
Implementing Lazy Database Updates for an Object
Database System

Fabrizio Ferrandina Thorsten Meyer Roberto Zicari

J. W. Goethe-Universitiit
Fachbereich Inform&h

Robert Mayer St&e 11-15
D-60054 Frankfurt am Main, Germany

(ferrandi,thorsten,aicari]~dbis.informatih.uni-f&nkfurt.de

Abstract

Current object database management systems support
user-defined conversion functions to update the database
once the schema has been modified. Two main strategies
are possible when implementing such database conversion
functions: immediate or lasy database updates. In this
paper, we concentrate our attention to the definition of
implementation strategies for conversion functions imple-
mented as lasy database updates.

1 Introduction

Schema evolution in an object databm system (ODBS)
refers to the ability to change both the schema and con-
sequently the database. Every time a schema is modified
then the database has to be updated to be brought up to
a consistent state with respect to the new schema.

Some commercial ODBSs on the market allow both
updating the schema and the database.

A schema can be changed normally using special prim-
itives, see for example [19]. In few systems, as a conse-
quence of a schema change, the database is also modi-
fied using user-defined conversion functions [4], [12] which
tahe as input parameters the old and new schema class
definitions and when executed transform the objects of
the database to conform to the new schema.

Permirrion to copy without fee all of part of thiir material ir gnmt-
cd provided that the copier are not made or dirtributed for direct
commercial advantage, the VLDB copyright notice and the title of
the publication and itr date appear, and notice ir giwen that copying
is by pemiesion of the Very Large Data Bare Endowment. To copy
other&e, or to republirh, nquirer a fee and/or special permirrion
from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

The body of a conversion function defines the desired
database transformation, and it is normally defined using
the data manipulation language offered by the ODBS, e.g.
c++ [4], [12].

The designer has to define a conversion function for
each mod&d class in the new schema. System default
transformations are applied in case no explicit conversion
functions are given by the designer [4], [9], [12], [18].

What is important for the application designer is that
after definition of the appropriate conversion functions,
the entire database must be in a consistent state with
respect to the new schema.

From an implementation view point, conversion func-
tions are updates to the database. There are mainly
two strategies for implementing database conversion func-
tions: immediate and lasy’ [8].

In the first case, all objects of the database are up
dated immediately after the definition of the conversion
functions. In the second case, objects are updated on-
ly when used (i.e. conversion functions are executed only
when objects are effectively accessed by applications).

Both implementation strategies have pros and cons. In
particular, supporting immediate database updates may
cause overall performance degradation if class extensions
are not maintained by the database system. For some
systems the lasy update implementation is a preferable
strategy. However, this implementation decision should
not be of concern to the schema designer and ultimately
to the end user.

This paper concentrates on how to implement user-
defined conversion functions using lasy database updates.

We will point out a number of problems that need to be
solved in order to provide a “correct” implementation of
conversion functions as lasy database updates and show a
way to solve them. In particular our definition of correct-
ness will require that execution of a conversion function

‘Lasy updeks arc also c&xl deferred updatea.

261

implemented as a lazy database update be equivalent to
the execution of the same conversion function as ifit were
implemented with an immediate database update.

The rest of the paper is organised as follows: in Sec-
tion 2 we will present by means of an example how conver-
sion functions are defined and associated to one or more
schema transformations. Conversion functions enable the
schema designer to instruct the database system how to
change the objects in the database.

In Section 3 we briefly compare the two implementa-
tion strategies to implement conversion functions: imme-
diate and lazy. In Section 4 we point out that, when
implementing conversion functions as database updates
using a lasy approach, special care has to be paid to con-
version functions which use objects of different classes.
We call such conversion functions complex. In Section 5
we present our approach in implementing conversion func-
tion as lazy database updates. We will show the data
structures and present three algorithms in details that
we use for implementing such data base transformations.
We will also show how immediate updates can be im-
plemented using the basic algorithms for lasy database
updates. In Section 6 and 7 respectively we will review
relevant related work and present the conclusions.

2 User-defined Conversion Functions

We want to show in this section how conversion functions
are normally defined and associated to a modified class.
For more details the reader is referred to the user manuals
of database systems such as for example ObjectStore [12],
Gemstone [4].

Changing the schema in an ODBS implies changing
the database, i.e. the changes to the schema have to be
“propagated” to all objects in the database. We will refer
to this activity as database transformation. The database
system should perform the database transformation after
a schema modification has been made. Transformation
of a database object means changing its internal struc-
ture and its value. Changing the object internal format
is a task of the database system and it is done automat-
ically without need of manual assistance by the schema
designer.

Changing the object value is mainly an application-
dependent task. The solution is for the schema design-
er or application builder to write a conversion function
which tells the database systems how to change the val-
ue of the objects, and then to associate such conversion
function to the appropriate class that has been changed.

If no conversion function is provided for a modified
class, the system associates a default conversion function
to each modified class in the schema.

In the rest of the paper we will assume applications
that always work with the most recent schema definition,
i.e. no notion of class or schema versioning is used.

We will use throughout the paper the 02 Object
Database System when giving examples [l], [lo]. Howev-
er, the results presented here are general and applicable
to a broader class of ODBSs.

Let us consider at time to we have defined the following

tima to:
class Employee type tuple (name: string,

monthly-salaly: real,
company: Company)

end;

class Company type tuple (name: string,
n-employees: integer,
employees : set(Employee))

end;

If the designer wants to change this schema, say at
time tl, and modify attribute monthly-salary of class Em-
ployee from monthly-dary to yearly- salary, he/she will
have to write a conversion function that tells the system
how to compute the value of the yearly-salary and how
to change all salary values of objects of class Employee
already existing in the database.

This is exactly what is done by the modsalaxy conver-
sion function associated to the updated class Employee:

tima t1:

modify class Employee type tuple (name: string,
yearly-salary. real,
company: Company)

with conversion function mod-salary (

I
new-syeady-salary=oId-smonthly_salary*12;

end;

In the conversion function “-9 returns the attribute
value of an object. Old refers to an object conforming the
format of class Employee before the modification has been
performed, whereas new refers to the same object after its
modification. In the conversion function the transforma-
tion is not defined for all the attributes of class Employee
but only for the attribute yearZy_saZary. This is because
we assume default conversion functions are always ezecut-
ed on objects before a uset-defined conversion function is
ezecuted. This simplifies the writing of user-defined con-
version function. In fact, in the example, there is no the
need to write trivial transformations such as:

lleU-hEUll~ = old->name,
new-Xompany = old->company.

These transformations are taken into account by de-
fault conversions2 .

Note that a user-defined conversion function is not a
property which is “inherited” in subclasses. For each sub-

lFor reasons of brevity we do not show here the default trans-
formation rules. Default conversion functions are automatically as-
sociated by the system to all modified classes in the schema. De-
fault transformation rules transform existing objects to conform
to the new class defmition preserving, whenever possible, the old
information.

262

&MS of a modified class, an explicit conversion function
has to be defined or the default transformation will be
used.

3 Immediate vs. Lazy Database Updates

As we mentioned before, two implementation strategies
can be used to implement conversion functions:

1. Conversion Functions as Immediate Database
Updates: with this approach the database system exe-
cutes the conversion functions on all objects of the mod-
ified classes as soon as the modification on the schema is
performed. All objects of the database are transformed
logically and physically to be consistent with the new
schema definition before any program can use again the
database.

The advantage of this solution is that after execution
of the conversion functions the entire database is in a
consistent state wrt the new schema.

The problems with this approach are:

l All running programs have to be suspended until the
application which updates the database is finished.
The time when the database is locked cau be very
long depending on specific parameters (e.g. sise of
the .database, type of update performed, object re-
trieving strategy, etc.).

l All objects of the modified classes have to be updated
at once. This could be expensive, especially if the
system does not manage class extensions.

2. Conversion Functions as Lazy Database Up-
dates: with this approach objects are expected to Zog-
ically conform to the new schema after the change to the
schema has been performed, but they are physically re-
structured and transformed by conversion functions only
when they are used. Every time and only when an object
is accessed and it is in an old format (and value), then it
is transformed to the new definition (and value) consis-
tent with the current definition of the schema. Note that
the schema may undergo several changes before an object
is used. No database transformation is done if objects are
not used, and most important only the objects that are
effectively used are transformed, and not all objects of
the modified classes as in the case of immediate updates.

The advantage of this solution is that we do not have to
lock the entire database to execute a conversion function.

The problems with this approach are:

l There is the need to store and “remember” the his-
tory of all schema updates that have been performed
in the system.

l Every time an object is accessed by an application,
a test has to be done in order to chech whether the

object is already in the new format/value or not,
i.e. if the object has to be updated or not.

We believe it is important that whatever strategy is
chosen to implement conversion functions by the database
system, there should be no difference for the schema de-
signer as far as the result of the execution of the conver-
sion functions is concerned [7J.

This leads to our notion of correctness of a conversion
function implementation. A correct implementation of a
conversion function satisfies the following criteria:
Equivalence criteria:

The result of a conversion function implemented by a
lazy database transformation has to be the same ad if the
same conversion junction were implemented by an imme-
diate database transformation.

4 Implementation Problems of Lazy
Database Updates

From now on we consider an implementation of a conver-
sion function correct if it satisfies the eq.uivalence criteria
defined in Section 3. Special care must be tahen when
implementing user-defined conversion functions with lasy
database updates.

In subsections 4.2 and 4.3 we show two important
problems that have to be taken into account when imple-
menting conversion functions under the above assump
tion. First we give some basic definitions.

4.1 Complex and Simple Conversion Functions

Let us reconsider the definition of the schema Compa-
ny-schema after its last modification at time tl (see Sec-
tion 2).

Suppose at a later time, say t2, we have added the
attribute tot-emp-sakaries to class Company:

tima ta:
modify class Company type We (name: string,

n-employees: integer,
employees : set(Emplo
tot-emp-salaries: real r

ee),

with conversion function add-tot-salary (
emp: Em
total: r eat

loyee;

total = 0; ’
fomach (emp in ohS>employees) {

total = total + emg>
new-Mot-emp-salaries = tot J

early-salaly;
)

)
,

The attributes value is supposed to represent the total
amount of money paid by the company to all its em-
ployees. This is expressed by the conversion function
add-totsalary associated to the class Company.

Assume later, at time ts, we modify the type of the
attribute company of class Employee to be a tuple instead
of a reference to another class:

263

the t3r

modHy class Employee type tupla (name: strip,
yearly_salaryz real,
company: tuple (name : string,

n-employees: integer,
tot3mp_salaries: real))

wtth conversion function mod-salary (
new->company.nam~ld->company->name;
new-x-ompany.n~employees = old-xompany->n-employees:
new->company.totemp_sa)aries = old-xompany-ztoLemp_salarlee; 1

and;

Let us now assume we make a final modification at
time t4 deleting the attribute n-employees from the class
Company:

tiu t4r

modify class Company type We (name: string,
employees : set(Empioyee),
totempgalaries: real)

end;

The modification performed at time t4 does not have
any conversion function associated to it. This means that
the default conversion is used for the transformation of
the objects.

We should note in the example the difference be-
tween the conversion function modsalary associated
to Employee at time tl and the conversion function
mod-company defined at time t3 . For the first one the
value of a “restructured” object of class Employee is com-
puted using only the object’s local value. The second one
instead uses the value of an object belonging to another
class in the schema, i.e. class Company.

This is an important distinction when implementing
conversion functions, as we will see in the rest of this sec-
tion. We will then classify conversion functions as follows:

a Simple conversion functions, where the object trans-
formation is done using only the local information of
the object being accessed (see the conversion func-
tion defined at time tl).

l Complez conversion functions, where the object
transformation is done using objects of the database
other than the current object being accessed (see the
conversion functions defined at time ta and t3).

4.2 Correctness

Implementing complex conversion functions requires spe-
cial care, as it will be shown in this section.

Let objects e1 and c1 of class Employee and Company
respectively be conformed to the class definitions of the
schema as defined at time t2 (see Figure 1).

Recalling our definition of correct implementation of a
conversion function (see Section 3), the expected result
of a lasy transformation of el and cl should be equiva-
lent to the result obtained with an immediate database
transformation.

In the example, if the immediate transformation were
used, this would require that at time ta all objects of class

Figure 1: Object el and cl conforming to their class def-
inition at time t2.

Company must be transformed before the modification
on Employee at time t3 can tahe place. The same is true
at time ts: all objects of class Employee must conform
to the new definition of the class before the update on
Company at time t4 can be performed3. In Figure 2 the
modifications to objects el and cl respectively at time t3

and t4 are shown.
Therefore, any correct implementation of conversion

functions using lasy updates in the example has to result
exactly in same values for objects el and cl defined at
time t4 as shown in Figure 2.

Suppose that at time t4 objects el and cl have not
been accessed by an application since time tz. Since we
use lasy updates, their structure is not changed from the
one they had at time ta. If at time t,, with t4 < t,, an ap-
plication accesses object cl, then cl will be restructured
by the system and its new value is computed by applying
the default transformation. In Figure 3 the restructured
object cl is shown at time t,.

If, at time tb, with t& < tb, object el is accessed, el will
be restructured as well and its new value will be computed
by applying mod-company defined at time t3 (see Figure

3).
The bad news is that mod-company accesses object cl

via the attribute n-employees. But cl now does not have
anymore all the information required for the transforma-
tion of el because it lost the attribute n-employees when
it was transformed at time t,. In this special case, the
execution of mod_company would result in a run-time type
error. In general, using default values for the restructured
object el does not solve the problem, as it could result in
an incorrect database transformation.

An additional case when the equivalence criteria is not
satisfied arises in the example when attribute n-employees
is not deleted from class Company, but its value in object
cl is changed at time t, before object el is transformed
at time tb. In the immediate database transformation the
value read from cl would have been the one of cl at time
t3 and not the one at time t,. In this case we say that

sTo keep the exposition simpler, we suppose that an immediate
database update is launched every time a modification on a class has
been performed. I.e. at time ti, all objects of the updated class arc
traneformed before the modification at time ti+i is considered. The
dts we prcscnt can be gcncralised to the case of an immediate
transformation launched after more than one class tran8fonnation
is performed.

264

Figure 2: Evolution of objects cl and el using the immediate database transformation.

Figure 3: Evolution of objects cl and el using the lasy database transformation.

the lasy and the immediate database transformations are
not time-equivalent.

To summarise, the example shows that complex con-
version functions cannot be mapped into an arbitrary se-
quence of lasy database updates to avoid generating in-
correct database transformations.

In Section 5 we will present two algorithms for imple-
menting simple and complex conversion functions using
lasy database updates, which guarantee correct database
transformations. In the same section we will also out-
line a third possible alternative implementation, known
as screening.

4.3 Cycles

The second problem that need to be solved in the im-
plementation of conversion function with lasy database
updates is that of cycles .

Let us reconsider in our example the schema modifl-
cations performed at time t2 and t3. Both class modifr-
cations are associated to a complex conversion function.
Note that add-totsalary defined at time tz (associated
to class Company) “uses” information belonging to ob-
jects of class Employee, and mod-company defined at time
t3 (associated to class Employee) “uses” information be-
longing to objects of class Company. This situation leads
to a cycle in the history of conversion functions and, as
we will see, to some problems during objects update.

Suppose, at time t, > t4 an application accesses an
object c2 of class Company which is in a format conform-
ing to the definition of the class at time tl (see Figure
4). The conversion function add-totsalary is applied in
order to convert the object to the subsequent definition
along the class history. Suppose now that the function
accesses the object e2 of class Employee which is in a for-
mat conforming to the definition of Employee at time tl

(see Figure 4). The object e2 will be transformed as well
according to mod_company. Unfortunately, mod-company
accesses the same c2 under transformation. This means
that, if no contra-measures are taken into account, the
system would try to transform c2 again because its for-
mat does not conform to the most recent class definition.

In order to avoid infinite loops, this cycle has to be
recognised and the system should not try to transform
c2 a second time.

After detection of the cycle, the transformation of e2
should continue. The conversion function mod-company
could use the information present in the old cf This solu-
tion does not always work properly. In fact, in the exam-
ple, mod-company needs the field tot-emp-salaries of ob-
ject c2, but the conversion of ct has been blocked before
the system were able to update the field tot-emp-salaries.
Therefore the cycle cannot be solved using the old infor-
mation of c2. In the rest of the paper we call these cycles
uc~Xcal”.

We will show some possible implementation strategies
that recognise cycles and prevent them to be critical in
Section 5.

5 Implementing Lazy Database Updates

6.1 Data Structure

In this section we present the data structure we will use
for the implementation of lasy database updates.

We assume that the physical format of an object, i.e.,
as it is internally stored, contains two parts: the object
header and the object value.

The object value part is used for storing values that
reside within the object, such as attribute values. The
object header contains, among other info, the identifier of
the object’s class descriptor (~1s) and the type entry iden-
tifier (tid) according to which format this object itself is

265

Figure 4: Cycle during objects’ transformation.

stored. Each of these two can be viewed as somewhat
special fields in the physical format of the object. This
is illustrated in Figure 5. Objects as described here are
supposed to be handled by an Object Manager and reside
in secondary storage.

cls tid
I

object header object value

Figure 5: General physical format of an object.

We also assume that a Schema Manager maintains
a set of class descriptors, each of which describes a
single class in terms of its properties - attributes and
methods- sub- and superclasses, etc.. To accommodate
lasy object change, a class descriptor contains a list tlist
of its former types. We call this list the type history list.
An entry in tlist contains the following fields:

the type type of this entry,

the type entry identifier tid, a simple integer num-
ber, which helps in identifying to which entry an ob
ject of the class belongs,

a field which contains a reference to a conversion
function cf that is used to convert objects conform-
ing to the format of this entry to the next type entry’
in tlist,

a pointer next for list linking purposes that identifies
the entry of the prior type entry.

For the moment, we consider tlist to be a linked
list, in which newer entries occur first: the list is in a
chronologically descending order. The current type e&y
of the class (i.e. the most recent) is supposed to be kept in
a similar ent as the entries mentioned above, but then
in the class des \ iptor proper, as is illustrated in Figure 6.

The ath entry of tlist can be accessed using the ar-
ray notation tlist Gil, whereby tlist CO1 refers to the
current type entry.

A simple integer variable called schema-state is asso-
ciated to the schema. The schema-state is incremented
every time a schema change modifies the structure of a
class and therefore a new entry has to be created in the
history.

‘A next type entry of a class is a type cntry that chronologically
follows the type entry at hand.

cnmwl! VP enny

original tjpe version

type
7 6 4 1 tid

I
cf

c -- -- -- next

Figure 6: A class descriptor with its type history list.

Essentially, in lasy modality, schema updates only deal
with the schema, and not with the objects. The objects
are not changed at schema update time. In this situation,
a new entry will be created at the beginning of tlist, and
the contents of the current type entry of the class will be
copied verbatim to it. The schema-state is incremented
and it is assigned to the tid field of the current entry
in the class descriptor. The cf-field information in the
new entry of tlist points to a conversion function, if
one has been provided by the designer. Otherwise the
value remains nil.

The test for determining whether an object o is in cur-
rent format wilI thus amount to checking whether the
type entry identifier of o equals the type entry identifier
of the current type of the class:

o->tid == o->cls-Xid (1)

The test for determining whether a user-defined con-
version function has to be applied to an object o which is
not in current format is:

o->cls->t.listCnl->cf != nil (2)

whereby n corresponds to the nth entry in tlist where
o->cls->tlist Cnl ->tid == o->tid. If the test returns
true, the conversion function attached to tlist Cnl will
be applied on o and overwrites the default transforma-
tion.

To support class deletions, the Schema Manager needs
to maintain an additional data structure that we call
DeletedXlasses. This is a list of class descriptors, each
in the form of Fire 6. It is the administration of for-
merly existing classes, including their type history lists.
Whenever a class ceases to exist it is placed in this list
and removed from the list of current classes. Objects of a
deleted class remain in the database, therefore their value
can still be used by conversion functions.

266

In what follows we assume that the restructuring of 8n
object is done by the system which preserves the Object
Identifier (Oid) of the object itself. This means that when
a class definition has been changed, there is no need to
change application code or other objects that reference
instances of the modified class. A similar approach is
used by Versant [18].

5.2 Basic Algorithms

In this section we show a basic algorithm to perform l8sy
database updates and how this algorithm can be used to
implement immediate database updates.

The basic lasy database update algorithm is used by
the system for transforming an object o conforming to 8n
old ckss definition in the schema to its current (the most
recent) definition:

Algorithm Lazy

while (o-Aid <> o-AsAd) do (
createvariabletemp; Pternphasthesametypeasthatypeotobjacto’/
copy 0 in temp;
restructure o in order to confom to the next

definition of the class history;
apply the default conversion on 0;

Pthedsfaulttrsnsfcnns~tskssthsvalusin
te4npMdpelfclmssthsttarc3f~cno;‘/

find the nth entry in tlist where (o-As-Mlist[n]-> - o-Aid)
if (o-As->tlist[n]-xf I= nil) (

Pifacanversionfunclionh89beenprovidedforthe~ormation.I
apply the user-defined cf on o;

o-Aid = o-xls->tlist[n-l]->tid;
P update ths tid of o looking at ths chronolcgically subsqusnt entry in tlii *I
free temp;

I

We want to show now how it is conceptually possibh
to implement immediate 18s~ database updates by using
the basic 18s~ algorithm:

~1

In the implementation of the immediate transforma-
tion of objects of a class using the lasy approach, the
system has to access each object in the class extension.
Every time 8n object is accessed, the system launches the
laay algorithm for the transformation. After the system
has accessed the last object of the extension, 8ll the ob
jects of the class conform to the current definition.

If extensions of classes 8re not provided, alternative
algorithms have to be used, according to the persistent
model of the system. In 02 , for instance, the alternative
approach could be to access 8ll objects of the database

starting from the root of persistence and following the
links connecting one object to another. Only when 8x1
object of the modified class is accessed, the Algorithm
Lazy is then executed.

5.3 Correctness of Execution of Simple Conver-
sion Functions

The euunple presented in Section 4 points out an inter-
esting implementation problem: how to define a uc~rrect”
execution of conversion functions when implemented 8s
lasy database updates. We should not forget, that the
problems described in Section 4 refer to the implemen-
tation of complex conversion functions. We give 8 first
result, 8s expressed by the following theorem:
Theorem 1 The result of the execution of simple con-
version functions implemented as a k&sy database tmns-
formation (basic algorithm of Section 5.2) is equivalent
to executing the same conversion functions implemented

as an immediate database transformation.
Proof sketch The proof uses the induction principle

over the numbers of schema updates that 8re performed
before accessing an object.

One schema update Let e&(X) be the extension
of the class X and zi E ext(X) be an instance of X. Let
sui be an update on X + X,,,, at time tl with con-
version function cf. In the immediate transformation,
Vxi E ext(X), cf is applied at time tl. In the lasy trans-
formation, cf is applied to ai only when accessed for the
first time, i.e. at a time tzi > tl. Vzi E ext(X), the value
of xi at time tl and t,; is the same, therefore the value
of xi after execution of cf at time tl and tzi is the s8me.
If the value of xi were not the same at time tl and t,;, xi
would have be-en accessed at a time tl with tl < ta < t,;,

but this in in contrast with the assumption that the first
8ccess t0 Xi iS 8t time tsi.

Multiple schema updates Let 8~1,. . . , su, be a
sequence of updates on X done at time tl < . . . < t,.

Assume the first access on xi be at time ts4 > t,. If
the equiv8lence is proven for n updates between time tl

ad hi, then the equivalence is proven also in c8se of an
additional update sh+l at time tn+l (tm < &,+I < tzi).

Because of the assumption, Vxi E ext(X), the value of
Xi after 8 lasy execution of cf 1,. . . ,cf n at time t,, corre
spond to the one obtained after an immediate execution
of Cfl , . . . ,cf, at time tl, . . . , t,,. The value of ti before
cf ,,+I is executed is the s8me both in immedi8te and l8sy,
therefore the value of Xi,,, after execution of cf,,+l is
also the same. Cl

As a direct consequence of Theorem 1 a simple so-
lution for ensuring a %orrect” l8sy execution of conver-
sion functions is to allow only simple conversion functions.
With this limitation, the problems encountered with the
implementation of the conversion functions described in
Section 4 do not apply. This approach is used by some

267

commercial systems, such as Itasca [9] and Versant [18].
We believe this solution is too restrictive to be used

in practice. Instead, we concentrate in the next subsec-
tions in defining some implementation strategies to allow
a correct implementation of complez conversion functions.

5.4 The Pessimistic Mix-in Database Transfor-
mation

The first algorithm is called Pessimistic Mix-in and
works as follows: after a complez conversion function is
associated to an updated class, an immediate transfor-
mation is always launched on the specifled class to imple-
ment the database transformation. On the contrary, for
database objects for which a simple conversion function
has to be executed, the transformation is deferred until
they are effectively used. We can assume the system to
perform automatically the “switch” from lasy to imme-
diate and back to lazy when necessary. The switch pro-
cess should be transparent for the schema designer. The
drawback of this approach is that an immediate transfor-
mation of objects is launched even when not needed.

Algorithm Passimistlc Mix-in
if the schema modification on a class X uses a complex cf (

apply Algorithm Immediate on class X;

foreach subclass Y of X do (

if Y has changed the structure(

apply Algorithm Pessimistic Mix-In on class Y;)))

This approach avoids storing a complex conversion
function in a class history. In this way, by Theo-
rem 1, the execution of conversion functions is always
correct. Moreover, since no complex conversion functions
are present in the history of classes, no cycle will occur
during the update of the objects and time-equivalence is
preserved.

5.5 The Optimistic Mix-in Database Transfer-
mation

We show now an alternative implementation strategy to
implement complex conversion functions, that we call op-
timistic mix-in transformation. The basic idea behind
this approach is to avoid as much as possible the use
of the immediate database transformations. In contrast
to the pessimistic mix-in approach, the system does not
launch an immediate transformation every time a com-
plex conversion function is associated to a class, but ody

before executing those schema modifications which would
compromise the equivalence with the immediate database
transformation or lead to critical cycles.

The optimistic mix-in algorithm is useful for the class
of systems for which an immediate transformation of ob
jects in the database is a too heavy operation and need
to be avoided whenever possible. It is also preferable

to the pessimistic mix-in database transformation when
delaying a running applications is a major performance
factor. The price to pay for having an optimistic mix-in
database transformation consists in managing additional
data structures what we call a dependency graph.

Definition: The dependency graph G is a tuple
(V, E), extended by a labeling function I : (V x V) + A.
V is a set of class-vertices, one for each class in the
schema. E is a set of directed edges (v,w) v, w E V.
A is a set of attribute names. An edge (v, w) indicates
that there exists at least one complex conversion function
associated to class w which uses the value of objects of
class v. The function Z(v,w) returns the names of the at-
tributes of class v used by conversion functions associated
to class w.

Evolution of the schema implies changing the depen-
dency graph associated to the schema. By looking at the
dependency graph it is possible to identify when an imme-
diate update has to be performed due to a deletion of an
attribute used by previously defined conversion functions.
The use of the graph is shown with our usual example,
the Company-schema.

In Figure 7 the evolution of the dependency graph for
the schema Company-schema from time to till time t3 is il-
lustrated. The conversion function defined at time tl uses
only local defined attributes, therefore no edge appears in
the graph. At time ta and t3, the edges are added to the
graph because of the definition of the complex conversion
functions add-totsalary and mod-company.

@@ E E

Employee

E iI

(rrpme.
~wYawt (yeplly_snlaryt n-~Pw=~

QmpMY lotew-* t

(FJ@ c c

al t1 a t3

Figure 7: Evolution of the dependency graph of schema
Company-schema

The dependency graph has to be checked by the sys-
tem every time an update to the schema modifies the
structure of a class. If a schema update results in an at-
tempt to delete attributes needed by conversion functions
previously defined, then it is implemented with an imme-
diate database transformation on the appropriate classes
before actually updating the schema.

At time t4, when the attribute n-employees is deleted
from the class Company, the system would detect an edge
in the dependency graph labeled with n-employees. Be-
fore performing the deletion of the attribute in the class
Company, the immediate database update is launched on
the extension of class Employee.

Note that in contrast to the pessimistic mix-in ap
proach, the immediate database transformation is used

268

m lcLcmp_rrlh triggem m,famldm Of e4

Figure 8: Objects e4 and c4.

only when deletion or modification of information could Figure 8 shows the initial format of objects e4 and
compromise the correctness of lasy execution of conver- c4 conforming to the definition of the schema Compa-
sion functions. ny-schema at time to.

However, this solution does not prevent cycles to ap
pear in the dependency graph (see the cycle at time t3
in Figure 7). The presence of a cycle, as already pointed
out in Section 4.3, could block in an irreversible way the
evolution of the objects in the database. Moreover, even
if a solution is found to avoid infinite loops, a strategy has
to be used which treats the situation of what we called
critical cycles in Section 4.3.

The approach has to be changed as follows:

l To detect cycles when updating the database, a mark
is set on each object o which is under transforma-
tion. The mark can be implemented as a bit flag in
the header of the object. When an object which is
marked is accessed a second time, the system rec-
ognizes the presence of a cycle and no conversion is
performed on the object.

l To avoid critical cycles we stop the tmnsformation
of the objects before having reached the current state.
Only the object o which is accessed by an application
will be transformed up to the current definition in the
schema. Objects which are accessed by a conversion
function cf used for transforming o are converted up
to the entry in the history of the class which corre-
sponds to the class definition “visible” by cf at the
time when it was defined. The concept of visibility is
modeled by the schema-state of the schema and, as
a consequence, by the tid's attached to each entry
in the type history list of a class.

When object c4 is accessed at time t,, t3 < t, < t4,
the conversion function add-tot-salary transforms c4 to
conform to the next entry in the class history, i.e. the
one with tid = 3. Add-totsalary accesses e4 whose
tid = 1. When accessed, object e4 is transformed by
modsalary to conform to the history entry with tid =
2. After the transformation e4 is in the format needed by
the conversion function add-totsalary because its tid
is < 3 whereas the one in the subsequent entry in the
history (tid = 4) is > 3. Therefore, e4 can be used as
it is and its conversion is stopped. Since the conversion
function mod-company is not executed, no critical cycles
occur. Add-totsalary can continue the transformation
of c4 up to the current entry in tlist. If, subsequent-
ly, e4 were accessed by an application, the appropriate
information for the update would be found in c4.

To support a la&y transformation which may be
stopped before the object has reached the current for-
mat, the basic Algorithm Lazy presented in Section
5.2 has to be modified into what we call the Algorithm
Bloekable Lasy:

Algorithm Blockable Lazy (up-to-tid: integer)

Suppose cf performs a transformation from an entry
in tlist with tid = i to an entry with tid = j. The
schema-state when cf has been defined was j-l (see Sec-
tion 5.1). The type of the other classes cli in the schema
visible by cf is the one found in their nth tlist entry
where:

cli-Xlist Cnl -Xid < j

while (o-Ad < up-to-tid and o not mariced) do {
Pifoisnotalreadyimrolvedinatransformalion,thencomrertittoconform

to the endy in tlii whose tid = up-to-tid ‘/

create variable temp; P temp has ths ssms type ss ths type of object o ‘1
copy 0 in temp;
rsetn~cturs o in order to conform to the next

definition of the class history;
mark 0; P ussful for avoiding infinite loops ‘I
apply the default conversion on o;
find the nth entry in tlist where (o-xls->tlist[n]-Ad = o-Ad);
if (o-As->tlist[n]-xf I= nil) {

and the chronologically subsequent entry (if any)
cli->tlist Cn-11 ->tid >= j

The state of the schema when a conversion function is
defined makes the system understand up to which entry
an object accessed by a conversion function has to be
transformed5.

1
apply the user-defined cf on o;

o-Aid = o-xls->tlist[n-l]-Aid;
unmark 0;
free temp;

1

As for the Algorithm Lasy, the Algorithm Block-
able Lazy is executed by the system every time an ob-

51t might be the case that objects accessed by a of have a tid
2 j. In this ame no transformation is triggered OP them because
they cm already containing the information needed by cf.

269

mlyViSibbDSplQ
I4 la lb

Figure 9: Evolution of objects cl and e1 using the screening approach.

ject is accessed in the database. This modified algorithm
differs from the basic Algorithm Lazy (Section 5.2) be-
cause of the input parameter up-to-tid indicating the
entry in the class history up to which an object has to be
transformed. The optimistic mix-in database transfor-
mation makes use of the Algorithm Bloc&able Lazy
when objects are accessed. We assume that the system
can distinguish between the cases where an object has to
be transformed up to the current entry in the class his-
tory, from the case where the transformation has to be
stopped up to a generic entry in the history of a class 6.

The definition of algorithm Optimistic Mix-In is giv-
en in the next box. The algorithm is executed by the sys-
tem every time the schema is modified by the designer.

5.6 Screening

We present now an alternative implementation strategy
known with the name of screening. Screening resembles
the pure lany approach, i.e. no immediate transformation
has to be launched for updating the database. Basically,
when some information is deleted from the schema, it is
only logically filtered out, but not physically deleted in
the database. When, for instance, a deletion of an at-
tribute (or a change in the type which would correspond
to a deletion and an addition of the same attribute) is
performed, the update is not physically executed on the
object structure but simply a different representation of
the object is presented to the user. With this approach,
the Schema Manager is in charge of managing the dif-
ferent representations of the objects (one representation
visible to applications and one representation visible to
conversion functions).

We illustrate how this strategy works using our exam-
ple. Figure 9 illustrates the example presented in Section
4.2 (where the attribute n-employees has been deleted
at time t, from object c1 of class Company) using the
screening approach.

Using screening at time tb the conversion function
mod-company this time can be executed because the in-
formation it needs has not been physically deleted, it is
still in the object.

If no space optimisation is taken into account, since
information is never deleted in the objects, the sise of

6For keeping the exposition simpler, WC do not show here how
the system infers up to which entry an object has to be transformed.

Algorithm Optimistic Mix-in

switch depending on the type of schema change:
createdasex: V=V+(X);

PanewvertexisaddedtothedeperhqgraphY
delete daee X : Pthl3V6lteXXlSIWtdeletedffWilth6dependencygraph

bflCUWobjeds~XmigMbSaccessedby#wwersion~’l

modii dase X : ewkh depending on the kind of daes update:
delete attribute att-of-X :

Pa#dasseg~~-d~inadhavet0beupdated.I
for each Y where (X,Y) in E and attof-X in I(X,Y) do (

apply Algorithm Immediate on daee Y;
ramove all edges (v,w) from E where w=Y;
Prestrudun,theglaphaccordiitotha

immediate transfomMion on ckss Y ‘I

1
add attribute att-of-X :

foreah complex reference to an attribute att-of-Y
ofclassY inacomplexcf do{

addanewedge(Y,X)toEifit~note~t;
add {attof-Y) to the resulf of the labeling function I(X,Y);

1

modify type of attribute atof-X :
Pforthegraph,wecon&lerthisopWionasad&timfdlowed

byansddlhndthaatlrlbute*/
for each Y where (X,Y) in E and an-of-X in I(X,Y) do (

apply Algorithm Immediate on dass Y;
remove all edges (v,w) from E where w=Y,
PfWucturethegraphaaxxdiitoths

immediate transf~nnation on class Y ‘I
1
foreach complex reference to an attribute an-of-Y
ofclassY inacomplexcf do{

addanewedge(Y,X)toEifitdoesnote~st;
add (atof-Y) to the result of the labeling function I(X,Y);

1

the database risks to grow continuously. If disk space is
a performance factor, then a possible optimisation is to
physically delete the information in those objects which
will never be accessed by any complex conversion func-
tion. This can be easily obtained by checking the depen-
dency graph presented in Section 5.5. Objects of classes
which do not have any outgoing arrow in the dependency
graph should not contain deleted attributes because no
conversion function will ever use them.

Using a screening approach, critical cycles have to be
handled in a similar way as described in Section 5.5.

270 _

Algorithm Screening Blockable Lazy (up-to-tid: integer)

while (o-Aid < up-to-tid and o not marked) do (
create variable temp;
copy 0 in ternp;
restructure o in order to conform to the next definition of the class

history praserVng the information which has been deleted;

mark 0; P useful for avoiding infinite loops ‘/
apply the default oonvemion on o:
find the nth entry in list where (o+ds->tliin]->tid - o-Aid);
if (o-zds+tlist[n]->d != nil) (

apply the user-defined cf on 0;)
o-Aid = o-As->tfiin-l]->tid;
unrnark 0;
free temp;

When an object is accessed by an application, the sys-
tem executes an algorithm we call Screening Blockable
Lazy with a tid parameter according to the application
or the conversion function which accessed it. The alge
rithm Screening Blockable Lasy is presented at the
end of this subsection.

The main difference of this new algorithm with respect
to the Blockable Laay Algorithm presented in Section
5.5 is that the logical deletion of the attributes is tahen
into account. No physical restructuring of the objects
is needed when information is deleted from the schema.
Space optimisation is not considered in the algorithm.

Note that both the optimistic database transformation
and screening do not preserve the time-equivalence with
the immediate database transformation. If the designer
requires time-equivalence, he/she has to explicitly launch
the immediate database transformation after the schema
has ben modified.

6 Related Work

Not all available ODBSs provide the feature of adapting
the database after a schema modification has been per-
formed [14], [15], [17]. For those that do it, they differ
from each other in the approach followed for updating ob
jects. Some commercial systems support the possibility
to define object versions to evolve the database from one
version to another such as Objectivity [13] and Gemstone
[4]. Objectivity does not provide any automatical tool
to update the database besides the fact to provide ver-
sions. The designer has to write a program which reads
the value old-val of objects of the old version, computes
the new value new-val and assigns it to the correspondent
objects of the new version. The program can be written
in order to transform the database both immediately and
lasily. Gemstone, instead, provides a flexible way for up
dating the instances. It provides default transformation
of objects and the possibility to add conversion methods
to a class. Conversion methods can update objects either

in groups (for instance the whole extension of a class) or
individually. The transformation of the database is per-
formed lasily but manualIy, i.e. objects are transformed
on demand only when applications call the transforms-
tion methods. The problems pointed out in this paper
do not occur when versioning is used because objects are
never transformed, but a new version is created instead.
Therefore the information for the transformation of an
object can always be found in its correspondent old ver-
sion.

On the other hand, the majority of the existing com-
mercial available systems do not use versioning for up
dating the database. Applications can run on top of the
schema as defined after the last modification. Instances
are converted either immediately or lazily. ObjectStore
[12] mahes use of the immediate database transformation.
So called transformation functions, which override the de-
fault transformation, can be associated to each modified
class. Objects are not phyricully restructured, but a new
object (conforming the definition of the modified class) is
created in&ad. The transformation function reads the
value in the old object and assigns it (after having made
some modification on it) to the new object. All references
to the object have to be updated in order to point to the
new created object. This technique resembles the one
used by those systems providing versions, the only differ-
ence being that, after the transformation, the old objects
are discarded. Lasy transformation of objects is provided
in systems like Itasca [9] and Vewant [Ml. They both do
not provide the user with flexible conversion functions lihe
the one presented in the paper. Instead, they have the
possibility to override a default transformation assigning
new constant values to modified or added attributes of a
CIass.

Among prototype systems, we can mention Avarce [3],
CLOSQL [ll], and Encore [16] as those ones using ver-
sioning. Orion [2] uses a lasy approach where deletion of
attributes is filtered. Information is not physically delet-
ed, but it is no more usable by applications. No conver-
sion functions are provided to the schema designer.

Substantially, if we consider only those systems using
a lasy database transformation, no one is currently of-
fering to the designer conversion functions lihe the ones
presented in this paper. Updating the database using
only default transformation of objects is sometimes not
flexible and powerful enough.

7 Conclusions

In this paper we discussed the lasy database transfor-
mation approach and we presented implementation prob-
lems related to it. We introduced the notion of conver-
sion functions and showed that when complex conversion
function are used, problems due to deletion of information
and the presence of critical cycles can compromise the re-

271

sult of having a lasy database transformation which is
equivalent to an immediate transformation. The equiv-
alence can be preserved using one of the two algorithms
described in this paper which make use (one more heav-
ily than the other) of the immediate transformation. An
alternative strategy also shown is to use a screening ap
preach.

The decision which algorithm is to be used does not
have a simple answer. It depends on the object persis-
tence model associated to the particular ODBS.

We are currently evaluating the suitability of the al-
gorithms for different ODBSs, basically concentrating on
performance evaluations [S].

Acknowledgments

The work presented in this paper is partially supported
by the Goodstep project funded by the Commission of
the European Communities under the ESPRIT III pro-
gramme.

We would like to thank Rolf de By, Guy Ferran, and
Jiielle Madec for the interesting and stimulating discus-
sions which helped us to better understand the problems.

References

PI

PI

PI

PI

PI

PI

F. Bancilhon, C. Delobel, and P. Kanellakis eds.
Building an Object-Oriented Database System - The
Story of 02. Morgan Kaufmann Publishers, San Ma-
teo, CA, 1992.

J. Banerjee, W. Kim, H. J. Kim, and H.F. Korth. Se-
mantics and Implementation of Schema Evolution in
Object-Oriented Databases. In Pm. of ACM SIG-
MOD Conf. on Management of Data, San F~ancisco,
CA, May 1987.

Anders Bjornerstedt and Stefan Britts. Avance:
an Object Management System. In Proceedings of
OOPSLA, San Diego, CA, Sep 1988.

Robert Bretl, David Maier, ARan Otis, Jason Pen-
ney, Bruce Schuchardt, Jacob Stein, E. Harold
Williams, and Monty Williams. The Gemstone Da-
ta Management System. In Won Kim and Freder-
ick H. Lockovsky, editors, Object-Oriented Concepts,
Databases and Applications, chapter 12. ACM Press,
1989.

F. Ferrandina, T. Meyer, and R. Zicari. Implement-
ing Lasy Database Updates for an Object Database
System. Technical report no. l/94, J.W. Goethe Uni-
versitiit, March 1994.

F. Ferrandina, T. Meyer, and R. Zicari. L-Y
Database Updates Algorithms: a Performance Anal-
ysis. Technical report, J.W. Goethe Universit&t,
1994. In preparation.

PI

PI

PI

PO1

Dll

WI

[I31

[I41

PI

[I61

[I71

WI

1191

F. Ferrandina and R. Zicari. Object Database
Schema Evolution: are Lasy Updates always Equiv-
alent to Immediate Updates? Presented at the OOP-
SLA Workshop on Supporting the Evolution of Class
Definitions, Washington, September 1993.

G. Harrus, F. V&Ies, and R. Zicari. Implementing
Schema Updates in an Object-Oriented Database
System: a Cost Analysis. Technical report, GIP Al-
tab, 1990.

Itasca Systems, Inc. Itasca Systems Technical Re-
port Number TM-92-001. OODBMS Featwe Check-
list. Rev 1.1, Dee 1993.

C. LCcIuse and. P. Richard. The 02 Database Pro-
gramming Language. In Proceedings of the 15th
International Conference on Very Large Databases,
Amsterdam, Aug 1989.

Simon Monk and Ian SommerviIIe. A Model for Ver-
sioning classes in Object-Oriented Databases. In
Proceedings of the 10th British National Conference
on Databases, Aberdeen, Scotland, JuIy 1992.

Object Design Inc. ObjectStore User Guide, chapter
9, 1993.

Objectivity Inc. Objectivity, User Manual, Version
2.0, Mar 1993.

Joel E. Richardson and MichaeI J. Carey. Persistence
in the E language: Issues and Implementation. Soft-
ware - Practice and Ezperience, 19(12):1115-1150,
December 1989.

Bernhard Schiefer. Supporting Integration & Evolu-
tion with Object-Oriented Views. FZI-Report 15/99,
July 1993.

Andrea H. Skarra and Stanley B. Zdonik. Type Evo-
lution in an Object-Oriented Database. In Shriver
and Wegner, editors, Research Directions in Object-
Oriented Piwgramming.

02 Technology. The 02 User Manual, Version 4.9,
July 1993.

Versant Object Technology, 4500 Bohannon Drive
Menlo Park, CA 94025. Versant User Manual, 1992.

R. Zicari. A Framework for Schema Updates in
an Object-Oriented Database System. In Building
an Object Otiented Database System - The Story of
01. Morgan Kaufmann Publishers, San Mateo, CA,
1992.

272

