
Access to Objects by Path Expressions and Rules

Jiirgen Frohn*

Fakultgt fiir Mathematik und Informatik

UniversitAt Mannheim

68131 Mannheim, Germany

frohn@pi3.informatik.uni-mannheim.de

Abstract

Object oriented databases provide rich struc-

turing capabilities to organise the objects

being relevant for a given application. Due

to the possible complexity of object structu-

res, path expressions have become accepted as

a concise syntactical means to reference ob-

jects. Even though known approaches to path

expressions provide quite elegant access to ob-

jects, there seems to be still a need for mo-

re generality. To this end, the rule-language

PathLog is introduced. A first contribution

of PathLog is to add a second dimension to

path expressions in order to increase conci-

seness. In addition, a path expression can al-

so be used to reference virtual objects. Both

enhancements give rise to interesting semantic

implications.

*Work supported by Deutsche Fomchungsgcmci~~, La
698/Q-l.

Pewnirrion to copy without fee all or part of thir material ir

granted provided that the copier are not made or dirtributed for

direct commercial advantage, the VLDB copyright notice and

the title of the publication and its date appear, and notice in

given that copying ie by pew&&on of the Very Larye Data Bare

Endowment. To copy otherwire, or to nprblid, rqvinr a fee

and/or special pemairrion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

Georg Lausen Heinz Uphoff

Institut fiir Informatik
UniversitZt Freiburg

79104 Freiburg, Germany

{lausen,uphoff)Qinformatik.uni-freiburg.de

1 Introduction

Using the relational model we are forced to organise

the application structures by a set of flat relations.

Therefore, many applications demand for data models

with richer structuring capabilities than the relational

model. The missing concepts seem to be offered by,

the object oriented data model. Here, data is struc-

tured by means of objects which may have a complez

skucture and are assigned to classes which in turn are

arranged hierarchically to offer an inheritance mecha-

nism. Each object has a systemwide unique identifier,

typically called aid, which is the basis of a reference-

based access to the objects. Such references usually

are obtained as the result of applying a method.

The complexity of the object structures finds its

counterpart in the languages proposed to manipulate

objects. To ease the task of accessing objects path

expressions have been proposed. The idea here is to

follow a link between objects without having to write

down explicit join conditions.

Thii idea has appeared several times before. While

one of the first approaches, GEM ([Zan83]), was based

on QUEL, most approaches discuss possible extensions

of SQL (e.g. OSQL [Fis87], ORION [Kim89], XSQL

[KKS92], OpSQL [BCD92] and ESQL [GVSZ]). To gi-

ve a first flavor of path expressions let us go through

some examples. For the time being we are interested

in the color of the automobiles belonging to certain

employees. We further assume, that a link between

employees and their vehicles is established via a set-

valued method (attribute) vehicles and that automo-

273

biles are a special kind of vehicles.

In OrSQL we would write the following query:

SELECT Y.color

FROM X IN employee

FROM Y IN X.vehicles

WHERE Y IN automobile

0.1)

Here, the variables are ranging over objects; X.vehicles

is a path expression which can be read as “apply me-

thod vehicles on object X”. In general, a path may have

arbitrary length.

XSQL contributes to this kind of languages the con-

cept of selectors, which may be used to specify inter-

mediate results in a path. Using selectors we can write

more concisely:

SELECT Z

FROM employee X, automobile Y

WHERE X.vehiclesM.color[Z)
(1.2)

In this example, the selectors M and [Z] are used to re-

strict an intermediate result (vehicles have to be auto-

mobiles) and to provide a result-position for the query

(the color is placed in Z).

A more calculus oriented proposal for path expres-

sions is given in pV93]. Here the usage of class names

in a path is allowed making possible the following que-

ry:

(Z 1 employee.vehicles.

automobile.color[Z]} (l-3)

Even though the above approaches provide quite

elegant techniques to access objects, we can observe

certain limitations, as far as path expressions are con-

cerned.

Path expressions in all languages we are aware of

can only be applied in one dimension. Starting from a

certain object, a composition of method applications

can be specified, where each application, if the respec-

tive method is defined, references result objects. It

would be nice, if we could also refer to other methods

of such an object as part of the same path. For exam-

ple, in XSQL, if we want to specify that the vehicles

of interest should have 4 cylinders, to our knowled-

ge, there is no way to express this in the same path.

Instead, we have to break one path into two and in

general, into many pieces, which leads to the following

solution:

SELECT Z

FROM employee X, automobile Y

WHERE X.vehiclesM.color[Z]

AND Y .cylinders[ll]

(1.4)

What is missing is a second dimension which would

allow us to refer to the properties of any object that

is referenced in a path without having to leave that

path. While the first dimension goes into depth, this

second dimension would go into breadth.

Another way to increase the flexibiity of object ori-

ented models is to introduce virtual objects or clas-

ses ([AB91, KLW93]), which correspond to views in

the relational model. While the technique used in

XSQL builds on function symbols in a way proposed in

[KW93], [AB91] propose a referencing technique based

on methods (attributes). The latter approach seems to

be more natural for path expressions; however no for-

mal semantics of this approach has been presented. In

the current paper we use methods to define and refe-

rence virtual objects and give formal semantics to this

technique. Moreover, because methods can be control-

led by signatures, virtual objects may be defined w.r.t.

given type restrictions.

We propose a language called PathLog, which, on

the one hand, gives interesting solutions to the pro-

blems mentioned above, and, on the other hand, ex-

tends the application area of path expressions to rule

languages. The techniques we shall propose are appli-

cable for different kinds of rule languages, e.g. deduc-

tive, production or active rules. This generality holds

because path expressions are a convenient tool to refe-

rence objects; the way in which a set of rules is being

evaluated is an orthogonal issue.

Despite the independence from certain evaluation

paradigms, we discuss our techniques in a deductive

framework. This provides us with a generally accepted

terminology and a rigorous basis of semantics. Mo-

reover, this decision is quite natural for us, because

PathLog builds upon F-logic [KLW93]. PathLog ex-

tends the syntax of F-logic by path expressions and

proposes a direct semantics for the enhanced syntax.

As only a small subset of F-logic is relevant for the

274

exposition of PathLog, the current paper still is self-

contained.

The structure of the paper is as follows. We first

present some characteristic features of PathLog (secti-

on 2). Next we introduce the terminology used throug-

hout the paper (section 3). Syntax and semantics

of PathLog follow in section 4 and section 5. Secti-

on 6 contains a discussion of interesting properties of

PathLog. Section 7 finally gives a conclusion.

2 A First Look at PathLog

One striking characteristic of PathLog is its convenient

concise syntax. We extend path expressions by a ge-

neral means to specify properties of objects referenced

within a path. For example, for each employee X, the

path

X:cmployee[age+30; city+newYork]

..vehiclts:automobiles[cylinders+4]

.color[Z]
(2.1)

provides us with a reference to the colors of the vehic-

les of X, which are automobiles with 4 cylinders, if X is

30 years old and lives in newYork. If such a car indeed

exists for employee X, variable Z will contain the cor-

responding color. As usual, variables are capitalised.

Note that in this kind of path expressions we can

distinguish two dimensions. The first dimension is gi-

ven by the composition of method-applications syn-

tactically expressed by . (scalar methods) and . . (set-

valued methods). The second dimension is given by

a bracketed list of expressions in order to assert pro-

perties of the objects referred to inside a path; only

those objects are referenced, which fulilll the specified

properties.

Using a notation in the style of SQL, (2.1) becomes

SELECT Z

FROM employee X, automobile Y

WHERE X[age+30; city+newYork].

vehicles[cylinders+4]M.color[Z]

(2.2)

The reader may have already noticed the similarity

to molecules as they are used in F-logic. Here the

question arises, how much PathLog does add to the

known languages, if we abstract from syntax.

Two observations are worth to notice. On the one

hand, in the setting of PathLog a path may be treated

as a reference to objects. As a consequence of thib

first view, in PathLog a path may be used wherever we

expect an object. Therefore, we can extend molecules
by allowing path expressions also inside molecules. For

example, in (2.2) we can replace [. . .+newYork] by

[. . . dX.boss.city], (2.3)

to indicate that we are only interested in the color of

those vehicles, whose owner lives in the same city as

the respective boss.

On the other hand, a path may be treated as a for-
mula. In (2.2) a path was used inside the WHERE-

clause and thus is assigned a truth-value. In fact,

PathLog allows these two views under the same roof:

a path may be treated as a reference and as a formu-

la. Modifying (2.2) according to (2.3), the sub-path
X.boss.city is treated as a reference while the whole

path in the WHERE-clause corresponds to a formula.

To further demonstrate the impact of the second

dimension in path expressions in PathLog, we discuss

one more example. Consider the following OrSQL que-

ry which asks for those managers X who have a red ve-

hicle produced by a company located in Detroit where

X itself is the president of that company.

SELECT X

FROM X IN manager

FROM Y IN X.vehicles

WHERE Y.color = red

AND Y.producedBy.city = detroit

AND Y.producedBy.president = X

This query in OpSQL requires two FROM-clauses and

a conjunctive WHERE-clause. The result of the set-

valued path X.vehicler is treated as a class; hence the

second FROM-clause is necessary to flailen this set of

objects explicitly.

In PathLog, takiig advantage of the possibility to

mutually nest paths and molecules, we may combine

scalar and set-valued paths in one reference. The abo-

ve query may be expressed by a single reference:

X : manager..vehicles[color+red]

.producedBy[city-tdetroit;president+X]

275

There is no necessity in PathLog to flatten the set

of vehicles owned by a manager explicitly, since the

methods color and producedBy are applied to each of

the vehicles in turn.

extensional part, but existing in the intensional part

only.

We are not aware of any other language, which al-

lows path expressions in a comparable generality. In

OtSQL a path can only be used as a one-dimensional

reference. In XSQL a path can be used as a one-

dimensional reference or formula, however semantics

is only sketched by a transformation into F-logic, whi-

le we will give a direcl semantics in this paper. In fact,

this direct semantics of paths in PathLog gives rise to

many interesting semantic implications.

On the language level there is no need to distinguish

between extensional and intensional information, as

may be seen in example (2.4), where one mechanism

is sufficient to reference both the (intensional) address

and the (extensional) city and street of a person. For

this reason, we do not stress the difference between

methods and attributes.

Our direct semantics allows to use a path also to

reference virtual objects. Adopting an example from

[AB91], the following rule defines addresses as virtu-

al objects for persons with given attributes city and

street:

X.addrcssfcity-+X.city;

rtreet+X.street] +- X : person. (2.4)

To simplify the framework, objects also denote clas-

ses and methods. Thus, the methods and classes used

in the previous examples formally are objects; e.g. in

(2.1), vehicles and automobile are names for objects

which are used to denote a method and a class, re-

spectively. As a direct consequence, class-membership

reduces to a binary relation on objects. When objects

denote methods, they may be overloaded according to

their scalarity and arity. Thus, an object may be used

to denote a scalar method as well as a set-valued one,

and an object may be used to denote methods with

different numbers of arguments.
In this example, address-related attributes of persons

are restructured into one new address object for each

person. For each person X, X.address is used as a refe-

rence to the virtual address-object defined for X. Here

we use methods (like address) to reference virtual ob-

jects; we do not need function symbols as in F-logic,

or, with a similar aim, virtual class-names as in XSQL.

Our approach has two benefits. First, our framework

is simpler than it is in F-logic, because methods can

do the same job function symbols had to do in that

framework.’ Second, methods can be controlled by si-

gnatures to make type checking techniques applicable.

Our simple setting can now be summarieed as fol-

lows. Let A/ be a set of names. For simplicity, we

don’t distinguish between objects and values, thus n/

also includes integer numbers and strings. The alpha-

bet of PathLog then consists of N, a set of variables Y,

auxiliary symbols, logical connectives and quantifiers.

Formulas in PathLog, e.g. rules, are then defined as

usual, the only difference here is that literals are built

out of path expressions, which will be defined formally

in section 4.

3 Basic Terminology

For the purposes of this paper, objects are assumed to

be distinguishable and are further described by their

state and their class-membership. The state may be

defined ettensionally, i.e., by a given set of objects to-

gether with their (stored) attributes, or intensionally,

by defining results of methods using rules. A virtu-
al object in this setting is an object not given in the

To define a formal semantics we need a semantic

skuciure (cf. [KLW93]), I, which can be perceived as

a set of objects with their properties. From a semantic

structure I we can obtain all the needed information

about a certain set of objects.’ As usual, the set of

all objects U is called the universe. Then, a semantic

structure I is a tuple

Here, the function IM : n/ H U maps names to ob-
jects. The class hierarchy E” E U x U is a partial or-

‘In fact, it is possible to replace the usual type constructors, 2For the following, it is crucial to understand that a semantic

e.g. cons by methods. A discussion of this aspect, however, is structure covers extensionally given and intenaionally defined

beyond the scope of the current pspcr. aspects.

276

der telling us how objects are related to classes. I-, L.

interpret methods, i.e., define the state of the respec-

tive objects. I, is a function which assigns to each

element of U a partial function Uk ?+ U, when this

element is used as a scalar method with k - 1, h 1 1,

arguments. I, refers to set-valued methods and thus

assigns a function U” H 2” to each element of U,

when this element is used as a set-valued method with

k - 1, k 1 1, arguments; however, set-valued functions

are total, slightly contrasting to [KLW93].3

4 Syntax of PathLog

In thii section we will formally define the syntax of

PathLog. We will introduce paths and molecules. Sin-

ce paths as well as molecules are means to denote ob-

jects, they can be mutually nested in a very liberal

way: in a molecule, wherever a (sub-) molecule is al-

lowed, we can also use a path; in a path, wherever a

(sub-) path is allowed, a molecule can be used. The

refore, both hinds of expressions are called references.

References are distinguished according to their scala-

rity, i.e., they are either set-valued or scalar.

4.1 References to Objects

The most simple form of a reference are names and

variables. Such simple references act as starting points

for more complicated references. A path consists of a

reference followed by a method call, e.g. .spouse, while

a molecule consists of a reference followed by a filter,

e.g. [boss+mary]. Note how paths and molecules may

be mutually nested: a path

maryspouse

is a reference and may therefore be used as part of the

molecule

mary.spouse[boss+mary]

which in turn may again be used as part of the path

mary.spouse[boss+mary].age

31t turned out that we arrive at a rather opaque semantica
if inside s path we have to distinguish between an undefined

set-valued method and a method which returns the empty set.

to access the age of the object. It is also possible to

nest terms inside a filter, e.g. the name mary may be

further specified as in

mary.spouse[boss+mary[age +25]].

We first define rather general references; however,

not all of them meet well-formedness as defined later.

Definition 1 Given an alphabet of PathLog, the set

of all references can now be defined inductively as fol-

lows.

l Anamen~A/andavariableX~Visarefe-

rence, also called a simple reference.

l If t is a reference, then the expression (t) is a

reference, also called a simple reference.

l If ti (0 5 i 5 k), t; (1 5 j 5 1) and 1, are

references, and if t,, t, are simple references,

- then the expressions

tO.tm@(tl,. . .rtk)r

to..t,@(tl,. . . ,tk)

are references, also called paths.

- then the expressions

to[LQ(t1, - *.dk)+I,

tO[tmQ(tl,...,tk)~(t:,...,t;}],

tO[tm@(tl,. . .,tk)-'t+],

to : t,

are references, also called molecules. to is

called the prefix of the molecule and the ex-

pression [LO.. .I, resp. : t,, its filler. q

Methods may be called with parameters, e.g.

john.salary@(1994), denoting john’s salary in 1994.

When methods are called without parameters, we will

omit the parenthesis and the @-symbol, i.e., write ma-

ry.boss instead of mary.boss@(). In a sequence of fll-

ters, e.g. mary[age+30][bossdpeter], all elements are

applied to the first reference, which is mary in this

case. To stress thii fact we write as a shorthand

277

mary[age+30;boss+peter], i.e., a reference with a list

of filters is a molecule as well.

The XSQL-style of selectors e.g. in

X..vehicles.color[Z] is used as an abbreviation for a filter

specifying the built-in method.self; the above example

therefore is interpreted as X..vthicles.color[self-(Z]. For

every object the method self yields the object itself.

References surrounded by parenthesis are used to

change the usual left-to-right evaluation sequence of a

reference. To give an example, let kids be a method

that yields the children of a person. Since kids itself is

an object, we could therefore apply a method to this

object. Here, we use a method transitiveClosure or tc

with the following intention: applied to an object in

the role of a method, e.g. kids, it yields a new method

computing the transitive closure of that method, which

is denoted by the path kids.tc.’

Applying this new method to a person mary we have

to use parenthesis:

mary..(kids.tc) (4.1)

Note the difference to writing mary..kids.tc: here we

apply kids to mary, and on the resulting set of persons,

the method tc is applied (which probably does not

make any sense).

A second point is that, on the one hand, the path

kids.tc is a scalar reference, since it denotes a single

object, i.e., the result of the invocation of the method

tc on the object kids. On the other hand, in path (4.1)

this single object is used to denote the invocation of a

set-valued method.

4.2 Scalarity and Well-formedness

A reference may contain scalar methods as well as set-

valued methods. However, set-valued methods cannot

appear at every syntactical position. To thii end, refe-

rences have to be well-formed. Before giving a precise

definition we present some motivating examples.

While the path

pl.age

‘The actual definition of this method by means of PathLogL

ruler will follow in Section 6.

denotes the result of the application of the scalar me

thod age on pl, the path

pl..assistants (4.2)

denotes the result of the application of the set-valued

method assistants, i.e., the set of all assistants of pl.

To restrict the possible elements of this set, we may

use a filter. For example,

pl..assistants[saIary+1000] (4.3)

denotes the set of all assistants of pl whose salary is

1000. Set-valued references can now be used instead

of explicitly given sets of objects. Instead of writing

p2[friends+(p3,p4}] (4.4)

we may replace the explicit set by a set-valued refe-

rence:

p2[friends+pl..assistants] P-5)

This formula states that all the assistants of pl are

friends of p2. Note that in contrast to (4.3) the for-

mula (4.5) does not denote a set of objects, it merely

specificies a property of one object, p2, although it

contains the set-valued reference pl..assistants. But

thii reference does not determine the scalarity of the

molecule, because for molecules, only the prefix, here

p2, determines the scalarity of the entire molecule.

Definition 2 Let ti (0 5 i 5 k) be references and t,,

t, simple references. A reference t is set-valued, X one

of the following conditions holds:

l t is a path of the form to..t,Q(tr, . . . ,tk),

l t is a path of the form te.t,@(ti, . . . ,th) where

(at least) one of the ti (0 < i 5 k) or t, is a

set-valued reference,

l t is a molecule to[. . .] or to : t, where the reference

to is set-valued,

l t is a simple reference of the form (to) where the

reference to is set-valued.

Otherwise, a reference is scalar. Cl

According to thii definition the path

278

pl..assistants.salary

is set-valued, because the scalar method salary is in-

.voked on every member in the set of assistants of pl.

Thus, this path denotes the set of salaries of pl’s assi-

stants.

Certainly, a set-valued reference cannot be used at

every syntactical position in a reference, e.g. in formula

(4.6) it is obviously incorrect to assign a set-valued

reference as result to a scalar method:

p2[boss+pl..assistants] (44

Let paidFor be a method by which we can compute

the price a person paid for a vehicle. This method

is applied to a sel of vehicles which is passed to the

method as a parameter:

pl.paidFor@(pl..vehicles) (4.7)

denotes the set of prices which pl paid for all her ve-

hicles.

The reason for the restrictions on the usage of set-

valued references in molecules is that a filter in a mo-

lecule has to be unambiguous. Consider, e.g. the fol-

lowing molecule similar to the path in (4.7):
Definition S

pl[paidFor(P(pl..vehicles)+1000] (4.8)
l The filter of a molecule t is called well-formed ifT

the following conditions are fulfilled:

- if t = to[t,Q(t1, . . . , tk)-&], then t,, all ti

(1 5 i 5 k) and t, are scalar references,

- if t = to[t,Q(tl, . . . , tk)-m], then t, and

all ti (1 5 i 5 k) are scalar references and s

is either a set valued reference or an explicit

set {ti,..., ti} where all t[i (1 5 j 5 1) are

scalar references,

- if t = to : t,, then the class t, is a scalar

reference.

l A reference is called well-formed if alI filters men-

tioned in it are well-formed. The set of all well-

formed references is denoted by 1.
0

In other words, the scalarity of a reference at a re-

sult position has to agree with the scalarity of the cor-

responding method call; furthermore, it is not allowed

to use set-valued references as methods, arguments or

classes in molecules.

Formulas in PathLog can now be defined as usual.

Every well-formed reference may be used as an atomic

formula, which in turn may serve as a basis to build

literals, clauses and rules.

Well-formedness only restricts the usage of set-

valued references in molecules, but not in paths. Thii

interesting feature of PathLog is further demonstra-

ted by the following example showing a path with a

set-valued argument.

Again, the argument of paidFor is given by the set-

valued reference pl..vehicles, which in general denotes

several objects, i.e., vehicles. Neither of the following

interpretations seems natural to us: we could define

that for at least one arbitrary argument belonging to

the set of pl’s vehicles the invocation of the method

paidFor on pl yields 1000, or we could define that for

all of pl’s vehicles as argument the invocation of paid-

For on pl has to yield 1000. Loohing back at definition

3 we see that the filter in (4.8) does not fit the first re-

striction and therefore the reference is not well-formed.

5 Direct Semantics of PathLog

For semantics, on the one hand we are interested, whe-

ther certain statements (formulas) about some objects

are true or false under a given semantic structure I.

On the other hand, for ierrns specifying the applica-

tion of a method (or a composition of applications of

methods) on some object, we like to know, which ob-

jects are denoted by these terms in I. For these two

aspects we need appropriate notions of entailment and

valualion.

In our setting, the semantics covering both mole-

cules and paths in their various forms is surprisingly

simple, since they may simultaneously be considered

as a formula, having a truth value, as well as a term,

denoting au object. For thii reason, we regard both

molecules and paths as references. Let’s see, how these

two views go hand-in-hand.

Let I = (V, E”, IM, I-, I,) be a semantic structure.

279

If we ask for entailment of a molecule t = to[. . .] in I,

we have to check whether the object denoted by to

fuKlls all specifications given in the filter [. . .] of t.

Consider now the entailment of a molecule t with

an empty lisi of filters, i.e., t = to[1. Obviously, no

specification has to be fuMlled, but to has to denote

an existing object. But in case to is a path, it can

not be t&en for granted that such an object exists.

A method call may be undefined for a certain object:

for a bachelor john the path john.spouw does not de-

note an object, consequently, this path is considered

false. Thus, a path is entailed by I if the object being

denoted by this path indeed does exist.

The idea that a path denotes certain objects is re-

flected by a valuation. The use of a valuation function

with respect to paths is motivated by the similarity

between a function symbol in first order predicate cal-
culus and a method, because both are interpreted by

functions. Therefore, a path of the general form

tO.ml.m2 . . . mk,

where no is a method (1 5 i 5 k), can be considered

as a composition of (partial) functions

m(. . .m2(m(t0)). ..).

As a direct consequence, because the interpretation

of the methods can be obtained from I, i.e., is given

by the respective I-, the compositional expression can

be evaluated by simply inspecting the given semantic

structure I.

Molecules can now be treated in an analogous fa-

&ion. Since we may use molecules inside a path or

molecule, we are interested in the objects denoted by

this molecule. Consequently, we also define a valuation

for molecules.

It turns out, that once we have given a semantic

structure, we can conveniently switch from one view

to the other.

Next we will make thii introductory discussion more

concrete. To deal in a uniform framework with refo
rences not denoting an object and to deal with set-

valued references, we define a valuation function to

yield sets of objects. In the case of a scalar reference,

these sets are either a singleton or empty.

As long as variables are considered, a valuation is

as usual a function

a:V-U

mapping variables to objects. This variable-valuation

is extended to references w.r.t. a given interpretation,

yielding a function

Assume that a(X) = u. Then, using-the correspon-

ding valuation function &, evaluating &(X..assistants)

yields the set of assistants of u. The evaluation of

&(X.spouse) yields the empty set, if u is a bachelor,

or a set containing u’s spouse, otherwise.

Definition 4 A variable-valuation is a function CY :

V I+ U mapping variables to objects. This valuati-
on is extended for a given interpretation I to a func-
tion @J mapping references to sets of objects, i.e.,

flz : 7 H 2’. Let ti (0 5 i 5 k), t,, ti (1 5 j 5 1)

be references and t,, t, simple references. For a well-

formed reference t E I, the valuation p,(t) is defined

to be the smallest set fuHlling the following conditions:

1. If t = X E V is a variable, then

2. Ift=nEA/isaname, then

3. If t = to.t,@(tl,. . .) tr;) is a path, then for all

objects w E @z(ti) (i E (m, 0,. . ., k}), such that

G?(%&o, * - -, urn) is defined, there holds:

I!?(%&o, - * -, 4 E PZW

4. Ift = to..t,@(tl,. . ., tk) is a path, then for alI

objects w E pz(ti) (i E (m, 0,. . . , k}) there holds:

I(l)(%)(Uo, * * *, Uk) c_ PZW

5. Ift = &, : t, is a molecule, then for all objects

ui E P,(G) (i E (c, O}), such that

there holds uo E p,(t).

280

6.

7.

a.

If t = tO[ttnO(tlr.. . (tk)+t,] is a molecule, then

for all objects ui E &(ti) (i E (m,r, 0,. . ., k}),

such that I$+‘(u,,,)(u,, ,...,uk) isdefined and

~!?(%&‘O, . . . I Uk) = %,

there holds ~0 E PI(t).

If t = to[t,O(tl,. . .) tk)+t,] is 8 mOkde, then

for all objects TV E PI(&) (i E (m, 0,. . . , k)), such

th8t

e%4n)(uo ,*-,uk) > &(t,),

there holds u. E p,(t).

Ift = t&,@(tl, tk)+{ti, ti)] is 8 mo-

lecule, then for all objects ui E PI(&) (i E

ho,..., h)), such that

c?(um)(uo ,...,uk) _> s,

where S is defined below, there holds ~0 E @z(t).

S is the set resulting from evaluating the ti, i.e.,

s={UE/3~(t;)~~E{1,...,2}}.

0

As already mentioned before, entailment may then
be defined w.r.t. valuation.

Definition 5 Let I be a semantic structure, t a re-

ference and a a variable-valuation. Let further /3z be

the valuation function implied by a and I. A reference

t is entailed by I w.r.t. a, i.e., I ba t, S&(t) # 0. 0

Entailment of literals and clauses is defined as usualz

I~(I~AII~~~I~~~~~~I~=,~;I~=,~V~
iff I ba t$ or I kQ 3; I ka -4 iff not I k=p 4.

The meaning of quantifiers is standard: I t=(I (VX)q!

((3X)4) iff for every (some, resp.) a’ that agrees with

a everywhere, except possibly on X, I b=o~ 4 holds.

For a closed formula, we may omit the valuation a.

Rules are implicitly V-quantified; entailment is defined

based on the clausal form.

The aim of the following discussion is to further cla-

rify the relationship between entailment and valuation.
The expression (used as a fact)

pl[m+pl..assistants[salrry-+1000]]. (54

defines a method m, such that pl..m denotes the set of

all assistants of pl with a salary of 1000. The same set

can be defined by using a molecular style a la F-Logic:

i4-4)01 +
pl[assistants+{X[salary+lOOO]}]. (5.2)

Although in both cases the same set is ddined, the

semantic ezplanation is different. In (5.1), the set of

all those assistants is determined by valuation and as-

serted to be the result of m applied on pl. Howe

ver, in (5.2) entailment of the body defines that pl

has at least an assistant X, whose salary is 1000. V-

quantification and entailment of the rule implies that

the head of the rule is entailed for all such as&tints X.

Here, the variable X does range over the set of objects,

i.e., the universe, and is nol bound to a set of objects

(cf. [KW93]).

Note that every reference evaluates to the set of all

objects denoted by this reference, where in the case of a

scalar reference we get a singleton set or the empty set.
Thus, we can handle scalar and set-valued references

in the same way, e.g. applying a method to a reference

t means to apply this method to every member of the

set p,(t), but not to apply the method to the set itself.

Furthermore, the invocation of a set-valued method on
a set of objects again yields a flat set of objects, but

not a set of sets. This philosophy prevents from having

multiply nested sets and the need to flatten sets.

In the following example we apply a set-valued me-

thod, e.g. project!, to a set-valued reference:

pl..assistants..projccts

The valuation of this reference does not denote a set of

sets, but simply the set of projects of pl’s assistants.

6 Programming in PathLog

After having presented the semantics, we now discuss

rules in more detail and give PathLog solutions to some

interesting problems.

Rules are a means to define intensional knowledge;

we can distinguish intensionally defined methods and

virtual objects.

In the next example, we use a rule to define an in-

tensional method which is defined for already existing

objects:

281

X[power +v] +

X:automobile.cngine[powerdY]

The result of thii rule is to extend all given automobile-

objects by a method power, derived from their engine’s

power. Here, existing objects are equipped with addi-

tional methods - no virtual objects are defined. This
is in contrast to the following, where a path in a rule

head may lead to the definition of virtual objects:

X.boss[worksFor+D] +

X : l mployee[worksFor-+D]. (6-l)

This rule states that employees and their bosses work

for the same department. Assume that only the infor-

mation pl:employee[worksFor~csl] is given. The me-

thod boss is not defined extensionally for pl, however,

this rule defines a uitiual object, the boss of pl. Thii

virtual object can be referenced by applying boss to

p1.J

In contrast to (6.1) the following rule states that

only employees and their already defined bosses work

for the same department:

Z[worksFor+D] +

X : l mployee[worksFor+D].boss[Z]. (6.2)

Our approach to virtual objects diiers from the

view mechanism in XSQL. There, a new class

EmployeeBoss has to be defined as a view (6.3), and

the view’s name simultaneously serves as a function

symbol, so the defined object has to be referenced by

Em ployeeBoss(pl):

CREATE VIEW EmployeeBoss

SELECT WorksFor = D

FROM Employee X

OID FUNCTION OF X

WHERE X.WorksFor[D]

(6.3)

In our setting, using methods instead of function sym-

bols to define virtual objects makes function symbols

like EmployeeBoss superfluous, and thus simplifies the

query language and makes the typing system usually

defined for methods (cf. [KLW93]) applicable for vir-

tual objects.

While scalar references when used as a rule head

SOf course, iffor some object a boss-objectis already defined,

then this rule only affects the worksfor-method.

may define virtual objects, the semantics of set-valued

references as rule heads is a bit problematic. Consider

a rule head with the set-valued reference:

pl..assistantr[salary+1000] + . . .

We can distinguish two different cases: If no assistant

at all is already defined, this rule will define exact-

ly one assistant with salary 1000 - analogous to the

scalar case. But, assuming that assistants of pl are al-

ready defined, according to definition 5 this rule head

is entailed if there is at least one assistant with sala-

ry 1000. Thus, the miniial way to satisfy this rule

head leads to a non-deterministic semantics in the ca-

se of pl having several assistants: only one arbitrary

assistant is required to have thii salary. Since in ge-

neral this object can not be uniquely determined, we

suggest to forbid set-valued references in rule heads.

However, set-valued methods may be defined in rule

heads, possibly involving set-valued sub-references in

a scalar reference like in (4.5).

Now we define a set-valued method desc, which

computes the transitive closure of a given method kids:

X[desc-n(Y}] + X[kids+{Y}].

X[desc+(Y}] + X..desc[kids-n(Y}].
(64

We may define this method even more concisely using

the facts:

X[desc+X..kids].

X[desc+X..desc..kids].
(6.5)

While in (6.4), the descendants are bound to the va-

riable Y, here the sets are treated in their entirety.

Moreover, while in (6.4) we use recursive rules, (6.5)

has to be read as fkpoint equations. Thii further em-

phasises the flexibility and conciseness of PathLog.

If we want to define the transitive closure indepen-

dently of the concrete method kids as a generic ope-

ration (similar to [CKW93]), we can take advantage

of the fact that kids formally is the name of an object.

Consequently, we can also apply a method to this ob-

ject. For our purposes, we define a method tc, which,
applied to kids, yields a new method, which computes

the transitive closure of kids. This new method is de-

noted by the path kids.tc. Since a path may be used

at any syntactic position, even at the method positi-

282

on, we may replace the method desc in example (6.4)

by the method kids.tc. Generalizing from the concrete

method kids by introducing a variable M, we can define

transitive closure as a generic operation:

X~W-tc)+Wl + X[M-w(Y}].

ww-4vI + X..(M.tc)[M+{Y}].

Now, given the following facts,

peter[kids+{tim,mary}].

tim[kids+{sally}].

mary[kids++{tom,paul}].

applying kids.tc to peter yields

peter[(kidr.tc)+{tim,mary,saIly,tom,paul}].

To evaluate rules in PathLog well-known bottom-

up techniques may be applied. In one situation, where

a path denotes the result of a set valued method in a

rule body, stratification of the rules becomes necessary

in a similar way to [NT89]. A rule of the following

structure

. . . + X[friends++pl..assistants].

should only then be applied, if the set of pl’s assistants

is already defined. However we would like to stress

that in all other cases the treatment of sets in PathLog

does not imply stratification (cf. O-Logic [KW93]).

7 Conclusion

This paper presents PathLog, a rule language, who-

se basic building blocks are paths and molecules.

PathLog generalizes path expressions in several ways.

A second dimension is added to path expression which

makes it possible to use only one path in situations

where known one-dimensional path expressions requi-

re a conjunction of several paths. In addition, a path

expression can also be used to reference virtual objects.

We have shown by several examples how to adopt path

expressions generalized in this way to object oriented

SQL dialects.

Because of the generality in syntax, expressions in

PathLog allow to query objects in a very compact way;

however, PathLog has a concise direct semantics, such

that even in those cases its use remains transparent

to the user. Moreover, even though we have presen-

ted PathLog in terms of a deductive rule language, the

main ideas of PathLog can be also applied in the con-

text of other kinds of rule languages, e.g. production

rules or active rules.

Acknowledgments

We would like to thank the referees for their insightful

comments on an earlier draft of this paper. Our collea-

gues, Bertram Lud&scher und Paul Th. Kandzia, have

contributed much to thii work by many vivid discus-

sions. Our thanks go also to the students in our group

implementing a prototype of PathLog. Especially, we
appreciate the suggestions of Thorsten Pferdekiimper

and Till Westmann, which improved the design of the

language.

References

[AB91]

[BCD92]

[CKW93]

[Fis87]

[GV92]

[Kim891

S. Abiteboul and A. Bonner. Objects and

views. In Proc. of the ACM SIGMOD Con-

ference on Management of Data, pages 238-

247, 1991.

F. Ban&on, S. Cluet, and C. Delobel. A

query language for Oz. In Fran9ois Bancil-

hon, Claude Delobel, and Paris Kanellakis,

editors, Building an Object-Oriented Data-

base System - The Story of 02, pages 234 -

255. Morgan Kaufmann, 1992.

W. Chen, M. Kifer, and D.S. Warren. Hi-

Log: a foundation for higher-order logic

programming. Journal of Logic Program-

ming, 15(3):187-230, February 1993.

D.H. Fishman et al. Iris: an object-oriented

database management system. In ACM

Transaction on Ofice Information Systems,

pages 48-69, 1987.

G. Gardarin and P. Valduriez. ESQL2: An

object-oriented SQL with F-Logic semanti-

cs. In Proc. of the IEEE Intl. Conference on

Data Engineering, pages 320 - 327, 1992.

W. Kim. A model of queries for object-

oriented databases. In Proc. of the Intl.

283

Conference on Very Large Data Bases, pa-

ges 423-432, 1989.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Query-

ing object-oriented databases. In Proc. of

the ACM SIGMOD Conference on Mana-

gement of Data, pages 393 - 403, 1992.

[KLW93] M. Kif er, G. Lausen, and J. Wu. Logical

foundations of object-oriented and frame-

based languages. Technical report 93/06,

Department of Computer Science, SUNY

at Stony Brook, April 1993. To appear in

JACM.

[KW93] M. Kf i er and J. Wu. A logic for program-
ming with complex objects. Journal of

Computer and System Sciences, 47(1):77 -

120, August 1993.

[NT891 S. Naq vi and S. Tsur. A logical Language

for Data and Knowledge Bases. Computer

Science Press, New York, 1989.

[VV93] J. Van den Bussche and G. Vossen. An ex-

tension of path expressions to simplify na-

vigation in object-oriented queries. In Proc.
of the Intl. Conference on Deductive and

Object-Oriented Databases (DOOD), pages

267 - 282, 1993.

[Zan83] C. Zaniolo. The database language GEM.

In Proc. of the ACM SIGMOD Conference

on Management of Data, pages 207 - 218,

1983.

284

