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Abstract 

This paper is devoted to the dynamic aspect 
of the IF02 conceptual model, an extension of 
the semantic IF0 model defined by S. Abite 
boul and R. Hull. Its original aspects are a 
“whole-event” approach, the use of construc- 
tors to express combinations of events, and 
the modularity and m-usability of specifiecl- 
tions in order to optimize the designer’s work. 
Furthermore, it offers an overview of the rep 
resented behaviour. To complement the mod- 
elling part, IF02 includes a derivation com- 
ponent which performs the implementation of 
specifications by using an active DBMS. 

1 Introduction 

Current conceptual approaches [BM91, LZ92, PS92, 
PerSO, Q093, RC91, Saa91, SF91, SSE87] strive to 
meet the needs of both traditional and advanced ap- 
plications. This goal is ambitious since it consists in 
preserving the benefits of semantic approaches [HK87j 
while integrating the strengths of Object-Oriented 
Data Base (OODB) models. In other words, these 
approaches not only have to handle complex coastruc- 
tors and propose concepts such as modularity and re- 
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usability but they also have to offer an overview that 
comes as close as possible to the modelled real world. 
Furthermore, they must be independent of target sys- 
tems but they have to be complemented by a deriva- 
tion process in order to perform the application imple- 
mentation. The difficulties increase when we consider 
the twofold aspect of the problem: application mod- 
elling includes both structural and behavioural repre- 
sentations. For thii reason, conceptual models have 
often dealt with either one or the other, but not both 
of these aspects. 

The IF02 conceptual model integrates both the struc- 
tural and the behavioural representation of applica- 
tions in a consistent and uniform manner in terms of 
both the formalization introduced and the associated 
graphic representation. It is based on the semantic 
IF0 model of S. Abiteboul and R. Hull [AH87]. 
This paper is devoted to the dynamic aspect of the 
model (its structural part is described in [PTCL93]) 
and to its derivation which implements the described 
behaviour by using an active DBMS [CBagO]. 

After a survey of related work, we give our reasons 
for proposing the IF02 behavioural model (section 2). 
The various concepts introduced to represent the ap- 
plication behaviour are presented in section 3. The dy- 
namic operation of a modelled system, which we call 
its activity, is then described (section 4). In section 5, 
we present the derivation of the dynamic part of IF02. 
We conclude with an examination of the links estab- 
lished between the structural and behavioural speci- 
fications. In the appendix, we summarize the IF02 
structural part in order to give an overview of the 
model and to highlight its uniformity. 
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2 Related work and motivations 

Conceptual models which give priority to behavioural 
specification [PerSO, Q093, RC91, FS88, SF911 use an 
OODB model to represent the structural part of ap- 
plications [RC92]. They deal with problems which are 
similar to those of concurrent system design and soft- 
ware engineering [LZ92]. 
In these approaches, the behaviour of applications is 
viewed as the set of reactions of the modelled objects 
when certain events occur. In fact, these models dif- 
ferentiatex between local and global behaviours. Local 
behaviours focus on the object dynamics within classes 
while global behaviours represent the interactions be- 
tween classes. Consequently two kinds of events are 
considered: local and shared events. 
The object dynamics can be seen as states and tran- 
sitions between states. In fact, local behaviour con- 
sists of valid transitions triggered by local events. An 
additional mechanism is required to coordinate the 
changes of object states belonging to different classes 
when shared events occur. These approaches make 
use of statecharts or temporal logic to represent the 
behaviour of the system. 
This view of behaviour is simple, clear and works well 
with object-oriented models. For local behaviours, a 
behavioural facet integrated in the class description, 
specifies events, occurrence conditions and triggered 
actions (methods or other events which are produced). 
The description of global behaviours is either encapsu- 
lated in the classes (through interaction equations in 
[SSESq) or specified outside the classes [RC91]. In the 
latter case, no one particular class is favored but the 
behaviour in question is excluded from the inheritance 
hierarchy. 

Nevertheless these models do have some drawbacks. 
First of all, they do not provide an overview of the 
system’s behaviour since it is divided into classes: pri- 
ority is given to a complete vision of objects (structural 
and behavioural) rather than an overview of the sys- 
tem. Events are not represented in a uniform way: 
two abstraction mechanisms are necessary for local 
and shared events. Futhermore, behavioural inheri- 
tance depends on structural representation. In fact 
behavioural aspects may be m-used only for special- 
ized objects according to the static inheritance hierar- 
chy. 
In these models, the conditions over event occurrences 
make use of object states. These states and the un- 
derlying objects are not always easy to identify since 
they do not necessarily correspond to attributes exist- 
ing in the real world [AG93, RC92]. Consequently, it is 
necessary to introduce “artificial” objects in the struc- 
tural representation in order to express behavioural 

constraints. This view of object behaviour as states 
has two disadvantages: the problem of making a com- 
plete inventory of states [Har88] and, above all, a struc- 
tural representation which is no less faithful to the 
real world because of “artificial” objects. Finally, the 
concepts defined for the static and dynamic represen- 
tations are very different and the designer’s required 
skills need to be extended. 

In proposing the IF02 model, our basic idea is that a 
conceptual model must offer the same qualities for the 
structural representation as for the behavioural mod- 
elling. More precisely, it must provide the designer 
with an overview of specifications not only for the 
structural part but also for the application behaviour. 
These specifications must be as faithful as possible to 
the real world. The modularity and reusability mech- 
anisms have to be as powerful in the static context as 
in the dynamic context. 

In IF02 the system’s behaviour is not understood as 
the reactions of objects to particular events but rather 
as the events which may operate on objects. These 
objects are specified as the parameters of events. We 
believe that a conceptual model which adopts this view 
can be as expressive as others while avoiding their 
drawbacks. Furthermore the modelling process is not 
object-driven since objects and events have the same 
importance in IF02 and play a symetrical role in the 
static and dynamic parts of the model. Consequently, 
we propose a twofold modelling approach to repre- 
sent applications. The result of this modelling is a 
structural schema and a behavioural schema which are 
closely related but clearly distinct. As in the case of 
the conceptual qualities of the model, the problems 
for the designer are the same in the dynamic context 
as they are in the static context. These are: identify 
the representation units (objects or events) and specify 
the relations between them (for instance aggregation 
or specialization links between objects and synchro- 
nisation or triggering chaining between events). From 
this idea, we adapt the concepts defined for the struc- 
tural part of IF02 to the application behaviour. These 
concepts, which give to the static part of the model, 
the required conceptual qualities described above play 
the same role in the dynamic part. The main advan- 
tage here is the uniformity of the model. The designer 
handles the same concepts, or rather concepts having 
the same philosophy, for both the static and dynamic 
representations. 
In the following section, we present the behavioural 
part of IF03 and show that this type of representation 
offers an expressive power comparable to other mod- 
els while respecting the conceptual qualities mentioned 
above. The reader interested in the formalization of 
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the model may refer to [TPC94]. 

3 IF02 behavioural model 

An event is the representation of a fact that partici- 
pates in the reactions of the modelled system. It oc- 
curs in a spontaneous manner (in the case of external 
or temporal events) or is generated by the application. 
In both cases, it occurs instantaneously, i.e. it is of 
zero duration. As in [ChagS, GJS92], we make the 
following two assumptions: no more than one event 
can occur at any given instant and the time ecale ia 
infinitely dense. 
The structural part of IF02 is defined with reaped to 
the “whole-object” philosophy. We extend its scope 
to the behavioural part and refu to a “IrrAole-crcnf 
representation, i.e. any fact which is involved in the 
system’s reaction is modelled in IF02 as an event. In 
fact, event modelling in IF02 complies with a dual pro 
cept: typing and identification. For identification, we 
use the instant of an event occurrence as its identifier. 
The IF02 behavioural model proposes three basic 
types. Their graphic formalism is illustrated in Fig- 
ure 1. 

The Simple Euenf Type (TES) represents the 
events that trigger a method included in the IF02 
structural description. This means that we do not 
consider operations in the behavioural part of the 
model but only the events triggering these opera- 
tions. 
The Abstract Event Type (TEA) is used to spec- 
ify external and temporal events or events that 
generate other events. 
The Represented Event Type (TER) symbolizes 
any other type which may then be m-used without 
knowing its precise description. 

Example 1 To illustrate the concepts presented in 
this paper, we use the example of a lift to represent a 
modelled system. A simple event type involved in the 
description of the lift behaviour is “Up”, which da 
scribes the ascending motion of the lift cage and maps 
with a method of the structural fragment “Lift” (See 
Appendix). The TEA “Floor-Bequest” represents ex- 
ternal events which occur when users request a floor 
(inside or outside the cage). “Satis-Bequest” corre- 
sponds to internal events produced when users reach 
the requested floor and “Arrival-Floor” stands for a 
different type of event. 

To model the behaviour of a system, it is necessary to 
express synchronization conditions, i.e. different vari- 
ants of event conjunction and disjunction. To answer 

Simpk Event Qpe Intenud Evenr Trpr 

TEZR Amival-Floor C 
Rqnwaued Event l)pe Exwntd or Tempo& Emu Trpc 

Figure 1: Example of Basic Event Types 

this need, we represent complex events by wing con- 
strmcion. With this approach, we provide not only the 
required expressive power but also the uniformity with 
respect to the IF02 structural modelling [pTCL93]. 
The event constructors, which may be recursively ap 
plied, are the following: composition, sequence, group- 
ing and union. The event composition constructor re- 
fleets the conjunction of events of different types. The 
sequence constructor is dellned like the composition 
constructor but with a chronological constraint on the 
occurrences of the component events. Event collec- 
tions, i.e. conjunctions of events of the same type, 
are translated in IF02 by the grouping constructor 
(similar to the HiPAC closure constructor [CBa90]). 
Finally, the union constructor expresses a disjunction 
of events of different types. The associated graphic 
formalism is illustrated in Figure 2. 

Example 2 Let us imagine that the designer wants to 
specify the descending or ascending lift motion. He can 
use the union type “UpDown” which is an alternative 
between the two simple types “Up” and “Down”. Each 
one of these types triggers a method which performs a 
single floor motion for the cage. 

Figure 2: Example of Complex Type 

The dynamics of the system may be seen as the link- 
ing of events (atomic or compoeite). These causal- 
ity links are expressed through functions. In fact, the 
event types are interconnected by functions through 
the eocni fregmeni concept, focused on a principal type 
called be&. Functions may combine the following fea- 
tures: 
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simple or complex (mono or multivalued), i.e. an 
event of their type origin triggers one or several 
events of their target; 

partial or total, i.e. an event of their type origin 
can or must trigger an event of their target; 

and deferred or immediate, if there is a delay or 
not between the occurrences of the origin and tar- 
get events. 

In addition, we differentiate between triggering and 
pncedcnce functions. These roughly express the fact 
that an event of the fragment heart triggers the oc- 
currence of other events or that it is preceded by the 
occurrence of other events. In order to emphasize this 
point, let us consider an external event. By its very na- 
ture, it cannot be triggered by another modelled event, 
therefore it is sometimes necessary to express that its 
occurrence is n ecessarily preceded by other events. 

All the described features of functions express gen- 
eral constraints on event chaining. They are reflected 
through the proposed graphic formalism (Figure 3). 
Nevertheless, it is sometimes necessar y to refine these 
constraints by specifying particularly precise condi- 
tions over the system’s history. In IFO,, such con- 
ditions are expressed on another specification level by 
using an algebraic language on events. This language 
is not presented in this paper due to space limitations 
(some operators are detailed in ~CMJ). 

Contrary to triggering functions, a precedence func- 
tion, if it exists, is unique in a fragment since the dif- 
ferent triggered events may be constrained by different 
specific conditions while preceding events can only be 
synchronized by using the mentioned constructors to 
trigger one event of the fragment heart. 
The concept of fragment, inherited from the IF0 
model, is very important for the modularity of spec- 
ifications. The fragment can be really considered as 
a nnit of description of the dynamics since it spdcifies 
a complete “sub-behaviour” of the modelled system 
(with the heart events, their preceding and triggered 
events). 

Example 3 Figure 3 illustrates a fragment in which 
the heart is the external event type “Floor-Bequest”. 
In this fragment, there is no precedence function. This 
fragment describes the lift reactions when a user re- 
quests a floor inside or outside the cage. The fragment 
heart is linked with a partial, complex and deferred 
function to the simple type “Closure”. The associated 
method in the structural schema closes the lift doors. 
The function is partial because, in some cases, an event 
of “Floor-Bequest” would not trigger a door closure. 

These cases are the following: (i) the wer wishes to go 
to the floor where he is currently located; (ii) or the 
door closure stems from another event, i.e. a previous 
request from the same floor. The function is deferred 
to account for the case where the user requests the lift 
while the latter is moving up or down. 
The complex feature of the function specifies that 
a floor request may trigger the door closure several 
times. This situation occurs when a request process 
ing is interrupted to serve floors requested by other 
usem. When other usem are satisfied the considered 
request triggers the closure of the door so that the cage 
can start again. 
The TEA is also related to the composite type “Up 
Down” which specifies an alternative between the two 
TESs “DowrP and “Up”. The triggering function be- 
tween the heart and the union type is partial, deferred 
and complex. It is partial to take into account three 
cases: cases (i) and (ii) of the previous function and the 
case where the requested floor is served when satisfying 
previous current requests. The deferred feature of the 
function takes into consideration the possible delay be- 
tween the user request and the resulting lift motion. In 
fact the methods corresponding to the TESs “Up” and 
“Down” perform a single floor ascent or descent for the 
cage. This is what makes the triggering function com- 
plex. The union type ‘Up-Down” is the heart of a 
subfragment. The triggering function which relates it 
to the represented type “Arrival-Floor” (standing for a 
type described in another fragment and describing the 
cage arrival to the floor) is total and immediate. This 
means that any event of the types “Up” and “Down” 
generates an event of “Arrival-Floor”. 

Figure 3: The “Floor-Bequest” Event Fragment 

The role of fragments is to describe a subset of the 
modelled behaviour that can then be used as a whole 
by means of the repnscntcd type concept. More pre- 
cisely, represented types are related to fragment hearts 
via IS-A cued links. Consequently, it is possible to 
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manipulate another type without knowing its descrip 
tion. The designer may defer a type description or 
entrust it to somebody else, while using a represented 
type which symbolizes it. Through the concept of rep 
resented type, the m-usability of specifications is real. 
An inherited behavioural aspect may be redefined or 
refined by specifying the concerned represented type as 
the heart of a new fragment having other preceding or 
triggered types. Furthermore, IF02 takes the multiple 
inheritance into account since represented types may 
have several sources. The inheritance mechanism, in- 
troduced by event ISA links, is independent from the 
structural inheritance hierarchy. It is possible to re- 
use parts of the modelled behaviour even if they do 
not concern specialized objects. Consequently the r* 
usability of dynamic specifications is not limited by 
static considerations. 
In order to model the general behaviour of the applica- 
tion, the partial views provided by the fragments are 
combined (via ISA links) within an cued schema. 

Example 4 Figure 4 shows the IF02 event schema 
“Lift”, involving three fragments, each one dedicated 
to a particular aspect of the lift reactions. “Floor- 
Request” describes the system behaviour when a user 
request occurs. ‘Cage-Arrival” is a particular frag- 
ment since it is reduced to its heart which is a sim- 
ple event type reused in other fragments. The cor- 
responding method in the structural fragment “Lift” 
is an alerter which returns the floor reached by the 
cage. Finally “Satis-Request” is dedicated to the lift 
behaviour when the cage arrives at the requested floor. 
The origin of the precedence function is a composite 
type “Stop”. It combines several events of the TER 
“Go-Floor” (by using the grouping constructor), in fact 
several floor requests, and a cage arrival. Thii compos- 
ite type specifies which current floor requests have to 
be satisfied (as explained in the next section). These 
fragments are related by ISA links through the rep 
resented types “GeFloor”, “Arrival-Floor” and “Ar- 
rival”. 

IF02 event schemas describe possible application ba 
haviours exclusively in terms of events. The expressive 
capabilities of the model are comparable to those of 
object-state and transition based approaches. Despite 
their different philosophies [SF91, RC92], events and 
synchronisation conditions are quite close. IF02 how- 
ever introduces synchronisation between operations, 
through their triggering events while sequential order 
is adopted in other models. Moreover, general condi- 
tions are expressed in an explicite way with construc- 
tors and a twofold causality link is proposed through 
the precedence and triggering functions. Compared 

Figure 4: The uLift” IF02 Event Schema 

with statecharts [Har88], the IF02 graphic represen- 
tation is very concise and offers an overview of the 
modelled behaviour. 

4 Activity of an IF02 schema 

The application behaviour is represented by the event 
schema. It may be simulated by navigation through 
the graph. An outline of this behaviour consists in a 
propagation of event triggering. It stops when all the 
actions reflecting the goal sought by the system are 
achieved. These actions are described in the schema, 
within one or more fragments called saiisfacfion fig- 
ments. 

Example 5 In our schema example, there is one sat- 
isfaction fragment: “Satis-Request”, which specifies 
that each user who requests a floor has to reach it, 
in the end. 

This section provides further details of this general 
principle. Within each fragment, the triggering prop 
agation is of course oriented by the precedence and 
triggering functions. This propagation stems from an 
external or temporal event or a combination of such 
events. In this case, the underlying TEA (or the type 
built up from these TEAS) is either the heart of a frag- 
ment without a precedence function or it is the origin 
of the precedence function in a fragment. It is consid- 
ered as an en@ of the IF02 event graph. 

Example 6 The only fragment illustrating this case+ 
in our schema exemple, is “Floor-Request” which, con- 
sequently, is the only entry of the graph. In fact, 
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the whole triggering cascade atema from the external 
event: a user requests a floor. Let us suppose that 
there is just one user at this instant and that he wishes 
to go to a floor above the one where he is. Now, in this 
situation, the external event triggers the door closure 
and then the occurrence of an “Up” event. This event 
causes the generation of an “Up-Down” event. In a 
general way, events of the composite type stem from 
the occurrence of the component types. The propaga 
tion continues on the level of the subfragment by the 
triggering of an “Arrival-Floor” event. 

Therefore, in the general case, the event propagation 
is triggered, within a fragment, by the occurrence of 
an event in another fragment. The behaviour ia then 
simulated by the navigation along the ISA link asso- 
ciating these two fragments, i.e. the heart of one to 
a TER of the other. Along an ISA event link, the 
navigation can follow one direction or the other de- 
pending on the “position” of the TER within its own 
fragment. If it is the target of a triggering function, di- 
rectly or by construction, then the event occurrence of 
the TER systematically generates an event occurrence 
of the heart type of the related fragment. Therefore 
the navigation takes place from the ISA link target 
to its source and there is equality between the aete of 
occurred events of both the fragment heart and the 
TER, if the latter haa only one Bourcel . 

Example 7 In the “Lift” event schema, one TER is 
a target of a triggering function: “Arrival-Floor”. Ac- 
cording to our previous assumption, an event of thii 
type has just happened. This triggers the occurrence 
of a fragment heart “Cage-Arrival” event by navigat- 
ing along the ISA link between these two types. 

Let us now consider a TER that is the origin of the 
precedence function, or involved in the construction of 
this origin. This means that one of its events can only 
be triggered by the occurrence of an event belonging 
to the fragment heart to which it is related. The nav- 
igation along the ISA link takes place from its source 
to its target and there is inclusion or equality between 
the sets of events occurred for the TER and the heart, 
if the former has only one source. 

Example 8 The two TERs, illustrating this situation 
in our event schema, are “G+floor” and “Arrival”. 
They are both used to build up the “Stop” type ori- 
gin of the precedence function in the fragment “Satis- 
Request”. The occurrence of an event of these types ie 
necessarily caused by an event of “Floor-Request” or 

1 We do not explain the came where a TER haa severd 10urc.e~ 
since its description requiru the concept of attached events not 
presented here due to space limitation. 

“CagsArrival” respectively. 

This first outline of the system activity shows that 
“everything begin8 with the occurrence of external 
or temporal events. 
When a triggering cascade is started, it must stop in 
the end. “Rverything ends” on the level of satisfaction 
fragments since they model, aa previously mentioned, 
the ultimate goal of the system. In fact such fragments 
not only describe the manner in which the propage 
tion stol.mr. They also specify thir obligation to stop, 
by integrating the following corurtraint: a satisfaction 
fhgment has to include a TER which is actually a 
triggering type in the fragment (i.e. it is either the 
source of the precedence function or the heart of the 
concerned fragment). The obligation to stop is then 
partially taken into account by the fact that any event 
of the related fragment heart must alao be an event 
of the TER. The heart events are considered as being 
satisfied when the TER corresponding events actually 
produce the set of triggered events in the satisfaction 
fragment. Thb vision has to be refined by taking into 
account iterations that would potrsibly be performed 
during the graph navigation. Iterationa arou& by 
the satisfaction fragment are performed by consider- 
ing triggering functions which are complex or deferred. 
The choeen iteration is the first one found along the 
reverse path. 

Example 9 Let UII resume the activity of our schema 
example where we last left it, i.e. after the occur- 
rence of a “Cage-Arrival” event. From this event stems 
an event of the “Arrival” represented type. Similarly, 
from the initial floor request stemmed a correspond- 
ing event for the TER “Go-Floor” in the satisfaction 
fragment. During the cage motion, let us suppose that 
another person calls the lift from the floor that is r+ 
quested by the first user. This call does not yet gen- 
erate any event in the “Floor-Request” fragment be- 
cause the lift ia engaged, but it triggers a correspond- 
ing event for the TER “Go-Floor”. At this stage, none 
of the two floor requests may be satisfied because the 
cage is not yet at the desired floor. This condition is 
expremed in the precedence function of the satisfac- 
tion fragment by comparing the structural parameters 
standing for the floor of the event “Arrival” and of the 
events “Go-Floor”. A first iteration is then performed, 
by following the ISA links, in order to again trigger 
the complex function between “Floor- Request” and 
“Up-Down”. Such a process is performed as many 
times (LLI necessary to reach the required floor. When 
this happens, the condition of the precedence function 
in the fragment “Satit4equest” is true and the prop 
agation carries on generating a fragment heart event. 
Let us examine ita preceding event, which itr of the 



“Stop” type. This type is defined as a composition of 
the “Arrival” type and a “Go-Floor” grouping. There- 
fore, the preceding event in question is built up from 
our two user requests combined with the last “Arrival” 
event. The event of the type “Satis-Request” immedi- 
ately generates a “Stopping” event and then triggers 
the opening of the lift doors. 

5 From an IF’02 event schema to E-C- 
A rules 

In this section, we propose a derivation process to per- 
form, from an IF02 event schema, the implementation 
of the modelled behaviour. Since our aim is to demon- 
strate the feasibility of translation, we opt for EGA 
rules similar to those of HiPAC [CBaSO] (i.e. adopting 
its philosophy but without strictly following its syntax) 
because it is recognized as a reference in the area of ac- 
tive DBMS research [Cha89, CBa90, DBM88, DHL91, 
DPG91, GJS92). 

5.1 Presentation 

On the basis of an IFOz event schema, the algorithm 
described below is used to generate a set of EGA 
rules. Generally speaking, this process starts with the 
entries of the IFOz graph, examining the correspond- 
ing fragments. It continues by transforming the frag- 
ments linked to the entry fragments, following the ISA 
links from their target to their source. All fragments 
that are not yet derived are then examined. More 
precisely, each fragment gives rise to the creation of 
at least one EGA rule, except in the case where it 
is reduced to a TES. In general, however, a fragment 
generates several EGA rules. Without presenting the 
algorithm in detail, we give its general principles. The 
actions of the generated rules are either the methods 
corresponding to the TESs or the triggering or acti- 
vation of the rules introduced during the derivation 
process. 

In IF02 the conditions of event triggering are ex- 
pressed when specifying the functions, in a language 
[TC94] that we do not present in this paper. The con- 
ditions must be exhibited in a preliminary stage of 
the application of the algorithm by adopting the same 
philosophy which is proposed in the derivation illus- 
tration. 

The events that trigger the EC-A rules can be ex- 
ternal or temporal events of the IF02 schema. When 
a composite type is the target of a precedence function, 
the constructor used gives the type of combination of 
events of the EGA rule (conjunction, disjunction, 8e- 
quence or grouping). If a type is the target of a trig- 
gering function, it is translated - in the simplest case 

of a composition or sequence whose children are TESS 
- by a series of actions. For the two other types, i.e. 
union or grouping, the actions generated automatically 
by the algorithm are rule triggering or rule activations. 
In the case of union, there are as many actions as com- 
ponent children and, for each of these actions, a new 
EGA rule is generated. In the case of a grouping, 
a single action is generated and a single new EGA 
rule is introduced, but we call it recursive because it 
must be executed several times: thii is carried out by 
reactivating the rule. 

The TERa are handled in a particular manner because 
their role in IFOz is to represent another type which 
allows for the modularity of specifications. If they ini- 
tially participate in a fragment precedence function, 
their translation has repercussions on the event part 
of the rule derived from the fragment. In fact, this 
event part includes a disjunction of events correspond- 
ing to the different sources of the TER. If they partic- 
ipate in a fragment triggering function, their transla- 
tion has repercussions on the actions of the generated 
rule. With the same philosophy as for derivation of 
union types, a triggering or activation action of new 
rules is created for each source of TERs, and these new 
rules are then generated. 

Lastly, the characteristics of the functions intluence 
the derivation that is performed. The deferred trigger- 
ing functions of a fragment can introduce a deferred 
coupling mode between the Event component and the 
Condition component. They can also be translated in 
the case of recursive rule generation by activation (in- 
stead of triggering) of a new rule. The complex func- 
tions are translated according to the same principles 
as the grouping types, since they represent an itera- 
tion on the level of the target event types, i.e. through 
generation of recursive rules triggered by an action of 
the rule corresponding to the fragment. Let us note 
that the rules which we call feeuraive have the pecu- 
liarity of not having triggering events; this is because 
they have to be executed several times. In the ODE 
model [GJS92], they could correspond to “perpetual” 
rules. In the ATM model [DHL91], such rules would 
be described in an even more natural manner because 
the activity concept allows for the introduction of a 
loop. 

5.2 The Derivation Algorithm 

To specify complex events, we use the following nota- 
tions: 1 for event disjunction, , for event conjunction, 
; for sequence and * for grouping (closure). Mode de- 
notes the coupling mode between EC or GA. 
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Derivation Algorithm: 
Input: both IFOr structural and event schemas. 
Output: a act of EGA rules. 
Step 1: For each fragment entry, Tentry, of the event 
graph: do RTJLE(T,,t,,, ((EVENT(T,,t,,), immedi- 
ate), (true, immediate)$)). 
Step 2: For each non examined fragment heart, 
Theart: do RULE(T’iwt , (0, (true, immediate), 0)). 

The & ULE function is defined by: 
RULE(T, ((4 MdeE), (C, Mofh2), A)) = w 
where rT is an EGA rule obtained as follows: 

l rT = ((E’, Modep), (C’, Modep), A’) with 
(E’, ModI?El) = (E, Modes), (C’, Modec’) = 
(Cl’, Modec) and A’ = A U ACTION(T). 

l If T, a principal fragment heart (i.e. not heart 
of a subfragment), is the target of a precedence 
function, fP , of domain Tp: 

1. If T is an external or temporal event or is 
built up only from such events, then E’ = 
(E’; EVENT(T,); EVENT(T)). Through 
this sequence, the semantics of the prece- 
dence function is captured. 
Else, E’ = (6, EVENT(T,)) and 
Modep = deferred. 

2. Let cP be the condition expressed in the func- 
tion fp then C’ = C’ A c,,. 

l If T is the origin of n functions fi of codomain Ti, 
we denote by ci the possible condition associated 
to fi, then: Vi E [l..n] 

1. If fi is a total, immediate and simple trig- 
gering function (Q is reduced to “true” ex- 
cept for the union and grouping construc- 
tors) then: 

(4 

(b) 

(4 

(4 

If Z is a simple event type then A’ = A’ 
followed by ACTION(G). 
If Ti is a represented event type, for each 
source T, of Ti then: 
A’ = A’ followed by fire RULE(T,, 
((E’, Modep), true, 0)). 
If Ti is an union constructor, built up 
from k types, tk, the condition ci is a 
set of k conditions 9, then: for each 

= A’ followed by fire RULE(tk, 
t(E’y Modep), ( Ck, immediate), 0)). 
If Ti is a composition constructor built 
up from A types, tk, then: 

A’ = A’ followed by b ACTION( 
j=l 

2. 

(e) If Ti is a sequence constructor built up 

from k types, tk, then: 
A’ = A’ followed by ACTION se- 
followed by AcTION( 

(f) If Ti is a grouping constructor of child 
t, the condition ci captures the number 
of generated events oft (more precisely, 
ci holds until this number is reached by 
a repeated execution of the underlying 
rule), then A’ = A’ followed by fire 
RULER,,,,iw,(t, (0,(ci,immediate),0)). 

If fi is a partial, immediate and simple trig- 
gering function: 

(4 

(b) 

(4 

(4 

’ (4 

If Ti is a simple event type then: 
A’ = A’ followed by fire RULE(Z, 
((b, Modex’), (Ci, immediate), a)). 
If Ti is a represented event type then: 
for each source T, of T, A’ = A’ followed 
by fire RULE(T,, ((E’, ModeEl), (Ci, 
immediate), 0)). 
If Ti is an union construcor built up 

from k types, tk, the condition Ci is a 
set of k conditions Ck, then: for each 

’ = A’ followed by fire RULE(tk, 
t(?k?, ModeEl), (Ck, immediate), a)). 
If Ti is a composition or sequence con- 
structor then: A’ = A’ followed by 
fire RULE(Ti, ((E’, Modep), (Ci, 
immediate), 8)). 
If a is a grouping constructor of child 
t then: A’ = A’ followed by fire 
RULER,x,r,ivJt, (0,(ci,immediate),0)). 

3. If fi is a deferred and simple triggering func- 
tion then: 

(a) If Ti is a simple event type then: A’ = 
A’ followed by fire RULE@, ((E’, 
deferred), (ci, immediate), 8)). 

(b) If Ti is a represented event type, then: 
for each source T, of T, A’ = A’ followed 
by fire RULE(T,, ((E’, deferred), (Ci, 
immediate), 0)). 

(c) If Ti is an union constructor built UP 

from k types, tk, the condition Ci is a 
set of A conditions Ck then: for each 

’ = A’ followed by fire RULE(Ik, 
t&5?, deferred), (Ck, immediate), a)). 

(d) If Ti is a composition or sequence con- 
structor then: A’ = A’ followed by 
fire RULE(Z, ((6, deferred), (Cip 
immediate), 0)). 
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(e) If Ti is a grouping constructor of child 
1 then: A’ = A’ followed by enable 
RULERccurriuc(i,(Q,(ci,immediate),O)). 

4. If fi is 8 complex triggering function 
then A’ = A’ followed by enable 
RULER,.cu,,iv,(Ti, (8, (6, immediate), a)). 

The ~LERccurrivc function is defined by: 
RULEReeuraive(T, (0, (C, M&w), A))= m 
t~kihe~- ,= f,(E’, Modec~t), A”) is an EGA rule 

if (0, (C’, Modep~, A’)=RULE(T, (0, (C, Mdec), 
A)), then: (C”, Modectt)=(C’, Modect), A” = A’ 
followed by enable rT. 

The function ACTION returns the actions of the 
specified type: 

1. 

2. 

3. 

4. 

5. 

6. 

If T is an abstract event type then: ACTION(T) 
= 0. 

If T is a simple event type then: ACTION(T) = 
OCC(T)~. 

If T is 8n union constructor built up from k types, 
tk, we obtain k conditions, denoted by CL, corre- 
sponding respectively to one of the event types, 
then: for each k ACTION(T) = fire RULE(tk, 

(8, (CL, immediate), 0)). _- 

If T is a represented event type of p sources noted 
T,,, then: 

ACTION(T) = fi fire RULE(T,,, (0, 8, 0)). 
i=l 

If T is a composition constructor built up from k 
types tk, then: 

ACTION(T) = fi ACTION&). 
j=l 

If T is a sequence constructor built up 
from k types tk, then: ACTION(T) = 
ACTION&) followed by ACTION@,) - -. fol- 
lowed by ACTION( 

The result of the function EVENT is 8n event, possi- 
bly complex, corresponding to the IF02 specified event 
type: 

1. If T is a simple or 8n abstract event type then: 
EVENT(T) = T. 

l0-m ia a function which gives for the ape&cd event its at- 
so&ted method or itr cortwsponding occmvemx. 

2. 

3. 

4. 

5. 

6. 

If T is an union constructor, built up from k types 
&, then: 
EVENT(T) = (EVENT(tl) 1 EVENT(t,) . . .I 
EVENT(t,)). 
If T is a represented event type, it exists p sources 
denoted 2.,,then: 
EVENT(T) = (EVENT(t,,) 1 EVENT(t,,) . . . 
I EVENW,,)). 
If T is a composition constructor built up from k 
type8 tk, then: 
EVENT(T) = (EVENT(tl) , EVENT(tz) . s . , 
EVENT(tk)). 
If T is a sequence constructor built up from k 
types tk, then: EVENT(T) = (EVENT(tl) ; 
EVENT(tz) . . . ; iWENT(t 
If T is a grouping constructor of child t then: 
EVENT(T) = EVENT(t)+. 

After application of the derivation algorithm, it is pas 
sible to proceed to 8n optimiaation stage for reducing 
the number of generated rules. This mainly consists 
in taking all the rules with identical Event and Con- 
dition components and grouping them together into a 
single rule. For any rule with no triggering event and 
no condition, i.e. a rule triggered by another rule, it 
is also possible, on condition that it is not recursive, 
to include its actions in the calling rule. Lastly, we 
want to point out that, in the ATM model, all recur- 
sive rules could be eliminated by simply substituting 
their actions for their initial triggering within a “Re- 
peat Until” loop that is part of the definition of 8n 
activity. 

5.3 Illustration 

We apply the previous algorithm to our event schema 
example (Figure 4). Firstly, we describe, in 811 intu- 
itive way, the preliminary step for the state specifica- 
tion. 
In fact, conditions over event occurrences are ex- 
pressed through IF02 functions by using manipulation 
operators on events [TC94]. The problem is then to 
translate constraints over events into constraints over 
object states. The functions between “Floor-Request” 
and “Closure” includes two conditions. Firstly, a floor 
request would trigger the door closure only if the lift 
door is opened. In our specification language the ex- 
preasion of thii condition looks like: “was there a door 
opening since the last closure?“. An attribute, ‘Door- 
Status” whose values would be %losed” or “opened” 
appears suitable for capturing the required semantics. 
The second condition to be taken into account is the 
following: the door closure is performed only if there 
8re still requests to be satisfied. These requests 8re 
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identified, in the function specification language, by 
comparing the events of the “Floor-Request” type and 
the events of “Go-Floor” which actually triggered a 
“Satis-Request” event. To translate this constraint on 
events, it is relevant to introduce in the structural 
fragment “Lift” (See Appendix) an attribute called 
“Status” which indicates whether the cage is engaged 
or not (“engaged” or “waiting”). These attributes, 
shaded in figure 6 in the appendix, are particular since 
they are “artificial”. 

We now examine the application of the algorithm. In 
our example, the only entry of the graph is “Floor- 
Request”. Consequently the derivation starts with the 
translation of the associated fragment by evaluating 
the following function: 
RULE(Floor-Request, ((EVENT(Floor-Request), im- 
mediate), (true, immediate), 0)). 

The generated EGA rule includes the activation of 
two recursive rules translating the complex feature of 
the triggering functions in the fragment. 

~Floor-Request 

E: Floor-Request 
Immediate 
c: True 
Immcdi~te 

A: enable rCrorurr 
enable IUpD,,wn 

The recursive rule rcr,,.ure is achieved by: 
RULfhceurriva (Closure, (e, (Ccrorurc, immediate),@)) 
where Cclo,urc is the conditions extracted from the 
function between “Floor-Request” and “Closure”. The 
actions of the rule consist in the closure method call 
and its own reactivation. 

WXOSUIW 

E: 

c: Lift.Door-Status=‘opened’ A 
((LiftCage.Status=‘waiting’ 
A Para(Floor-Request, Floor) <> 
LiftXage.Position) 
V Lift-Cage.Status=‘engaged’) 

Immcdietc 

A: Closure 
enable rclmure 

In the same way, the translation of the composition 
type “Up-Down” generates 8 recursive rule. Let us 
note that the union constructor derivation triggers two 

3Para ia the function which -&tee to the specified event 
the object of its object type parameter. 

rules, rup and rmn, whose conditions are mutually 
exclusive. 
The TER “Arrival” is translated into the method call 
of its source since the concerned fragment is reduced 
to 8 TES. 

=upDown 
E: 
c: Liit.Door-Status=‘cbsed’ A 

Lift-Cage.Status=‘engaged 
Immediate 

A: fire monn 

fi= wp 
Cage-Arrival 
enable rIJpDm,, 

The derivation ends with the translation of the satis- 
faction fragment by applying: 
RULE (Satis-Request, ((EVENT(Stop), immediate) , 
(true, immediate), 0)). 

The generated rule includes, in the event part, the 
composition which is the source of the precedence func- 
tion in the fragment. It specifies which occurrences of 
“Floor-Request” actually cause the triggering of the 
“Stop” and “Open” methods. 

rs8tb-mUmt 

E: Floor-Request*, Cage-Arrival 
Deferred 

c: For each Floor-Request,Para(Floor-Request, 
Floor) = Cage.Position 

Immedktc 

A: stop 
Open 

6 Conclusion 

In this paper, we have described the behavioural part 
of the IF02 conceptual model. Its original aspects 
are 8 “whole-event” approach, the use of construc- 
tors to express complex combinations of events and 
the m-usability and modularity of specifications in or- 
der to optimiae the designer’s work. The IF02 model 
offers a uniform specification of both the structural 
and the behavioural parts of applications. We believe 
that such a uniformity is particularly important on 
8 conceptual level. In the two frameworks, structural 
and behavioural, the same fundamental concepts, such 
8s reusability, modularity, identification, and etc are 
used. Types, constructors and fragments are defined 
by adopting an analogous formalism and they have the 
same semantics or at least the same philosophy in the 
static and dynamic parts of the model. A homoge- 
neous graphic representation is presented and can fa- 
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cilitate the dialogue between designers [Ha&81 in order 
to better take advantage of specification modularity. 
Links between the structural and behavioural specifi- 
cations are the following. First of all, basic operations 
are included in the associated structural schema and 
are used as simple types in the behavioural descrip- 
tion. Object types on which event types operate are 
specified through the parameter concept. Finally, con- 
ditions over objects may be expressed in the specifica- 
tion of fragment functions. 
The derivation component which generates EGA 
rules from the IF02 behavioural epecificationa can be 
associated to the transformation of IF02 structural 
schema into OODB models [pTCL93] in order to per- 
form a complete implementation of the applications. 

In an intuitive way, we have shown through our exam- 
ple how to transform conditions over events in condi- 
tions over states. This important step in the derivation 
process of IF02 schemas cannot be completely auto- 
mated. Our aim however is to develop an aid in the 
identification of this states. This aid will make it pos- 
sible to guide the designer in exhibiting objects which 
we call “artificial” and in specifying their domain. Thii 
will specifically concern the expressed conditions in the 
specification language of functions and the parameters 
of events. 
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Appendix 

IF02 Structure: A brief outline 

To present the static part of the IF02 model, type 
concept is firstly described as well as the different 
constructors. The fragment and the IF02 structural 
schema are then presented. 
There are three basic object types (Figure 5): 

Printable Object Type (TOP), used for appli- 
cation I/O (Input/Output are therefore environ- 
ment-dependent: String, Integer, Picture, Sound, 
etc.), which is comparable to the attribute type 
of the Entity-Relationship model; 

Abstract Object Type (TOA) which would be per- 
ceived as entity type in the Entity-Relationship 
model; 

Represented Object Type (TOR) which handles 
another type through the IS4 specialization link. 
This concept is particularly interesting when con- 
sidering modularity and reusability goals, since it 
allows the designer to use a type without knowing 
its precise description. 

TOP 1 Max-Weight J 

Printable Object Twe 

TOR 

Abstract Oiject npe 

Reptvsented Ob&ct ‘I)rpc 

Figure 5: Example of Basic Type 

IF02 takes into account five constructors: 

l aggregation and composition: they represent 
the tuple constructor of 00 models with an ex- 
clusivity constraint for the composition (an object 
can take part in a unique construction); 

l collection and grouping: they represent the set- 
of constructor of 00 models with an exclusivity 
constraint for the grouping; 

l union: it is used for similar handling of struc- 
turally different types. This constructor repre- 
sents the IS4 generalization link enhanced with 
a disjunction constraint between the generalized 
types. 

These constructors can be recursively applied accord- 
ing to specified rules for building up more complex 

types. The types can be linked by functions (sim- 
ple or complex; partial (0:N link) or total (1:N link)) 
through the fragment concept. The aim of the frag- 
ment is to describe properties of the principal type 
called heart. For each fragment, a set of methods is 
associated. IF02 being a conceptual model, only the 
signature of these methods is required. These opera- 
tions are one of the links between the structural and 
the behavioural specifications. 
Finally, an IF02 structural schema is a set of frag- 
ments related by IS4 specialization links according 
to building rules. 

Figure 6 proposes the IF02 structural schema for the 
lift example. It is made up of two tragments “Lift” and 
Tage”. They are related by an IS4 link through 
the represented type ULift-Cage”. The fragment of 
heart “Lift” has “Id-Number”, “Load” (built up as an 
aggregation of “Max-Weight” and “Max-User” types) 
and “Lift-Cage” ss properties. Since a lift serves sev- 
eral floors, we have a complex function from “Lift” 
to the simple type “Floor”. For the fragments “Lift”, 
the methods are “Up”, “DOWA” and “Cage-Arrival”. 
Among the methods of the fragment “Cage”, “Stop” 
is triggered to stop the cage and “Open” to open the 
doors. 

thpsitim Aggregatim Colktim Gmepiag Union 

Figure 6: The “Lift” Structural Schema 
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