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Abstract 

Object oriented databases provide rich struc- 

turing capabilities to organise the objects 

being relevant for a given application. Due 

to the possible complexity of object structu- 

res, path expressions have become accepted as 

a concise syntactical means to reference ob- 

jects. Even though known approaches to path 

expressions provide quite elegant access to ob- 

jects, there seems to be still a need for mo- 

re generality. To this end, the rule-language 

PathLog is introduced. A first contribution 

of PathLog is to add a second dimension to 

path expressions in order to increase conci- 

seness. In addition, a path expression can al- 

so be used to reference virtual objects. Both 

enhancements give rise to interesting semantic 

implications. 
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1 Introduction 

Using the relational model we are forced to organise 

the application structures by a set of flat relations. 

Therefore, many applications demand for data models 

with richer structuring capabilities than the relational 

model. The missing concepts seem to be offered by, 

the object oriented data model. Here, data is struc- 

tured by means of objects which may have a complez 

skucture and are assigned to classes which in turn are 

arranged hierarchically to offer an inheritance mecha- 

nism. Each object has a systemwide unique identifier, 

typically called aid, which is the basis of a reference- 

based access to the objects. Such references usually 

are obtained as the result of applying a method. 

The complexity of the object structures finds its 

counterpart in the languages proposed to manipulate 

objects. To ease the task of accessing objects path 

expressions have been proposed. The idea here is to 

follow a link between objects without having to write 

down explicit join conditions. 

Thii idea has appeared several times before. While 

one of the first approaches, GEM ([Zan83]), was based 

on QUEL, most approaches discuss possible extensions 

of SQL (e.g. OSQL [Fis87], ORION [Kim89], XSQL 

[KKS92], OpSQL [BCD92] and ESQL [GVSZ]). To gi- 

ve a first flavor of path expressions let us go through 

some examples. For the time being we are interested 

in the color of the automobiles belonging to certain 

employees. We further assume, that a link between 

employees and their vehicles is established via a set- 

valued method (attribute) vehicles and that automo- 
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biles are a special kind of vehicles. 

In OrSQL we would write the following query: 

SELECT Y.color 

FROM X IN employee 

FROM Y IN X.vehicles 

WHERE Y IN automobile 

0.1) 

Here, the variables are ranging over objects; X.vehicles 

is a path expression which can be read as “apply me- 

thod vehicles on object X”. In general, a path may have 

arbitrary length. 

XSQL contributes to this kind of languages the con- 

cept of selectors, which may be used to specify inter- 

mediate results in a path. Using selectors we can write 

more concisely: 

SELECT Z 

FROM employee X, automobile Y 

WHERE X.vehiclesM.color[Z) 
(1.2) 

In this example, the selectors M and [Z] are used to re- 

strict an intermediate result (vehicles have to be auto- 

mobiles) and to provide a result-position for the query 

(the color is placed in Z). 

A more calculus oriented proposal for path expres- 

sions is given in pV93]. Here the usage of class names 

in a path is allowed making possible the following que- 

ry: 

( Z 1 employee.vehicles. 

automobile.color[Z]} (l-3) 

Even though the above approaches provide quite 

elegant techniques to access objects, we can observe 

certain limitations, as far as path expressions are con- 

cerned. 

Path expressions in all languages we are aware of 

can only be applied in one dimension. Starting from a 

certain object, a composition of method applications 

can be specified, where each application, if the respec- 

tive method is defined, references result objects. It 

would be nice, if we could also refer to other methods 

of such an object as part of the same path. For exam- 

ple, in XSQL, if we want to specify that the vehicles 

of interest should have 4 cylinders, to our knowled- 

ge, there is no way to express this in the same path. 

Instead, we have to break one path into two and in 

general, into many pieces, which leads to the following 

solution: 

SELECT Z 

FROM employee X, automobile Y 

WHERE X.vehiclesM.color[Z] 

AND Y .cylinders[ll] 

(1.4) 

What is missing is a second dimension which would 

allow us to refer to the properties of any object that 

is referenced in a path without having to leave that 

path. While the first dimension goes into depth, this 

second dimension would go into breadth. 

Another way to increase the flexibiity of object ori- 

ented models is to introduce virtual objects or clas- 

ses ([AB91, KLW93]), which correspond to views in 

the relational model. While the technique used in 

XSQL builds on function symbols in a way proposed in 

[KW93], [AB91] propose a referencing technique based 

on methods (attributes). The latter approach seems to 

be more natural for path expressions; however no for- 

mal semantics of this approach has been presented. In 

the current paper we use methods to define and refe- 

rence virtual objects and give formal semantics to this 

technique. Moreover, because methods can be control- 

led by signatures, virtual objects may be defined w.r.t. 

given type restrictions. 

We propose a language called PathLog, which, on 

the one hand, gives interesting solutions to the pro- 

blems mentioned above, and, on the other hand, ex- 

tends the application area of path expressions to rule 

languages. The techniques we shall propose are appli- 

cable for different kinds of rule languages, e.g. deduc- 

tive, production or active rules. This generality holds 

because path expressions are a convenient tool to refe- 

rence objects; the way in which a set of rules is being 

evaluated is an orthogonal issue. 

Despite the independence from certain evaluation 

paradigms, we discuss our techniques in a deductive 

framework. This provides us with a generally accepted 

terminology and a rigorous basis of semantics. Mo- 

reover, this decision is quite natural for us, because 

PathLog builds upon F-logic [KLW93]. PathLog ex- 

tends the syntax of F-logic by path expressions and 

proposes a direct semantics for the enhanced syntax. 

As only a small subset of F-logic is relevant for the 
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exposition of PathLog, the current paper still is self- 

contained. 

The structure of the paper is as follows. We first 

present some characteristic features of PathLog (secti- 

on 2). Next we introduce the terminology used throug- 

hout the paper (section 3). Syntax and semantics 

of PathLog follow in section 4 and section 5. Secti- 

on 6 contains a discussion of interesting properties of 

PathLog. Section 7 finally gives a conclusion. 

2 A First Look at PathLog 

One striking characteristic of PathLog is its convenient 

concise syntax. We extend path expressions by a ge- 

neral means to specify properties of objects referenced 

within a path. For example, for each employee X, the 

path 

X:cmployee[age+30; city+newYork] 

..vehiclts:automobiles[cylinders+4] 

.color[Z] 
(2.1) 

provides us with a reference to the colors of the vehic- 

les of X, which are automobiles with 4 cylinders, if X is 

30 years old and lives in newYork. If such a car indeed 

exists for employee X, variable Z will contain the cor- 

responding color. As usual, variables are capitalised. 

Note that in this kind of path expressions we can 

distinguish two dimensions. The first dimension is gi- 

ven by the composition of method-applications syn- 

tactically expressed by . (scalar methods) and . . (set- 

valued methods). The second dimension is given by 

a bracketed list of expressions in order to assert pro- 

perties of the objects referred to inside a path; only 

those objects are referenced, which fulilll the specified 

properties. 

Using a notation in the style of SQL, (2.1) becomes 

SELECT Z 

FROM employee X, automobile Y 

WHERE X[age+30; city+newYork]. 

vehicles[cylinders+4]M.color[Z] 

(2.2) 

The reader may have already noticed the similarity 

to molecules as they are used in F-logic. Here the 

question arises, how much PathLog does add to the 

known languages, if we abstract from syntax. 

Two observations are worth to notice. On the one 

hand, in the setting of PathLog a path may be treated 

as a reference to objects. As a consequence of thib 

first view, in PathLog a path may be used wherever we 

expect an object. Therefore, we can extend molecules 
by allowing path expressions also inside molecules. For 

example, in (2.2) we can replace [. . .+newYork] by 

[. . . dX.boss.city], (2.3) 

to indicate that we are only interested in the color of 

those vehicles, whose owner lives in the same city as 

the respective boss. 

On the other hand, a path may be treated as a for- 
mula. In (2.2) a path was used inside the WHERE- 

clause and thus is assigned a truth-value. In fact, 

PathLog allows these two views under the same roof: 

a path may be treated as a reference and as a formu- 

la. Modifying (2.2) according to (2.3), the sub-path 
X.boss.city is treated as a reference while the whole 

path in the WHERE-clause corresponds to a formula. 

To further demonstrate the impact of the second 

dimension in path expressions in PathLog, we discuss 

one more example. Consider the following OrSQL que- 

ry which asks for those managers X who have a red ve- 

hicle produced by a company located in Detroit where 

X itself is the president of that company. 

SELECT X 

FROM X IN manager 

FROM Y IN X.vehicles 

WHERE Y.color = red 

AND Y.producedBy.city = detroit 

AND Y.producedBy.president = X 

This query in OpSQL requires two FROM-clauses and 

a conjunctive WHERE-clause. The result of the set- 

valued path X.vehicler is treated as a class; hence the 

second FROM-clause is necessary to flailen this set of 

objects explicitly. 

In PathLog, takiig advantage of the possibility to 

mutually nest paths and molecules, we may combine 

scalar and set-valued paths in one reference. The abo- 

ve query may be expressed by a single reference: 

X : manager..vehicles[color+red] 

.producedBy[city-tdetroit;president+X] 
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There is no necessity in PathLog to flatten the set 

of vehicles owned by a manager explicitly, since the 

methods color and producedBy are applied to each of 

the vehicles in turn. 

extensional part, but existing in the intensional part 

only. 

We are not aware of any other language, which al- 

lows path expressions in a comparable generality. In 

OtSQL a path can only be used as a one-dimensional 

reference. In XSQL a path can be used as a one- 

dimensional reference or formula, however semantics 

is only sketched by a transformation into F-logic, whi- 

le we will give a direcl semantics in this paper. In fact, 

this direct semantics of paths in PathLog gives rise to 

many interesting semantic implications. 

On the language level there is no need to distinguish 

between extensional and intensional information, as 

may be seen in example (2.4), where one mechanism 

is sufficient to reference both the (intensional) address 

and the (extensional) city and street of a person. For 

this reason, we do not stress the difference between 

methods and attributes. 

Our direct semantics allows to use a path also to 

reference virtual objects. Adopting an example from 

[AB91], the following rule defines addresses as virtu- 

al objects for persons with given attributes city and 

street: 

X.addrcssfcity-+X.city; 

rtreet+X.street] +- X : person. (2.4) 

To simplify the framework, objects also denote clas- 

ses and methods. Thus, the methods and classes used 

in the previous examples formally are objects; e.g. in 

(2.1), vehicles and automobile are names for objects 

which are used to denote a method and a class, re- 

spectively. As a direct consequence, class-membership 

reduces to a binary relation on objects. When objects 

denote methods, they may be overloaded according to 

their scalarity and arity. Thus, an object may be used 

to denote a scalar method as well as a set-valued one, 

and an object may be used to denote methods with 

different numbers of arguments. 
In this example, address-related attributes of persons 

are restructured into one new address object for each 

person. For each person X, X.address is used as a refe- 

rence to the virtual address-object defined for X. Here 

we use methods (like address) to reference virtual ob- 

jects; we do not need function symbols as in F-logic, 

or, with a similar aim, virtual class-names as in XSQL. 

Our approach has two benefits. First, our framework 

is simpler than it is in F-logic, because methods can 

do the same job function symbols had to do in that 

framework.’ Second, methods can be controlled by si- 

gnatures to make type checking techniques applicable. 

Our simple setting can now be summarieed as fol- 

lows. Let A/ be a set of names. For simplicity, we 

don’t distinguish between objects and values, thus n/ 

also includes integer numbers and strings. The alpha- 

bet of PathLog then consists of N, a set of variables Y, 

auxiliary symbols, logical connectives and quantifiers. 

Formulas in PathLog, e.g. rules, are then defined as 

usual, the only difference here is that literals are built 

out of path expressions, which will be defined formally 

in section 4. 

3 Basic Terminology 

For the purposes of this paper, objects are assumed to 

be distinguishable and are further described by their 

state and their class-membership. The state may be 

defined ettensionally, i.e., by a given set of objects to- 

gether with their (stored) attributes, or intensionally, 

by defining results of methods using rules. A virtu- 
al object in this setting is an object not given in the 

To define a formal semantics we need a semantic 

skuciure (cf. [KLW93]), I, which can be perceived as 

a set of objects with their properties. From a semantic 

structure I we can obtain all the needed information 

about a certain set of objects.’ As usual, the set of 

all objects U is called the universe. Then, a semantic 

structure I is a tuple 

Here, the function IM : n/ H U maps names to ob- 
jects. The class hierarchy E” E U x U is a partial or- 

‘In fact, it is possible to replace the usual type constructors, 2For the following, it is crucial to understand that a semantic 

e.g. cons by methods. A discussion of this aspect, however, is structure covers extensionally given and intenaionally defined 

beyond the scope of the current pspcr. aspects. 
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der telling us how objects are related to classes. I-, L. 

interpret methods, i.e., define the state of the respec- 

tive objects. I, is a function which assigns to each 

element of U a partial function Uk ?+ U, when this 

element is used as a scalar method with k - 1, h 1 1, 

arguments. I, refers to set-valued methods and thus 

assigns a function U” H 2” to each element of U, 

when this element is used as a set-valued method with 

k - 1, k 1 1, arguments; however, set-valued functions 

are total, slightly contrasting to [KLW93].3 

4 Syntax of PathLog 

In thii section we will formally define the syntax of 

PathLog. We will introduce paths and molecules. Sin- 

ce paths as well as molecules are means to denote ob- 

jects, they can be mutually nested in a very liberal 

way: in a molecule, wherever a (sub-) molecule is al- 

lowed, we can also use a path; in a path, wherever a 

(sub-) path is allowed, a molecule can be used. The 

refore, both hinds of expressions are called references. 

References are distinguished according to their scala- 

rity, i.e., they are either set-valued or scalar. 

4.1 References to Objects 

The most simple form of a reference are names and 

variables. Such simple references act as starting points 

for more complicated references. A path consists of a 

reference followed by a method call, e.g. .spouse, while 

a molecule consists of a reference followed by a filter, 

e.g. [boss+mary]. Note how paths and molecules may 

be mutually nested: a path 

maryspouse 

is a reference and may therefore be used as part of the 

molecule 

mary.spouse[boss+mary] 

which in turn may again be used as part of the path 

mary.spouse[boss+mary].age 

31t turned out that we arrive at a rather opaque semantica 
if inside s path we have to distinguish between an undefined 

set-valued method and a method which returns the empty set. 

to access the age of the object. It is also possible to 

nest terms inside a filter, e.g. the name mary may be 

further specified as in 

mary.spouse[boss+mary[age +25]]. 

We first define rather general references; however, 

not all of them meet well-formedness as defined later. 

Definition 1 Given an alphabet of PathLog, the set 

of all references can now be defined inductively as fol- 

lows. 

l Anamen~A/andavariableX~Visarefe- 

rence, also called a simple reference. 

l If t is a reference, then the expression (t) is a 

reference, also called a simple reference. 

l If ti (0 5 i 5 k), t; (1 5 j 5 1) and 1, are 

references, and if t,, t, are simple references, 

- then the expressions 

tO.tm@(tl,. . .rtk)r 

to..t,@(tl,. . . ,tk) 

are references, also called paths. 

- then the expressions 

to[LQ(t1, - *.dk)+I, 

tO[tmQ(tl,...,tk)~(t:,...,t;}], 

tO[tm@(tl,. . .,tk)-'t+], 

to : t, 

are references, also called molecules. to is 

called the prefix of the molecule and the ex- 

pression [LO.. .I, resp. : t,, its filler. q 

Methods may be called with parameters, e.g. 

john.salary@(1994), denoting john’s salary in 1994. 

When methods are called without parameters, we will 

omit the parenthesis and the @-symbol, i.e., write ma- 

ry.boss instead of mary.boss@(). In a sequence of fll- 

ters, e.g. mary[age+30][bossdpeter], all elements are 

applied to the first reference, which is mary in this 

case. To stress thii fact we write as a shorthand 
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mary[age+30;boss+peter], i.e., a reference with a list 

of filters is a molecule as well. 

The XSQL-style of selectors e.g. in 

X..vehicles.color[Z] is used as an abbreviation for a filter 

specifying the built-in method.self; the above example 

therefore is interpreted as X..vthicles.color[self-(Z]. For 

every object the method self yields the object itself. 

References surrounded by parenthesis are used to 

change the usual left-to-right evaluation sequence of a 

reference. To give an example, let kids be a method 

that yields the children of a person. Since kids itself is 

an object, we could therefore apply a method to this 

object. Here, we use a method transitiveClosure or tc 

with the following intention: applied to an object in 

the role of a method, e.g. kids, it yields a new method 

computing the transitive closure of that method, which 

is denoted by the path kids.tc.’ 

Applying this new method to a person mary we have 

to use parenthesis: 

mary..( kids.tc) (4.1) 

Note the difference to writing mary..kids.tc: here we 

apply kids to mary, and on the resulting set of persons, 

the method tc is applied (which probably does not 

make any sense). 

A second point is that, on the one hand, the path 

kids.tc is a scalar reference, since it denotes a single 

object, i.e., the result of the invocation of the method 

tc on the object kids. On the other hand, in path (4.1) 

this single object is used to denote the invocation of a 

set-valued method. 

4.2 Scalarity and Well-formedness 

A reference may contain scalar methods as well as set- 

valued methods. However, set-valued methods cannot 

appear at every syntactical position. To thii end, refe- 

rences have to be well-formed. Before giving a precise 

definition we present some motivating examples. 

While the path 

pl.age 

‘The actual definition of this method by means of PathLogL 

ruler will follow in Section 6. 

denotes the result of the application of the scalar me 

thod age on pl, the path 

pl..assistants (4.2) 

denotes the result of the application of the set-valued 

method assistants, i.e., the set of all assistants of pl. 

To restrict the possible elements of this set, we may 

use a filter. For example, 

pl..assistants[saIary+1000] (4.3) 

denotes the set of all assistants of pl whose salary is 

1000. Set-valued references can now be used instead 

of explicitly given sets of objects. Instead of writing 

p2[friends+(p3,p4}] (4.4) 

we may replace the explicit set by a set-valued refe- 

rence: 

p2[friends+pl..assistants] P-5) 

This formula states that all the assistants of pl are 

friends of p2. Note that in contrast to (4.3) the for- 

mula (4.5) does not denote a set of objects, it merely 

specificies a property of one object, p2, although it 

contains the set-valued reference pl..assistants. But 

thii reference does not determine the scalarity of the 

molecule, because for molecules, only the prefix, here 

p2, determines the scalarity of the entire molecule. 

Definition 2 Let ti (0 5 i 5 k) be references and t,, 

t, simple references. A reference t is set-valued, X one 

of the following conditions holds: 

l t is a path of the form to..t,Q(tr, . . . ,tk), 

l t is a path of the form te.t,@(ti, . . . ,th) where 

(at least) one of the ti (0 < i 5 k) or t, is a 

set-valued reference, 

l t is a molecule to[. . .] or to : t, where the reference 

to is set-valued, 

l t is a simple reference of the form (to) where the 

reference to is set-valued. 

Otherwise, a reference is scalar. Cl 

According to thii definition the path 
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pl..assistants.salary 

is set-valued, because the scalar method salary is in- 

.voked on every member in the set of assistants of pl. 

Thus, this path denotes the set of salaries of pl’s assi- 

stants. 

Certainly, a set-valued reference cannot be used at 

every syntactical position in a reference, e.g. in formula 

(4.6) it is obviously incorrect to assign a set-valued 

reference as result to a scalar method: 

p2[boss+pl..assistants] (44 

Let paidFor be a method by which we can compute 

the price a person paid for a vehicle. This method 

is applied to a sel of vehicles which is passed to the 

method as a parameter: 

pl.paidFor@(pl..vehicles) (4.7) 

denotes the set of prices which pl paid for all her ve- 

hicles. 

The reason for the restrictions on the usage of set- 

valued references in molecules is that a filter in a mo- 

lecule has to be unambiguous. Consider, e.g. the fol- 

lowing molecule similar to the path in (4.7): 
Definition S 

pl[paidFor(P(pl..vehicles)+1000] (4.8) 
l The filter of a molecule t is called well-formed ifT 

the following conditions are fulfilled: 

- if t = to[t,Q(t1, . . . , tk)-&], then t,, all ti 

(1 5 i 5 k) and t, are scalar references, 

- if t = to[t,Q(tl, . . . , tk)-m], then t, and 

all ti (1 5 i 5 k) are scalar references and s 

is either a set valued reference or an explicit 

set {ti,..., ti} where all t[i (1 5 j 5 1) are 

scalar references, 

- if t = to : t,, then the class t, is a scalar 

reference. 

l A reference is called well-formed if alI filters men- 

tioned in it are well-formed. The set of all well- 

formed references is denoted by 1. 
0 

In other words, the scalarity of a reference at a re- 

sult position has to agree with the scalarity of the cor- 

responding method call; furthermore, it is not allowed 

to use set-valued references as methods, arguments or 

classes in molecules. 

Formulas in PathLog can now be defined as usual. 

Every well-formed reference may be used as an atomic 

formula, which in turn may serve as a basis to build 

literals, clauses and rules. 

Well-formedness only restricts the usage of set- 

valued references in molecules, but not in paths. Thii 

interesting feature of PathLog is further demonstra- 

ted by the following example showing a path with a 

set-valued argument. 

Again, the argument of paidFor is given by the set- 

valued reference pl..vehicles, which in general denotes 

several objects, i.e., vehicles. Neither of the following 

interpretations seems natural to us: we could define 

that for at least one arbitrary argument belonging to 

the set of pl’s vehicles the invocation of the method 

paidFor on pl yields 1000, or we could define that for 

all of pl’s vehicles as argument the invocation of paid- 

For on pl has to yield 1000. Loohing back at definition 

3 we see that the filter in (4.8) does not fit the first re- 

striction and therefore the reference is not well-formed. 

5 Direct Semantics of PathLog 

For semantics, on the one hand we are interested, whe- 

ther certain statements (formulas) about some objects 

are true or false under a given semantic structure I. 

On the other hand, for ierrns specifying the applica- 

tion of a method (or a composition of applications of 

methods) on some object, we like to know, which ob- 

jects are denoted by these terms in I. For these two 

aspects we need appropriate notions of entailment and 

valualion. 

In our setting, the semantics covering both mole- 

cules and paths in their various forms is surprisingly 

simple, since they may simultaneously be considered 

as a formula, having a truth value, as well as a term, 

denoting au object. For thii reason, we regard both 

molecules and paths as references. Let’s see, how these 

two views go hand-in-hand. 

Let I = (V, E”, IM, I-, I,) be a semantic structure. 
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If we ask for entailment of a molecule t = to[. . .] in I, 

we have to check whether the object denoted by to 

fuKlls all specifications given in the filter [. . .] of t. 

Consider now the entailment of a molecule t with 

an empty lisi of filters, i.e., t = to[ 1. Obviously, no 

specification has to be fuMlled, but to has to denote 

an existing object. But in case to is a path, it can 

not be t&en for granted that such an object exists. 

A method call may be undefined for a certain object: 

for a bachelor john the path john.spouw does not de- 

note an object, consequently, this path is considered 

false. Thus, a path is entailed by I if the object being 

denoted by this path indeed does exist. 

The idea that a path denotes certain objects is re- 

flected by a valuation. The use of a valuation function 

with respect to paths is motivated by the similarity 

between a function symbol in first order predicate cal- 
culus and a method, because both are interpreted by 

functions. Therefore, a path of the general form 

tO.ml.m2 . . . mk, 

where no is a method (1 5 i 5 k), can be considered 

as a composition of (partial) functions 

m(. . .m2(m(t0)). ..). 

As a direct consequence, because the interpretation 

of the methods can be obtained from I, i.e., is given 

by the respective I-, the compositional expression can 

be evaluated by simply inspecting the given semantic 

structure I. 

Molecules can now be treated in an analogous fa- 

&ion. Since we may use molecules inside a path or 

molecule, we are interested in the objects denoted by 

this molecule. Consequently, we also define a valuation 

for molecules. 

It turns out, that once we have given a semantic 

structure, we can conveniently switch from one view 

to the other. 

Next we will make thii introductory discussion more 

concrete. To deal in a uniform framework with refo 
rences not denoting an object and to deal with set- 

valued references, we define a valuation function to 

yield sets of objects. In the case of a scalar reference, 

these sets are either a singleton or empty. 

As long as variables are considered, a valuation is 

as usual a function 

a:V-U 

mapping variables to objects. This variable-valuation 

is extended to references w.r.t. a given interpretation, 

yielding a function 

Assume that a(X) = u. Then, using-the correspon- 

ding valuation function &, evaluating &(X..assistants) 

yields the set of assistants of u. The evaluation of 

&(X.spouse) yields the empty set, if u is a bachelor, 

or a set containing u’s spouse, otherwise. 

Definition 4 A variable-valuation is a function CY : 

V I+ U mapping variables to objects. This valuati- 
on is extended for a given interpretation I to a func- 
tion @J mapping references to sets of objects, i.e., 

flz : 7 H 2’. Let ti (0 5 i 5 k), t,, ti (1 5 j 5 1) 

be references and t,, t, simple references. For a well- 

formed reference t E I, the valuation p,(t) is defined 

to be the smallest set fuHlling the following conditions: 

1. If t = X E V is a variable, then 

2. Ift=nEA/isaname, then 

3. If t = to.t,@(tl,. . .) tr;) is a path, then for all 

objects w E @z(ti) (i E (m, 0,. . ., k}), such that 

G?(%&o, * - -, urn) is defined, there holds: 

I!?(%&o, - * -, 4 E PZW 

4. Ift = to..t,@(tl,. . ., tk) is a path, then for alI 

objects w E pz(ti) (i E (m, 0,. . . , k}) there holds: 

I(l)(%)(Uo, * * *, Uk) c_ PZW 

5. Ift = &, : t, is a molecule, then for all objects 

ui E P,(G) (i E (c, O}), such that 

there holds uo E p,(t). 
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6. 

7. 

a. 

If t = tO[ttnO(tlr.. . ( tk)+t,] is a molecule, then 

for all objects ui E &(ti) (i E (m,r, 0,. . ., k}), 

such that I$+‘(u,,,)(u,, ,...,uk) isdefined and 

~!?(%&‘O, . . . I Uk) = %, 

there holds ~0 E PI(t). 

If t = to[t,O(tl,. . .) tk)+t,] is 8 mOkde, then 

for all objects TV E PI(&) (i E (m, 0,. . . , k)), such 

th8t 

e%4n)(uo ,*-,uk) > &(t,), 

there holds u. E p,(t). 

Ift = t&,@(tl, . . . . tk)+{ti, . . . . ti)] is 8 mo- 

lecule, then for all objects ui E PI(&) (i E 

ho,..., h)), such that 

c?(um)(uo ,...,uk) _> s, 

where S is defined below, there holds ~0 E @z(t). 

S is the set resulting from evaluating the ti, i.e., 

s={UE/3~(t;)~~E{1,...,2}}. 

0 

As already mentioned before, entailment may then 
be defined w.r.t. valuation. 

Definition 5 Let I be a semantic structure, t a re- 

ference and a a variable-valuation. Let further /3z be 

the valuation function implied by a and I. A reference 

t is entailed by I w.r.t. a, i.e., I ba t, S&(t) # 0. 0 

Entailment of literals and clauses is defined as usualz 

I~(I~AII~~~I~~~~~~I~=,~;I~=,~V~ 
iff I ba t$ or I kQ 3; I ka -4 iff not I k=p 4. 

The meaning of quantifiers is standard: I t=(I (VX)q! 

((3X)4) iff for every (some, resp.) a’ that agrees with 

a everywhere, except possibly on X, I b=o~ 4 holds. 

For a closed formula, we may omit the valuation a. 

Rules are implicitly V-quantified; entailment is defined 

based on the clausal form. 

The aim of the following discussion is to further cla- 

rify the relationship between entailment and valuation. 
The expression (used as a fact) 

pl[m+pl..assistants[salrry-+1000]]. (54 

defines a method m, such that pl..m denotes the set of 

all assistants of pl with a salary of 1000. The same set 

can be defined by using a molecular style a la F-Logic: 

i4-4)01 + 
pl[assistants+{X[salary+lOOO]}]. (5.2) 

Although in both cases the same set is ddined, the 

semantic ezplanation is different. In (5.1), the set of 

all those assistants is determined by valuation and as- 

serted to be the result of m applied on pl. Howe 

ver, in (5.2) entailment of the body defines that pl 

has at least an assistant X, whose salary is 1000. V- 

quantification and entailment of the rule implies that 

the head of the rule is entailed for all such as&tints X. 

Here, the variable X does range over the set of objects, 

i.e., the universe, and is nol bound to a set of objects 

(cf. [KW93]). 

Note that every reference evaluates to the set of all 

objects denoted by this reference, where in the case of a 

scalar reference we get a singleton set or the empty set. 
Thus, we can handle scalar and set-valued references 

in the same way, e.g. applying a method to a reference 

t means to apply this method to every member of the 

set p,(t), but not to apply the method to the set itself. 

Furthermore, the invocation of a set-valued method on 
a set of objects again yields a flat set of objects, but 

not a set of sets. This philosophy prevents from having 

multiply nested sets and the need to flatten sets. 

In the following example we apply a set-valued me- 

thod, e.g. project!, to a set-valued reference: 

pl..assistants..projccts 

The valuation of this reference does not denote a set of 

sets, but simply the set of projects of pl’s assistants. 

6 Programming in PathLog 

After having presented the semantics, we now discuss 

rules in more detail and give PathLog solutions to some 

interesting problems. 

Rules are a means to define intensional knowledge; 

we can distinguish intensionally defined methods and 

virtual objects. 

In the next example, we use a rule to define an in- 

tensional method which is defined for already existing 

objects: 
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X[power +v] + 

X:automobile.cngine[powerdY] 

The result of thii rule is to extend all given automobile- 

objects by a method power, derived from their engine’s 

power. Here, existing objects are equipped with addi- 

tional methods - no virtual objects are defined. This 
is in contrast to the following, where a path in a rule 

head may lead to the definition of virtual objects: 

X.boss[worksFor+D] + 

X : l mployee[worksFor-+D]. (6-l) 

This rule states that employees and their bosses work 

for the same department. Assume that only the infor- 

mation pl:employee[worksFor~csl] is given. The me- 

thod boss is not defined extensionally for pl, however, 

this rule defines a uitiual object, the boss of pl. Thii 

virtual object can be referenced by applying boss to 

p1.J 

In contrast to (6.1) the following rule states that 

only employees and their already defined bosses work 

for the same department: 

Z[worksFor+D] + 

X : l mployee[worksFor+D].boss[Z]. (6.2) 

Our approach to virtual objects diiers from the 

view mechanism in XSQL. There, a new class 

EmployeeBoss has to be defined as a view (6.3), and 

the view’s name simultaneously serves as a function 

symbol, so the defined object has to be referenced by 

Em ployeeBoss( pl): 

CREATE VIEW EmployeeBoss 

SELECT WorksFor = D 

FROM Employee X 

OID FUNCTION OF X 

WHERE X.WorksFor[D] 

(6.3) 

In our setting, using methods instead of function sym- 

bols to define virtual objects makes function symbols 

like EmployeeBoss superfluous, and thus simplifies the 

query language and makes the typing system usually 

defined for methods (cf. [KLW93]) applicable for vir- 

tual objects. 

While scalar references when used as a rule head 

SOf course, iffor some object a boss-objectis already defined, 

then this rule only affects the worksfor-method. 

may define virtual objects, the semantics of set-valued 

references as rule heads is a bit problematic. Consider 

a rule head with the set-valued reference: 

pl..assistantr[salary+1000] + . . . 

We can distinguish two different cases: If no assistant 

at all is already defined, this rule will define exact- 

ly one assistant with salary 1000 - analogous to the 

scalar case. But, assuming that assistants of pl are al- 

ready defined, according to definition 5 this rule head 

is entailed if there is at least one assistant with sala- 

ry 1000. Thus, the miniial way to satisfy this rule 

head leads to a non-deterministic semantics in the ca- 

se of pl having several assistants: only one arbitrary 

assistant is required to have thii salary. Since in ge- 

neral this object can not be uniquely determined, we 

suggest to forbid set-valued references in rule heads. 

However, set-valued methods may be defined in rule 

heads, possibly involving set-valued sub-references in 

a scalar reference like in (4.5). 

Now we define a set-valued method desc, which 

computes the transitive closure of a given method kids: 

X[desc-n(Y}] + X[kids+{Y}]. 

X[desc+(Y}] + X..desc[kids-n(Y}]. 
(64 

We may define this method even more concisely using 

the facts: 

X[desc+X..kids]. 

X[desc+X..desc..kids]. 
(6.5) 

While in (6.4), the descendants are bound to the va- 

riable Y, here the sets are treated in their entirety. 

Moreover, while in (6.4) we use recursive rules, (6.5) 

has to be read as fkpoint equations. Thii further em- 

phasises the flexibility and conciseness of PathLog. 

If we want to define the transitive closure indepen- 

dently of the concrete method kids as a generic ope- 

ration (similar to [CKW93]), we can take advantage 

of the fact that kids formally is the name of an object. 

Consequently, we can also apply a method to this ob- 

ject. For our purposes, we define a method tc, which, 
applied to kids, yields a new method, which computes 

the transitive closure of kids. This new method is de- 

noted by the path kids.tc. Since a path may be used 

at any syntactic position, even at the method positi- 
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on, we may replace the method desc in example (6.4) 

by the method kids.tc. Generalizing from the concrete 

method kids by introducing a variable M, we can define 

transitive closure as a generic operation: 

X~W-tc)+Wl + X[M-w(Y}]. 

ww-4vI + X..(M.tc)[M+{Y}]. 

Now, given the following facts, 

peter[kids+{tim,mary}]. 

tim[kids+{sally}]. 

mary[kids++{tom,paul}]. 

applying kids.tc to peter yields 

peter[(kidr.tc)+{tim,mary,saIly,tom,paul}]. 

To evaluate rules in PathLog well-known bottom- 

up techniques may be applied. In one situation, where 

a path denotes the result of a set valued method in a 

rule body, stratification of the rules becomes necessary 

in a similar way to [NT89]. A rule of the following 

structure 

. . . + X[friends++pl..assistants]. 

should only then be applied, if the set of pl’s assistants 

is already defined. However we would like to stress 

that in all other cases the treatment of sets in PathLog 

does not imply stratification (cf. O-Logic [KW93]). 

7 Conclusion 

This paper presents PathLog, a rule language, who- 

se basic building blocks are paths and molecules. 

PathLog generalizes path expressions in several ways. 

A second dimension is added to path expression which 

makes it possible to use only one path in situations 

where known one-dimensional path expressions requi- 

re a conjunction of several paths. In addition, a path 

expression can also be used to reference virtual objects. 

We have shown by several examples how to adopt path 

expressions generalized in this way to object oriented 

SQL dialects. 

Because of the generality in syntax, expressions in 

PathLog allow to query objects in a very compact way; 

however, PathLog has a concise direct semantics, such 

that even in those cases its use remains transparent 

to the user. Moreover, even though we have presen- 

ted PathLog in terms of a deductive rule language, the 

main ideas of PathLog can be also applied in the con- 

text of other kinds of rule languages, e.g. production 

rules or active rules. 
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