
OdeFS: A File System Interface to an Object-Oriented Database

N. H. Gehani
H. V. Jagadish
W. D. Roome

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract
OdeFS is a file-like interface to the Ode object-
oriented database. OdeFS allows database
objects to be accessed and manipulated with
standard commands, just like files in a traditional
file system. No recompilation is required, so
proprietary applications can access Ode objects.
OdeFS is implemented as a network file server,
using the NFS protocol. This paper describes
OdeFS and its implementation.

1. Introduction
Ode [2] is an object-oriented database based on the C++
object model [20]. The programming interface to Ode is
the 0++ database programming language, which extends
C++ with facilities for creating and manipulating persis-
tent objects, querying the database, specifying constraints
and triggers, and running transactions.

Using 0++ to access objects in the Ode database requires
writing an 0++ program. This can be just as inconvenient
as writing a C program for every ad hoc access to a
UNIX@ file. One solution is to develop a set of interac-
tive utility programs for displaying and manipulating Ode
objects, just as UNIX systems have a large set of tools for
manipulating files. For example, we could have special-
ized tools such as an Ode editor, Ode print, etc.

However, it takes a great deal of effort to develop, docu-
ment, and maintain such programs. Furthermore, it is
almost impossible to keep all these tools up to date as the
database, operating system, user interface technology, and
application needs all change over time.

We propose a different approach. Instead of moving
knowledge of Ode into utility programs, we move it into
the file system. The Ode File System, or OdeFS (rhymes
with Oedipus), provides a file-like interface to the Ode
database. To users, OdeFS looks like part of the UNIX
file system. OdeFS has regular files and directories, just
like any other file system. However, OdeFS also has

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not maak or distributed for direct commercial
advantkzge, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, CMIe, 1994

object files. An object file looks like a regular file, and
can be manipulated like one, but an object file is really an
alias for an object in an Ode database. OdeFS translates
operations on an object file into operations on that Ode
object. For example, when a program reads an object file,
OdeFS calls a read function that the user has provided for
the object’s class. That read function produces a file rep-
resentation of the object, which OdeFS then returns to the
program as the contents of the file.

Thus commands such as rm, cp, mv, vi, and grep can
manipulate Ode objects, by operating on OdeFS object
files. A file-oriented Graphical User Interface (GUI) can
display and select Ode objects. Because no code
modification or recompilation is required, proprietary
applications or applications written in other languages,
such as awk and Ada, can also access Ode objects.

Consider a group of workstations sharing a Network File
System (NFS) [17], and sending requests to a common
NFS server. OdeFS is also a network file server, and is
interjected between the clients and the standard NFS
server. When OdeFS gets a request for an ordinary file, it
forwards the request to the standard NFS server and
returns its response to the client. When OdeFS gets a
request for an object file, OdeFS uses the Ode database to
evaluate the object file and returns the appropriate
response to the client.

For each Ode class, the user must define a set of 0++
interface functions. These interface functions are in a sep-
arate class; the existing Ode class is not changed, and can
maintain the integrity of its objects. OdeFS calls these
interface functions when reading or writing object files for
that class of objects.

We assume that the reader is familiar with C++ [20] and
the UNIX operating system [6].

1.1 Related Work

There has recently been an explosion of interest in merg-
ing the functionality of databases and file systems. Much
of this work [L&9,16,18] organizes the data in a text file
so that sophisticated database querying can be supported.
We have done exactly the opposite. We have structured
data in an object oriented database, and would like to be
able to manipulate this data with the same ease as files,
without sacrificing the structure.

A more closely related stream of research deals with the
storage of data in a language and system neutral format,
and the support of convenient access through a variety of

249

languages and other interfaces. The Common Object
Request Broker Architecture (CORBA) [14,15,19] is one
example. The difference is that COREA implies a new
communication protocol between applications programs
and databases. To use CORBA, existing application pro-
grams, databases, and operating systems must be changed.
OdeFS uses an existing distributed file system protocol
(NFS), and allows existing file-oriented programs to work
on objects, even if those programs were never intended to
manipulate objects.

The Shore project [7] also provides a file system interface
to an object-oriented database (ODDB), but there are many
differences. Shore defines a new file system interface
dealing with structured files. Shore supports a UNIX-like
file system interface as a temporary measure, but they
hope that Shore’s new interface will eventually displace
both byte-oriented files and OODBs. OdeFS is a file sys-
tem interface to an existing OODB (Ode), and OdeFS
mimics the existing UNIX file system interface. OdeFS
co-exists with other Ode interfaces, namely O++, cql++,
and OdeView. We do not expect OdeFS to replace
unstructured byte-oriented files; we realize that many
tools exist for manipulating such files, and OdeFS allows
those tools to manipulate objects as well. Finally, Shore
requires the file representation of each object to be pre-
computed and stored in a designated field. OdeFS does
not require file representations to be materialized; instead,
OdeFS calculates them dynamically, on demand.

2, Design Goals And Decisions
2.1 Goals

The fundamental goal of OdeFS is to allow existing file
manipulation programs to manipulate objects. To see
why this is important, consider Figure 1, which illustrates
the conventional approach to manipulating Ode objects.
The Ode utility programs would be written in O++. They
would be similar to existing programs for files, but they
cannot be identical, so we would have to write and main-
tain them for Ode.

Ode (operations

Figure 1: Conventional Approach To Object Manipulation

Figure 2 illustrates the OdeFS approach, using standard
file manipulation programs. When run on files in OdeFS,
the operating system directs those file operations to the
OdeFS server, which translates them into 0++ operations
on the Ode database. Other 0++ programs can access the
Ode database in parallel with OdeFS.

virtual files read/write/open/close

Figure 2: OdeFS Approach

To see the advantage of OdeFS, suppose we have a large,
popular, file manipulation program, such as a text editor,
and we want to use it to manipulate objects. With OdeFS,
we can simply run the program: anything that manipulates
files can manipulate objects. The language the program is
written in is immaterial. Without OdeFS, we would have
to rewrite the program, turning file references into 0++
operations, and then maintain the rewritten version.

Another goal is that OdeFS should be object-compatible
with the other Ode interfaces. That is, OdeFS should be
able to manipulate the objects created with the other Ode
interfaces. These include 0++ [2,3,5,12,13], a program-
ming interface based on C++, cql++ [ll], an interactive
SQL-like interface for the relational database user, and
OdeView [4, lo], a user-friendly graphical interface for
the non-programmer.

2.2 NFS

We have implemented OdeFS as a network file server,
using the NFS protocol [171. As in Figure 3, client com-
puters treat OdeFS just like any other NFS server. A
client computer’s kernel translates system calls on OdeFS
files into NFS requests to the OdeFS server.

Client OdeFS Server

kernel kernel

Ethernet
I I

Figure 3: OdeFS as NFS Server

To be precise, when a program on a client computer
issues a system call for an OdeFS file, the client’s kernel
translates the call into an NFS request message, sends it to
the OdeFS server, and waits for a reply. The OdeFS dae-
mon process does the request and sends a reply to the
client. This daemon process uses standard services pro-
vided by the operating system; no kernel modifications

250

class person (
char lname[32], fname[%O]; // last & first names
char addr[60]; // address
persistent person* spouse; // -> spouse

public:
person(const char* name); // parse name as last,first
const char* getName(); // return last,first name
const char* getLname(); // return last name
const char* getAddr(); // return address
persistent person* getSpouse(); // return spouse (or 0)

// plus functions to get and update various fields
I;

// Create object for John Smith and set address:
persistent person* p = pnew person("Smith, John");
p->setAddr(*123 Main St");

// Print all "Smith" objects:
for (p in person) suchthat (strcmp("Smith", p->getLname()) == 0) (

tout << "Name " << p->getName() -z< endl;
tout << "Address n << p->getAddr() << endl;
if (p->getSpouse() != 0)

tout x-z "Spouse " << p->getSpouse()->getName() x-z endl;

// Remove all "Smith" objects:
for (p in person) suchthat (strcmp("Smith", p->getLname()) == 0)

pdelete p;

Figure 4: 0++ operations on persistent objects

are required. To the client’s kernel, the OdeFS server
looks like any other NFS server; to the OdeFS server’s
kernel, the OdeFS daemon looks like any other process.

The advantage of implementing OdeFS as a network file
server is that it can run as a user-level program, and multi-
ple clients can easily access it. The advantage of using an
existing protocol, such as NFS, is that many computers
already use it; we don’t have to change the kernels of the
client computers. We chose NFS over other protocols
because it is simple and is widely used. There are some
disadvantages to using NFS; see Section 8.8.

3. Overview Of Ode and 0++
0++ is C++ extended with persistence: objects may exist
between invocations of programs. Figure 4 shows a per-
son class, and uses 0++ to create and manipulate persis-
tent person objects (the next section will show how
these operations are done in OdeFS). First we create a
new persistent object, using the 0++ pnew operator.
This operator returns a persistenr pointer, in this case of
type persistent person*, and is otherwiseidenti-
cal to the C++ new operator. We can use persistent point-
ers just like regular pointers. In particular, we can use
them to call a persistent object’s member functions, which
Figure 4 does to set the address field.

0++ groups all persistent objects of the same type into a
type arent, or just extent. The 0++ for statement iter-
ates over all persistent objects in a given extent. The
optional suchthat clause restricts the loop to objects

that satisfy the predicate. Figure 4 uses these constructs
to print the name and address, and name of spouse, for all
objects whose last name is Smith. Finally, the 0++
pdelete operator deletes a persistent object, and is oth-
erwise identical to the C++ delete operator. Figure 4
uses this operator to delete all Smiths.

4. An Informal Introduction To OdeFS
4.1 Interface Functions

An objectfile, or @e, is an alias for an object residing in
the Ode database. OdeFS makes object files look like
(hard) links to regular files. OdeFS implements opera-
tions on object files by calling user functions defined for
the corresponding object class. These functions are not
defined in the persistent class; instead, they are in a sepa-
rate intelface class. The user provides the interface class
when adding a persistent class to OdeFS. This interface
class is derived from a class provided by OdeFS, which
provides default versions of the functions. Table 1 lists
the interface functions, and the Appendix gives an exam-
ple.

As an example, suppose that the user wants to display a
person object or a program wants to read a person
object. OdeFS calls the ofsRead function of the per-
son class. This function creates the object file represen-
tation seen by the program, and thus defines the object file
format. Our examples use a simple field/value format:

251

ofsName Return file name for object.
ofsRead Return object file for object.
0fsWrite Update object.
0fsCreate Create new object.
ofsFind Return object matching query.
ofsLookupRef Return referenced object.
of sReplaceRef Change referenced object.

Table 1: OdeFS interface functions

Name Smith, Sam
Address 123 Main St

However, OdeFS does not require this format, nor does
OdeFS require object files to be printable. The object file
format is completely determined by these user-provided
functions, and different objects can have different object
file formats. Similarly, when a user or a program updates
an object file for a person object, OdeFS calls the
of sWrite function for the person class. This func-
tion interprets the data written by the user, and updates the
object if the data is valid, or else rejects the write and gen-
erates an error message.

4.2 Simple Examples

In OdeFS, an extent directory, or edir, corresponds to an
Ode type extent. The person type extent, for example,
contains all objects of type person. The following com-
mands change to a previously-created extent directory for
person objects and lists its contents (the $ is a prompt):

$ cd person
$ 1s
:class :database :newobj
:objects :src :tsrc

Names beginning with a colon (:) are reserved by OdeFS.
For example, the file : class has the name of the class
defined by this extent directory, and :database is a
symbolic link to the Ode database containing this extent.
: src and : tsrc are directories containing the source
code for the interface class for this extent. : objects
and : newob j are object directories, or odirs. An object
directory holds object files (as above). The :newobj
directory is used to create new objects in the extent.
OdeFS creates a new person object whenever the user
creates a file in : newob j and writes to it:

$ echo "Name Smith,Sam" >:newobj/sam

This creates an object file named sam for the new object.
We can use ordinary commands to list the object files in
: newob j and display the newly created object:

$ 1s :newobj
SalIl

$ cat :newobj/sam
Name Smith, Sam
Address

The displayed object file is not identical to what we wrote
into it. The reason is that when we read an object file,
OdeFS calls the associated of sRead function, which in

this case inserts white space for alignment, and always
displays the address field, even if it is empty. We can
specify an address by just writing into the object file:

$ echo "Address 123 Main St" >:newobj/sam
$ cat :newobj/sam
Name Smith, Sam
Address 123 Main St

OdeFS passes the user’s data to of sWrite. That func-
tion parses the data, updates the address field, and does
not change the name fields.

The object directory : objects has an object file for
every object in this extent. The object file names in
: objects are determined by the of sName function;
here the form is last-name$rst-name, with no blanks.
We can list this directory, and use file name expansion to
display all the Smiths:

$ Is :objects
Gehani,Narain Roome,Bill
Smith,Ellen Smith,Sam
$ cat :objects/Smith,*
Name Smith, Ellen

. . .

4.3 Removing Object Files And Objects

In a UNIX file system, a directory entry is really a (hard)
link to a file. A file can have any number of links, and all
links to a file are equivalent. Removing a link just
removes that directory entry. The file itself is not
removed until its last link is removed. OdeFS treats
object files as links to objects. You can create and remove
object files by using the In and rm commands. Remov-
ing an object file removes a directory entry - a link to
the object - but does not remove the object itself.
Because the : objects directory has an object file for
each object, and because users cannot remove (or rename)
object files in : objects, a user cannot remove all the
object files for an object.

OdeFS can delete objects from the Ode database, but with
a different mechanism. Associated with every object file
is a read-only pseudo file representing the object itself.
To access this pseudo file, append : ob j ec t to the object
file name (we call this a pseudo file because these names
do not appear when listing the directory). OdeFS deletes
the object when the user removes this pseudo fiie, so the
following removes all Smiths:

$ for i in :objects/Smith,*
do rm $i:object; done

When OdeFS removes an object, OdeFS also removes all
of its object files.

4.4 Errors

A person object must have a non-empty name field.
This rule is enforced by the of sWri te function for the
person class. It also rejects any attempt to remove the
name. OdeFS then rejects the write request. In this case,
the of sWrite function generates an error message, and
OdeFS makes it available via the object file’s : err

252

pseudo file:

$ echo "Name* >:newobj/sam
write error: permission denied
$ cat :newobj/sam:err
Name field required

The error pseudo file has the error message generated by
the most recent update attempt on that object. The mes-
sage is cleared by a successful update.

4.5 Object Directories

Users can create their own object directories, by creating
an empty directory and either moving an existing object
file into it, or creating a link to an existing object file. The
following commands create an object directory and popu-
late it with object files for the authors of this paper:

$ mkdir authors
$ In :objects/Gehani,Narain authors/nhg
$ In :objects/Jagadish,H.V. authors/jag
$ In :objects/Roome,Bill authors/wdr

The link (In) command creates a new object file for an
object. Object files are like hard-links to files; updating
any object file for an object updates all of its object files.
Object files can have any name, and an object can have
any number of object files.

4.6 File Name Queries

In an extent or object directory, OdeFS treats a name in
the form of a simple query as an object file for the object
that matches that query:

$ cat *:Address=124 Burlington Rd"
Name Roome, Bill
Address 124 Burlington Rd

The user can treat this like any other object file.
Specifically, when the user opens a file name of the form
:name=value, OdeFS calls the of sFind function defined
for that extent, with the file name as the argument. That
function interprets the file name as a simple query, locates
the matching object, and returns a pointer to it. OdeFS
then treats it as an object file. If the query syntax is
invalid, or there is no such object, ofsFind returns 0,
and OdeFS gives the user a “not found” error.

4.7 Inter-Object References

A person object contains a reference to a spouse.
Assuming Sam is an object file, Sam: : spouse is the
object file for Sam’s spouse:

$ cat Sam::spouse
Name Smith, Ellen
Address 582 Main St
Spouse Sam

When OdeFS gets an open request for a name of the form
object-$fe::member, OdeFS calls the of sLookupRef
function provided the class designer. If the name is valid,
of sLookupRef returns a pointer to that object, and
OdeFS makes it look like an object file. If not, the func-
tion returns 0, and OdeFS returns a “not found” error.

The remove and move commands change pointers to ref-
erenced objects. (Once more, remember to think of these
pointer filenames as links in UNIX). Thus the following
commands divorce Joe, and then marry Joe and Nancy:

$ rm Joe::spouse
$ In Nancy Joe::spouse

This is handled by the of sReplaceRef function, which
is given the member name plus a pointer to the source
object (or 0 for a remove request). The function updates
the pointer or rejects the request. Incidentally, of sRe-
placeRef calls thesetspouse functionofclass per-
son, which ensures that the spouse relation is symmetric.
Thus the remove command automatically sets Nancy’s
spouse pointer to 0, as well as Joe’s.

We regard Joe : : spouse as another link to the object
for Nancy. The remove command removes that link, but
does not remove the object (this is how the remove com-
mand works in most file systems). Thus removing
Joe : : spouse sets Joe’s spouse pointer to 0, but does
not remove Nancy’s object.

5. Design Overview
5.1 Typed Files and Directories

OdeFS has more complex semantics than a standard file
system. To deal with this, OdeFS defines several file and
directory types. These types simplify the description of
the semantics of OdeFS and control the operations which
OdeFS allows on files and directories. These directory
and file types are logical types. Client operating systems
do nor know about these logical types: as far as the oper-
ating systems are concerned, all OdeFS directories are
directories, and all OdeFS files are files.

OdeFS has three types of files. The type of a file is deter-
mined by its name and the type of the directory in which
it appears. A UNIX file, or u#le, is an ordinary file with
no particular semantics. OdeFS stores them as ordinary
files in an underlying file system. An object file, or ojile,
is an object alias with file-like representations. OdeFS
does not store them as files; instead, OdeFS calls the
appropriate interface functions to manipulate the corre-
sponding object when it has to perform object file opera-
tions. A control file, or c#fe, is used to communicate with
OdeFS. Users read control files to get information from
OdeFS; users update control files (or create or delete
them) to give information to OdeFS, or to ask OdeFS to
perform various actions.

OdeFS has four types of directories. A UNIX directory, or
udir, contains UNIX files. An object directory, or odir,
contains object files. A database directory, or dbdir,
defines an Ode database to be used by OdeFS. Finally, an
extent directory, or edir, defines an Ode type extent. A
user tells OdeFs about an extent by defining control files
in an extent directory. Users get information about an
extent by reading control files in the extent directory.

253

UNIX files are not allowed in object directories, and object
files are only aliowed in object directories: this restriction
helps users distinguish object files from UNIX files.

The type of a directory is determined by a (zero-length)
control file in that directory (. . edir, etc.). A newly cre-
ated, empty directory is untyped; the user specifies the
type by creating one of the above control files. Also,
whenever possible, OdeFS deduces the type of an empty
directory from the first operation on it. For example, if
the user creates an ordinary UNIX file in an empty direc-
tory, OdeFS automatically makes it a UNIX directory, and
if the user moves an object file into an empty directory,
OdeFS makes it an object directory.

OdeFS allows the user to create an arbitrary hierarchy of
extent directories, UNIX directories, object directories,
and database directories, with arbitrary names. In particu-
lar, object directories can be anywhere; they do not have
to directly under an extent directory. Also, if class emp is
derived from person, their extent directories can be any-
where; one does not have to be directly under the other.

OdeFS, and users, also need to identify control files.
Therefore OdeFS reserves all names that contain a colon
(:). Also, in any directory other than a UNIX directory,
OdeFS reserves all names starting with a period.

5.2 Pseudo Files

Some control files and object files are pseudo jiles. A
pseudo file can be accessed explicitly by name, but does
not appear in a directory, and does not participate in file
name expansion. In particular, pseudo files are not visible
when a directory is listed, and cannot be made visible.
Pseudo files differ from files whose names start with a
period; those names exist, and Is will display them if
requested.

OdeFS uses pseudo files in two situations. The first is for
names that would cause too much clutter when enumer-
ated in a directory listing. For example, if Sani is an
object file, several pseudo files give additional informa-
tion about that object: Sam:object, Sam:class,
Sam: err, etc. These pseudo files are useful occasion-
ally, but most of the time users do not need them, and do
not want to see them.

OdeFS also uses pseudo files for names that are impracti-
cal to enumerate. An example is a file-name query, such
as :Name=Joe, as mentioned in Sec. 4.6. Because such
queries are evaluated by a class member function, OdeFS
cannot possibly enumerate all valid names of this form.

5.3 Ownership and Protection

In general, OdeFS provides standard UNIX file system
permissions for all directories and files. Thus there are
separate read, write, and execute permissions, available to
owner, group, and other, with each of these being inde-
pendently settable. Standard commands (chmod,
chgrp, etc.) set these attributes. OdeFS applies addi-
tional restrictions to some control files.

OdeFS executes arbitrary functions provided by the user.
These functions could have bugs, or could even be mali-
cious. To protect itself, OdeFS creates a separate process
for each Ode database that it uses, and calls the interface
functions from these processes.

5.4 Objects Known To OdeFS

OdeFS normally provides access to all objects in an
extent. Sometimes this is neither possible nor desirable.
OdeFS provides two mechanisms that allow the user to
control the objects which are known to OdeFS. First, the
user can ask OdeFS to scan an extent: OdeFS searches the
extent and provides access to all objects in it. A user
might do this after some other program created objects in
an extent. Second, OdeFS can unlink an object: OdeFS
forgets about that object, but leaves the object in the Ode
database. A user might do this to decouple OdeFS from
an extent without removing the extent altogether.

6. Detailed Description
6.1 Database Directories

An Ode database can be accessed by multiple programs,
including instances of OdeFS - Ode manages concurrent
accesses. A database directory defines an Ode database
used by OdeFS. It contains the one control file,
: dbspec, which specifies the Ode database and server.

A database directory also contains an : extents sub-
directory, which lists every class known to OdeFS in this
database. The entries are symbolic links to the corre-
sponding extent directories, and the entry names are the
class names. OdeFS maintains this directory, and auto-
matically creates and removes entries as the user adds or
removes extent directories. The : extents directory is
read-only to users; users cannot directly create, remove, or
rename files in it.

6.2 Extent Directories

An extent directory describes a type extent. It contains
the following control files and built-in directories:

: class

: database

: newob j

: objects

: src

: tsrc

A file containing the name of the class of
the objects in this extent.
A symbolic link to a directory defining
this extent’s Ode database.
A built-in object directory for creating
new objects.
A built-in object directory with an object
file for every object in this extent.
The currently used source directory for
the interface functions.
The trial (“next version”) source direc-
tory for the interface functions.

. compile. b When the user creates or touches this file,
OdeFS compiles the class.

. compile. e Error messages from the last compilation
attempt.

. flush Touching this file causes OdeFS to flush
cached information.

254

. scan Touching this file causes OdeFS to scan
the database and “link in” all persistent

browser for an existing Ode database, one could just pro-
vide of sName and of sRead. The other functions can

objects of the specified type. be added later, as desired.
In addition, an extent directory can have any type of sub-
directory, and can have arbitrary UNIX files (documenta-
tion, etc.).

: objects is a read-only object directory containing an
object file for every object in this extent. : newob j is a
writable object directory, with the property that when a
new file is created in it, OdeFS creates a new object.

When the user touches . scan, OdeFS scans the Ode
database for all objects of this persistent class, and links
them into OdeFS. - Touching . flush causes OdeFS to
flush any cached information about object file size or con-
tents. These are useful when other Ode programs add or
update objects in parallel with OdeFS.

The update functions can reject a user’s update request, in
which case they can provide an error message by calling
the built-in OdeFS function of sErrMsg. OdeFS makes
this message available to the user, via the : err mecha-
nism (Section 4.4).

The interface functions include:

6.2.1 Creating And Compiling An Extent Directory
To create an extent directory, the user creates the file
. . edir in an empty directory. OdeFS responds by cre-
ating the : src and : tsrc directories. The extent direc-
tory can have any name, although it is most natural to use
the class name.

ofscreate. OdeFS calls this function to create a new
object: that is, when the user creates a new file in the
:newobj directory. The arguments specify the data
written by the user. The function uses pnew to create the
object, initializes it according to the values written by the
user, and returns a persistent pointer for the object. The
function returns 0 if it cannot create a new object.

of sRead. OdeFS calls this function when the user reads
an object file for an object. The function creates the
object file representation for this object in the buffer
specified by the arguments, and returns the size of the
object file, in bytes.

Once an extent directory has been created, the user must
specify the name of the dlass, the Ode database it exists
in, and the source for the interface functions. The user
does this by creating the : class and : database con-
trol files in the extent directory, and :methods . c in the
trial source directory : tsrc. At this point, OdeFS treats
these as ordinary files. Thus they can be written multiple
times, removed and recreated, etc. When ready, the user
asks OdeFS to compile the extent directory, by creating
(or touching) the control file . compile. b. When done,
OdeFS creates the control file . compile. e, and saves
any error messages in it. If successful, OdeFS copies the
source files from : tsrc to : src, and creates the built-in
object directories : newobj and : objects. At this
point, the extent directory has been integrated into OdeFS.

ofswrite. OdeFS calls this function when the user
writes an object file; the arguments specify the data writ-
ten by the user. The function updates the object appropri-
ately, and returns 1 if successful, 0 if not.

To change the interface functions and recompile an extent
directory, the user first updates the files in : tsrc, and
then compiles the extent directory, as before. If success-
ful, OdeFS copies the new interface functions to : src. If
not, OdeFS continues to use the old interface functions.
The user can change files in : tsrc at any time, but
OdeFS does not use them until the extent directory is
recompiled.

of sName. This function puts the object file name for this
object into the buffer specified by the arguments. OdeFS
uses this name in the : objects directory. The name
should be unique within an extent, although OdeFS adds a
disambiguating suffix if necessary. If the name is empty,
OdeFS will not create an object file in : ob j ec t s.

of sFind. OdeFS calls this function when the user
specifies a file-name query: that is, asks for an object file
whose name is of the form :n~~n~=vulue. The argument
is the file name, without the leading colon. If this name
specifies an object, the function returns a persistent
pointer for it. If not, the function returns 0, and OdeFS
returns a “not found” error to the user.

of sLookupRef. OdeFS calls this function when the
user accesses a :.-member pseudo file for an object. If the
member name is valid for this object, the function returns
a persistent pointer to the referenced object. If not, the
function returns 0, and OdeFS returns a “not found”
error.

Once an extent directory has been successfully compiled,
OdeFS does not allow the user to change the : class or
: database control files.

6.2.2 Interface Functions
To access a persistent objects with OdeFS, the user must
define an interface class. This interface is derived from
the OdeFS class OfsExtFcn, and is typically named
Of sExtFcngc&s, where pclass is the persistent class.
The base class provides default versions of the interface
functions. For example, to implement a read-only OdeFS

ofsReplaceRef. OdeFS calls this function when the
user moves an object file to the ::member pseudo file for
an object, or when the user removes that pseudo file. If
the member name is valid, and the object is of the correct
type, this function updates the reference and returns 1. If
not, the function returns 0. Note that this function must
verify the object type.

OdeFS can handle persistent classes that are derived from
other classes. Suggested programming style is that the
interface class for the derived class be based on the

255

interface class of the base class, and use its functions. For
example, if class emp is derived from person, of s-
Read for emp can first call ofsRead for person, to
get the object file representation for the person part, and
then appends the representation oft& emp fields.

The interface functions described above restrict the maxi-
mum object file size to 8192 bytes (the NFS block size).
OdeFS can handle larger object files, but the class
designer must use a different, and slightly more compli-
cated, set of interface functions. Space does not permit
describing them here.

There are some restrictions on these functions. First,
of sWrite and of sReplaceRef must be idempotent;
that is, the resulting value of the object must be the same
no matter how many times the function is called (because
of timeouts and repeats, OdeFS might get the same
request several times, and hence could call these functions
several times). This means of sWri t e cannot provide
“increment” updates. Second, OdeFS does guarantee
that of sCreate is called only once. However, OdeFS
does so by transforming duplicate requests into calls to
of sWrite, so of &kite should accept the same data
as of sCreate. And finally, the functions must be rea-
sonably fast: ideally on the order of 10 to 100 millisec-
onds. If the interface functions take several seconds,
OdeFS will no longer feel like a file system.

6.3 Object Directories

An object directory contains an arbitrary collection of
objects (object files), all of the same class or subtypes of
that class. An object directory has one control file:
.extent, which is a symbolic link to an extent direc-
tory. All objects in this object directory must be of that
type, or a type derived from it. The user can remove or
change an . extent in object directory, provided that the
object directory has no object files.

Each extent directory has two built-in object directories:
:objects and :newobj. :objects has an object
file for every object in the extent. This directory is read-
only to users, although users can update object files in it.

: newob j is a writable object directory, with the property
that OdeFS creates a new object when you create a new
file in it. Once created, the object file becomes an alias
for the object, and subsequent writes update that object.
Creating a file is different from creating an alias; the copy
command creates a new file, while a link command cre-
ates an alias to an existing object. Thus copying a file into
: newob j creates a new object, while linking (or moving)
an object file into : newob j does not. Moreover, copy-
ing a file into an existing file in : newob j updates an
existing object rather than creating a new object.

7. Implementation
OdeFS is built on top of a conventional file system; it acts
as a filter between the user and the file system. OdeFS is
implemented as several processes (Figure 5).

A
NFS requests

V

Figure 5: OdeFS process structure

The ofs-nfsd process (“OdeFS NFS daemon”) is a
user-level NFS server process; it accepts NFS requests
from various clients and returns the appropriate replies.
of s-nf sd is also a client of nf sd, the regular magnetic
disk file server, and of s -dbd, a separate 0++ program
that handles Ode requests. There is one of s-dbd pro-
cess for each Ode database used by OdeFS; of s-nf sd
starts these processes as needed. Normally there are sev-
eral ofs-nfsd and nf sd processes; they act as worker
pools, taking requests from a common queue. The 0 f s -
nf sd, ofs-dbd, and nfsd processes are on the same
computer. We use the standard NFS interface between
of s-nf sd and its clients and between nf sd and of s-
nfsd. The interface between ofs-nfsd and ofs-dbd
is also a request-reply mechanism, but with a different set
of requests.

Using a separate magnetic disk file server process
simplifies installation and administration, and reuses
existing file system tools. Thus most administrative tasks
- disk partitioning, formatting, backup and recovery,
checking, etc. - are handled by the existing file system.

We have separate Ode database server processes for pro-
tection. OdeFS must execute arbitrary, user-provided
code; this could be buggy, or even be malicious. All such
code is isolated to the ofs-dbd processes. Each runs
with the user id of its database, rather than as superuser.
The worst that can happen is that buggy user code could
damage other classes in its own database, and/or crash its
of s-dbd process. User code cannot damage other data-
bases or the of s-nf sd process. With suitable timeouts,
the ofs-nfsd process can detect such problems and
gracefully reject requests to that database and/or restart
the process.

All directories, UNIX files, and control files exist as direc-
tories and files in the underlying magnetic disk file sys-
tem. Each of these objects is uniquely identified by the
inode number assigned by the file server. For operations
on ordinary files and directories, of s-nf sd just for-
wards the requests to nfsd, which actually does the
work. For operations on control files, of s-nf sd does
the appropriate actions before or after forwarding the

256

requests to the underlying file system.

Object files are implemented differently: they do not exist
as files in the underlying file system. Instead, the of s-
dbd process evaluates object files as needed. Each object
file is uniquely identified by the persistent object pointer
assigned by Ode when the underlying object was created.
of s-nf sd forwards object file operations to the appro-
priate of s -dbd process.

An object directory has two parts: a directory in the mag-
netic disk file system, and an Ode object, maintained by
an of s -dbd process. A directory is really a list of pairs
of names and identifiers. This Ode object has the names
of the object files and the corresponding Ode object point-
ers; the directory in the magnetic disk file system has the
names of the ordinary files in the object directory. nf sd
manages the names in the file system part of the directory,
and ofs-dbd maintains the object file names. ofs-
nf sd logically combines those two parts and makes them
look like one directory. To tie those two parts together,
of s-nf sd writes the Ode object directory object’s per-
sistent pointer into a private file (. oid) in the magnetic
disk directory.

As an example, suppose we open, read, and write a UNIX
file. The client translates the open request into an NFS
lookup request, which it sends to of s-nf sd. The argu-
ments are a handle for ‘a directory, and the name of a file
within that directory. The reply is a handle for the
requested file or directory, plus its attributes (size, type,
update time, etc.). A handle is a capability for a file sys-
tem object, and is opaque to the client. OdeFS handles
contain either an inode number (for files and directories)
or an Ode object pointer (for object files), plus some type
information. For a UNIX file, of s-nf sd forwards the
lookup request to nf sd, and returns a UNIX file handle to
the OdeFS client. When the client reads or writes that
file, of s-nf sd forwards those requests to nf sd.

Now suppose that the user opens a control file. In the
lookup request, of s-nf sd recognizes that this is a con-
trol file, and returns a handle indicating its type. When
the client sends a read or write request for that control file
handle, of s-nf sd does the appropriate action.

Finally, suppose the user opens an object file in an object
directory. ofs-nfsd reads the . oid file to get the
pointer to Ode object directory object, and then sends a
lookup request to the appropriate of s-dbd process, ask-
ing it to lookup the name in that object directory. That
process returns information about the object file, which
ofs-nfsd then returns to its client. When ofs-nfsd
gets a read or write request for an object file handle, it for-
wards the request to of s-dbd.

If OdeFS provides access to a class person, then OdeFS
must keep some information for each such object. This
includes the object’s error message and its modification
time. The normal technique would be for OdeFS to pro-
vide a base class and require class person to be derived
from it. However, we could not do that for OdeFS,

because we wanted OdeFS to work on existing classes
without changing them. Therefore, for each persistent
class known to OdeFS, OdeFS creates another persistent
class (e.g., Of sObj_person). This is derived from an
OdeFS base class, and contains the per-object data that
OdeFS needs, including a pointer to the person object.
OdeFS automatically creates a Of sob j-person object
for each person object. We call these “OdeFS objects”
and “user objects,” respectively. Internally, OdeFS uses
pointers to OdeFS objects. For example, object directo-
ries really contain pointers to OdeFS objects.

This two-object approach has proved very helpful. For
example, it allows OdeFS to handle classes that do not
have a null constructor. The problem is that when a user
creates a new object file, OdeFS really gets two NFS
requests: a create request, which creates a zero-length file,
and then a write request, which has the data for the object.
OdeFS must create something for the NFS create request,
but unless the user’s persistent class has a null construc-
tor, OdeFS cannot create a user object at that time. There-
fore OdeFS creates an “unbound” OdeFS object: one that
does not yet point to a user object. Then when OdeFS
gets a write request for an unbound OdeFS object, OdeFS
calls ofscreate, and binds the OdeFS object to the
user object created by that function. If of sCreate fails,
OdeFS saves the error message in the OdeFS object,
leaves the OdeFS object unbound, and calls of sCreate
when it gets the next write request.

OdeFS takes advantage of the Ode transaction mecha-
nism. For example, the NFS rename request atomically
moves a file from one directory to another. When moving
an object file between two object directories, of s -dbd
updates those two object directory objects as part of one
transaction. Ode then guarantees atomicity.

8. Discussion
Everything described thus far has been implemented. In
this section, we describe some open issues. We also
explain some of our design decisions and discuss some
alternatives that we did not adopt.

8.1 Object Files vs. UNIX Files

In general the user can treat object files and object directo-
ries like ordinary files and directories, but there are some
differences, particularly with respect to the move vs. copy
commands (mv vs. cp). When you move an object file,
the result is another object file for the same object. How-
ever, when you copy an object file, the result is an ordi-
nary UNIX file, not an object file. The reason is that the
move command uses a single file system operation, which
OdeFS intercepts and handles appropriately. However,
when a file is copied, OdeFS just sees a series of writes to
the destination file. OdeFS cannot tell whether‘this data
came from an object file or a UNIX file or from the key-
board.

To minimize this confusion, OdeFS does not allow users
to create ordinary files in object directories. Thus instead

257

of creating a UNIX file, a simple copy of an object file into
a new file in the same object directory will fail.

8.2 Object File Attributes

OdeFS must provide various attributes. for each object
file: permission, owner, modification time, etc. However,
the underlying Ode system does not maintain these
attributes for each object, so OdeFS must get these
attributes somehow. For simplicity; OdeFS gives all
object files in an extent the same owner and access per-
missions as the extent directory.

However, OdeFS cannot use the same modification time
for all object files; OdeFS must provide a reasonable time
for each object file. The problem is that most NFS clients
cache data, and assume the cached data is valid until the
file modification time changes. Therefore OdeFS must
change the modification time when the object file repre-
sentation changes, so clients will invalidate their caches.
On the other hand, OdeFS should not change the
modification time unnecessarily, because that would dis-
able client caching, which would hurt performance.

Therefore OdeFS keeps an update time for each Ode
object known to it, and sets that time whenever OdeFS
knows that the object changes. However, OdeFS does not
see all object updates. An update to one object can
change another as a side-effect. For example, setting the
spouse pointer in one object might automatically update
the spouse pointer in other objects. Furthermore, an
object file can contain data from another object, such as
spouse’s name. Finally, other Ode programs can update
objects independently of OdeFS.

Therefore in addition to the per-object update time,
OdeFS also keeps a per-extent and per-database update
time. OdeFS sets these times when the user touches the

flush control file in an extent directory or a database
directory. OdeFS uses the maximum of these as the
modification time for an object file.

A better solution would be for Ode to provide a per-object
update time, and for OdeFS to add another interface func-
tion, which would return a list of objects upon which this
object’s file representation depends.

8.3 Reading vs. Updating Objects

Using OdeFS for read access to objects is easy and natu-
ral. It is easy to browse the Ode object database, and it is
easy to write the interface functions. However, using
OdeFS to update objects is not quite as easy. The update
interface functions are harder to write, because they must
cope with arbitrary data written by users, and should pro-
vide reasonable error messages.

Furthermore, OdeFS gives delayed feedback for errors.
For example, suppose you use a general editor with
OdeFS. If you put an invalid entry in a telephone number
field, you will not discover the error until you attempt to
write the file. A dedicated object editor, on the other
hand, would give an error when you changed that field.

8.4 Creating and Removing Objects

Objects are removed in OdeFS by deleting the c@le:objecr
pseudo file. One alternative would be for OdeFS to
remove an object automatically when the user removes its
last object file alias (e.g., treat objects exactly like files).
We rejected that idea, because OdeFS does not, and can-
not, know about all inter-object references. For example,
if employee objects point to department objects, OdeFS
should not remove a department object just because the
user removes all of the department’s ofiles.

Another alternative would be to remove an object (and all
aliases) when the user removes its object file from the
: ob j ec ts directory. However, we think this alternative
makes it too easy to delete objects accidentally.

8.5 One Object, One Object File

An object file represents only one object. In some cases,
it would convenient if an object file could represent a
number of objects. For example, that would allow a
:nume=vulue query to return several objects. It would
also allow OdeFS to provide a single “all objects” file,
with the concatenation of the representations of all objects
in the extent.

However, allowing an object file to represent multiple
objects complicates both the semantics and implementa-
tion of OdeFS, and (at least for now) we have disallowed
it. To see the problems, suppose that the file
: Name=Smi th could represent several objects. This
implies some convention for separating the objects (a
blank line, a row of dashes, fixed length, etc.). We would
not want OdeFS to enforce the convention, so we would
have to add an interface function to specify a separator
string to place between representations. Furthermore, for
updates, we would have to add another function to parse
the data written by a user into individual object represen-
tations. On update, OdeFS would would then call
of swrite for each object. However, this requires
OdeFS to match the per-object representations with the
original objects, and that means the user could not delete
or reorder object representations within a multi-object file.

Of course, we could solve these problems by requiring the
per-object representations to be fixed length, or by instan-
tiating a multi-object file as a real UNIX file when it is
first opened. However, we do not consider either of those
methods to be acceptable.

8.6 Large Extents

The : objects directory has an object file for every
object in an extent. That will be very inefficient if an
extent has 1,000 objects, and will probably fail com-
pletely if an extent has 100,000 objects. One solution
would be just to eliminate the : objects directory for
large extents. Users would use the OdeFS query facilities
to get object files for the objects of interest.

258

8.7 Query Facilities

OdeFS provides a simple, single-object query facility
(Section 4.6). We are currently building a more powerful
query facility. This will allow a cql++ [l l] program, or
indeed any arbitrary 0++ program, to select objects, and
then populate an object directory with object files for
them. This relies on the fact that Ode assigns an object id
(oid) to every object. An oid consists of three integers,
such as (123,5,0), and is the internal representation used
for an 0++ persistent pointer. OdeFS will treat a file
name of the form . oid=123.5.0 as an ofile for the
object with that oid. Then once a program has selected an
object, the program can create an ofile for that object just
by creating a link from . oid=l .2 .3 to Sam.

8.8 NFS

Our choice of the NFS protocol has advantages and disad-
vantages. The advantages include the fact that NFS is a
simple, widely-used easy-to-implement protocol. Also,
NFS separates “lookup” from “readdir,” which allows
OdeFS to have pseudo files.

NFS has a few disadvantages. An NFS client repeats a
request if it does not get a response quickly enough. This
means that the interface functions cannot have long
delays, and must allow duplicate requests (see Sections
6.2.1 and 6.2.2). It would help if an NFS server could tell
a client that a particular request will take a while, and the
client should use a longer timeout.

NFS clients use the file modification time for cache con-
trol, and clients normally cache data they write. However,
an OdeFS client should not cache data it writes to object
files, because OdeFS regenerates them (see Section 4.2).
To prevent that, OdeFS plays games with the file
modification times that it returns for such write requests.
It would be better if the NFS protocol had an explicit
mechanism for a server to tell a client to discard any data
that is cached for a file.

An NFS server does not know when a program closes a
file, so OdeFS cannot tell when a user is done with it.
Furthermore, an NFS client can read the contents of a file
in any order. These limitations prevent OdeFS from reli-
ably implementing an “all objects” file. Of course, these
limitations are why NFS is simple and easy to implement.

9. Conclusion
We have described OdeFS, a file system interface to an
object-oriented database system. The major benefit of this
interface is that it interoperates well with the UNIX operat-
ing system, and thus provides a convenient means for
users to access and manipulate objects. The central idea
in the implementation is to add a layer of code, between
the client operating system and the file system, that imple-
ments OdeFS functionality. No modification is need to
the front end operating system or the back end file system
and object manager. Objects created through OdeFS can
be accessed and manipulated by other interfaces to Ode

and vice versa.

We are considering several areas of further exploration:

l An “OdeFS interface function generator” tool would
be very useful. This tool would read a class definition
and create an initial version of the interface class.

l OdeFS should support user-level transactions. That is,
a user should be able to update several object files as
part of one transaction. Currently, OdeFS treats each
update as a separate Ode transaction.

l We would like to allow multiple object file representa-
tions for a given object, and allow the user to choose
between them.

l OdeFS should allow users to call arbitrary member
functions for the object class.

References

HI

PI

131

r41

[51

161
171

ml

191

1101

Ull

WI

1131

S. Abiteboul, S. Cluet and T. Mile, “Querying and
Updating the File”, Proc. 19th Int’l Conf: Very Large
Data Bases, Dublin, Ireland, Aug. 1993,73-84.
R. Agrawal and N. H. Gehani, “Ode (Object Database
and Environment): The Language and the Data Model”,
Proc. ACM-StGMOD 1989 Int’l Confi Management of
Data, Portland, Oregon, May-June 1989, 36-45.
R. Agrawal and N. H. Gehani, “Rationale for the Design
of Persistence and Query Processing Facilities in the
Database Programming Language O++“, 2nd Int’l
Workshop on Database Programming Languages,
Portland, OR, June 1989.
R. Agrawal, N. H. Gehani and J. Srinivasan, “OdeView:
The Graphical Interface to Ode”, Proc. ACM-SIGMOD
1990 Id1 Con5 on Management of Data, 1990,34-43.
R. Agrawal, S. J. Buroff, N. H. Gehani and D. Shasha,
“Object Versioning in Ode”, Proc. IEEE 7th Int’l ConJ
Data Engineering, Tokyo, Japan, Feb. 1991.
S. R. Boume, The UNIX System, Addison-Wesley, 1982.
M. J. Carey et al, “Shoring Up Persistent Applications”,
Proc. ACM-SIGMOD 1994 Int’l Conj on Management of
Data, Minneapolis, MN, May 1994.
V. Christophides, S. Abiteboul, S. Cluet and M. Scholl,
“From Structured Documents to Novel Query
Facilities”, Proc. ACM-SIGMOD 1994 Int’l Cant on
Management of Data, Minneapolis, MN, May 1994.
M. P. Consens and T. Milo, “Optimizing Queries on
Files”, Proc. ACM-SIGMOD I994 Int’l .ConJ on
Management of Data, Minneapolis, MN, May 1994.
S. Dar, N. H. Gehani, H. V. Jagadish and J. Srinivasan,
“Queries in an Object-Oriented Graphical Interface”,
AT&T Bell Labs Technical Memorandum, 1991.
S. Dar, N. H. Gehani and H. V. Jagadish, “CQL++: An
SQL for a C++ Based Object-Oriented DBMS”, Proc. of
Int’l Con$ on Extending Database Technology, Vienna,
Austria, Mar. 1992.
S. Dar, R. Agrawal and N. H. Gehani, “The 0++
Database Programming Language: Implementation and
Experience”, Proc. IEEE 9th Int’l Con& Data
Engineering, Vienna, Austria, 1993.
N. H. Gehani and H. V. Jagadish, “Ode as an Active
Database: Constraints and Triggers”, Proc. 17th Int’l
Cant Very Large Data Bases, Barcelona, Spain, 1991,
327-336.

259

[I41

WI

iI61

[I71

[181

[I91

WI

0. M. Group, in The Common Object Request Broker
Architecture: Architecture and Specification, OMG,
Framingham, MA, 1991.
0. M. Group, in Object Management Architecture Guide,
Second Edition, OMG, Framingham, MA, 1992.
U. Manber and S. Wu, “Glimpse: A Tool to Search
through Entire File Systems”, Proc. USENIX Winter
Cant, Jan. 1994.
NFS, Network File System: Version 2 Protocol
Specification, Sun Microsystems, Inc., Mountain View,
California, 1988.
K. Shoens, A. Luniewski, P. Schwatz, J. Stamos and J.
Thomas, “The Rufus System: Information Organization
for Semi-structured Data”, Proc. 19th Int’l Con& Very
Large Data Bases, Dublin, Ireland, Aug. 1993,97-106.
R. Soley and W. Kent, “The OMG Object Model”, in
Database Challenges in the 199Os, Won Kim (ed.),
Addison-Wesley/ACM, (in preparation).
B. Stroustrup, The C++ Programming Language (2nd
Ed.), Addison-Wesley, 199 1.

Appendix

Here are simple versions of the OdeFS interface functions
for the person class defined in Figure 4. For simplicity,
they ignore various overflow situations. The function
getStrFld, scans a character array for a line starting
with a specified field name, and if found, copies the rest of
the line into another character array, and returns 1. The
function ofsIsClass returns 1 if an object is of the
indicated class, or of a class derived from it.
typedef persistent person* personP;
typedef persistent void* voidP;
class OfsExtFcnqerson: public OfsExtFcn (

public:
void ofsName(const personP, char*, int);
int ofsRead(const personP, char*, int);
int ofsWrite(personP, const char*, int);
voidP ofsLookupRef(const personP, char*);
int ofsReplaceRef(personP, char*, voidP);
personP ofsCreate(const char*, int);
personP ofsFind(const char*);
1;

// Copy person's file name to buff.
void OfsExtFcn_person::ofsName(

const personP p, char* buff, int)
(const char* s = p->getName();

for (char* t = buff; *s != '\O'; s++)
if (!isspace(*s)) *t++ = *s;

*t = '\O';
1
// Put person's ofile in buff, return length.
int OfsExtFcnqerson::ofsRead(

const personP p, char* buff, int mien)
(ostrstream sbtbuff, mien);

sb << "Name\t" x-z p->getName() <-z endl;
sb << "Address\t" << p->getAddr() << endl;
if (p->getSpouse() != 0)

sb << "Spouse\t" <<
p-z-getSpouse()->getFnameO << endl;

return sb.pcount();
I
// Update person object from data in buff.

int OfsExtFcn_person::ofs.Write(personP p,
const char* buff, int)

{ char name[2561, addr[2561;
if (getStrFld("Name", buff, name)) (

if (name[O] == '\O') 1
ofsErrMsg("Name required");
return 0;

1
p->setName(name);

1
if (getStrFld("Address", buff, addr))

p->setAddr(addr);
return 1;

1
// Create and return new person object.
personP OfsExtFcnqerson::ofsCreate(

const char* buff, int len)
{ char name[2561;

if (!getStrFld("Name", buff, name)) {
ofsErrMsg("Name required");
return 0;

1
personP p = pnew person(name);
if (!ofsWrite(p, buff, len))

{ pdelete p; return 0; 1
return p;

1

// Find person matching simple query.
personP OfsExtFcnqerson::ofsFind(

const char* query)
{ if (memcmp(query, "Name=", 5) == 0) (

const char *name = query+5; personP p;
for (p in person)

suchthat(strcmp(p->getName(),name) == 0)
return p;

I
if (memcmp(query, "Address=", 8) == 0) (

const char *addr = query+8; personP p;
for (p in person)

suchthat(strcmp(p->getAddr(),addr) == 0)
return p;

I
return 0;

1

// Return referenced object.
voidP OfsExtFcn_person::ofsLookupRef(

const personP p, char* name)
{ if (strcmp(name, "spouse") == 0)

return p->getSpouse();
return 0;

1
// Change ref'd object, return 1 if okay.
int OfsExtFcnqerson::ofsReplaceRef(

personP p, char* name, voidP xp)
{ if (strcmp(name, "spouse") == 0

&& ofsIsClass(p, "person")) {
p->setSpouse((personP)xp);
return 1;

1
return 0;

1

260

