
assume that tl{} = T. 

Let II be a normal logic program. The annotat- 
ed transformation, IIA, of II is the set of annotated 
transformed clauses from II. cl 

The annotation of an atom in an annotated inter- 
pretation reflects the confidence or preference in the 
validity of that atom. Hence, any atom that is true 
in a given interpretation I must be true at any level 
of preference or confidence in the corresponding an- 
notated interpretation. Thus, the transformation of 
an interpretation into an annotated interpretation is 
defined as follows: 

Transformation 2 Associate with each interpreta- 
tion I an annotated interpretation 1.4 such that 1-4 = 
{A : crlA E I, for every (Y E I}. cl 

From these definitions, it is easy to show that the 
following lemma holds. 

Lemma 1 Let II be a normal logic program and II,4 
its annotated transformation. Then A4 is a stable 
model of II iff MA is an annotated stable model of 
HA- 

In this section, we have reviewed the notion of anno- 
tated logic programs, and we have precisely defined the 
annotation framework needed for handling user pref- 
erences and needs. 

In the next section, we shall define annotated user 
constraints and show how to integrate a set of annotat- 
ed user constraints into an annotated logic program. 

5 Annotated User Constraints 

User constraints express statements of the form “if a 
condition C is true then I would like to assume the 
jonnul4 3 to be false. V This statement can naively,be 
translated into the implication C + 73. However, the 
simple addition of such implications to the theory can 
create inconsistencies. The inconsistencies arise be- 
cause the intention of the user is more than just adding 
the implication to the program. The user wants the 
new information to prevail over previous data in the 

system. This behavior may be obtained if we treat 
the implication C + 73 as an exception on the truth 
value of 3 in the way that Kowalski and Sadri intro- 
duce exceptions into logic programs [KS90]. Although 
exceptions avoid inconsistencies, there are some prop- 
erties of user constraints that cannot be captured with 
Kowalski and Sadri’s definition of exception. As a re- 
sult, we must extend the theory beyond that of Kowal- 
ski and Sadri. 

To illustrate, consider an employee of a compa- 
ny in Chicago who is planning a business trip to 
Moscow. She would like to get flight information from 
a database, but before doing so, she would like to 
inform the database that she prefers direct flights. Be- 
fore posing the query to the database, she could intro- 
duce the constraint ignore non-direct flights. If there 
are no direct flights from Moscow to Chicago, the an- 
swer to the query according to the constraint would 
then be empty. The new information in the constraint 
takes precedence over the existing information. 

Assuming that the employee must take the trip any- 
way, it would be better to return answers that include 
non-direct flights and to let the employee know that 
they are a less than ideal solution. One possibility is 
to let the employee modify the constraint and ask the 
query again. Suppose instead, we allow the employee 
to annotate the constraint with a value that indicates 
the low priority of non-direct flights, as in non-direct 
fIights:bad, Any answers that violate this constrain- 
t would receive the annotation. Instead of eliminat- 
ing indirect flights, annotations enable the employee 
to give them low priority among all possible answers. 
Then the employee has her preferences respected when 
the query is asked: she finds direct flights if they exist 
and finds any flight if no direct flight exists. Formally, 

Definition 5.1 A user constraint v is an annotated 
normal clause of the form: 

A : a + B1 : PI,. . . , B, : B,,, not& : I,. . . , not&, : 1. 

where A : (Y is a c-annotated atom and the Bi : /3i 
are c- or v-annotated atoms. We say that the con- 
straint v is in homogeneous form if the atom A has 
the form p(X1,. . . , Xk), where the Xi are k distinct 
variables. The atom p(Xi, . . . , XE) is called an homo- 
geneous atom and the predicate symbol p is called a 
constrained predicate symbol. 

In this paper we assume that all the constraints 
are in homogeneous form. This is not a restriction if 
the equality predicate can be considered part of the 
language. However, we will not introduce the equali- 
ty predicate in this paper since it will complicate the 
description of the annotated logic program semantics 
unnecessarily. The extension of the semantics to cover 
equalities is straightforward. 
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The user constraint v can be interpreted as say- 
ing that if the antecedent of the implication, (Br : 
A,...! B, : pn, not& : I,. . . , notC, : I), is true 
then at most A : c can be accepted to de true. For- 
mally, 

Definition 5.2 Let the annotated clause 

A : c + B1 : PI,. . . , B, : /3n, not& : I,. . . , not& : I 

be a user constraint v and 1.4 an annotated interp;e- 
tation. IA satisfies ,r~ iff for any ground instance 4 : 
c c B; : pi,. . . , B,, : /3,,, not& : I,. . ., notC : 
I of v such that (Bi : p;,...,BA : &,, not?: : 
I , . . . , not& : I) is satisfied in IA, IA SatiSfieS A : e 
only when e 2 c. 

As a simplification to the user interface, we allow 
users to pair an annotation with the head of each con- 
straint as follows: 

A : c c B1, . . . , B,, not&, . . . , not&. 

To transform the annotation/constraint pair into a 
fully annotated user constraint, each Bi receives a u- 
nique annotation variable pi, and each notCj receives 
the annotation 1. Users who wish to be more sophis- 
ticated can define the annotation of the head atom 
A with a complex annotation term constructed from 
the &s according to the annotation definitions in Sec- 
tion 3. 

Transformation 1 establishes a translation of nor- 
mal logic programs into annotated normal logic pro- 
grams. Now we introduce a transformation that incor- 
porates a set of user constraints, U, into an annotated 
program, &. 

Transformation 3 For any clause ?r of the form: 

A:(vtBl:fll ,..., &:&,,notCn:I ,..., not&:1 

in UA with a constrained predicate symbol in the 
head, replace ?r with the annotated clauses: 

A:anv +&:/II,..., B, : &, (p’(Z) : v)O, not& : 
I,..., notC,:l 

A:a + &:PI,..., B, : &, not(p’(2) : I)@, not& : 
I ,..., notC,:l 

to obtain U&4 such that 

1. p(z) is the head of an homogeneous constraint in 
U renamed apart from ?r. 

2. p(z) and A unify with mgu 0. 

3. v is a new annotation variable not appearing in 
?r. 

Finally we add to U&U all the user constraints in U 
replacing each predicate symbol p in the head of the 
constraints with the new predicate symbol p’. 0 

The first property we can show is that the user con- 
straints are satisfied by the newly transformed pro- 
gram. 

Theorem 1 Let MA be an annotated stable model of 
U&U. Then for any constraint v E Z.4, UM~ satisfies 
V. cl 

Although Theorem 1 shows that Transformation 3 
is correct it does not provide any criteria to select a 
transformation. For example, we can merely annotate 
all the head atoms in LT.4 with l. to produce U&U, but 
this transformation unnecessarily constrains the rules 
in UA. We would like to show that the restrictions 
imposed in the program are somehow minimal. This 
minimality can be expressed in terms of the partial 
relation 5 that exists between the annotated interpre- 
tations. Before we present the theory showing this 
minimality we need to define a new relation between 
annotated interpretations. We say that two annotated 
interpretations IA and IA are sin&r with respect to a 
set of ground atoms B iff the projection of these inter- 
pretations over their first argument intersected with 0 
produces the same set. That is, for a ground atom A 
E 6 there exists (Y such that (A, o) E IA iff there exists 
/3 such that (A, j?) E I’A. 

The following theorem shows that U&u is the best 
program that complies with the user needs expressed 
through the set of user constraints U. 

Theorem 2 Let C be the language of IIA. 

1. For every annotated stable model A& of UA there 
exists a similar annotated stable model M&U of 
U&U w.r.t. HBL such that MA,U n HBr. 5 MA 
and there is no annotated interpretation IA that 
satisfies 24 and MA,U n HBL 5 IA 5 MA. 

2. For every annotated stable model MA,U of IIA,u 
w.r.t. HBr there exists asimilar annotated stable 
model MA of IIA such that MA,U n HBr. 5 MA 
and there is no annotated interpretation 1.4 that 
satisfies U and MA,U n HBr 4 IA 5 MA. 0 

6 Answering Queries via Annotations 

Sections 3 and 5 lay the theoretical foundation for 
meeting users’ preferences and needs through annotat- 
ed user constraints. Now let us examine an example 
that illustrates the power of the approach. 

Consider our user, Kass, from Section 1. Suppose 
that Kass is using a simple deductive database with 
the following rules: 

travel(A, B, Date,Plan) c jiy(A, B, Date,Plan). 
fiy(A, B, Date,[Flight]) c 

nonstop&ght(A, B, Date, Flight). 
j?y(A, B, Date,[Flight]) c 
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direct&ght(A, B, Date, Flight). 
jIy(A, B, Date, Flights) c 

indirectJlight(A,B,Date,Flights). 
nonstop-jlight(A,B,Date,F) c 

jlight(F,A, B, Date), 
not has-stopover(F). 

direct$ight(A,B,Date,F) t 
flight(F,A, B, Date), 
has-stopover(F). 

indirect-jIight(A, B, Datel,[qFlights]) c 
j?ight(F,A,X,Datel), 
jIy(X, B, Date,%‘, Flights). 

has-stopover(Flight) 
t stopover(F,X). 

Recall Kass’ user constraints from Section 1: 
nonstop$ight(A,B,Date,Flight):good. 
direct$ight(A, B, Date, Flight):okay. 
indirect$ight(A,B,Date, Flights):bad. 
stopover(Flights,Airport):$ne c 

dc-airport(Airport). 
stopover(Flight,Airport):terrible +- 

london-airport(Airport). 
As defined in Section 5, the last two user constraints 

transform into the following fully annotated user con- 
straints in which p is an annotation variable: 

stopover(Flights,Airport):fine + 
dc-airport(Airport)$. 

stopover(Flight,Airport):terrible c 
london-airport(Airport):P. 

When the deductive database is transformed into an 
annotated logic program using Transformation 2 and 
then into a new annotated logic program using Kass’ 
user constraints and Transformation 3, the annotated 
logic program in Figure 1 results. Now we are ready to 
consider Kass’ query about traveling from Chicago to 
Oslo on May 1, c travel(chicago, oslo, (may, 1, Time), 
TPlan). 

Without loss of generality, we assume that queries 
have only one atom and correspond to a rule defining 
the query whose head contains the query variables as 
follows: 

+ query(Time, TPlan). 
query(Time, TPlan) + 

travel(chicago, oslo, (may,l, Time), TPlan). 

Since the query is to an annotated logic program, 
it must be annotated. Annotations on the query are 
handled as follows: 

l When users ask queries without annotation, that 
indicates that they are not interested in the anno- 
tation values. Even so, an annotation variable is 
attached prior to search so that the query is com- 
patible with the program. As follows from Sec- 
tions 3 and 5 all answers are returned. Substitu- 

tions for the annotation variable are not returned 
to the user. 

If the user asks the query together with an an- 
notation variable p, all answers are returned, and 
each answer has an annotation value associated 
with it. 

If the user asks the query together with an anno- 
tation value c, all answers at that value or above 
in the lattice are returned. As follows from Sec- 
tions 3 and 5, the answers are annotated with the 
value given by the user.3 

The process of answering a query is very similar 
to any SLD-resolution style proof procedure. Let us 
examine each case in turn with Kass’ query. 

When the query is presented to the program with- 
out an annotation variable, it receives a temporary 
variable, p, and expands to three alternative queries 
Q1, &a, and ($9 as follows: 

Q: + query(Time, TPlan).$. 
Q’: + travel(chicago, 0310, (may,l, Time), TPlan):P. 
Q”: + ~y(chicago,oslo,(may,l,Time), TPlan)$ 
Ql: + nonstopflight(chicago,oslo, 

(may,l, Time), TPlan).$. 
92: + direct-flight(chicago,oslo, 

(may,l, Time), TPlan).$. 
QS: + indirectJfight(chicugo,oslo, 

(may,l, Time),TPlan):P. 
For Ql and fJ2, the variable p receives the substitution 
VW, WIPE, where P’ is a renamed variable in the 
rules for nonstopJlight, and direct-flight. For Ql, the 
variable p receives the substitution {n{&, ,$,, N/}/P}, 
where /?i, j34, and N’ are renamed variables in the rules 
for indirect-flight. Expanding Ql produces the follow- 
ing two alternatives: 

91-f: 
+- jiight(TPlan,chicago,oslo,(may,l, Time)):@‘, 

nonstop$7ighd(chicago,oslo,(may,1, Time),TPlan):N, 
not atopouer(TPlan,X):l. 

Ql-2: 
+ flight(TPlan,chicago,oslo,(may,l, Time))$‘, 

not ( 

nonstopfIight’(chicago,oslo,(may,l, Time),TPlan):l 

1, 
not stopover(TPlan,X):l. 

The first choice &l-l resolves with the renamed us- 
er constraint to unify N with the value good. As- 
sume that the jlight atom resolves with some fac- 
t that has T as its annotation with the substitu- 
tion { 1 Ol/TPlan, 17:15/Time}. Also assumes that 

3The query can also be thought of as the conjunction (Q : 
p) A (p 2 c), where the constant c specifies the least acceptable 
value for the answers and the variable p receives an annotation 
value for each answers. Space prevents us from expanding on 
this variation here. 
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tmvel(A,B,Date,Plan).$ + jly(A,B,Date,Plan).$. 
jly(A, B, Date, Flight):/3 + 

nonstop_flight(A, B, Date, Flight)$. 
jIy(A, B, Date,Flight)$ + 

directJlight(A, B, Date, Flight).$. 
jly(A, B, Date, Flights):/3 + 

indirect-flight(A, B, Date, Flights):@. 
nonstopJ?ight(A, B, Date, F).n{/3, N} + 

jlight(F,A, B, Date)@, 
nonstopflight’(A, B, Date, F):N, 
not has-stopover(F):l. 

nonstopflight(A, B,Date, F):/3 + 
j?ight(F,A,B,Date).$, 
not nonstop#?ight’(A, B,Date, F):l, 
not has-stopover(F):l. 

direct_Pight(A,B,Date,F).fl{/3~,/32,N} + 
jIight(F,A, B, Date)&, 
has-stopover(F):/%+ 
directJIight’(A, B, Date, F):N. 

directJ?ight(A,B,Date,F)fl{~~, /32} + 
flight(F, A, B, Date)& 
has-stopover(F)&, 
notdirect$ight’(A,B,Date,F):l. 

indirec@ight(A, B,Date,[FjFlights]).n{/31, @2, N} + 
Pight(F, A,X, Date)&, 
j?y(X, B, Dateb, Flights):& 
indirect$ight’(A, B, Dote,[Fj Flights]):N. 

indirectJ?ight(A,B,Dote,[~Flts]).fl{/3~,/3~} + 
jSght(F,A,X,Date):& 
j?y(X, B, Doted, Flts).&, 
notindirectJiight’(A,B,Dote,[I;1Flts]):l. 

has-stopover(Flight):/3 + stopover(Flight,X)$J 
nonstop-flight’(A, B, Dote, Flight):good. 
direct-flight’(A, B, Dote, Flight):okay. 
indire&jiight’(A, B, Dote, Flights):bad. 
stopover’(Flights,Airport)$ne + 

dc-airport(Airport).$. 
stopover’(Flights,Airport):terrible + 

londonairport(Airport)$. 

Figure 1: Transformed Logic Program 

has-stopover(l01) fails. Then one answer substi- 
tution for the query through 91-l is {lOl/TPlan, 
17:15/Time, good/p}. Following our definition of how 
to treat un-annotated queries, the value good for /3 is 
not returned to Kass. 

When the query is presented to the program with an 
annotation variable, the annotation value is included 
with each answer. Suppose that the database contains 
the following facts: 

jiighl(chicago,oslo,10l,(may,1,17:15)):T. 
j7ighl(chicago,dc,102,(may,1,14:15)):T. 
jIight(dc,oslo, 102, (may, 1,20:80)):T. 
jlight(chicogo,oslo,102,(may,1,14:15)):T. 
jTight(chicago,london, 103, (may, 1,18:00)):T. 
jIight(london,oslo, 104,(may,2,08:30)):T. 
dc-oirport(dulles):T. 

london-airport(heathrow):T. 
stopover(lO$dc):T. 
The last fact is transformed into the rule: 
stopover(l02, dc)$ + stopove#(lO%, dc).$. 

Then the set of answer.substitutions for the query 
would be the following: 

{ { lOl/TPlan,l7:15/Time,good//? }, 
{ 102/TPlan,14:15/Time,fine//I }, 
{ [lOS, 104]/TPlan, 18:00/Time, bad//3 } } 

If the query were annotated with the value fine, only 
the second answer substitution would be returned. If 
it were asked with the annotation okay, the first and 
second answer substitutions would be returned but not 
the third. 

Adaptations of bottom-up procedures can also be 
done in a manner that is similar to the modifications 
to the top-down procedure. In addition, if the query 
specifies an annotated constant, the annotation indi- 
cates a selection that should be made before projec- 
tions or joins. Thus, this annotation should be pushed 
down in the deduction tree before starting the bottom- 
up evaluation. 

Observe that incorporating annotated user con- 
straints into relational databases requires two steps: 
(1) adding one argument to some of the relations to 
store the annotations and (2) adding a procedure to 
compute operations over the lattice. These extensions 
can be done automatically without the intervention of 
the database designer. 

7 Example: Handling Large Volumes 
of Sequence Analysis Data 

When analyzing new DNA sequence data through 
available pairwise alignment software, a series of is- 
sues arise: how does one compare the outputs from 
different software packages? how does one determine 
whether one package or another is more reliable? how 
can one use the results from one package to reinforce 
the results from another in a systematic way? And 
not least, how does one deal with the sheer volume 
of the output (e.g. for 300 sequences of length lOO- 
300 nucleotides, the Blastx output is 25 megabytes of 
human-readable files). 

A system built by Gaasterland and Overbeek 
[GO941 sends contiguous DNA sequences (CDS) out to 
a variety of software packages and parses the human- 
readable output into a logical database of facts about 
the sequences. Each fact represents a local similari- 
ty alignment between an input query sequence and a 
sequence in some database, e.g. GenBank, SwissProt, 
or the EMBL Nucleotide Databank, or a similarity be 
tween a query sequence and a motif pattern, linked in 
turn to local multiple sequence alignments of entries 
in sequence databases. 
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From the logical form of the output data, we use 
qualified query answering to merge the “opinions” 
from each different piece of software and make a qual- 
ified decision about what region of an inp-ut query se- 
quence is a CDS and what its function is. The basic 
property of this scheme is that the criteria for making 
a judgement about the data are represented separate- 
ly from the data itself and from rules for deriving new 
information from the data. This means that a set of 
rules for deriving a CDS to function mapping need be 
written only once. After that, it is straightforward for 
a user to change the combination criteria. 

Available sequence analysis tools can be thought 
of as producing connections between the query se- 
quence and sequences that appear in a variety of 
sequence databases (including versions of SwissProt 
[BB91, Bai93b], GDB [PeaSl], and the EMBL Nu- 
cleic Acid Database [EMB93]). Those connections 
have a score associated with them. This functional- 
ity is clear in the Blast, Blaize, and Fasta families 
of sequence analysis tools [AGM+SO, CC90, WL83]. 
Each of these tools perform pairwise sequence align- 
ments between the query sequence and the database 
sequences. The functionality also applies to Block- 
s [HH93], which searches for Prosite motif patterns 
[BaiSl] in a query sequence and associates that re- 
gion of the query sequence with a multiple local se- 
quence alignment - or block - in which the aligned 
sequences each exhibit the prosite pattern in ques- 
tion. Blocks associates the query sequence with the 
best matching sequence in a “block.” Each logical fact 
about a match has the following form: 

similarity([Contig, From, To], 
[ProteinID, From-p, To-p], 
Score, Tool). 

This fact can be read as There is a similarity be- 
tween the input contig from DNA sequence location 
from From to To and ProteinID sequence location from 
From-p to To-p, with a score of Score using Tool. 

For example, for a contiguous DNA sequence, say 
~030, in the region between 330 and 430, blastx asso- 
ciates it with SwissProt entry PO4540 and blaize asso- 
ciates it with ‘ARYBMANSE’: 

similarity([cO30,6,208], 
[acore(l60),expect(0.0064),p(0.0064)], 
[embl M62622,51493,51695], blastn). 

similarity([c030,689,1018], 
[score(73),expect(l.Se-OB),p(l.Se-8)], 
[gbjXO5182,865,536],tblastn). 

similarity([c030,713,102& 
[score(99),permatch(4.3),pndno(4.09e-5)], 
[YM71STRYBB,469,574],blaize). 

With two straightforward rules, we have a declar* 
tive program that derives CDS/function pairs from the 
similarity facts for a sequence. The first rule invokes a 

search for a possible open reading frame (ORF), that 
is, a possible start and stop location for translation in 
a contig and for a similarity that is contained within. 
that ORF: 

hit(Contig,From, To,Protein) + 
orf(Contig, From, To), 
similarity([Contig,Froml,Tol], 

[Protein,From& To2],Score, Tool), 
&thin(l+oml, Tol, From, To). 

The orf relation can be read as There is an orf in 
sequence Contig from From to To. The orf relation can 
be derived in many ways4 The within relation is read 
as the range I+oml-To1 is contained within the range 
From-To, and both ranges have the same direction (i.e. 
increasing or decreasing). 

Thus, the rule for a hit can be read as there is a hit 
on Contig from From to To against protein Protein if 
there is an orf between From and To and a similarity 
with that protein within that region, using the tool Tool. 

A second rule derives a relation that relates a CDS 
to function: 

cds-function(Contig,From, To, Fen) c 
hit(Contig,From, To,Protein), 
function-of-protein(Protein, Fen). 

The relation function-of-protein simply relates a pro- 
tein to its function. For now, this relation relates en- 
zyme proteins to their enzyme code (obtained from the 
EMBL Enzyme Database [Bai93a]) and other proteins 
to themselves. 

Using just these two rules and a collection of sim- 
ilarity facts, one can ask the following query about a 
particular contig, called say ~090: 

?- cds_function(c030,From, To, Fen). 

The result is a list of CDS-to-function relationships 
defined by From and To and the potential Fen of the 
CDS. 

However, although this is helpful in inspecting the 
data from all of the tools, it does not address the prob- 
lem of how to combine the data from different tools. 
We must do a bit more in order to accomplish the fol- 
lowing: (1) allow various categorizations of scores for 
each tool to be used in determining how good a partic- 
ular similarity is; (2) allow similarities from one tool 
to be preferred over similarities from another tool. 

To prioritize answers according to what tool was 
used to obtain it and according to the score within 
that tool, two sets of information are added to the 

4 We used a method devised by Overbeek which can be de- 
scribed simply as follows: look for a stop codon and then look 
upstream (downstream on negative reading frames) for a start 
codon that is not preceded by a stop codon. If the upstream 
(downstream) search hits the end of the sequence, that is tem- 
porarily considered to be the “start” of the ORF. 
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program in the form of user constraints. First, facts 
are partitioned by scores within tools by adding a set 
of user constraints of the form: 

similarity(-,-,&ore, Tool):S + Tool = tooll,Score>N. 

where too11 is the name of a tool and N is a numerical 
cut-off level for Score.5 S is a symbolic value from 
the lattice used for scores. For now, we use strong, 
medium, and weak as score symbols. An “-” denotes 
an argument of the predicate similarity that is’not 
relevant in the user constraint. 

Second, facts are partitioned by tool by adding a 
set of user constraints of the form: 

similarity(,-,-,Tool):T c Tool = 20011. 

where too11 is the name of a tool and T is some sym- 
bolic value in the lattice used for tools. 

In addition to the user constraints, a lattice for each 
set of symbols must also added to the program. For 
example, for the scores, we might impose a simple lat- 
tice in which strong > medium > weak. 

Suppose that the symbols that have been assigned 
to each tool is the name of the tool itself. Then, for the 
tool lattice, we might impose something like the fol- 
lowing for the set of tools that includes blaize, blocks, 
blastx, tblastn, and fasta: 

blastx 
/ I \ 

blocks blaize tblastn 
\ I / 

f asta 

Using semantic compilation, the user constraints are 
compiled into the basic program, that is, into the two 
rules defined above, to produce the following new an- 
notated program: 

cdsJunction(Contig,From, To,Fcn):SCORE, TOOL+ 
hit(Contig, From, To, Protein):SCORE, TOOL, 
function-of-protein(Protein, Fen). 

hit(Contig,From, To,Protein):SCORE, TOOL+ 
orf(Contig,From, To), 
similarity([Contig,Froml, Toll, 

[Protein, From&, To2], 
Score, Tool):SCORE, TOOL, 

within(From1, Tol,From, To). 

Semantic compilation is also used to compile the the 
user constraints into the similarity data. With the us- 

5Tbis last expression, SCORE > N becomes a bit more com- 
plicated when SCORE actually consists of more than one uum- 
her, as it does in the Blast family of tools. The actual imple- 
mentation accommodatea this complication. 

er constraints above for score and tool, each similarity 
fact is transformed into the following annotated form: 

similarity([Contig, Froml, Toll, 
[Protein,From&, To2], 
Score, Tool):SCORE, TOOL. 

where the values for SCORE and TOOL are obtained 
by applying the user constraints for scores and tools 
to each similarity fact. 

A similar approach can be taken to allow tools from 
different rules to reinforce each other and to allow mul- 
tiple hits from different proteins in the same family to 
reinforce each other [GL94]. 

The ability to annotate CDS-to-function relation- 
ships with confidence in the score, confidence in the 
tool, and confidence in the decision about the func- 
tion provides users with a powerful tool to analyze 
large quantities of data that have been produced by 
sequence analysis programs. Using qualified query an- 
swering techniques, users can easily change the criteria 
for how tools reinforce each other and for how number- 
s of occurrences of particular functions reinforce each 
other. They can also alter how different scores for dif- 
ferent tools are categorized. 

8 Conclusions 

We have shown how annotated logic programs can be 
used to model user needs and preferences. The user 
expresses preferences through a domain independent 
lattice of values. Domain specific needs and prefer- 
ences are then expressed through annotated user con- 
straints, that is, logical statements that are qualified 
with the values in the lattice. The work of Kifer and 
Subrahmanian [KS921 provides a theoretical basis for 
annotating logical clauses with values. Because of the 
precise formulation of our formalism we have found an 
automatic and very simple mechanism to incorporate 
user needs and preferences into query processing. We 
have provided a method to transform a logic program 
or deductive database without annotations together 
with a set of annotated user constraints into an anno- 
tated logic program. The user may then ask a query 
and receive answers that are qualified, or annotated, 
with values from the lattice. 

We have discussed two variations on the querying 
process: asking a query and receiving all answers, each 
with an annotation value; and asking a query togeth- 
er with an annotation value and receiving all answers 
with that value or higher. In Section 6, we showed how 
query answering procedures for deductive databases 
can be adapted through minor modifications to return 
answers with annotations for databases produced by 
Transformations 1, 2, and 3 given in Sections 4 and 5. 
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We have an implementation of the transformations and 
of the modified query answering procedure. 

The approach to query answering described in this 
paper is simpler than that described by Subrahmanian 
and Kifer [KS921 for annotated logic programs because 
we are able to use a weaker semantics for annotat- 
ed logic programs. Not only is the weaker semantics 
sufficient for our purposes, that is, to adhere to us- 
er preferences and needs, but their stronger semantics 
would be inappropriate. Roughly speaking, Kifer and 
Subrahmanian [KS921 provide semantics for annotated 
logic programs by which any atom that would receive 
multiple lattice values in a model for the program is 
instead assigned a value that is the least upper bound 
of the multiple values. This unique annotation value 
defines the least truth value of the atom; an atom is 
considered to be valid for values equal to its annota- 
tion or higher. Such a semantics is appropriate for 
applications like temporal reasoning, bilattice valued 
logics, and interval-based temporal logics. 

To deal with annotated deductive databases that 
reflect user needs and preferences, we have developed 
a slightly weaker semantics by which each atom in the 
model of the database may have one or more lattice 
values as specified by the user constraints. If we were 
to summarize the set of values with their least upper 
bound, it would be counter to the notion of user con- 
straints - we would be allowing the atom to receive 
a level of preference higher than that intended by the 
user. Because we do not need to obtain least upper 
bound values for annotations of atoms in the model, 
the computation of annotations is greatly simplified. 
However, there are cases where operations similar to 
least upper bounds are needed to accommodate user 
preferences. An example in the travel database would 
be to prefer travel plans with fewer flights. If there is 
a specific number of stops that the user can tolerate in 
the plan our method can handle it. But to obtain the 
best plan all the answers must be collected to select 
the plan with fewer flights. This class of preferences 
will be possible if user constraints are extended to deal 
with aggregate functions. 

The example presented in Section 6 is simple but 
illustrative of how user constraints can be applied. The 
real advantage of the methodology becomes apparent 
when there are a large number of user constraints, as 
in the application to molecular biological databases 
presented in Section 7 

The transformations described in this paper are not 
limited to the incorporation of annotated user con- 
straints into deductive databases. We see that they 
will also be useful for combining multiple deductive 
databases, each of which expresses an expert’s view 
of the world, into a single database. If each original 
deductive database is annotated with values that re- 

fleet both experts’ names and levels of confidence, then 
the query answering methods described in this paper 
would produce answers whose annotations reflect the 
expert positions. 

In summary, using the method described in this pa- 
per, a set of annotated user constraints, a lattice of 
preference values, can be used with a relational or 
deductive database to return qualified answers that 
reflect user preferences and needs. 

Acknowledgments 

Terry Gaasterland was supported by the Office of Sci- 
entific Computing, U.S. Department of Energy, under 
Contract W-31-109-Eng-38. The NSF partially sup- 
ported Jorge Lobo under grant #IRI-9210220. We 
thank Zoran Budimlik for taking the time to imple- 
ment our ideas. 

References 
[AGM+SO] S. F. Altschul, W. Gish, W. Miller, E. W. My- 

ers, and D. J. Lipman. Basic local alignmen- 
t search tool. Journal of Molecular Biology, 
215:403-410, 1990. 

[AP86] 

[AWS92] 

[Baigl] 

[Bai93a] 

[Bai93b] 

[BB91] 

[CC901 

[CCLSO] 

J. F. AIlen and C. R. Perrault. Analyzing in- 
tention in utterances. In B. J. Grosz, K. Sparck 
Jones, and B. Lynn Weber, eds, Readings in 
Natural Language Processing, pages 441-458. 
Morgan Kaufmann Publishers, Inc., Los Altos, 
California, 1986. 

C. Ahlberg, C. Williamson, and B. Shneider- 
man. Dynamic queries for information explo- 
ration: An implementation and evaluation. In 
Proc. of the ACM CHI ‘92, pages 619-626, 
California, 1992. 

A. Bairoch. Prosite: A dictionary of sites and 
patterns in proteins. Nucleic Acids Research, 
19:2241-2245, 1991. 

A. Bairoch. The enzyme data bank. Nucleic 
Acids Research, 21:3155-3156, 1993. 

A. Bairoch. The Swiss-prot protein sequence 
data bank: User manual. release 25, april 1993. 
(e-mail to netseru@embl-heidelberg.de). 

A. Bsirochand and B. Boeckmann. The swiss- 
prot protein sequence data bank. Nucleic 
Acids Research, 19:2247-2249, 1991. 

J.F. Collins and A. Coulzon. Significance of 
protein sequence similarities. In R.F. Dooht- 
tle, editor, Methods in Enzymology, Vol. 183, 
pages 474486. Academic Press, 1990. 

W. W. Chu, Q. Chen, and R. C. Lee. Co- 
operative Query Answering via Type Ahstrac- 
tion Hierarchy. In Proc. of the Intl. Working 
Conj. on Cooperative Knowledge Baaed Sys- 
terns, pages 67-68, University of Keele, Eng- 
land, Oct. 1990. 

319 



[CD891 

[EMB93] 

[Gaa92] 

F. Cuppens and R. Demolombe. How to 
Recognize Interesting Topics to Provide Co- 
operative Answering. Information Systems, 
14(2):163-173, 1989. 

EMBL. Embl data library: Nucleotide se- 
quence database: User manual release 36, 
September 1993. (anonymous ftp to ftp.embE 
heidelbergde) 

T. Gaasterland. Cooperative Answers for 
Database Queries. PhD thesis, University of 
Maryland, Department of Computer Science, 
College Park, 1992. 

[GGMN92] T. Gaasterland, P. Godfrey, J. Minker, and 
L. Novik. A Cooperative Answering System. 
In Andrei Voronkov, editor, Proc. of the Logic 
Programming and Automated Reasoning Con- 
f., pages 101-120, Vol. 2, St. Petersburg, Rus- 
sia, July 1992. 

[GL88] 

[GL94] 

[GM781 

[GM881 

[GO941 

[HH93] 

[KF88] 

[KS901 

[KS921 

[McC88] 

M. Gelfond and V. Lifschitz. The stable mod- 
el semantics for logic programming. In R.A. 
Kowalski and K.A. Bowen, eds, Proc. 5th Intl. 
Conf. and Symp. on Logic Progmmming, pages 
1070-1080, Seattle, Washington, Aug. 1988. 

T. Gaasterland and J. Lobo. Assigning func- 
tions to cds through qualified query answering: 
Beyond alignment and motifs. In Proc. of 2nd 
Intl. Conf. on Intelligent Systems for Molecu- 
lar Biology, Stanford, CA, July 1994. 

H. Gallaire and J. Minker, eds. Logic and 
Databases. Plenum Press, NY, Apr. 1978. 

A. Gal and J. Minker. Informative and Coop- 
erative Answers in Databases Using Integrity 
Constraints. In V. Dahl and P. Saint-Disier, 
eds, Natural Language Understanding and Log- 
ic Programming, pages 277-300. North Hol- 
land, 1988. 

T. Gaasterland and R. Overbeek. An automat- 
ed system for gathering sequence analysis data 
from multiple tools. Technical report, 1994. In 
preparation. 

S. Henikoff and J. Henikoff. Protein family 
classification based on searching a database 
of blocks (document: blockmanps). (ftp to 
sparkyfhcrcorg in /blocks) 

R. Kass and T. Finin. Modeling the user in 
natural language systems. Computational Lin- 
guistics, 14(3):5-22, Sept. 1988. 

R. Kowalski and F. S&i. Logic Programming 
with Exceptions. In Proc. of the Intl. Conf. on 
Logic Progmmming, Jerusalem, Israel, 1990. 

M. Kifer and V.S. Subrahmanian. Theory of 
generalized annotated logic programming and 
its applications. Journal of Logic Progmm- 
ming, 1992. 

K. McCoy. Reasoning on a highlighted user 
model to respond to misconceptions. Compu- 
tational Linguistics, 14:52-63, Sept. 1988. 

[Mot901 

[Par871 

[Pea881 

[Pea911 

[Po190] 

[vEK76] 

PRS88] 

[WL83] 

A. Motro. FLEX: A Tolerant and Coopera- 
tive User Interface to Database. IEEE ‘I’mns- 
actions on Knowledge and Data Engineering, 
2(2):231-245, June 1990. 

c. Paris. Combining discourse strategies 
to generate descriptions to users along a 
naive/expert spectrum. In Proc. of IJCAI, 
pages 626-632, Milan, Italy, 1987 Aug. 1987. 

J. Pearl. Probabilistic Reasoning in Intelligent 
Systems. Morgan Kaufmann, Los Altos, Cali- 
forma, 1988. 

P. Pearson. The genome data base - a human 
gene mapping repository. Nucleic Acids Re- 
search, 19:2237-2239, 1991. 

M. E. Pollack. Plans as complex mental atti- 
tudes. In M.E. PoIlack P.R. Cohen, J. Morgan, 
editor, Intentions in Communication, pages 
77-103. MIT Press, 1990. 

M.H. van Emden and R.A. Kowalski. The se- 
mantics of predicate logic as a programming 
language. J.ACM, 23(4):733-742, 1976. 

A. Van Gelder, K.A. Ross, and J.S. Schlipf. 
Unfounded sets and well-founded semantics for 
general logic programs. In Proc. 7’h Symp. 
on Principles of Database Systems, pages 221- 
230, 1988. 

W. Wilbur and D. Lipman. Rapid similari- 
ty searches of nucleic acid and protein data 
banks. Proc. Natl. Acad. Sci. U.S.A., 80:726- 
730, 1983. 

320 


