
Towards Event-Driven Modelling
for Database Design

Maguelonne Teisseirdl) Pascal PonceleW) Rmine CicchettW
0) Di&al Equipment - @) IUT Ah-an-Provenca

LIM - TJRA CNRS 1787 - U&emit4 d’Aix-Marseille II
FacultC dea Sciencea de Luminy, 163 Avenue de Luminy, Case 991,13288 Marseille C&x 9 FRANCE

amaib tekirQllm.univ-mm.fr

Abstract

This paper is devoted to the dynamic aspect
of the IF02 conceptual model, an extension of
the semantic IF0 model defined by S. Abite
boul and R. Hull. Its original aspects are a
“whole-event” approach, the use of construc-
tors to express combinations of events, and
the modularity and m-usability of specifiecl-
tions in order to optimize the designer’s work.
Furthermore, it offers an overview of the rep
resented behaviour. To complement the mod-
elling part, IF02 includes a derivation com-
ponent which performs the implementation of
specifications by using an active DBMS.

1 Introduction

Current conceptual approaches [BM91, LZ92, PS92,
PerSO, Q093, RC91, Saa91, SF91, SSE87] strive to
meet the needs of both traditional and advanced ap-
plications. This goal is ambitious since it consists in
preserving the benefits of semantic approaches [HK87j
while integrating the strengths of Object-Oriented
Data Base (OODB) models. In other words, these
approaches not only have to handle complex coastruc-
tors and propose concepts such as modularity and re-

Pemirrion to copy without fee aI1 or pwt of thie material ir
granted provided that the copier we not made or JietdrteJ for
direct commercial cdwantagc, the VLDB copyriyht notice aal
the title of tkc pdiation anJ ite J&c oppar, anJ notice ie
given that copying ie by permirrion of the Very Lwyc Data BUC
Endowment. To copy otberu&e, or to npr6li& ryrinr l fee

and/or epeciol permiaeion from the Enlotument.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

usability but they also have to offer an overview that
comes as close as possible to the modelled real world.
Furthermore, they must be independent of target sys-
tems but they have to be complemented by a deriva-
tion process in order to perform the application imple-
mentation. The difficulties increase when we consider
the twofold aspect of the problem: application mod-
elling includes both structural and behavioural repre-
sentations. For thii reason, conceptual models have
often dealt with either one or the other, but not both
of these aspects.

The IF02 conceptual model integrates both the struc-
tural and the behavioural representation of applica-
tions in a consistent and uniform manner in terms of
both the formalization introduced and the associated
graphic representation. It is based on the semantic
IF0 model of S. Abiteboul and R. Hull [AH87].
This paper is devoted to the dynamic aspect of the
model (its structural part is described in [PTCL93])
and to its derivation which implements the described
behaviour by using an active DBMS [CBagO].

After a survey of related work, we give our reasons
for proposing the IF02 behavioural model (section 2).
The various concepts introduced to represent the ap-
plication behaviour are presented in section 3. The dy-
namic operation of a modelled system, which we call
its activity, is then described (section 4). In section 5,
we present the derivation of the dynamic part of IF02.
We conclude with an examination of the links estab-
lished between the structural and behavioural speci-
fications. In the appendix, we summarize the IF02
structural part in order to give an overview of the
model and to highlight its uniformity.

285

2 Related work and motivations

Conceptual models which give priority to behavioural
specification [PerSO, Q093, RC91, FS88, SF911 use an
OODB model to represent the structural part of ap-
plications [RC92]. They deal with problems which are
similar to those of concurrent system design and soft-
ware engineering [LZ92].
In these approaches, the behaviour of applications is
viewed as the set of reactions of the modelled objects
when certain events occur. In fact, these models dif-
ferentiatex between local and global behaviours. Local
behaviours focus on the object dynamics within classes
while global behaviours represent the interactions be-
tween classes. Consequently two kinds of events are
considered: local and shared events.
The object dynamics can be seen as states and tran-
sitions between states. In fact, local behaviour con-
sists of valid transitions triggered by local events. An
additional mechanism is required to coordinate the
changes of object states belonging to different classes
when shared events occur. These approaches make
use of statecharts or temporal logic to represent the
behaviour of the system.
This view of behaviour is simple, clear and works well
with object-oriented models. For local behaviours, a
behavioural facet integrated in the class description,
specifies events, occurrence conditions and triggered
actions (methods or other events which are produced).
The description of global behaviours is either encapsu-
lated in the classes (through interaction equations in
[SSESq) or specified outside the classes [RC91]. In the
latter case, no one particular class is favored but the
behaviour in question is excluded from the inheritance
hierarchy.

Nevertheless these models do have some drawbacks.
First of all, they do not provide an overview of the
system’s behaviour since it is divided into classes: pri-
ority is given to a complete vision of objects (structural
and behavioural) rather than an overview of the sys-
tem. Events are not represented in a uniform way:
two abstraction mechanisms are necessary for local
and shared events. Futhermore, behavioural inheri-
tance depends on structural representation. In fact
behavioural aspects may be m-used only for special-
ized objects according to the static inheritance hierar-
chy.
In these models, the conditions over event occurrences
make use of object states. These states and the un-
derlying objects are not always easy to identify since
they do not necessarily correspond to attributes exist-
ing in the real world [AG93, RC92]. Consequently, it is
necessary to introduce “artificial” objects in the struc-
tural representation in order to express behavioural

constraints. This view of object behaviour as states
has two disadvantages: the problem of making a com-
plete inventory of states [Har88] and, above all, a struc-
tural representation which is no less faithful to the
real world because of “artificial” objects. Finally, the
concepts defined for the static and dynamic represen-
tations are very different and the designer’s required
skills need to be extended.

In proposing the IF02 model, our basic idea is that a
conceptual model must offer the same qualities for the
structural representation as for the behavioural mod-
elling. More precisely, it must provide the designer
with an overview of specifications not only for the
structural part but also for the application behaviour.
These specifications must be as faithful as possible to
the real world. The modularity and reusability mech-
anisms have to be as powerful in the static context as
in the dynamic context.

In IF02 the system’s behaviour is not understood as
the reactions of objects to particular events but rather
as the events which may operate on objects. These
objects are specified as the parameters of events. We
believe that a conceptual model which adopts this view
can be as expressive as others while avoiding their
drawbacks. Furthermore the modelling process is not
object-driven since objects and events have the same
importance in IF02 and play a symetrical role in the
static and dynamic parts of the model. Consequently,
we propose a twofold modelling approach to repre-
sent applications. The result of this modelling is a
structural schema and a behavioural schema which are
closely related but clearly distinct. As in the case of
the conceptual qualities of the model, the problems
for the designer are the same in the dynamic context
as they are in the static context. These are: identify
the representation units (objects or events) and specify
the relations between them (for instance aggregation
or specialization links between objects and synchro-
nisation or triggering chaining between events). From
this idea, we adapt the concepts defined for the struc-
tural part of IF02 to the application behaviour. These
concepts, which give to the static part of the model,
the required conceptual qualities described above play
the same role in the dynamic part. The main advan-
tage here is the uniformity of the model. The designer
handles the same concepts, or rather concepts having
the same philosophy, for both the static and dynamic
representations.
In the following section, we present the behavioural
part of IF03 and show that this type of representation
offers an expressive power comparable to other mod-
els while respecting the conceptual qualities mentioned
above. The reader interested in the formalization of

286

the model may refer to [TPC94].

3 IF02 behavioural model

An event is the representation of a fact that partici-
pates in the reactions of the modelled system. It oc-
curs in a spontaneous manner (in the case of external
or temporal events) or is generated by the application.
In both cases, it occurs instantaneously, i.e. it is of
zero duration. As in [ChagS, GJS92], we make the
following two assumptions: no more than one event
can occur at any given instant and the time ecale ia
infinitely dense.
The structural part of IF02 is defined with reaped to
the “whole-object” philosophy. We extend its scope
to the behavioural part and refu to a “IrrAole-crcnf
representation, i.e. any fact which is involved in the
system’s reaction is modelled in IF02 as an event. In
fact, event modelling in IF02 complies with a dual pro
cept: typing and identification. For identification, we
use the instant of an event occurrence as its identifier.
The IF02 behavioural model proposes three basic
types. Their graphic formalism is illustrated in Fig-
ure 1.

The Simple Euenf Type (TES) represents the
events that trigger a method included in the IF02
structural description. This means that we do not
consider operations in the behavioural part of the
model but only the events triggering these opera-
tions.
The Abstract Event Type (TEA) is used to spec-
ify external and temporal events or events that
generate other events.
The Represented Event Type (TER) symbolizes
any other type which may then be m-used without
knowing its precise description.

Example 1 To illustrate the concepts presented in
this paper, we use the example of a lift to represent a
modelled system. A simple event type involved in the
description of the lift behaviour is “Up”, which da
scribes the ascending motion of the lift cage and maps
with a method of the structural fragment “Lift” (See
Appendix). The TEA “Floor-Bequest” represents ex-
ternal events which occur when users request a floor
(inside or outside the cage). “Satis-Bequest” corre-
sponds to internal events produced when users reach
the requested floor and “Arrival-Floor” stands for a
different type of event.

To model the behaviour of a system, it is necessary to
express synchronization conditions, i.e. different vari-
ants of event conjunction and disjunction. To answer

Simpk Event Qpe Intenud Evenr Trpr

TEZR Amival-Floor C
Rqnwaued Event l)pe Exwntd or Tempo& Emu Trpc

Figure 1: Example of Basic Event Types

this need, we represent complex events by wing con-
strmcion. With this approach, we provide not only the
required expressive power but also the uniformity with
respect to the IF02 structural modelling [pTCL93].
The event constructors, which may be recursively ap
plied, are the following: composition, sequence, group-
ing and union. The event composition constructor re-
fleets the conjunction of events of different types. The
sequence constructor is dellned like the composition
constructor but with a chronological constraint on the
occurrences of the component events. Event collec-
tions, i.e. conjunctions of events of the same type,
are translated in IF02 by the grouping constructor
(similar to the HiPAC closure constructor [CBa90]).
Finally, the union constructor expresses a disjunction
of events of different types. The associated graphic
formalism is illustrated in Figure 2.

Example 2 Let us imagine that the designer wants to
specify the descending or ascending lift motion. He can
use the union type “UpDown” which is an alternative
between the two simple types “Up” and “Down”. Each
one of these types triggers a method which performs a
single floor motion for the cage.

Figure 2: Example of Complex Type

The dynamics of the system may be seen as the link-
ing of events (atomic or compoeite). These causal-
ity links are expressed through functions. In fact, the
event types are interconnected by functions through
the eocni fregmeni concept, focused on a principal type
called be&. Functions may combine the following fea-
tures:

287

simple or complex (mono or multivalued), i.e. an
event of their type origin triggers one or several
events of their target;

partial or total, i.e. an event of their type origin
can or must trigger an event of their target;

and deferred or immediate, if there is a delay or
not between the occurrences of the origin and tar-
get events.

In addition, we differentiate between triggering and
pncedcnce functions. These roughly express the fact
that an event of the fragment heart triggers the oc-
currence of other events or that it is preceded by the
occurrence of other events. In order to emphasize this
point, let us consider an external event. By its very na-
ture, it cannot be triggered by another modelled event,
therefore it is sometimes necessary to express that its
occurrence is n ecessarily preceded by other events.

All the described features of functions express gen-
eral constraints on event chaining. They are reflected
through the proposed graphic formalism (Figure 3).
Nevertheless, it is sometimes necessar y to refine these
constraints by specifying particularly precise condi-
tions over the system’s history. In IFO,, such con-
ditions are expressed on another specification level by
using an algebraic language on events. This language
is not presented in this paper due to space limitations
(some operators are detailed in ~CMJ).

Contrary to triggering functions, a precedence func-
tion, if it exists, is unique in a fragment since the dif-
ferent triggered events may be constrained by different
specific conditions while preceding events can only be
synchronized by using the mentioned constructors to
trigger one event of the fragment heart.
The concept of fragment, inherited from the IF0
model, is very important for the modularity of spec-
ifications. The fragment can be really considered as
a nnit of description of the dynamics since it spdcifies
a complete “sub-behaviour” of the modelled system
(with the heart events, their preceding and triggered
events).

Example 3 Figure 3 illustrates a fragment in which
the heart is the external event type “Floor-Bequest”.
In this fragment, there is no precedence function. This
fragment describes the lift reactions when a user re-
quests a floor inside or outside the cage. The fragment
heart is linked with a partial, complex and deferred
function to the simple type “Closure”. The associated
method in the structural schema closes the lift doors.
The function is partial because, in some cases, an event
of “Floor-Bequest” would not trigger a door closure.

These cases are the following: (i) the wer wishes to go
to the floor where he is currently located; (ii) or the
door closure stems from another event, i.e. a previous
request from the same floor. The function is deferred
to account for the case where the user requests the lift
while the latter is moving up or down.
The complex feature of the function specifies that
a floor request may trigger the door closure several
times. This situation occurs when a request process
ing is interrupted to serve floors requested by other
usem. When other usem are satisfied the considered
request triggers the closure of the door so that the cage
can start again.
The TEA is also related to the composite type “Up
Down” which specifies an alternative between the two
TESs “DowrP and “Up”. The triggering function be-
tween the heart and the union type is partial, deferred
and complex. It is partial to take into account three
cases: cases (i) and (ii) of the previous function and the
case where the requested floor is served when satisfying
previous current requests. The deferred feature of the
function takes into consideration the possible delay be-
tween the user request and the resulting lift motion. In
fact the methods corresponding to the TESs “Up” and
“Down” perform a single floor ascent or descent for the
cage. This is what makes the triggering function com-
plex. The union type ‘Up-Down” is the heart of a
subfragment. The triggering function which relates it
to the represented type “Arrival-Floor” (standing for a
type described in another fragment and describing the
cage arrival to the floor) is total and immediate. This
means that any event of the types “Up” and “Down”
generates an event of “Arrival-Floor”.

Figure 3: The “Floor-Bequest” Event Fragment

The role of fragments is to describe a subset of the
modelled behaviour that can then be used as a whole
by means of the repnscntcd type concept. More pre-
cisely, represented types are related to fragment hearts
via IS-A cued links. Consequently, it is possible to

288

manipulate another type without knowing its descrip
tion. The designer may defer a type description or
entrust it to somebody else, while using a represented
type which symbolizes it. Through the concept of rep
resented type, the m-usability of specifications is real.
An inherited behavioural aspect may be redefined or
refined by specifying the concerned represented type as
the heart of a new fragment having other preceding or
triggered types. Furthermore, IF02 takes the multiple
inheritance into account since represented types may
have several sources. The inheritance mechanism, in-
troduced by event ISA links, is independent from the
structural inheritance hierarchy. It is possible to re-
use parts of the modelled behaviour even if they do
not concern specialized objects. Consequently the r*
usability of dynamic specifications is not limited by
static considerations.
In order to model the general behaviour of the applica-
tion, the partial views provided by the fragments are
combined (via ISA links) within an cued schema.

Example 4 Figure 4 shows the IF02 event schema
“Lift”, involving three fragments, each one dedicated
to a particular aspect of the lift reactions. “Floor-
Request” describes the system behaviour when a user
request occurs. ‘Cage-Arrival” is a particular frag-
ment since it is reduced to its heart which is a sim-
ple event type reused in other fragments. The cor-
responding method in the structural fragment “Lift”
is an alerter which returns the floor reached by the
cage. Finally “Satis-Request” is dedicated to the lift
behaviour when the cage arrives at the requested floor.
The origin of the precedence function is a composite
type “Stop”. It combines several events of the TER
“Go-Floor” (by using the grouping constructor), in fact
several floor requests, and a cage arrival. Thii compos-
ite type specifies which current floor requests have to
be satisfied (as explained in the next section). These
fragments are related by ISA links through the rep
resented types “GeFloor”, “Arrival-Floor” and “Ar-
rival”.

IF02 event schemas describe possible application ba
haviours exclusively in terms of events. The expressive
capabilities of the model are comparable to those of
object-state and transition based approaches. Despite
their different philosophies [SF91, RC92], events and
synchronisation conditions are quite close. IF02 how-
ever introduces synchronisation between operations,
through their triggering events while sequential order
is adopted in other models. Moreover, general condi-
tions are expressed in an explicite way with construc-
tors and a twofold causality link is proposed through
the precedence and triggering functions. Compared

Figure 4: The uLift” IF02 Event Schema

with statecharts [Har88], the IF02 graphic represen-
tation is very concise and offers an overview of the
modelled behaviour.

4 Activity of an IF02 schema

The application behaviour is represented by the event
schema. It may be simulated by navigation through
the graph. An outline of this behaviour consists in a
propagation of event triggering. It stops when all the
actions reflecting the goal sought by the system are
achieved. These actions are described in the schema,
within one or more fragments called saiisfacfion fig-
ments.

Example 5 In our schema example, there is one sat-
isfaction fragment: “Satis-Request”, which specifies
that each user who requests a floor has to reach it,
in the end.

This section provides further details of this general
principle. Within each fragment, the triggering prop
agation is of course oriented by the precedence and
triggering functions. This propagation stems from an
external or temporal event or a combination of such
events. In this case, the underlying TEA (or the type
built up from these TEAS) is either the heart of a frag-
ment without a precedence function or it is the origin
of the precedence function in a fragment. It is consid-
ered as an en@ of the IF02 event graph.

Example 6 The only fragment illustrating this case+
in our schema exemple, is “Floor-Request” which, con-
sequently, is the only entry of the graph. In fact,

289

the whole triggering cascade atema from the external
event: a user requests a floor. Let us suppose that
there is just one user at this instant and that he wishes
to go to a floor above the one where he is. Now, in this
situation, the external event triggers the door closure
and then the occurrence of an “Up” event. This event
causes the generation of an “Up-Down” event. In a
general way, events of the composite type stem from
the occurrence of the component types. The propaga
tion continues on the level of the subfragment by the
triggering of an “Arrival-Floor” event.

Therefore, in the general case, the event propagation
is triggered, within a fragment, by the occurrence of
an event in another fragment. The behaviour ia then
simulated by the navigation along the ISA link asso-
ciating these two fragments, i.e. the heart of one to
a TER of the other. Along an ISA event link, the
navigation can follow one direction or the other de-
pending on the “position” of the TER within its own
fragment. If it is the target of a triggering function, di-
rectly or by construction, then the event occurrence of
the TER systematically generates an event occurrence
of the heart type of the related fragment. Therefore
the navigation takes place from the ISA link target
to its source and there is equality between the aete of
occurred events of both the fragment heart and the
TER, if the latter haa only one Bourcel .

Example 7 In the “Lift” event schema, one TER is
a target of a triggering function: “Arrival-Floor”. Ac-
cording to our previous assumption, an event of thii
type has just happened. This triggers the occurrence
of a fragment heart “Cage-Arrival” event by navigat-
ing along the ISA link between these two types.

Let us now consider a TER that is the origin of the
precedence function, or involved in the construction of
this origin. This means that one of its events can only
be triggered by the occurrence of an event belonging
to the fragment heart to which it is related. The nav-
igation along the ISA link takes place from its source
to its target and there is inclusion or equality between
the sets of events occurred for the TER and the heart,
if the former has only one source.

Example 8 The two TERs, illustrating this situation
in our event schema, are “G+floor” and “Arrival”.
They are both used to build up the “Stop” type ori-
gin of the precedence function in the fragment “Satis-
Request”. The occurrence of an event of these types ie
necessarily caused by an event of “Floor-Request” or

1 We do not explain the came where a TER haa severd 10urc.e~
since its description requiru the concept of attached events not
presented here due to space limitation.

“CagsArrival” respectively.

This first outline of the system activity shows that
“everything begin8 with the occurrence of external
or temporal events.
When a triggering cascade is started, it must stop in
the end. “Rverything ends” on the level of satisfaction
fragments since they model, aa previously mentioned,
the ultimate goal of the system. In fact such fragments
not only describe the manner in which the propage
tion stol.mr. They also specify thir obligation to stop,
by integrating the following corurtraint: a satisfaction
fhgment has to include a TER which is actually a
triggering type in the fragment (i.e. it is either the
source of the precedence function or the heart of the
concerned fragment). The obligation to stop is then
partially taken into account by the fact that any event
of the related fragment heart must alao be an event
of the TER. The heart events are considered as being
satisfied when the TER corresponding events actually
produce the set of triggered events in the satisfaction
fragment. Thb vision has to be refined by taking into
account iterations that would potrsibly be performed
during the graph navigation. Iterationa arou& by
the satisfaction fragment are performed by consider-
ing triggering functions which are complex or deferred.
The choeen iteration is the first one found along the
reverse path.

Example 9 Let UII resume the activity of our schema
example where we last left it, i.e. after the occur-
rence of a “Cage-Arrival” event. From this event stems
an event of the “Arrival” represented type. Similarly,
from the initial floor request stemmed a correspond-
ing event for the TER “Go-Floor” in the satisfaction
fragment. During the cage motion, let us suppose that
another person calls the lift from the floor that is r+
quested by the first user. This call does not yet gen-
erate any event in the “Floor-Request” fragment be-
cause the lift ia engaged, but it triggers a correspond-
ing event for the TER “Go-Floor”. At this stage, none
of the two floor requests may be satisfied because the
cage is not yet at the desired floor. This condition is
expremed in the precedence function of the satisfac-
tion fragment by comparing the structural parameters
standing for the floor of the event “Arrival” and of the
events “Go-Floor”. A first iteration is then performed,
by following the ISA links, in order to again trigger
the complex function between “Floor- Request” and
“Up-Down”. Such a process is performed as many
times (LLI necessary to reach the required floor. When
this happens, the condition of the precedence function
in the fragment “Satit4equest” is true and the prop
agation carries on generating a fragment heart event.
Let us examine ita preceding event, which itr of the

“Stop” type. This type is defined as a composition of
the “Arrival” type and a “Go-Floor” grouping. There-
fore, the preceding event in question is built up from
our two user requests combined with the last “Arrival”
event. The event of the type “Satis-Request” immedi-
ately generates a “Stopping” event and then triggers
the opening of the lift doors.

5 From an IF’02 event schema to E-C-
A rules

In this section, we propose a derivation process to per-
form, from an IF02 event schema, the implementation
of the modelled behaviour. Since our aim is to demon-
strate the feasibility of translation, we opt for EGA
rules similar to those of HiPAC [CBaSO] (i.e. adopting
its philosophy but without strictly following its syntax)
because it is recognized as a reference in the area of ac-
tive DBMS research [Cha89, CBa90, DBM88, DHL91,
DPG91, GJS92).

5.1 Presentation

On the basis of an IFOz event schema, the algorithm
described below is used to generate a set of EGA
rules. Generally speaking, this process starts with the
entries of the IFOz graph, examining the correspond-
ing fragments. It continues by transforming the frag-
ments linked to the entry fragments, following the ISA
links from their target to their source. All fragments
that are not yet derived are then examined. More
precisely, each fragment gives rise to the creation of
at least one EGA rule, except in the case where it
is reduced to a TES. In general, however, a fragment
generates several EGA rules. Without presenting the
algorithm in detail, we give its general principles. The
actions of the generated rules are either the methods
corresponding to the TESs or the triggering or acti-
vation of the rules introduced during the derivation
process.

In IF02 the conditions of event triggering are ex-
pressed when specifying the functions, in a language
[TC94] that we do not present in this paper. The con-
ditions must be exhibited in a preliminary stage of
the application of the algorithm by adopting the same
philosophy which is proposed in the derivation illus-
tration.

The events that trigger the EC-A rules can be ex-
ternal or temporal events of the IF02 schema. When
a composite type is the target of a precedence function,
the constructor used gives the type of combination of
events of the EGA rule (conjunction, disjunction, 8e-
quence or grouping). If a type is the target of a trig-
gering function, it is translated - in the simplest case

of a composition or sequence whose children are TESS
- by a series of actions. For the two other types, i.e.
union or grouping, the actions generated automatically
by the algorithm are rule triggering or rule activations.
In the case of union, there are as many actions as com-
ponent children and, for each of these actions, a new
EGA rule is generated. In the case of a grouping,
a single action is generated and a single new EGA
rule is introduced, but we call it recursive because it
must be executed several times: thii is carried out by
reactivating the rule.

The TERa are handled in a particular manner because
their role in IFOz is to represent another type which
allows for the modularity of specifications. If they ini-
tially participate in a fragment precedence function,
their translation has repercussions on the event part
of the rule derived from the fragment. In fact, this
event part includes a disjunction of events correspond-
ing to the different sources of the TER. If they partic-
ipate in a fragment triggering function, their transla-
tion has repercussions on the actions of the generated
rule. With the same philosophy as for derivation of
union types, a triggering or activation action of new
rules is created for each source of TERs, and these new
rules are then generated.

Lastly, the characteristics of the functions intluence
the derivation that is performed. The deferred trigger-
ing functions of a fragment can introduce a deferred
coupling mode between the Event component and the
Condition component. They can also be translated in
the case of recursive rule generation by activation (in-
stead of triggering) of a new rule. The complex func-
tions are translated according to the same principles
as the grouping types, since they represent an itera-
tion on the level of the target event types, i.e. through
generation of recursive rules triggered by an action of
the rule corresponding to the fragment. Let us note
that the rules which we call feeuraive have the pecu-
liarity of not having triggering events; this is because
they have to be executed several times. In the ODE
model [GJS92], they could correspond to “perpetual”
rules. In the ATM model [DHL91], such rules would
be described in an even more natural manner because
the activity concept allows for the introduction of a
loop.

5.2 The Derivation Algorithm

To specify complex events, we use the following nota-
tions: 1 for event disjunction, , for event conjunction,
; for sequence and * for grouping (closure). Mode de-
notes the coupling mode between EC or GA.

291

Derivation Algorithm:
Input: both IFOr structural and event schemas.
Output: a act of EGA rules.
Step 1: For each fragment entry, Tentry, of the event
graph: do RTJLE(T,,t,,, ((EVENT(T,,t,,), immedi-
ate), (true, immediate)$)).
Step 2: For each non examined fragment heart,
Theart: do RULE(T’iwt , (0, (true, immediate), 0)).

The & ULE function is defined by:
RULE(T, ((4 MdeE), (C, Mofh2), A)) = w
where rT is an EGA rule obtained as follows:

l rT = ((E’, Modep), (C’, Modep), A’) with
(E’, ModI?El) = (E, Modes), (C’, Modec’) =
(Cl’, Modec) and A’ = A U ACTION(T).

l If T, a principal fragment heart (i.e. not heart
of a subfragment), is the target of a precedence
function, fP , of domain Tp:

1. If T is an external or temporal event or is
built up only from such events, then E’ =
(E’; EVENT(T,); EVENT(T)). Through
this sequence, the semantics of the prece-
dence function is captured.
Else, E’ = (6, EVENT(T,)) and
Modep = deferred.

2. Let cP be the condition expressed in the func-
tion fp then C’ = C’ A c,,.

l If T is the origin of n functions fi of codomain Ti,
we denote by ci the possible condition associated
to fi, then: Vi E [l..n]

1. If fi is a total, immediate and simple trig-
gering function (Q is reduced to “true” ex-
cept for the union and grouping construc-
tors) then:

(4

(b)

(4

(4

If Z is a simple event type then A’ = A’
followed by ACTION(G).
If Ti is a represented event type, for each
source T, of Ti then:
A’ = A’ followed by fire RULE(T,,
((E’, Modep), true, 0)).
If Ti is an union constructor, built up
from k types, tk, the condition ci is a
set of k conditions 9, then: for each

= A’ followed by fire RULE(tk,
t(E’y Modep), (Ck, immediate), 0)).
If Ti is a composition constructor built
up from A types, tk, then:

A’ = A’ followed by b ACTION(
j=l

2.

(e) If Ti is a sequence constructor built up

from k types, tk, then:
A’ = A’ followed by ACTION se-
followed by AcTION(

(f) If Ti is a grouping constructor of child
t, the condition ci captures the number
of generated events oft (more precisely,
ci holds until this number is reached by
a repeated execution of the underlying
rule), then A’ = A’ followed by fire
RULER,,,,iw,(t, (0,(ci,immediate),0)).

If fi is a partial, immediate and simple trig-
gering function:

(4

(b)

(4

(4

’ (4

If Ti is a simple event type then:
A’ = A’ followed by fire RULE(Z,
((b, Modex’), (Ci, immediate), a)).
If Ti is a represented event type then:
for each source T, of T, A’ = A’ followed
by fire RULE(T,, ((E’, ModeEl), (Ci,
immediate), 0)).
If Ti is an union construcor built up

from k types, tk, the condition Ci is a
set of k conditions Ck, then: for each

’ = A’ followed by fire RULE(tk,
t(?k?, ModeEl), (Ck, immediate), a)).
If Ti is a composition or sequence con-
structor then: A’ = A’ followed by
fire RULE(Ti, ((E’, Modep), (Ci,
immediate), 8)).
If a is a grouping constructor of child
t then: A’ = A’ followed by fire
RULER,x,r,ivJt, (0,(ci,immediate),0)).

3. If fi is a deferred and simple triggering func-
tion then:

(a) If Ti is a simple event type then: A’ =
A’ followed by fire RULE@, ((E’,
deferred), (ci, immediate), 8)).

(b) If Ti is a represented event type, then:
for each source T, of T, A’ = A’ followed
by fire RULE(T,, ((E’, deferred), (Ci,
immediate), 0)).

(c) If Ti is an union constructor built UP

from k types, tk, the condition Ci is a
set of A conditions Ck then: for each

’ = A’ followed by fire RULE(Ik,
t&5?, deferred), (Ck, immediate), a)).

(d) If Ti is a composition or sequence con-
structor then: A’ = A’ followed by
fire RULE(Z, ((6, deferred), (Cip
immediate), 0)).

292

(e) If Ti is a grouping constructor of child
1 then: A’ = A’ followed by enable
RULERccurriuc(i,(Q,(ci,immediate),O)).

4. If fi is 8 complex triggering function
then A’ = A’ followed by enable
RULER,.cu,,iv,(Ti, (8, (6, immediate), a)).

The ~LERccurrivc function is defined by:
RULEReeuraive(T, (0, (C, M&w), A))= m
t~kihe~- ,= f,(E’, Modec~t), A”) is an EGA rule

if (0, (C’, Modep~, A’)=RULE(T, (0, (C, Mdec),
A)), then: (C”, Modectt)=(C’, Modect), A” = A’
followed by enable rT.

The function ACTION returns the actions of the
specified type:

1.

2.

3.

4.

5.

6.

If T is an abstract event type then: ACTION(T)
= 0.

If T is a simple event type then: ACTION(T) =
OCC(T)~.

If T is 8n union constructor built up from k types,
tk, we obtain k conditions, denoted by CL, corre-
sponding respectively to one of the event types,
then: for each k ACTION(T) = fire RULE(tk,

(8, (CL, immediate), 0)). _-

If T is a represented event type of p sources noted
T,,, then:

ACTION(T) = fi fire RULE(T,,, (0, 8, 0)).
i=l

If T is a composition constructor built up from k
types tk, then:

ACTION(T) = fi ACTION&).
j=l

If T is a sequence constructor built up
from k types tk, then: ACTION(T) =
ACTION&) followed by ACTION@,) - -. fol-
lowed by ACTION(

The result of the function EVENT is 8n event, possi-
bly complex, corresponding to the IF02 specified event
type:

1. If T is a simple or 8n abstract event type then:
EVENT(T) = T.

l0-m ia a function which gives for the ape&cd event its at-
so&ted method or itr cortwsponding occmvemx.

2.

3.

4.

5.

6.

If T is an union constructor, built up from k types
&, then:
EVENT(T) = (EVENT(tl) 1 EVENT(t,) . . .I
EVENT(t,)).
If T is a represented event type, it exists p sources
denoted 2.,,then:
EVENT(T) = (EVENT(t,,) 1 EVENT(t,,) . . .
I EVENW,,)).
If T is a composition constructor built up from k
type8 tk, then:
EVENT(T) = (EVENT(tl) , EVENT(tz) . s . ,
EVENT(tk)).
If T is a sequence constructor built up from k
types tk, then: EVENT(T) = (EVENT(tl) ;
EVENT(tz) . . . ; iWENT(t
If T is a grouping constructor of child t then:
EVENT(T) = EVENT(t)+.

After application of the derivation algorithm, it is pas
sible to proceed to 8n optimiaation stage for reducing
the number of generated rules. This mainly consists
in taking all the rules with identical Event and Con-
dition components and grouping them together into a
single rule. For any rule with no triggering event and
no condition, i.e. a rule triggered by another rule, it
is also possible, on condition that it is not recursive,
to include its actions in the calling rule. Lastly, we
want to point out that, in the ATM model, all recur-
sive rules could be eliminated by simply substituting
their actions for their initial triggering within a “Re-
peat Until” loop that is part of the definition of 8n
activity.

5.3 Illustration

We apply the previous algorithm to our event schema
example (Figure 4). Firstly, we describe, in 811 intu-
itive way, the preliminary step for the state specifica-
tion.
In fact, conditions over event occurrences are ex-
pressed through IF02 functions by using manipulation
operators on events [TC94]. The problem is then to
translate constraints over events into constraints over
object states. The functions between “Floor-Request”
and “Closure” includes two conditions. Firstly, a floor
request would trigger the door closure only if the lift
door is opened. In our specification language the ex-
preasion of thii condition looks like: “was there a door
opening since the last closure?“. An attribute, ‘Door-
Status” whose values would be %losed” or “opened”
appears suitable for capturing the required semantics.
The second condition to be taken into account is the
following: the door closure is performed only if there
8re still requests to be satisfied. These requests 8re

293

identified, in the function specification language, by
comparing the events of the “Floor-Request” type and
the events of “Go-Floor” which actually triggered a
“Satis-Request” event. To translate this constraint on
events, it is relevant to introduce in the structural
fragment “Lift” (See Appendix) an attribute called
“Status” which indicates whether the cage is engaged
or not (“engaged” or “waiting”). These attributes,
shaded in figure 6 in the appendix, are particular since
they are “artificial”.

We now examine the application of the algorithm. In
our example, the only entry of the graph is “Floor-
Request”. Consequently the derivation starts with the
translation of the associated fragment by evaluating
the following function:
RULE(Floor-Request, ((EVENT(Floor-Request), im-
mediate), (true, immediate), 0)).

The generated EGA rule includes the activation of
two recursive rules translating the complex feature of
the triggering functions in the fragment.

~Floor-Request

E: Floor-Request
Immediate
c: True
Immcdi~te

A: enable rCrorurr
enable IUpD,,wn

The recursive rule rcr,,.ure is achieved by:
RULfhceurriva (Closure, (e, (Ccrorurc, immediate),@))
where Cclo,urc is the conditions extracted from the
function between “Floor-Request” and “Closure”. The
actions of the rule consist in the closure method call
and its own reactivation.

WXOSUIW

E:

c: Lift.Door-Status=‘opened’ A
((LiftCage.Status=‘waiting’
A Para(Floor-Request, Floor) <>
LiftXage.Position)
V Lift-Cage.Status=‘engaged’)

Immcdietc

A: Closure
enable rclmure

In the same way, the translation of the composition
type “Up-Down” generates 8 recursive rule. Let us
note that the union constructor derivation triggers two

3Para ia the function which -&tee to the specified event
the object of its object type parameter.

rules, rup and rmn, whose conditions are mutually
exclusive.
The TER “Arrival” is translated into the method call
of its source since the concerned fragment is reduced
to 8 TES.

=upDown
E:
c: Liit.Door-Status=‘cbsed’ A

Lift-Cage.Status=‘engaged
Immediate

A: fire monn

fi= wp
Cage-Arrival
enable rIJpDm,,

The derivation ends with the translation of the satis-
faction fragment by applying:
RULE (Satis-Request, ((EVENT(Stop), immediate) ,
(true, immediate), 0)).

The generated rule includes, in the event part, the
composition which is the source of the precedence func-
tion in the fragment. It specifies which occurrences of
“Floor-Request” actually cause the triggering of the
“Stop” and “Open” methods.

rs8tb-mUmt

E: Floor-Request*, Cage-Arrival
Deferred

c: For each Floor-Request,Para(Floor-Request,
Floor) = Cage.Position

Immedktc

A: stop
Open

6 Conclusion

In this paper, we have described the behavioural part
of the IF02 conceptual model. Its original aspects
are 8 “whole-event” approach, the use of construc-
tors to express complex combinations of events and
the m-usability and modularity of specifications in or-
der to optimiae the designer’s work. The IF02 model
offers a uniform specification of both the structural
and the behavioural parts of applications. We believe
that such a uniformity is particularly important on
8 conceptual level. In the two frameworks, structural
and behavioural, the same fundamental concepts, such
8s reusability, modularity, identification, and etc are
used. Types, constructors and fragments are defined
by adopting an analogous formalism and they have the
same semantics or at least the same philosophy in the
static and dynamic parts of the model. A homoge-
neous graphic representation is presented and can fa-

294

cilitate the dialogue between designers [Ha&81 in order
to better take advantage of specification modularity.
Links between the structural and behavioural specifi-
cations are the following. First of all, basic operations
are included in the associated structural schema and
are used as simple types in the behavioural descrip-
tion. Object types on which event types operate are
specified through the parameter concept. Finally, con-
ditions over objects may be expressed in the specifica-
tion of fragment functions.
The derivation component which generates EGA
rules from the IF02 behavioural epecificationa can be
associated to the transformation of IF02 structural
schema into OODB models [pTCL93] in order to per-
form a complete implementation of the applications.

In an intuitive way, we have shown through our exam-
ple how to transform conditions over events in condi-
tions over states. This important step in the derivation
process of IF02 schemas cannot be completely auto-
mated. Our aim however is to develop an aid in the
identification of this states. This aid will make it pos-
sible to guide the designer in exhibiting objects which
we call “artificial” and in specifying their domain. Thii
will specifically concern the expressed conditions in the
specification language of functions and the parameters
of events.

Acknowledgement
The authors wish to thank the anonymous refereea for
their useful comments and St&no Spaccapietra for
improving the presentation of this paper.

References
[AG93] J. M. Atlee and J. Gannon. State-Baaed Model

Checking of Event-Driven Requkmentr. IEEE
Tranrsctionr OII Soffwan Engineering, 19(1):24-
40, January 1993.

[AH871 S. Abiteboul and Ft. Hull. IFO: A Formal Seman-
tic Database Model. ACM TODS, 12(4):525-565,
December 1987.

[BMSl] M. Bouseghouband E. M&de. SemanticModelling
of Object-Oriented Databases. In hoe. VLDB,
1991.

[CBa90] S. Chakravarthy, B. Blauetein, and d. HiPAC:
A Rewarch Project in Active, Timdhmtrained
Database Management. Tedrniul report, Xerox
Advanced Information Technology, Cambrigq MA,
Auguet 1990.

[ChaSS] S. Chakravarthy. Rule Management and Eval-
uation: An Active DBMS Perspective. Sigmod
Rezord, 18(3):2&28, September 1989.

[DBM88] U. Dayd, A. P. Buchmann, and D. R. McCarthy.
Rules Are Objects Too: A Knowledge Model for
An Active, Object-Oriented Database System. In
Advancer in Objjcet-Oriented Databare Syrtcmr,
volume 334 of LNCS, pages 129-143,1988.

[DHLgl] U. Dayd, M. Hsu, and R. Ladin. A ‘Ikansac-
tional Model for Long-Running Activities. In Proc.
VLDB, 1991.

[DPGSl] 0. Dias, N. Paton, and P. Gray. Rule Manage-
ment in Object-Oriented Databases: A Uniform
Approach. In Proe. VLDB, 1991.

m] J. Fiadeiro and A. Scmadas. Specification and Ver-
ification of Database Dynamics. Ada Iajormaha,
25:625-661,1988.

[GJSSl] N. H. Gehani, H.V. Jagadish, and 0. Shmueli.
Event Specikation in an Active Object-Oriented
Database. In Proc. ACM Sitmod, 1992.

par&31 D. Huel. On viaualformakmm. CACM, 31(5):514-
539,1988.

[HKSfl R. Hull and R. m. Semantic Database Mod-
elling: Survey, Applicationa and Raearch Iasuea.
ACM Comprtin# Snwcya, 19(3):201-260, Septem-
ber 1987.

[LZ~Z] P. Loucopouloe and R. Zicari. Conceptual Model-
ing, Databaeer and CASE: An Intyntcd View of
Information Syrleme DevclopmenL Wiley Profee-
eional Computing, 1992.

[PUBS] B. Per&i. Objectr With Roles. In Proceedings
of lie Conference 01 Oflrce Information Syrtemr,
pagea 205-215, Cambridge, MA, April 1990.

[PSSZ] C. Parent and S. Spaccapietra. ERC+: An Object-
Beeed Entity Relationrhip Approach. in [LZ%!],
1992.

[PTCL93] P. Poncelet, M. Teisseire, R. Cicchetti, and
L. Lakhal. Towards a Formal Approach for Object
Oriented Database Design. In Pwc. VLDB, 1993.

[QOS3] C. Quer and A. OlivC. Object Interaction in
Object-Oriented Deductive Conceptual Models. In
Pwe. CAiSE, volume 685 of LNCS, pages 374-396,
1993.

[Rc91] C. Rolland and C. Cauvet. Mod&ration Con-
ceptuelle OrientCe Objet. In Aeke der 7itmer
JorrnCer Barer de DonnCer AwancCee, pagen 299-
325, Lyon, France, Septembn 1991.

[RC92] C. RdlandandC. Cauvet. Trend. and Perapectivee
in Conceplual Modeling. in [LZ92], 1992.

[%a911 G. Saake. Descriptive Spec&ation of Database
Object Behaviour. Date d Knowledge Engineer-
ing, 6:47-73,199l.

[SF91] c. Senmdae and J. Fiadeiro. Towarda Object-
Crier&d ConceptualModeling. Data d Knowledge
En~ineerir~, 6:479-508,199l.

[SSEB7] A. Semadaa, C. iSerm&a, and H. D. Ehrich.
Object-Oriented Specification of Databases An
Algebraic Approach. In Pwe. VLDB, 1987.

PC941 M. Teimseire and R. Cicchetti. An Algebraic
Approach for Event-Driven Modelling. In Pwc.
DEXA, LNCS, September 1994.

[TPC94] M. Tekeire, P. Poncelet, and R. Cicchetti. Dy-

namic Modelling with Events. In Pwc. CAiSE,

LNCS, June 1994.

295

Appendix

IF02 Structure: A brief outline

To present the static part of the IF02 model, type
concept is firstly described as well as the different
constructors. The fragment and the IF02 structural
schema are then presented.
There are three basic object types (Figure 5):

Printable Object Type (TOP), used for appli-
cation I/O (Input/Output are therefore environ-
ment-dependent: String, Integer, Picture, Sound,
etc.), which is comparable to the attribute type
of the Entity-Relationship model;

Abstract Object Type (TOA) which would be per-
ceived as entity type in the Entity-Relationship
model;

Represented Object Type (TOR) which handles
another type through the IS4 specialization link.
This concept is particularly interesting when con-
sidering modularity and reusability goals, since it
allows the designer to use a type without knowing
its precise description.

TOP 1 Max-Weight J

Printable Object Twe

TOR

Abstract Oiject npe

Reptvsented Ob&ct ‘I)rpc

Figure 5: Example of Basic Type

IF02 takes into account five constructors:

l aggregation and composition: they represent
the tuple constructor of 00 models with an ex-
clusivity constraint for the composition (an object
can take part in a unique construction);

l collection and grouping: they represent the set-
of constructor of 00 models with an exclusivity
constraint for the grouping;

l union: it is used for similar handling of struc-
turally different types. This constructor repre-
sents the IS4 generalization link enhanced with
a disjunction constraint between the generalized
types.

These constructors can be recursively applied accord-
ing to specified rules for building up more complex

types. The types can be linked by functions (sim-
ple or complex; partial (0:N link) or total (1:N link))
through the fragment concept. The aim of the frag-
ment is to describe properties of the principal type
called heart. For each fragment, a set of methods is
associated. IF02 being a conceptual model, only the
signature of these methods is required. These opera-
tions are one of the links between the structural and
the behavioural specifications.
Finally, an IF02 structural schema is a set of frag-
ments related by IS4 specialization links according
to building rules.

Figure 6 proposes the IF02 structural schema for the
lift example. It is made up of two tragments “Lift” and
Tage”. They are related by an IS4 link through
the represented type ULift-Cage”. The fragment of
heart “Lift” has “Id-Number”, “Load” (built up as an
aggregation of “Max-Weight” and “Max-User” types)
and “Lift-Cage” ss properties. Since a lift serves sev-
eral floors, we have a complex function from “Lift”
to the simple type “Floor”. For the fragments “Lift”,
the methods are “Up”, “DOWA” and “Cage-Arrival”.
Among the methods of the fragment “Cage”, “Stop”
is triggered to stop the cage and “Open” to open the
doors.

thpsitim Aggregatim Colktim Gmepiag Union

Figure 6: The “Lift” Structural Schema

296

