
Qualified Answers That Reflect User Needs and
Preferences

Terry Gaasterland Jorge Lobo
Mathematics and Computer Science Dept. of EECS

Argonne National Laboratory University of Illinois at Chicago
gaasterland@mcs.anl.gov jorge@eecs.uic.edu

Abstract

This paper introduces a formalism to describe
the needs and preferences of database users.
Because of the precise formulation of these
concepts, we have found an automatic and
very simple mechanism to incorporate user
needs and preferences into the query answer-
ing process. In the formalism, the user pro-
vides a lattice of domain independent values
that define preferences and needs and a set
of domain specific user constraints qualified
with lattice values. The constraints are au-
tomatically incorporated into a relational or
deductive database through a series of syn-
tactic transformations that produces an anno
tated deductive database. Query answering
procedures for deductive databases are then
used, with minor modifications, to obtain an-
notated answers to queries. Because prefer-
ence declaration is separated from data repre-
sentation and management, preferences can be
easily altered without touching the database.
Also, the query language allows users to ask
for answers at different preference levels. An
extended example shows how these methods
are used to handle large quantities of DNA
sequence data.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made OT distribthd for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very La+ge Data Base
Endowment. To copy otherwise, ot to republish, nquin8 a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

1 Introduction

Much work has been done to explore methods to
handle user preferences in databases (see [CCLSO,
CDSS]), human computer interaction (see [AWS92]),
user models (see [McC88, KF88]), artificial intelli-
gence (see [AP86, Po190, Par87]), and information re-
trieval. Cooperative answering systems try to enable
users to receive answers that they are actually seek-
ing rather than literal answers to the posed questions
(see [MotSO, GM88, GGMN921). This paper presents
a complementary approach that incorporates the han-
dling of user preferences into the query answering pro-
cedure of a database. A declarative formalism for ex-
pressing user preferences and needs as a body of infor-
mation separate from the database is defined. A query
answering procedure then takes both the preferences
and the data into account when providing answers.

The major advantages of the system described here
are threefold. Preferences can be easily altered with-
out touching the database. Users can ask for all an-
swers either with or without the annotation of prefer-
ence or for all answers that meet some level of prefer-
ence. Preferences are captured by separate bodies of
declarative information that can be changed indepen-
dently. They are: (1) qualitative labels with an or-
dering expressed as an upper semi-lattice, (2) logical
statements, and (3) a function for combining prefer-
ences.

The notions of need and preference are reflected
through a lattice of values provided by the user. Lat-
tice values are used together with logical statements to
express preferences. As an illustration, consider a trav-
eler, Kass, who wants to travel from Chicago to Oslo,
preferably nonstop. If she has to make a stop, she
would rather stop in Washington, where her boyfriend
lives than in any other city. She absolutely does not
want to take direct flights that stop in London. We
can define a set of annotated user constraints that ex-
press Kass’ restrictions:

309

nonstop-jlight(A,B,Date,Flighl):good.
direcl$ighl(A,B,Da~e,Flight):okay.
indirec2$igh2(A, B,Dale, Flights):bad.
slopover(Fligh2,Airport):fine

+ dc-airport(Airport).
slopover(Fligh2s,Airport):lenible

+ london-airport(Airport).
Consider the rule with the annotation terrible. The

predicate london-airport in the body (to the right of
the arrow) may be read as “Airport is located in Lon-
don.” The atom in the head (to the left of the arrow)
may be read as “The flight Flight involves a stopover
in Airport.” The entire constraint may be read as
“Flights that involve a stopover in Airport is terrible
if the airport is a London airport.” (See [Gaa92] for
a discussion of natural language descriptions of con-
straints.) Furthermore, any answer that depends on
a flight that stops over in a London airport should be
annotated as terrible.

In this example, a set of five symbols {terrible, bad,
okay, good, fine} reflects preference levels. When the
following order is assigned to the symbols: terrible <
bad, bad < okay, okay < good, okay < fine, then a
higher rank indicates a higher preference. As will be
described in Section 3, any upper semilattice of values
may be used for ordering the symbols.

Now, when Kass asks the query “How can I trav-
el to Oslo from Chicago on May l?“, expressed log-
ically as, say, c travel(chicago, oslo, (may, 1, Time),
navelplan), the search space of the query should be
modified with the constraints so that nonstop flights
are noted as good; direct flights through Washington
as fine; flights through any other city, except London
noted as okay, and so on. Alternatively, she may wan-
t to ask for flights that are fine or better. Then all
answers below this level must be discharged.

Suppose the lattice contains only two values,
say unacceptable and acceptable with the order
unacceptable < acceptable. Let the user constraints on
direct-jlight and nonstop-jlighl be annotated with ac-
ceptable and the rest with unacceptable. In this case,
the annotated user constraints reflect Kass’ needs.

The method for handling user needs and preferences
is summarized as follows: Once a user has provided a
lattice of values and a set of user constraints annotat-
ed with the values, the constraints are automatically
incorporated into a relational or deductive database
through a series of syntactic transformations that y;o-
duces an annotated deductive database. Query an-
swering procedures for deductive databases are then
used, with minor modifications, to obtain annotated
answers to queries. In contrast with earlier work, the
only burden on users is to express their preferences.
The separation of preference declaration from data
representation is achieved through the use of the the-

ory of annotated logic programs, deductive databases,
and the series of simple transformations that are in-
visible at the user level.

Preliminary background definitions are given in Sec-
tion 2. Section 3 provides background on annotations
and discusses the theoretical details of annotated d-
eductive databases needed for user preferences and
needs. It also provides a transformation of a nor-
mal logic program into an annotated logic program.
Section 5 formally defines annotated user constraints
and provides a transformation that incorporates a set
of annotated user constraints into an annotated logic
program. It also shows that answers obtained from
the transformed program are properly annotated to
reflect user preferences and needs as expressed in the
annotated user constraints and the upper semilattice
of values. Section 6 discusses how a procedure can
be defined by which the answers obtained for a query
are annotated according to the constraints. Section 7
presents an extended example in which the method-
s described in this paper are used to handle a large
body of DNA sequence data.

2 Background

Deductive databases are comprised of syntactic infor-
mation and semantic information [GM78]. The syn-
tactic information consists of the inlensional database
(IDB) and the eztensional database (EDB). The IDB is
a set of clauses, or rules, of the form A + L1, . . . , L,,
n > 0, where A is an atom and each Li is a literal.
The EDB is a set of clauses, or facts, of the form A c,
where A is a ground atom.

Direct answers to database queries, which are claus-
esoftheformc&,.. . , B,. are found by using SLD-
resolution on the query, IDB, and EDB clauses to pro-
duce a search tree. The root node of the search tree is
the query clause; each node in the tree is produced by
applying an IDB rule to the node above.

The semantic information in a deductive database
usually consists of a set of inlegrity conslraints (IC),
of the form Al,. . . , A,,, + Cl,. . . , C,,, where the Ais
and Cis are atoms whose predicate appears in an
EDB fact or the head of an IDB rule. An integri-
ty constraint restricts the states that a database can
take. For example, the integrity constraint No per-
son can be both male and female, possibly written as
c person(X),male(X),female(X), restricts people in
a database from having two genders. Integrity con-
straints are considered semantic information rather
than syntactic information because the constraints on
a database add no new deductive knowledge to the
database.

If we consider semantic information to be informa-
tion about the information in the database, user con-

310

straints are another form of semantic information. A
user constraint expresses a state of the database that
the user wishes to be true of the database. For ex-
ample, if the user only wants to know about students
who are enrolled in English 430, she may express a
constraint like the following: enrolled(X, english490) c
student(X), indicating that for student(X) to be con-
sidered true during a search, it must also be true that
student X is enrolled in English 430; otherwise the user
constraint is violated in the search.

Now we are prepared to turn to the investigation of
how to use annotations to capture and adhere to users
preferences over database domains.

3 Annotated Logic Programs and
Databases

To enable a user to specify preferences and then receive
answers according to those preferences, we must be
able to do the following:

Allow a user to specify a set of user constraints as
logical statements in the language of the deductive
database and rank the constraints according to
preferences through the annotation.

Integrate the annotated user constraints into the
rules and facts of the deductive database to form
a new annotated deductive database.

Accept a query from a user and return a set of
annotated answers.

Allow the user to annotate queries and receive
answers that satisfy the annotation.

First, we must precisely define annotation in log-
ic programs. In our discussion of annotation, we fol-
low closely the notation in Kifer and Subrahmanian
[KS92]. An annotated logic program comprises a set of
annotated clauses of the from:

A:(vtBI :PI,...,Bn :/I,,.

A and the Bs are atoms as usually defined in logic
programs; a and the ps are annotation terms. A : (Y is
the head of the annotated clause, and B1 : /?I, . . . , B,, :
@,, the body. The annotation terms are defined based
upon an upper semi-lattice 7, a family of total con-
tinuous functions over 7 and an enumerable set of an-
notation variables. For our purpose we assume/that
7 is a complete lattice and denote the lattice ordering
by 5, the least upper bound operator by U, the great-
est lower bound by ll, and the top and the bottom
elements of lattice by T and I respectively.

The lattice reflects the rankings of the user about
the importance of states expressed in a user constraint.

For example, consider the constraints from Section 1.
They included a constraint about not stopping in Lon-
don, a constraint about preferring direct flights over
indirect flights, that is flights with a change of planes,
and a constraint about preferring nonstop flights over
direct flights. The user may assign the value terrible
to the constraint about London and the value bad to
the constraint about indirect flights, the value okay to
the constraint about direct flights, and the value good
to the constraint about nonstop flights. The bottom of
the lattice is terrible. The lattice is completed with the
top element very good, and the partial order is given
by the transitive and reflexive closure of the following
relation: terrible -=c bad, bad < okay, okay < fine, okay
< good, fine < very good, good < very good.

Alternatively, the lattice may be interpreted to re-
flect the degree of confidence in the statement ex-
pressed in the constraint. Consider an example from
the world of molecular biology in which two constraints
say that hydrophobic amino acids appear on the inside
of a protein molecule and that hydrophilic amino acids
wind up on the outside. These states tend to be true
about protein molecules, but they are not always true.
So let us annotate the hydrophobic constraint with
usually and the hydrophilic constraint with almost al-
ways. Now consider a program that generates alterna-
tive protein molecule structures. Generated structures
that have hydrophobic amino acids all on the inside
and hydrophilic amino acids all on the outside will re-
ceive the annotation almost always; structures with all
hydrophobic inside and one or more hydrophilic inside
will receive the annotation usually. If almost always
is considered to be of higher confidence than usual-
ly, the first set of structures will be preferred to the
second set of structures. See [Pea@, KS92, ?] for fur-
ther discussion on the relationship between lattices of
qualifications, probability, certainty and confidence.

For the lattices, we will initially consider two set of
continuous functions. 1) For each i 2 1, we will have
an i-ary function Ui, the natural extension of U to i
arguments. 2) For each i 2 1, we will have an i-ary
function fli, the natural extension of I-I to i arguments.
Whenever it is not ambiguous, we will use U and n in-
stead of Ui and lli. Hence an annotation term can be
recursively defined as follows: 1) Any element of 7 is
an annotation term. 2) Any annotation variable is an
annotation term. 3) If al, . . . , ai are annotation terms
then LIi(al, . . . , ai) and n(al,. . . , ai) are complex an-
notation terms. Nothing else is an annotation term.
If A is an atom and (Y an annotation term then A : CY
is called an annotated atom. If (Y is a constant A : a
is called c-annotated; if (Y is a variable v-annotated. In
annotated logic programs, complex terms appear only
in the head of the program clauses; the annotations
in the bodies are either annotation variables or con-

311

stants. Let C be the language of an annotated logic
program. The Herbrand base C, HBL:, is the set of all
ground (non-annotated) atoms. The semantics of an-
notated logic programs is defined in terms of annotated
interpretations. An annotated interpretation IA, is a
binary relation subset of HBL x I such that if a pair
(A, CY) is in IA then for every p 5 (Y, (A, p) is also in IA.
We identify an annotated interpretation 1.4 with the
set of annotated ground atoms {A : al(A,(~) E IA}.
We can now define salisfac2ion. An annotated inter-
pretation IA satisfies a ground annotated atom A : (Y,
IA +A:oiffA:o~IA. ’ 1.4 satisfies a non-ground
annotated atom A : a iff it satisfies each ground in-
stance of the annotated atom. IA satisfies an annotat-
ed program clause iff for each ground instance of the
clause where each annotated atom in the body of the
ground clause is satisfied by 1.4 the head of the clause
is also satisfied. Then an annotated model of an an-
notated program IIA is an interpretation that satisfies
each clause in the program.

There is a natural partial order that can be defined
between annotated interpretations IA and JA. We say
that 1~ 5 JA iff for each (A,&) in IA there exists
(A,/?) in JA such that CY 2 p.’ The next step is to
extend the Tp operator of van Emden and Kowalski
[vEK76] to compute the least annotated model of an
annotated program IIA.

Definition 3.1 Let IIA be an annotated program. A
monotonic operator from annotated interpretations to
annotated interpretations, TnA, is defined as:

TnA(I~) =
{A:cu](~~c~‘andA:cu’cBi:/3i,...,B,:/3,
is a ground instance of a clause in IIA and

vi, 1 5 i 5 n, (Bi,&) E 1.4)

We can iteratively find the least annotated minimal
model by finding the least ordinal 6 such that T,“, (8) =
T::‘(0). In other words, the least annotated model of
IIA coincides with the least fixpoint of the operator
T

“A ’

We want to allow negation in the rules and fact-
s of a deductive database. This can be easily done
by extending the concepts of negation in normal logic
programs to annotated programs.

We will use the stable model semantics to interpret
negation in normal logic programs. The stable model
semantics characterizes the meaning of a normal pro-
gram by a set of minimal models called stable models,
which are defined using the Gelfond-Lifschitz transfor-
mation. This transformation is defined as follows.

1 Slightly abusing the definition of grounding, we assume that
complex terms in the mmotations are evaluated to values in 7.

‘Note that this relation is equivalent to saying that Id c Jd.

Definition 3.2 [GL88] Let II be a normal logic pro-
gram and let I be an interpretation.

II’ =
{A + BI,. . . , B,I A +- BI,. . . ,B,, notDl,. . . , notD&
is a ground instance of a clause in II and

Vi, 1 5 i 5 vn, I k 0;)

II’ is the Gelfond-Lifschitz transformation of II with
respect to I.

The result of the Gelfond-Lifschitz transformation
is a negation-free (possibly infinite) definite program.
Stable models for logic programs may now be defined
as follows.

Definition 3.3 Let II be a normal program. M is a
stable model of II iff M is the unique minimal model
of IIM

To capture the semantics of stable models into the
framework of annotated logic programs we will take
the view of negation that Kifer and Subrahmanian
refer to as ontological negation. Given an annotat-
ed interpretation IA, we say that IA b notA : a iff
1.4 k A : CY, that is, (A, cy) $ IA.

Definition 3.4 (cf. [GL88]) Let II,4 be an annotated
normal logic program and let IA be an annotated in-
terpretation.

ndrA =
{(A:cucB1:pl,...,B,:Pn)l
(A:a + & :pl,. . .,Bn:Pn, notDl:&,. .., notD,:&,,)

is a ground instance of a clause in & and
Vi, 1 5 i 5 m, Ia l= notDi : 6i)

IIAIA is the annotated Gelfond-Lifschitz transforma-
tion of &t with respect to IA.

Definition 3.5 (cf. [GL88])
Let IIA be an annotated normal program. MA is

an annotated stable model of IIA iff MA is the least
annotated minimal model of IIAMA.

Similar extensions can be done using other seman-
tics such as the well-founded semantics [VKSSS].

4 Transforming from LP to ALP

We want to allow users to give annotated user con-
straints for any logic program or deductive database.
Thus, we must unify the language of user constraints
and logic programs. First, we define how to transfor-
m any normal logic program into an annotated logic
program. Then we show how the model semantics of
the normal logic program is translated into the model
semantics of the annotated logic program.

The transformation of a logic program is as follows:

312

Transformation 1 Let ?r be a (normal) program
clause:

A + BI ,..., B,, not& ,..., not&.

The annotated transformation of ?r is the (normal) an-
notated clause:

A : n{u,, . . . , un}
t B1 : VI,..., B” : un, notCn : I,. . .) note, : I

where the vi are n distinct annotation variables. We
assume that tl{} = T.

Let II be a normal logic program. The annotat-
ed transformation, IIA, of II is the set of annotated
transformed clauses from II. cl

The annotation of an atom in an annotated inter-
pretation reflects the confidence or preference in the
validity of that atom. Hence, any atom that is true
in a given interpretation I must be true at any level
of preference or confidence in the corresponding an-
notated interpretation. Thus, the transformation of
an interpretation into an annotated interpretation is
defined as follows:

Transformation 2 Associate with each interpreta-
tion I an annotated interpretation 1.4 such that 1-4 =
{A : crlA E I, for every (Y E I}. cl

From these definitions, it is easy to show that the
following lemma holds.

Lemma 1 Let II be a normal logic program and II,4
its annotated transformation. Then A4 is a stable
model of II iff MA is an annotated stable model of
HA-

In this section, we have reviewed the notion of anno-
tated logic programs, and we have precisely defined the
annotation framework needed for handling user pref-
erences and needs.

In the next section, we shall define annotated user
constraints and show how to integrate a set of annotat-
ed user constraints into an annotated logic program.

5 Annotated User Constraints

User constraints express statements of the form “if a
condition C is true then I would like to assume the
jonnul4 3 to be false. V This statement can naively,be
translated into the implication C + 73. However, the
simple addition of such implications to the theory can
create inconsistencies. The inconsistencies arise be-
cause the intention of the user is more than just adding
the implication to the program. The user wants the
new information to prevail over previous data in the

system. This behavior may be obtained if we treat
the implication C + 73 as an exception on the truth
value of 3 in the way that Kowalski and Sadri intro-
duce exceptions into logic programs [KS90]. Although
exceptions avoid inconsistencies, there are some prop-
erties of user constraints that cannot be captured with
Kowalski and Sadri’s definition of exception. As a re-
sult, we must extend the theory beyond that of Kowal-
ski and Sadri.

To illustrate, consider an employee of a compa-
ny in Chicago who is planning a business trip to
Moscow. She would like to get flight information from
a database, but before doing so, she would like to
inform the database that she prefers direct flights. Be-
fore posing the query to the database, she could intro-
duce the constraint ignore non-direct flights. If there
are no direct flights from Moscow to Chicago, the an-
swer to the query according to the constraint would
then be empty. The new information in the constraint
takes precedence over the existing information.

Assuming that the employee must take the trip any-
way, it would be better to return answers that include
non-direct flights and to let the employee know that
they are a less than ideal solution. One possibility is
to let the employee modify the constraint and ask the
query again. Suppose instead, we allow the employee
to annotate the constraint with a value that indicates
the low priority of non-direct flights, as in non-direct
fIights:bad, Any answers that violate this constrain-
t would receive the annotation. Instead of eliminat-
ing indirect flights, annotations enable the employee
to give them low priority among all possible answers.
Then the employee has her preferences respected when
the query is asked: she finds direct flights if they exist
and finds any flight if no direct flight exists. Formally,

Definition 5.1 A user constraint v is an annotated
normal clause of the form:

A : a + B1 : PI,. . . , B, : B,,, not& : I,. . . , not&, : 1.

where A : (Y is a c-annotated atom and the Bi : /3i
are c- or v-annotated atoms. We say that the con-
straint v is in homogeneous form if the atom A has
the form p(X1,. . . , Xk), where the Xi are k distinct
variables. The atom p(Xi, . . . , XE) is called an homo-
geneous atom and the predicate symbol p is called a
constrained predicate symbol.

In this paper we assume that all the constraints
are in homogeneous form. This is not a restriction if
the equality predicate can be considered part of the
language. However, we will not introduce the equali-
ty predicate in this paper since it will complicate the
description of the annotated logic program semantics
unnecessarily. The extension of the semantics to cover
equalities is straightforward.

313

The user constraint v can be interpreted as say-
ing that if the antecedent of the implication, (Br :
A,...! B, : pn, not& : I,. . . , notC, : I), is true
then at most A : c can be accepted to de true. For-
mally,

Definition 5.2 Let the annotated clause

A : c + B1 : PI,. . . , B, : /3n, not& : I,. . . , not& : I

be a user constraint v and 1.4 an annotated interp;e-
tation. IA satisfies ,r~ iff for any ground instance 4 :
c c B; : pi,. . . , B,, : /3,,, not& : I,. . ., notC :
I of v such that (Bi : p;,...,BA : &,, not?: :
I , . . . , not& : I) is satisfied in IA, IA SatiSfieS A : e
only when e 2 c.

As a simplification to the user interface, we allow
users to pair an annotation with the head of each con-
straint as follows:

A : c c B1, . . . , B,, not&, . . . , not&.

To transform the annotation/constraint pair into a
fully annotated user constraint, each Bi receives a u-
nique annotation variable pi, and each notCj receives
the annotation 1. Users who wish to be more sophis-
ticated can define the annotation of the head atom
A with a complex annotation term constructed from
the &s according to the annotation definitions in Sec-
tion 3.

Transformation 1 establishes a translation of nor-
mal logic programs into annotated normal logic pro-
grams. Now we introduce a transformation that incor-
porates a set of user constraints, U, into an annotated
program, &.

Transformation 3 For any clause ?r of the form:

A:(vtBl:fll ,..., &:&,,notCn:I ,..., not&:1

in UA with a constrained predicate symbol in the
head, replace ?r with the annotated clauses:

A:anv +&:/II,..., B, : &, (p’(Z) : v)O, not& :
I,..., notC,:l

A:a + &:PI,..., B, : &, not(p’(2) : I)@, not& :
I ,..., notC,:l

to obtain U&4 such that

1. p(z) is the head of an homogeneous constraint in
U renamed apart from ?r.

2. p(z) and A unify with mgu 0.

3. v is a new annotation variable not appearing in
?r.

Finally we add to U&U all the user constraints in U
replacing each predicate symbol p in the head of the
constraints with the new predicate symbol p’. 0

The first property we can show is that the user con-
straints are satisfied by the newly transformed pro-
gram.

Theorem 1 Let MA be an annotated stable model of
U&U. Then for any constraint v E Z.4, UM~ satisfies
V. cl

Although Theorem 1 shows that Transformation 3
is correct it does not provide any criteria to select a
transformation. For example, we can merely annotate
all the head atoms in LT.4 with l. to produce U&U, but
this transformation unnecessarily constrains the rules
in UA. We would like to show that the restrictions
imposed in the program are somehow minimal. This
minimality can be expressed in terms of the partial
relation 5 that exists between the annotated interpre-
tations. Before we present the theory showing this
minimality we need to define a new relation between
annotated interpretations. We say that two annotated
interpretations IA and IA are sin&r with respect to a
set of ground atoms B iff the projection of these inter-
pretations over their first argument intersected with 0
produces the same set. That is, for a ground atom A
E 6 there exists (Y such that (A, o) E IA iff there exists
/3 such that (A, j?) E I’A.

The following theorem shows that U&u is the best
program that complies with the user needs expressed
through the set of user constraints U.

Theorem 2 Let C be the language of IIA.

1. For every annotated stable model A& of UA there
exists a similar annotated stable model M&U of
U&U w.r.t. HBL such that MA,U n HBr. 5 MA
and there is no annotated interpretation IA that
satisfies 24 and MA,U n HBL 5 IA 5 MA.

2. For every annotated stable model MA,U of IIA,u
w.r.t. HBr there exists asimilar annotated stable
model MA of IIA such that MA,U n HBr. 5 MA
and there is no annotated interpretation 1.4 that
satisfies U and MA,U n HBr 4 IA 5 MA. 0

6 Answering Queries via Annotations

Sections 3 and 5 lay the theoretical foundation for
meeting users’ preferences and needs through annotat-
ed user constraints. Now let us examine an example
that illustrates the power of the approach.

Consider our user, Kass, from Section 1. Suppose
that Kass is using a simple deductive database with
the following rules:

travel(A, B, Date,Plan) c jiy(A, B, Date,Plan).
fiy(A, B, Date,[Flight]) c

nonstop&ght(A, B, Date, Flight).
j?y(A, B, Date,[Flight]) c

314

direct&ght(A, B, Date, Flight).
jIy(A, B, Date, Flights) c

indirectJlight(A,B,Date,Flights).
nonstop-jlight(A,B,Date,F) c

jlight(F,A, B, Date),
not has-stopover(F).

direct$ight(A,B,Date,F) t
flight(F,A, B, Date),
has-stopover(F).

indirect-jIight(A, B, Datel,[qFlights]) c
j?ight(F,A,X,Datel),
jIy(X, B, Date,%‘, Flights).

has-stopover(Flight)
t stopover(F,X).

Recall Kass’ user constraints from Section 1:
nonstop$ight(A,B,Date,Flight):good.
direct$ight(A, B, Date, Flight):okay.
indirect$ight(A,B,Date, Flights):bad.
stopover(Flights,Airport):$ne c

dc-airport(Airport).
stopover(Flight,Airport):terrible +-

london-airport(Airport).
As defined in Section 5, the last two user constraints

transform into the following fully annotated user con-
straints in which p is an annotation variable:

stopover(Flights,Airport):fine +
dc-airport(Airport)$.

stopover(Flight,Airport):terrible c
london-airport(Airport):P.

When the deductive database is transformed into an
annotated logic program using Transformation 2 and
then into a new annotated logic program using Kass’
user constraints and Transformation 3, the annotated
logic program in Figure 1 results. Now we are ready to
consider Kass’ query about traveling from Chicago to
Oslo on May 1, c travel(chicago, oslo, (may, 1, Time),
TPlan).

Without loss of generality, we assume that queries
have only one atom and correspond to a rule defining
the query whose head contains the query variables as
follows:

+ query(Time, TPlan).
query(Time, TPlan) +

travel(chicago, oslo, (may,l, Time), TPlan).

Since the query is to an annotated logic program,
it must be annotated. Annotations on the query are
handled as follows:

l When users ask queries without annotation, that
indicates that they are not interested in the anno-
tation values. Even so, an annotation variable is
attached prior to search so that the query is com-
patible with the program. As follows from Sec-
tions 3 and 5 all answers are returned. Substitu-

tions for the annotation variable are not returned
to the user.

If the user asks the query together with an an-
notation variable p, all answers are returned, and
each answer has an annotation value associated
with it.

If the user asks the query together with an anno-
tation value c, all answers at that value or above
in the lattice are returned. As follows from Sec-
tions 3 and 5, the answers are annotated with the
value given by the user.3

The process of answering a query is very similar
to any SLD-resolution style proof procedure. Let us
examine each case in turn with Kass’ query.

When the query is presented to the program with-
out an annotation variable, it receives a temporary
variable, p, and expands to three alternative queries
Q1, &a, and ($9 as follows:

Q: + query(Time, TPlan).$.
Q’: + travel(chicago, 0310, (may,l, Time), TPlan):P.
Q”: + ~y(chicago,oslo,(may,l,Time), TPlan)$
Ql: + nonstopflight(chicago,oslo,

(may,l, Time), TPlan).$.
92: + direct-flight(chicago,oslo,

(may,l, Time), TPlan).$.
QS: + indirectJfight(chicugo,oslo,

(may,l, Time),TPlan):P.
For Ql and fJ2, the variable p receives the substitution
VW, WIPE, where P’ is a renamed variable in the
rules for nonstopJlight, and direct-flight. For Ql, the
variable p receives the substitution {n{&, ,$,, N/}/P},
where /?i, j34, and N’ are renamed variables in the rules
for indirect-flight. Expanding Ql produces the follow-
ing two alternatives:

91-f:
+- jiight(TPlan,chicago,oslo,(may,l, Time)):@‘,

nonstop$7ighd(chicago,oslo,(may,1, Time),TPlan):N,
not atopouer(TPlan,X):l.

Ql-2:
+ flight(TPlan,chicago,oslo,(may,l, Time))$‘,

not (

nonstopfIight’(chicago,oslo,(may,l, Time),TPlan):l

1,
not stopover(TPlan,X):l.

The first choice &l-l resolves with the renamed us-
er constraint to unify N with the value good. As-
sume that the jlight atom resolves with some fac-
t that has T as its annotation with the substitu-
tion { 1 Ol/TPlan, 17:15/Time}. Also assumes that

3The query can also be thought of as the conjunction (Q :
p) A (p 2 c), where the constant c specifies the least acceptable
value for the answers and the variable p receives an annotation
value for each answers. Space prevents us from expanding on
this variation here.

315

tmvel(A,B,Date,Plan).$ + jly(A,B,Date,Plan).$.
jly(A, B, Date, Flight):/3 +

nonstop_flight(A, B, Date, Flight)$.
jIy(A, B, Date,Flight)$ +

directJlight(A, B, Date, Flight).$.
jly(A, B, Date, Flights):/3 +

indirect-flight(A, B, Date, Flights):@.
nonstopJ?ight(A, B, Date, F).n{/3, N} +

jlight(F,A, B, Date)@,
nonstopflight’(A, B, Date, F):N,
not has-stopover(F):l.

nonstopflight(A, B,Date, F):/3 +
j?ight(F,A,B,Date).$,
not nonstop#?ight’(A, B,Date, F):l,
not has-stopover(F):l.

direct_Pight(A,B,Date,F).fl{/3~,/32,N} +
jIight(F,A, B, Date)&,
has-stopover(F):/%+
directJIight’(A, B, Date, F):N.

directJ?ight(A,B,Date,F)fl{~~, /32} +
flight(F, A, B, Date)&
has-stopover(F)&,
notdirect$ight’(A,B,Date,F):l.

indirec@ight(A, B,Date,[FjFlights]).n{/31, @2, N} +
Pight(F, A,X, Date)&,
j?y(X, B, Dateb, Flights):&
indirect$ight’(A, B, Dote,[Fj Flights]):N.

indirectJ?ight(A,B,Dote,[~Flts]).fl{/3~,/3~} +
jSght(F,A,X,Date):&
j?y(X, B, Doted, Flts).&,
notindirectJiight’(A,B,Dote,[I;1Flts]):l.

has-stopover(Flight):/3 + stopover(Flight,X)$J
nonstop-flight’(A, B, Dote, Flight):good.
direct-flight’(A, B, Dote, Flight):okay.
indire&jiight’(A, B, Dote, Flights):bad.
stopover’(Flights,Airport)$ne +

dc-airport(Airport).$.
stopover’(Flights,Airport):terrible +

londonairport(Airport)$.

Figure 1: Transformed Logic Program

has-stopover(l01) fails. Then one answer substi-
tution for the query through 91-l is {lOl/TPlan,
17:15/Time, good/p}. Following our definition of how
to treat un-annotated queries, the value good for /3 is
not returned to Kass.

When the query is presented to the program with an
annotation variable, the annotation value is included
with each answer. Suppose that the database contains
the following facts:

jiighl(chicago,oslo,10l,(may,1,17:15)):T.
j7ighl(chicago,dc,102,(may,1,14:15)):T.
jIight(dc,oslo, 102, (may, 1,20:80)):T.
jlight(chicogo,oslo,102,(may,1,14:15)):T.
jTight(chicago,london, 103, (may, 1,18:00)):T.
jIight(london,oslo, 104,(may,2,08:30)):T.
dc-oirport(dulles):T.

london-airport(heathrow):T.
stopover(lO$dc):T.
The last fact is transformed into the rule:
stopover(l02, dc)$ + stopove#(lO%, dc).$.

Then the set of answer.substitutions for the query
would be the following:

{ { lOl/TPlan,l7:15/Time,good//? },
{ 102/TPlan,14:15/Time,fine//I },
{ [lOS, 104]/TPlan, 18:00/Time, bad//3 } }

If the query were annotated with the value fine, only
the second answer substitution would be returned. If
it were asked with the annotation okay, the first and
second answer substitutions would be returned but not
the third.

Adaptations of bottom-up procedures can also be
done in a manner that is similar to the modifications
to the top-down procedure. In addition, if the query
specifies an annotated constant, the annotation indi-
cates a selection that should be made before projec-
tions or joins. Thus, this annotation should be pushed
down in the deduction tree before starting the bottom-
up evaluation.

Observe that incorporating annotated user con-
straints into relational databases requires two steps:
(1) adding one argument to some of the relations to
store the annotations and (2) adding a procedure to
compute operations over the lattice. These extensions
can be done automatically without the intervention of
the database designer.

7 Example: Handling Large Volumes
of Sequence Analysis Data

When analyzing new DNA sequence data through
available pairwise alignment software, a series of is-
sues arise: how does one compare the outputs from
different software packages? how does one determine
whether one package or another is more reliable? how
can one use the results from one package to reinforce
the results from another in a systematic way? And
not least, how does one deal with the sheer volume
of the output (e.g. for 300 sequences of length lOO-
300 nucleotides, the Blastx output is 25 megabytes of
human-readable files).

A system built by Gaasterland and Overbeek
[GO941 sends contiguous DNA sequences (CDS) out to
a variety of software packages and parses the human-
readable output into a logical database of facts about
the sequences. Each fact represents a local similari-
ty alignment between an input query sequence and a
sequence in some database, e.g. GenBank, SwissProt,
or the EMBL Nucleotide Databank, or a similarity be
tween a query sequence and a motif pattern, linked in
turn to local multiple sequence alignments of entries
in sequence databases.

316

From the logical form of the output data, we use
qualified query answering to merge the “opinions”
from each different piece of software and make a qual-
ified decision about what region of an inp-ut query se-
quence is a CDS and what its function is. The basic
property of this scheme is that the criteria for making
a judgement about the data are represented separate-
ly from the data itself and from rules for deriving new
information from the data. This means that a set of
rules for deriving a CDS to function mapping need be
written only once. After that, it is straightforward for
a user to change the combination criteria.

Available sequence analysis tools can be thought
of as producing connections between the query se-
quence and sequences that appear in a variety of
sequence databases (including versions of SwissProt
[BB91, Bai93b], GDB [PeaSl], and the EMBL Nu-
cleic Acid Database [EMB93]). Those connections
have a score associated with them. This functional-
ity is clear in the Blast, Blaize, and Fasta families
of sequence analysis tools [AGM+SO, CC90, WL83].
Each of these tools perform pairwise sequence align-
ments between the query sequence and the database
sequences. The functionality also applies to Block-
s [HH93], which searches for Prosite motif patterns
[BaiSl] in a query sequence and associates that re-
gion of the query sequence with a multiple local se-
quence alignment - or block - in which the aligned
sequences each exhibit the prosite pattern in ques-
tion. Blocks associates the query sequence with the
best matching sequence in a “block.” Each logical fact
about a match has the following form:

similarity([Contig, From, To],
[ProteinID, From-p, To-p],
Score, Tool).

This fact can be read as There is a similarity be-
tween the input contig from DNA sequence location
from From to To and ProteinID sequence location from
From-p to To-p, with a score of Score using Tool.

For example, for a contiguous DNA sequence, say
~030, in the region between 330 and 430, blastx asso-
ciates it with SwissProt entry PO4540 and blaize asso-
ciates it with ‘ARYBMANSE’:

similarity([cO30,6,208],
[acore(l60),expect(0.0064),p(0.0064)],
[embl M62622,51493,51695], blastn).

similarity([c030,689,1018],
[score(73),expect(l.Se-OB),p(l.Se-8)],
[gbjXO5182,865,536],tblastn).

similarity([c030,713,102&
[score(99),permatch(4.3),pndno(4.09e-5)],
[YM71STRYBB,469,574],blaize).

With two straightforward rules, we have a declar*
tive program that derives CDS/function pairs from the
similarity facts for a sequence. The first rule invokes a

search for a possible open reading frame (ORF), that
is, a possible start and stop location for translation in
a contig and for a similarity that is contained within.
that ORF:

hit(Contig,From, To,Protein) +
orf(Contig, From, To),
similarity([Contig,Froml,Tol],

[Protein,From& To2],Score, Tool),
&thin(l+oml, Tol, From, To).

The orf relation can be read as There is an orf in
sequence Contig from From to To. The orf relation can
be derived in many ways4 The within relation is read
as the range I+oml-To1 is contained within the range
From-To, and both ranges have the same direction (i.e.
increasing or decreasing).

Thus, the rule for a hit can be read as there is a hit
on Contig from From to To against protein Protein if
there is an orf between From and To and a similarity
with that protein within that region, using the tool Tool.

A second rule derives a relation that relates a CDS
to function:

cds-function(Contig,From, To, Fen) c
hit(Contig,From, To,Protein),
function-of-protein(Protein, Fen).

The relation function-of-protein simply relates a pro-
tein to its function. For now, this relation relates en-
zyme proteins to their enzyme code (obtained from the
EMBL Enzyme Database [Bai93a]) and other proteins
to themselves.

Using just these two rules and a collection of sim-
ilarity facts, one can ask the following query about a
particular contig, called say ~090:

?- cds_function(c030,From, To, Fen).

The result is a list of CDS-to-function relationships
defined by From and To and the potential Fen of the
CDS.

However, although this is helpful in inspecting the
data from all of the tools, it does not address the prob-
lem of how to combine the data from different tools.
We must do a bit more in order to accomplish the fol-
lowing: (1) allow various categorizations of scores for
each tool to be used in determining how good a partic-
ular similarity is; (2) allow similarities from one tool
to be preferred over similarities from another tool.

To prioritize answers according to what tool was
used to obtain it and according to the score within
that tool, two sets of information are added to the

4 We used a method devised by Overbeek which can be de-
scribed simply as follows: look for a stop codon and then look
upstream (downstream on negative reading frames) for a start
codon that is not preceded by a stop codon. If the upstream
(downstream) search hits the end of the sequence, that is tem-
porarily considered to be the “start” of the ORF.

317

program in the form of user constraints. First, facts
are partitioned by scores within tools by adding a set
of user constraints of the form:

similarity(-,-,&ore, Tool):S + Tool = tooll,Score>N.

where too11 is the name of a tool and N is a numerical
cut-off level for Score.5 S is a symbolic value from
the lattice used for scores. For now, we use strong,
medium, and weak as score symbols. An “-” denotes
an argument of the predicate similarity that is’not
relevant in the user constraint.

Second, facts are partitioned by tool by adding a
set of user constraints of the form:

similarity(,-,-,Tool):T c Tool = 20011.

where too11 is the name of a tool and T is some sym-
bolic value in the lattice used for tools.

In addition to the user constraints, a lattice for each
set of symbols must also added to the program. For
example, for the scores, we might impose a simple lat-
tice in which strong > medium > weak.

Suppose that the symbols that have been assigned
to each tool is the name of the tool itself. Then, for the
tool lattice, we might impose something like the fol-
lowing for the set of tools that includes blaize, blocks,
blastx, tblastn, and fasta:

blastx
/ I \

blocks blaize tblastn
\ I /

f asta

Using semantic compilation, the user constraints are
compiled into the basic program, that is, into the two
rules defined above, to produce the following new an-
notated program:

cdsJunction(Contig,From, To,Fcn):SCORE, TOOL+
hit(Contig, From, To, Protein):SCORE, TOOL,
function-of-protein(Protein, Fen).

hit(Contig,From, To,Protein):SCORE, TOOL+
orf(Contig,From, To),
similarity([Contig,Froml, Toll,

[Protein, From&, To2],
Score, Tool):SCORE, TOOL,

within(From1, Tol,From, To).

Semantic compilation is also used to compile the the
user constraints into the similarity data. With the us-

5Tbis last expression, SCORE > N becomes a bit more com-
plicated when SCORE actually consists of more than one uum-
her, as it does in the Blast family of tools. The actual imple-
mentation accommodatea this complication.

er constraints above for score and tool, each similarity
fact is transformed into the following annotated form:

similarity([Contig, Froml, Toll,
[Protein,From&, To2],
Score, Tool):SCORE, TOOL.

where the values for SCORE and TOOL are obtained
by applying the user constraints for scores and tools
to each similarity fact.

A similar approach can be taken to allow tools from
different rules to reinforce each other and to allow mul-
tiple hits from different proteins in the same family to
reinforce each other [GL94].

The ability to annotate CDS-to-function relation-
ships with confidence in the score, confidence in the
tool, and confidence in the decision about the func-
tion provides users with a powerful tool to analyze
large quantities of data that have been produced by
sequence analysis programs. Using qualified query an-
swering techniques, users can easily change the criteria
for how tools reinforce each other and for how number-
s of occurrences of particular functions reinforce each
other. They can also alter how different scores for dif-
ferent tools are categorized.

8 Conclusions

We have shown how annotated logic programs can be
used to model user needs and preferences. The user
expresses preferences through a domain independent
lattice of values. Domain specific needs and prefer-
ences are then expressed through annotated user con-
straints, that is, logical statements that are qualified
with the values in the lattice. The work of Kifer and
Subrahmanian [KS921 provides a theoretical basis for
annotating logical clauses with values. Because of the
precise formulation of our formalism we have found an
automatic and very simple mechanism to incorporate
user needs and preferences into query processing. We
have provided a method to transform a logic program
or deductive database without annotations together
with a set of annotated user constraints into an anno-
tated logic program. The user may then ask a query
and receive answers that are qualified, or annotated,
with values from the lattice.

We have discussed two variations on the querying
process: asking a query and receiving all answers, each
with an annotation value; and asking a query togeth-
er with an annotation value and receiving all answers
with that value or higher. In Section 6, we showed how
query answering procedures for deductive databases
can be adapted through minor modifications to return
answers with annotations for databases produced by
Transformations 1, 2, and 3 given in Sections 4 and 5.

318

We have an implementation of the transformations and
of the modified query answering procedure.

The approach to query answering described in this
paper is simpler than that described by Subrahmanian
and Kifer [KS921 for annotated logic programs because
we are able to use a weaker semantics for annotat-
ed logic programs. Not only is the weaker semantics
sufficient for our purposes, that is, to adhere to us-
er preferences and needs, but their stronger semantics
would be inappropriate. Roughly speaking, Kifer and
Subrahmanian [KS921 provide semantics for annotated
logic programs by which any atom that would receive
multiple lattice values in a model for the program is
instead assigned a value that is the least upper bound
of the multiple values. This unique annotation value
defines the least truth value of the atom; an atom is
considered to be valid for values equal to its annota-
tion or higher. Such a semantics is appropriate for
applications like temporal reasoning, bilattice valued
logics, and interval-based temporal logics.

To deal with annotated deductive databases that
reflect user needs and preferences, we have developed
a slightly weaker semantics by which each atom in the
model of the database may have one or more lattice
values as specified by the user constraints. If we were
to summarize the set of values with their least upper
bound, it would be counter to the notion of user con-
straints - we would be allowing the atom to receive
a level of preference higher than that intended by the
user. Because we do not need to obtain least upper
bound values for annotations of atoms in the model,
the computation of annotations is greatly simplified.
However, there are cases where operations similar to
least upper bounds are needed to accommodate user
preferences. An example in the travel database would
be to prefer travel plans with fewer flights. If there is
a specific number of stops that the user can tolerate in
the plan our method can handle it. But to obtain the
best plan all the answers must be collected to select
the plan with fewer flights. This class of preferences
will be possible if user constraints are extended to deal
with aggregate functions.

The example presented in Section 6 is simple but
illustrative of how user constraints can be applied. The
real advantage of the methodology becomes apparent
when there are a large number of user constraints, as
in the application to molecular biological databases
presented in Section 7

The transformations described in this paper are not
limited to the incorporation of annotated user con-
straints into deductive databases. We see that they
will also be useful for combining multiple deductive
databases, each of which expresses an expert’s view
of the world, into a single database. If each original
deductive database is annotated with values that re-

fleet both experts’ names and levels of confidence, then
the query answering methods described in this paper
would produce answers whose annotations reflect the
expert positions.

In summary, using the method described in this pa-
per, a set of annotated user constraints, a lattice of
preference values, can be used with a relational or
deductive database to return qualified answers that
reflect user preferences and needs.

Acknowledgments

Terry Gaasterland was supported by the Office of Sci-
entific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38. The NSF partially sup-
ported Jorge Lobo under grant #IRI-9210220. We
thank Zoran Budimlik for taking the time to imple-
ment our ideas.

References
[AGM+SO] S. F. Altschul, W. Gish, W. Miller, E. W. My-

ers, and D. J. Lipman. Basic local alignmen-
t search tool. Journal of Molecular Biology,
215:403-410, 1990.

[AP86]

[AWS92]

[Baigl]

[Bai93a]

[Bai93b]

[BB91]

[CC901

[CCLSO]

J. F. AIlen and C. R. Perrault. Analyzing in-
tention in utterances. In B. J. Grosz, K. Sparck
Jones, and B. Lynn Weber, eds, Readings in
Natural Language Processing, pages 441-458.
Morgan Kaufmann Publishers, Inc., Los Altos,
California, 1986.

C. Ahlberg, C. Williamson, and B. Shneider-
man. Dynamic queries for information explo-
ration: An implementation and evaluation. In
Proc. of the ACM CHI ‘92, pages 619-626,
California, 1992.

A. Bairoch. Prosite: A dictionary of sites and
patterns in proteins. Nucleic Acids Research,
19:2241-2245, 1991.

A. Bairoch. The enzyme data bank. Nucleic
Acids Research, 21:3155-3156, 1993.

A. Bairoch. The Swiss-prot protein sequence
data bank: User manual. release 25, april 1993.
(e-mail to netseru@embl-heidelberg.de).

A. Bsirochand and B. Boeckmann. The swiss-
prot protein sequence data bank. Nucleic
Acids Research, 19:2247-2249, 1991.

J.F. Collins and A. Coulzon. Significance of
protein sequence similarities. In R.F. Dooht-
tle, editor, Methods in Enzymology, Vol. 183,
pages 474486. Academic Press, 1990.

W. W. Chu, Q. Chen, and R. C. Lee. Co-
operative Query Answering via Type Ahstrac-
tion Hierarchy. In Proc. of the Intl. Working
Conj. on Cooperative Knowledge Baaed Sys-
terns, pages 67-68, University of Keele, Eng-
land, Oct. 1990.

319

[CD891

[EMB93]

[Gaa92]

F. Cuppens and R. Demolombe. How to
Recognize Interesting Topics to Provide Co-
operative Answering. Information Systems,
14(2):163-173, 1989.

EMBL. Embl data library: Nucleotide se-
quence database: User manual release 36,
September 1993. (anonymous ftp to ftp.embE
heidelbergde)

T. Gaasterland. Cooperative Answers for
Database Queries. PhD thesis, University of
Maryland, Department of Computer Science,
College Park, 1992.

[GGMN92] T. Gaasterland, P. Godfrey, J. Minker, and
L. Novik. A Cooperative Answering System.
In Andrei Voronkov, editor, Proc. of the Logic
Programming and Automated Reasoning Con-
f., pages 101-120, Vol. 2, St. Petersburg, Rus-
sia, July 1992.

[GL88]

[GL94]

[GM781

[GM881

[GO941

[HH93]

[KF88]

[KS901

[KS921

[McC88]

M. Gelfond and V. Lifschitz. The stable mod-
el semantics for logic programming. In R.A.
Kowalski and K.A. Bowen, eds, Proc. 5th Intl.
Conf. and Symp. on Logic Progmmming, pages
1070-1080, Seattle, Washington, Aug. 1988.

T. Gaasterland and J. Lobo. Assigning func-
tions to cds through qualified query answering:
Beyond alignment and motifs. In Proc. of 2nd
Intl. Conf. on Intelligent Systems for Molecu-
lar Biology, Stanford, CA, July 1994.

H. Gallaire and J. Minker, eds. Logic and
Databases. Plenum Press, NY, Apr. 1978.

A. Gal and J. Minker. Informative and Coop-
erative Answers in Databases Using Integrity
Constraints. In V. Dahl and P. Saint-Disier,
eds, Natural Language Understanding and Log-
ic Programming, pages 277-300. North Hol-
land, 1988.

T. Gaasterland and R. Overbeek. An automat-
ed system for gathering sequence analysis data
from multiple tools. Technical report, 1994. In
preparation.

S. Henikoff and J. Henikoff. Protein family
classification based on searching a database
of blocks (document: blockmanps). (ftp to
sparkyfhcrcorg in /blocks)

R. Kass and T. Finin. Modeling the user in
natural language systems. Computational Lin-
guistics, 14(3):5-22, Sept. 1988.

R. Kowalski and F. S&i. Logic Programming
with Exceptions. In Proc. of the Intl. Conf. on
Logic Progmmming, Jerusalem, Israel, 1990.

M. Kifer and V.S. Subrahmanian. Theory of
generalized annotated logic programming and
its applications. Journal of Logic Progmm-
ming, 1992.

K. McCoy. Reasoning on a highlighted user
model to respond to misconceptions. Compu-
tational Linguistics, 14:52-63, Sept. 1988.

[Mot901

[Par871

[Pea881

[Pea911

[Po190]

[vEK76]

PRS88]

[WL83]

A. Motro. FLEX: A Tolerant and Coopera-
tive User Interface to Database. IEEE ‘I’mns-
actions on Knowledge and Data Engineering,
2(2):231-245, June 1990.

c. Paris. Combining discourse strategies
to generate descriptions to users along a
naive/expert spectrum. In Proc. of IJCAI,
pages 626-632, Milan, Italy, 1987 Aug. 1987.

J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, Los Altos, Cali-
forma, 1988.

P. Pearson. The genome data base - a human
gene mapping repository. Nucleic Acids Re-
search, 19:2237-2239, 1991.

M. E. Pollack. Plans as complex mental atti-
tudes. In M.E. PoIlack P.R. Cohen, J. Morgan,
editor, Intentions in Communication, pages
77-103. MIT Press, 1990.

M.H. van Emden and R.A. Kowalski. The se-
mantics of predicate logic as a programming
language. J.ACM, 23(4):733-742, 1976.

A. Van Gelder, K.A. Ross, and J.S. Schlipf.
Unfounded sets and well-founded semantics for
general logic programs. In Proc. 7’h Symp.
on Principles of Database Systems, pages 221-
230, 1988.

W. Wilbur and D. Lipman. Rapid similari-
ty searches of nucleic acid and protein data
banks. Proc. Natl. Acad. Sci. U.S.A., 80:726-
730, 1983.

320

