
New Concurrency Control Algorithms for Accessing
and Compacting B-Trees

V. W. Setzer A. Zisman
Department of Computer Science Department of Computer Science

University of Sti Paul0 University of Sti Paul0
C.P. 20570 C.P. 20570

01452-990 - S&o Paulo, Brazil 01452-990 - S&o Paulo, Brazil
vwsetzer@ime.usp.br zisman@ime.usp.br

Abstract

This paper initially presents a brief but fairly
exhaustive survey of solutions to the concur-
rency control problem for B-trees. We then
propose a new solution, which is character-
ized by the use of variable-length indices, the
employment of a single lock type for the usual
access operations and preemptive splits as well
as delayed catenations and subdivisions. We
also introduce a new compaction algorithm
and its concurrent execution, using a new lock
type.

1 Introduction

The B-tree, introduced in 1972 by Bayer and Mc-
Creight [BM72] has become the standard structure for
the implementations of indices for file and database
management systems, because of its efficiency in se
quential and random accesses using index values. (An
extensive and up-to-date survey may be found in
[Zis93].) The file sharing by multiuser environments
lead to the need of introducing features for the con-
current access to data and index files. This has to be

This work was supported by the S6o Paul0 Research
Foundation (FAPESP) grant No. 93/0603-l.

Permirsion to copy without fee all or part of t

1

is

+

material is
granted provided that the copier are not made or f tributtd for
direct commercial advantage, the VLDB copyr’ght notice and
the title of the publication and its date appta , and notice is
given that copying is by permirsion of the Very Large Data Base
Endowment. To copy otherwire, or to republish, requires a fes
and/or special permission from tht Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

done preserving the information integrity obtained or
given by the users.

This paper presents a new concurrency control
method which can be applied to two types of B-trees
and some of its variations. It has the following charac-
teristics: 1. Explicitly locks a small number of nodes
(maximum of 2) for each executing process accessing
the tree, except during compaction. 2. Uses just 2 lock
types, one of them dedicated to the compaction opera-
tion; this operation, which has not been covered in the
literature of concurrency control methods, may be exe
cuted simultaneously with reading, inserting, deleting
and updating operations. 3. Delays catenation opera-
tions and preempts rearrangement of elements among
nodes as well as rmde splits, thus permitting a good
load factor and avoiding the repetition of path traver-
sals by each process. 4. Permits the use of variable-
length indices.

The rest of this paper is organized as follows. Sec-
tion 2 defines general terms necessary to understand
the whole text and characterizes the B-tree types
which will be used. Section 3 presents a brief but fairly
complete survey of published papers covering concur-
rency control for B-trees; it is preceeded by specific
definitions for this section. Section 4, after introduc-
ing specific definitions, informally presents the new
method as well as a precise description of the involved
algorithms and their extension to variable-length index
values. Section 5 summarizes the results and makes
proposals for future research.

2 General Definitions

Dl Given a data file composed of data records, an

index is a simple or compound field of each of these
records whose value is used for searching certain
records.

238

D2 A B-tree of order K, where K is a natural number,
is an oriented tree, with the following properties:

1. Each tree node corresponds to a single disk page;

2. Each node, except the root, has m fixed-length
index values, where K 5 m < 2K, stored in the
node in nondecreasing order;

3. The root contains from 1 to 2K index values;

4. Every tree node n is either a leaf, that is, has no
descendents, or is an internal node and contains
m+ 1 sons. To each of these sons, except the first
one, is associated an index value i and a pointer
p stored in n. If n is not a leaf, each subtree
whose root is pointed to by some pj in n has index
values strictly greater than its corresponding ij
(1 5 j < m). An extra pointer po in n points
to the first son, with is the root of the subtree
that contains index values strictly smaller than
the value of il.

5. For every index value i a pointer d is associated
to the data record which contains i;

6. Every leaf node is in the same tree level, that is,
each path from the root to a leaf has the same
length.

D3 Let pj and pj+i (0 < i 5 m - 1) be two adjacent
pointers in a nonleaf node n which points to n’ and
n”, respectively. The index value ij+r is called the
separator of n’ and n”.
D4 B’-tree. To decrease the B-tree height (cf. D2),
Knuth suggested in 1973 [Knu73], a variation called
B*-tree’. In this structure, data records are stored
directly into the leaves. The latter are connected by
pointers forming a linked lit. The internal nodes con-
tain only index values and pointers to their sons. We
will consider B*-trees where the index values in inter-
nal nodes are organized as in a B-tree, that is, inter-
nal nodes do not duplicate index values but for father
nodes of leafs.
D5 B+-tree. A variation of the B*-tree where the leaf
nodes hold pointers to the data records instead of the
records themselves. The leaf nodes also form a linked
list through pointers to the immediate right-hand side
neighbours.
D6 A node is complete if m = 2K.
D7 A node becomes overflown if m = 2K and there is
an attempt of inserting another index value into it.

1 Actually, Knuth did not give any name to this kind of
tree. Many authors call it B*-tree. On the other hand, Comer
[Com79], Korth [KS86], BoaweLl and Tharp [BT90] designate it
aa a B+-tree.

DS A node becomes undel-pown if m = K and there
is an attempt of eleting any of its index values.
D9 The free spat of a node is the length in bytes (or 1
words) of its portion which does not contain index val-
ues and pointers, and other information necessary to
represent the tree.

When a node n’ becomes overflown, it is split or its
items are subdivided among its neighbours.
DlO In a B-tree, the split of a node n’ consists of
the creation of a new node n”, adjacent brother of n’,
and then dividing n”s items between n’ and n”, p’
will hold the K smaller index values and its ssssoci-
ated pointers, n” the K greater, and the median index
value among all of the values of n’ and n” becomes
the separator (cf. D3) of these nodes. The separa-
tor and a pointer to n” is inserted in the father node
of n’. In the case of B*- and B+-trees the split of a
leaf node produces the duplication of the median index
value, which is inserted into the father node. For the
internal nodes, there is no duplication.
Dll A &S-split is a technique introduced in [Knu73]
where the items of an overflown node n’ are united to
those of an adjacent brother n” and divided (as uni-
formly as possible) between n’, n” and a newly created
node n”‘, adjacent to n”.
D12 The suudiuision of the items of n’ consists of mov-
ing some of these items to one of its adjacent brothers
n” which is not complete, if it exists. This is done by
merging the items of n’ and n”, their separator and
the new value being inserted into n’, and then subdi-
viding these values into n’ and n”, inserting the new
median value in n”s father as a separator, such that
the number of value8 in n’ and n” differs at most by 1.
In the literature, this operation is called ouerjiow and
was introduced by Bayer and McCreight [BM72].

When a node n’ becomes underflown, it is catenated
with one of its adjacent brothers n” (the inverse pro-
cess of splitting), or its items are distributed between
the items of n’ and n”.
D13 In a B-tree, the catenation consists of merging
the items of n’, n” and their separator, when the total
number of these items is less than or equal to 2K. The
resulting items are stored into one of the nodes and the
other one is deleted. The separator is eliminated from
the father of n’ and n”. If the merge cardinality is
greater than 2K a distribution is performed between
n’ and n” analogously to the subdivision operation;
this operation was called underflow by Bayer and Mc-
Creight (notice that we have changed this denomina-
tion and “overflow*, because we use them to indicate
a node status (cf. D7, D8).

D14 A process traversing the B-tree may be classified

239

as reader, which executes the operation of searching
a certain index value i, or as updater, which performs
an insertion (deletion) operation. The latter consists
of two subprocess: updater-reader, which searches for
the node where (from where) i will be inserted (re-
moved) and updater-writer, which produces the inser-
tion (deletion) with an eventual restructuring of the
tree.
D15 The nodes visited by a process P constitute P’s
access path.
D16 A compaction process traverses the whole tree
producing its reorganiration in order to diminish the
free spaces (cf. D9) of its nodes.
D17 A process locks a node n when it associates to
n a mark indicating to other processes some access
restriction to n.
D18 A node contains an ezcl+he lock produced by
a process P when it cannot be visited by any other
process until P unlocks it. When P is about to modify
some node, P has to mark it with an exclusive lock.
When a process reaches a node with an exclusive lock
it remains in a waiting state, in a queue associated to
that node, until it is unlocked.
D19 A node n is safe when an insertion or deletion
operation does not affect any of its antecedents; oth-
erwise it is unsafe. It follows that for an insertion a
node is safe when it contais less than 2K index values;
for a deletion a node is safe when it has more than K
index values.

3 Solutions for the Concurrency Con-
trol Problem

To permit the use of B-trees and its variations in multi-
processing and multiprogramming applications, many
solutions have been proposed to the concurrency con-
trol problem. This solutions are described here briefly,
in their chronological order of appearence in the liter-
ature.

3.1 Specific Definitions

Kwong and Wood [KW80b, KW80a, KW82] defined
the following three locking techniques.
D20 Lock-Coupling. During the execution of a reader
process (cf. D14) a node is unlocked only when its
appropriate son is locked. During the execution of
an updater process every node of its access path (cf.
DlS) is locked until it reaches a safe node (cf. D19).
At this moment all antecedents of this safe node are
unlocked.
D21 Driving-ofl. A process has its execution inter-
rupted by an updater process when the latter inserts
exclusive locks (cf. D18) into the nodes which it tra-
verses.

D22 Side-Branching. During an insertion (deletion)
operation, when a node becomes overflown (under-
flown) (cf. D7, D8) it is not split (catenated) (cf.
DlO, D13). An appropriate half of its items is copied
into a new node and the new index value is inserted
into this half (the items of its adjacent brother are
joined to its items without the index value to be
deleted). The traversal is backed-up until a safe node
is reached; resuming the top-down traversal, the ex-
cess half of each original node is (the redundant nodes
are) removed.

D23 BL-tree. Introduced by Lehman and Yao in 1981
[LYSl] the #-tree (from the original BLinked -tree)
is a variation of the B+-tree (cf. D5). Each node
contains an excess pair (index value, pointer) that
is, for each node n there exists a pair (i,+r ,p,,,+~),
K 2 m < 2K, where im+i is the greatest index value
in the subtree rooted by p, in n, and pm+i, called link
pointer, points to n’s adjacent right-hand side neigh-
bour.
D24 t%tree. Introduced by John Hopcroft in 1970,
(not published, referred by [Com79, Knu73]) it is a
balanced tree where each nonleaf node has at least
two and at most three sons. Its use is suitable for
main storage devices.

In every method a process queue is created for each
node subjected to an unfulfilled lock request (because
it was already locked by another process). These re-
quests are later on executed according to the queue
order.

3.2 History

The first solution for the concurrency control prob-
lem was proposed by Samadi in 1976 [Sam76] and by
Parr in 1977 [Par771. In this solution only the lock-
ing and unlocking operations are valid. These oper-
ations are executed through the standard semaphore
technique (Dijkstra [DijSS]) using only one lock type.
Actually, reader and updater processes use the lock-
coupling technique (cf. D20).

In 1977, Bayer and Schkolnick [BS771 presented four
solutions for B*-trees (cf. D4). These solutions use
three types of locks: read (plock), alternative (a-lock)
and ezciusiue (c-lock). A process may place a p or
an a-lock into a node which already contains a plock.
A process may only place an E-lock in a node if this
node is unlocked; other processes cannot access a node
with such a lock. A process may convert an a-lock
to an .c-lock. In all of their solutions, read processes
place plocks into the traversed nodes through the lock-
coupling technique specific for this type of processes.
The updater processes are executed in the following
way.

240

Solution 1. Uses the lock-coupling technique employ-
ing c-locks in the visited nodes.
Solution 2. The updater-reader subprocess is exe-
cuted in the same way az a reader. Upon reaching a
leaf node an ~-lock is placed into it. If this node is
not safe, unlock it and its father; solution 1 is then
applied.
Solution 3. The updater-reader subprocess is exe
cuted with the lock-coupling technique using cx-locks.
When a leaf node is reached a new traversal is initiated
at the root, converting each a-lock to an c-lock
Solution 4. This solution consists of a generalized
combination of the other three solutions. Depending
upon certain parameters it uses solutions 1, 2 or 3 for
specific parts of the tree.

In 1978 Miller and Snyder [MS781 introduced a so-
lution for B-trees which, in comparison to the previous
Bayer and Schkolnick’s solutions, is characterized by
locking only those nodes that are going to be modi-
fied. It uses three lock types: access (a-lock), pioneer
(p-lock) and follower (f-lock). A process may place
an a-lock into a node which already contains an a-
lock. The other two locks are exclusive. The reader
part of any process traverses the tree locking the vis-
ited nodes with an a-lock, unlocking the current node
before locking its son. When a leaf node n is reached,
it is marked with a plock. One has to distinguish be-
tween insertion and deletion operations. An insertion
operation performs p-locks into up to 3 ancestor nodes
of n and f-locks its and its father’s adjacent brothers.
When a split propagates upwards, this block of locked
nodes is moved up accordingly. A similar process is
performed for deletion operations, with the difference
that the sons of the brothers of n’s father are also
marked with f-locks.

In 1980 Ellis [El1801 proposed a solution for 2-3-trees
(cf. D24). This solution is based upon Bayer and
Schkolnik’s and in Lamport’s idea [Lam771 of permit-
ting reader and updater processes to simultaneously
examine the same node, in opposite scanning direc-
tions.

In 1981 Lehman and Yao [LY81] defined a method
for BL-trees (cf. D23). This method uses just one lock
type and executes a constant, small number of node
locks for each executing process. Reader processes and
updater-reader subprocesses do not execute any lock.
When a reader process P reaches a leaf node n, this
node is locked; if another process, simultaneous to P,
has split n, P may require the visit of n’s adjacent
leaf node. The latter is locked, becoming the current
node, and n is unlocked. This solution does not use
catenations and distributions (cf. D13) and permits
the existence of underflown nodes (cf. D8).

In 1986 Sagiv [Sag861 improved this solution, pro
ducing the locking of just one node by each execut-

ing process. His solution does not lock n’s adjacent
brother; in order to guarantee that it is using a node’s
latest version, it locks this node and rereads it just
before its modification. This solution uses a “special
block” storing the tree’s height and a vector of pointers
to every letinost node of each level.

In order to improve Bayer and Schkolnick’s, as well
as Ellis’ solutions, Kwong and Wood suggested from
1980 to 1982 [KW80b, KW80a, KW82] a new solution
for e*-trees which makes use of the 3 locking tech-
niques defined in section 3.1 (cf. D20, D21, D22).
The reader process is executed as in Bayer and Schkol-
nick’s solutions; the updater-reader subprocess is ex-
ecuted as in their solution 3 (see above). ,But, when
a leaf node has to be split (cf. DlO) (catenated) the
sidebranching technique is employed, in the leaf-to
root direction, until the first safe node in the traversed
path is reached. At this moment, the nodes are up-
dated in the root-to-leafdirection, using the driving-off
technique.

In 1985 Mond and Raz [MR85] proposed a solution
for B*-trees based upon the algorithm given by Guibas
and Sedgewick in 1978 [GS78], who introduced pre-
emptive splits for updater processes for 2-3 and 2-3-4
trees. Their trees do not complain with our definitions
DlO and D13: the split and catenation operations are
performed like those we defined for B-trees. Mond and
Raz’s solution produces preemptive splits/catenations
for complete/half-complete nodes traversed by reader
and updater-reader subprocesses, leaving these nodes
ready for future insertions and deletions. It uses limit-
ing numbers of K - 1 and 2K + 1 index values instead
of the usual K and 2K. Complete nodes contains 2K
or 2K + 1 index values. Catenations are perfomerd for
nodes with K or K - 1 values. The method employs
two lock types determinded by the type of process be-
ing executed, guaranteeing that at most two nodes are
locked at each instant by each executing process. Dif-
ferently from the lock-coupling technique, these locks
are performed pairwise, in the current node n and in
its father. Before locking n’s appropriate son, n’s fa-
ther is unlocked.

We detected a problem with Mond and Raz’s solu-
tion. The catenation operation may produce a com-
plete node. If this node is not changed, a subsequent
process visiting it will perform a split, starting a peg-
sible cicle of these operations.

In 1988 Keller and Wiederhold [KW88] afirmed that
Mond and Raz’s method cannot be applied to indices
with variable-length values, and introduced the sibling
promotion technique: upon reaching a complete node
n, this technique creates a sibling node of n, including
half of n’s information in the new node, and a “mark”
in n’s father nf, indicating the fact that it has to be
split and the presence of that sibling. When another

241

process reaches nf, a separator between n and its cre
ated sibling node is introduced into nj .

In 1992 Souza and Carvalho [SC921 proposed a
method for B*-trees in which the access path of each
executing process remains in central storage. When a
process reaches a locked node, it starts to successively
traverse its path until it is allowed to proceed, This
method permits the use of the subdivision technique
when a node is overflown.

4 The Method

The concurrency method presented here may be ap-
plied to B* and B+-trees (cf. D4, D5) which will be
referred to in the sequel simply as trees.

4.1 Specific Definitions

D25 The load factor of a node is given by F = A,
where I is the number of index values stored at that
node. The load factor of a tree level 1 is F = &,
where I and N are the number of index values and
nodes stored at 1 respectively, and K the order of
nodes at 1. The total factor of a tree ia F = &,
where I and N are the number of index values and
nodes stored in the whole tree respectively. Notice
that for B+ and B+-trees K differs from leaf to inter-
nal nodes because they store different types of infor-
mationz. In these csses the total load factor is given
by F = h, where I’ and I are the numbers
of index values stored in the internal and leaf nodes
respectively, K’ and K are the order of the internal
and leaf nodes, Ni is the number of internal nodes and
Nf is the number of leaf nodes.
D26 The load factor vector of a tree is a vector con-
taining the load factor of each level of that tree.
D27 A f-lock is an exclusive lock introduced into a
node by a reader or an updater process. A c-lock is
introduced by a compaction process (cf. D16).
D28 The compaction indicator is a Boolean variable
whose value indicates if the tree is (true value) or is
not (false value) being compacted. This indicator is
verified before the execution of a reader or updater
process.
D29 A underjiown son jfag is a Boolean variable ssso-
ciated to each ij index value (1 5 i <_ m) of a non-leaf
node n. This variable indicates if n’s son pointed to
by pj is (true value) or is not (false value) underflown,
avoiding unnecessary reading of that son. (This vari-
able may be implemented as the lefmost bit of each
pointer or as a bit vector stored in n).
D30 The compaction queue is a data structure which
stores an identification of every process that was inter-
rupted due to the execution of a compaction process.
After finishing the compaction, the queued processes

are automatically activated; they resume their action
at the root node.
D31 A 9-%-catenation is a technique where the items
of 3 adjacent brother nodes are united with their cor-
respondent separators (stored in their father) and di-
vided (as uniformly as possible) between 2 of the 3
nodes. This is the contrary to a 2-3-split (cf. Dll).

4.2 General Description

The method employs the technique of maintaining
the tree nodes safe both for insertions as deletions,
based upon Mond and Raz’s [MR,85] idea, who ap-
plied to B-trees the technique introduced by Guibss
and Sedgewick [GS78] (see subsection 3.2).

Besides Mond and Raz’s application of previous
splits, our method executes previous subdivisions, as
well as delayed catenations. Thus, it avoids propaga
tions of tree restructurings. Moreover, it uses just one
lock type, simplifying the algorithms.

During read, insertion and deletion operations, f-
locks (cf. D27) are performed into the current node
n and its father. Before visiting an appropriate son
nr of n, the latter’s father is unlocked. So, one guar-
antees that for each executing process only 2 nodes
are explicitly locked at each instant. Notice that their
descendants are implicitly locked for processes which
have not reached n’s father yet. Nevertheless, some
of these descendants may contain f-locks due to other
processes which have already passed through n’.

Let P be the executing reader process or updater-
reader subprocess, and n its current internal node,
where n is complete (cf. DS) and unlocked. In this
ca8e, in order to make n safe for future insertions and
to unlock its father, one of the following operations is
performed. If n has adjacent underflown sons, indi-
cated by their underfIown son flags (cf. D29), the lat-
ter are catenated. Otherwise, a subdivision (cf. D12)
between n and some of its brothers, or a split of n
is performed. As will be described later, the choice
between a subdivision or a split depends on the load
factor (cf. D25) of n’s father level, stored in the ocu-
pation factor vector (cf. D26).

The catenation operation tries to eliminate some
separator of n and is executed on 2 of its unlocked un-
derflown sons, which are either adjacent or separated
by an unlocked, not underflown node. In the latter
case, a 3--a-catenation is executed (cf. D31). In both
cases, the resulting node or nodes will not be complete,
because two of the sons were underflown, thus avoiding
a cicle of consecutive catenation and split operations
ss happens with Mond and Raz’s method (see sub-
section 3.2). If any of the involved n’s sons has been
locked by other processes, P enters into a wait state
until these locks are removed.

242

The subdivision operation is performed when the
catenation could not be executed, n is complete and
the load factor of its father level is greater than a pre-
determined value fi, which will be called split factor
limit (for example, f# = 85%). This factor indicates
the situation where it is preferable to subdivide instead
of to split, because the latter produces the insertion of
a new separator in n’s father. If n has at least two not
complete left and/or right brothers the operation tries
to make a subdivision among the elements of n and its
brothers, first examining the left and then the right
ones. That is, the subdivision is performed inspecting
at most four (or another predetermined number) con-
secutive brothers of n. If some of these brothers have
been locked by another process, P remains in a wait
state, until the lock is removed. When n does not have
two brothers at the same side, only the existent nodes
are examined.

If n is complete, the load factor of n’s father level
is greater than fi and it was not possible to perform a
subdivision of n (which means that the adjacent broth-
ers are complete), then a 2-3-split (cf. Dll) is done
between n and one of its brothers. If one of the broth-
em involved is locked by another process, P waits until
it becomes unlocked.

If n is complete and that load factor is less than
or equal to f8, then a normal split is executed, saving
the access to its brothers. Note that the split opera-
tion does not produce a propagation of new splits in
the bottom-up direction because, by construction, n’s
father has enough space for the insertion of a new ek
ment and, as it is locked, no other process has modified
it. This is an essential point of this method, because
this way one avoids the need to lock a great number
of nodes.

Before catenating some of n’s sons, it is not neces-
sary to lock these nodes, because at this moment n is
locked and no other process which has not reached it
may lock its sons. The same applies to subdivisions
and split operations, done at brothers and sons of n,
as n’s father is also locked.

Contrary to the solution of Mond and Pas, de-
scribed in section 3, our method does not distinguish
between reader and updater processes, that is, they
have the same behavior.

Notice that in this method an underflown node may
remain in this state until its father becomes complete.
Then catenations (two nodes in one or 3-2) are tried.
Considering that in practice the number of insertions
tends to be asymptotically greater than or equal to the
number of deletions (because, on the contrary, the file
could disappear), it is convenient to delay those oper-
ations. (Lehman and Yao [LYBl] have also pointed to
the fact that the number of insertions surpass that of
deletions.)

When the amount of underflown nodes is too big,
the total load factor (cf. D25) tends to decrease. To
circumvent this situation a compaction process should
be automatically or manually triggered, which may
be executed concurrently with the other operations.
When a compaction process is started, it activates the
compaction indicator (cf. D28), which is disabled only
at the end of this process. The latter employs a spe-
cial lock type called c-lock (cf. D27), performed only
at leaf nodes. A node n with a c-lock may be read
by other processes. The leaf nodes to the right of a
c-locked node may be read and updated by other pro-
CMSS.

According to the proposal of Miller et al. [MPR,S79]
the compaction process builds a new, compacted tree
in a new disk area, that is, the tree is not built over
the original one. Upon completion of the new tree,
it is copied into the area which contains the old one,
and the temporary space is released. Miller used a
compaction algorithm based upon a depth-first search.
Our method starts from the leaves constructing a level
at a time; this favors the physical contiguity of the tree
being built and the mentioned concurrencies.

The process consists of visiting the leftmost leaf
node nl, executing a c-lock in it. Subsequently, nl
is traversed, and its elements are inserted into a new
disk page PO,. Through ni’s pointer to its right im-
mediate neighbour node (cf. D4, D5), n2 is reached.
A c-lock is introduced into n2 and, if possible, its ek
ments sre inserted into PG~ maintaining an initial load
factor for the nodes established as a parameter. Or,
if not possible, into a new disk page PG~, making PG~
point to the former. This process continues until the
last leaf node is reached, its elements being copied into
the last new disk page PG, . The pages PG~, . . *, PG,
become the leaf nodes of the new tree being built. At
this moment, the process starts traversing these new
leaf nodes, building their father nodes. The last el-
ement of PG~ is introduced into its father, becoming
the separator between Pcj and PG~+~ (15 j 5 m - 1).
This is repeated for the other tree levels, until the new
tree’s root is built.

In the new tree, the nodes at each level are phys-
ically built immediately to the right of the nodes of
the previous level. This provides for a certain physi-
cal contiguity, increasing the efficiency of search pro-
cedures. During the construction of the new tree’s
internal nodes, other processes may perform only read
operations in the old tree, because at this moment ev-
eryone of the latter’s leaf nodes contains a c-lock.

When an updater process reaches a e-locked leaf
node it must be interrupted and inserted into the com-
paction queue (cf. D30). When the compaction pro
cess ends, every queue request is automatically trig-
gered and the correspondent process is restarted at

243

the new tree’s root, trying to accomplish the desired
operation.

The possible existence of an active compaction pro
cess has to produce alterations in reader and up-
dater processes. Before starting their executions, they
should verify the compaction indicator. If it is on,
those processes should not execute catenations, splits
and subdivisions, because the tree is being compacted
anyhow. Insertions should only be performed in non-
c-locked, non-complete leaf nodes or in those leaves
whose fathers are not complete, guaranteeing no prop-
agations.

4.3 Processes and Algorithms

The processes described below use algorithms which
are presented under the form of decision tables (see,
for instance [PHH71], divided into two subtables (con-
ditions and actions) where “y”, “n” and u-n stand
for “yes”, “no” and “indifferent”, respectively. Num-
bers in a certain column of an action section indicate
the order in which the actions corresponding to con-
ditions which are all true for that column, are to be
performed. Conditions and actions are expressed as
“macros,, defined after the tables. Some algorithms
are described using macros defined in previous algo-
rithms. Let ii,. . . , i, be the index values in node n.

4.3.1 Reader process or updater-reader sub-
process

Traverses the tree from the root down to a leaf, calling
the Search algorithm for each visited node n.

4.3.2 Updater process

Calls the Search algorithm until it reaches an appropri-
ate leaf node n. Returns n with the information that it
has found or not found the index value being searched
and the correct position of insertion or deletion inside
n. Then, it executes the Insertion or Deletion algo-
rithm, depending on the type of process.

4.3.3 Compaction Process

Sets the compaction indicator to on and calls the Cam-
paction algorithm.

4.3.4 Search algorithm

Input: The root node n of a subtree and the index
value i being searched.
Conditions:
compaction-indicator?: does the compaction indicator
contain a true value?
complete?: is node n complete?

return-not-found

underflown-sons?: does node n contain underflown
sons n’ and n” either adjacent or separated by an un-
locked, not underflown son?
father&load-greater?: is the load factor at n’s father
level greater than f.,?
may-subdivide?: is it possible to subdivide n expand-
ing this operation to take into account at most 2 ad-
jacent brothers at each side of n?
is-leaf?: is n a leaf node?
found?: was i found in n?
Actions:
catenate-sons: if the underflown sons are adjacent,
catenate them; if they are separated by a not under-
flown node, execute a 3-2-catenation.
subdivide: subdivide n’s elements expanding this op-
eration to take into account at most 2 adjacent broth-
ers at each side of n.
split: split n.
2-3-split: perform a 2-3-split on n.
goon: unlock n’s father, locate the appropriate n’s
son, lock this son and call it n.
return-found: return, indicating (through a found in-
dicator) that i was found, and giving its position j in
n,l<jsna.
return-not-found: return, indicating that i was not
found and giving j, 0 5 j < m, where j = 0 means
that i must eventually be inserted to the left of il,
otherwise (j > 0) between ij and ij+i.

4.3.5 Insertion algorithm

Input: The node n, the position j in n returned by
Search, the found indicator and the index value i to
be inserted.
Conditions:
found-indicator?: has the found indicator the value
found?

244

insert-value 1 pppppp
subdivide IIWIII

safe-for-insertion?: is the leaf node n safe for insertion,
that is, n contains less than 2K values?
father-safefor-insertion?: is the father of leaf node n
safe for insertion?
is-there-c-lock?: does node n contain a c-lock?

Actions:
insert-value: insert i into the leaf node n at position
j.
message-l: emit message “the index value is already
present in the tree”.
insert-compaction-queue: insert the process into the
compaction queue.
unlock: unlock n’s father and n, in this order.

4.3.6 Deletion algorithm

Input: The node n, the position j in n returned by
Search and the found indicator.

i comnaction-indicator? I - I n I n I v 1

delete-value 1 1
under%own-son-flag 2

message-2 1
insert-compaction-queue 1 1

unlock 2 31

Conditions:
safefor-deletion?: is the leaf node n safe for deletion,
that is, does it contain more than K values?
Actions:
delete-value: remove the idex value from the leaf node
n at position j.

underflown-son-%ag: update the underflown son %ag
corresponding to n at its father, indicating that the
leaf node n has become underflown.
message-2: emit message “the index value is not
present in the tree”.

4.3.7 Compaction Algorithm

Comment: This algorithm uses, for each leaf node,
its pointer to the next node located at its right-hand
side (cf. D5)

Input: The lelfmost leaf node n.

null-right-pointer? n Y
c-lock 1

create-new-leaf 2
fetch-right-nointer 3

repeat-table 141
create-internal-nodes I I 1

Conditions:
null-right-pointer?: is n’s pointer to its immediate
right neighbour null?

Actions:
c-lock: lock the next leaf node with a c-lock and call
it n.
createnew-leaf: copy n’s contents into the new page
being built.
fetch-right-pointer: fetch n’s pointer to its immediate
right neighbour .
repeat-table: go to the beginning of this table.
create-internal-node: build the internal nodes of the
new tree.
copy-new-tree: copy the new compacted tree into the
space occupied by the old one.
turn-off-compaction-ind: set the compaction indicator
to off.
trigger-compaction-queue: trigger the processes stored
in the compaction queue.

4.4 Deadlock and Consistency

Our methods are deadlock-free, due to the particular
lock types employed, that is, always involving two con-
secutive nodes along the hierarchical path, and follow-
ing a certain ordering corresponding to the tree struc-
ture (top-down).

Consider the situation of figure 1 which illustrates a
part of a tree during the execution of some process PI,
where n is the current node, n/ is its father and f(S)

245

the f-lock executed by PI. If there exists a process P-J
locking a node n’, where n’ is n’s son, then n is not
the current node of Pa, otherwise, n would have been
locked by P2. Let n”, the current node of Pa, be the
son of n’. We assert that the updates preformed by PZ
in n”, and consequently in n’ do not propagate until
n, because n’ has, by construction, some available free
space for future insertions (P2 has already visited n’),
avoiding the deadlock situation.

Figure 1: Processes PI and P2 do not interefere

On the other hand, figure 2 illustrates the situation
where nr, one of n’s brother, is locked by P2, and PI
is attempting to perform a split on n or a subdivision
involving its elements. By construction, the current
node of P2 is a son ni of nr, otherwise n’s father nf
would not be locked by PI. PI must wait until P2
unlocks ni. Notice that there are no deadlock prob-
lems, because nr contains free space for the insertion
of a new element (P2 has already visited nl) and thus
there is no insertion propagation until nf (which is
locked by PI).

Notice that the attempt to split or subdivide was
reduced to the verification of at most n’s two imme-
diately precedent or subsequent brothers, avoiding the
possiblity of deadlock occurrence. A deadlock could
happen had we visited n’s “cousins” (sons of a brother
of nf).

Due to the utilization of c-locks and the initial con-
struction of the compacted tree in a new area, the com-
paction process executed simultaneously with reader
and updater processes does not cause dealock.

4.5 Variable-length Index Values

The use of front and rear index value compression
(Wagner [wag73]) and of Preflx B-trees (Bayer and
Unterauer [BU779 tend to diminish the tree’s height.
They require the use of variable-length index values.

Keller and Wiederhold [KW88] call the attention to
the fact that Mond and Raz’s method [MR85] cannot
be used with variable-length index values. In this case,

“f

I... . . .
P f(Pd

P
f(W

,,, ;p. n’l’ >PP2)
I I

Figure 2: PI awaits P2

the free space of each node may not be sufficient to
accommodate a new value being inserted. In other
words, it is difficult to characterize the fact that a node
is or is not complete.

Our method may be extended to support these type
of values. For this, we propose that the user specify
the index value’s maximum length in bytes or words,
L,. Let L, be less than the half of a node’s length.
It is necessary to introduce some modifications in the
present method.

The limits K and 2K are not characterized any-
more. They have to be replaced by the length of a
half-node and of a full node, respectively. Let us rede-
fine the notion of a complete node.
D32 In a tree with variable-length index values and a
maximum value length L,, a node is complete when
its free space is less than L,.
D33 In a tree with variable-length index values a node
is vde$ovrn when its free space is greater than half of
its total length.

The catenation, subdivision and split operations
must be performed so that the nodes do not remain
complete. When a node n is complete and has 2 un-
derflown sons separated at most by 1 node, one should
begin by trying to execute a catenation. If not pos-
sible or, if after its execution the node remains com-
plete, one tries to perform a subdivision among its
underflown sons and their brothers. Thus, one tries
to replace the present separators by others of smaller
length, eventually obtaining a non-complete n.

5 Conclusion and Future Research

Bayer and Schkolnick’s [BS77’J, Miller and Snyder’s
[MS781 and Kwong and Wood’s [KW80b, KW80a,
KW82] solutions are characterized by the use of vari-
ous lock types, with conversions among some of them.

246

Our method uses only one lock type, to perform read,
insert, delete and update operations. It uses another
lock type to execute a compaction process. The con-
currency problem of running a compaction process to-
gether with other processes has not been found in
the literature. Contrary to Bayer and Schkolnick’s,
Lehman and Yao’s [LYN], Sagiv’s [SagSS], Kwong and
Wood’s, and Souza and Carvalho’s [SC921 solutions, in
our method each executing process traverses the tree
only once, except for some cases of processes that are
being executed while the tree is being compacted.

The proposed solution applies to B*- and B+-trees
and extends Mond and Raz’s [MR85] method (see sub-
section 3.2). Contrary to their method, ours avoids the
problem of producing cycles of catenation and split
operations. It also performs 3-a-catenations as well
as preemptive (eventually 2-3) splits and subdivisions
of complete nodes, but only when it is not possible
to execute a delayed catenation of two of its (eventu-
ally non-adjacent) sons; the underflown son flags were
introduced to improve performance in this case, reduc-
ing the number of nodes which have to be examined.
We have also introduced a criterium to choose between
subdivisions and splits, using a new parameter, the fa-
ther’s level load factor. Another item, not covered by
them, is the use of variable-length index values per-
mitting value compression and prefixing. The method
favours a good total load factor, and provides a new,
concurrent compaction technique. The latter guaran-
tees physical contiguity of nodes in each level and of
consecutive levels.

Without the compaction method, the concurrecy
solution may also be employed to B-trees.

This work opens the following topics for future re-
search. 1. Simulations to determine the ideal split fac-
tor limit (f#) f or each type of application, node load
factor after compaction, and total load factor to trig-
ger automatic compaction. 2. Extensions to avoid
preemptive splits and delayed catenations in the nodes
close to the root, because the probability of executing
these operations in those nodes is very low in compar-
ison to nodes close to the leaves. 3. Simulations to
compare our method with other ones.

References

[BM72] R. Bayer and E. McCreight. Organization
and maintenance of large ordered indexes.
Acta Informutica, 1:173-189, 1972.

[BS77] R. Bayer and M. Schkolnick. Concurrency
of operations on B-trees. Acta Informatica,
9(1):1-21, 1977.

[BT90] W. Boswell and A.L. Tharp. Advances in
Computing and Information, volume 468 of

[BU77]

[CLRSO]

[Corn791

[DijSS]

[El1801

[GS78]

[Knu73]

[KS861

[KWSOa]

[KWSOb]

[KW82]

W’W

Lecture Notes in Computer Science, chap-
ter Alternatives to The B+-‘Dee, pages
266-274. Springer, May 1990.

R. Bayer and K. Unterauer. Prefix B-tree.
ACM ‘Ikansactions on Databae Systems,
2(1):12-26, March 1977.

T.H. Cormen, C.E. Leiserson, and R.L.
Rive&. Introduction to Algorithms. The
MIT Press and McGraw Hill Book Com-
pany, New York, 1990.

D. Comer. The Ubiquitous B-tree. Com-
puting Surveys, 11(2):121-137, 1979.

E.W. Dijkstra. The structure of the multi-
programming system. Communications of
the ACM, 11(5):341-346, May 1968.

C.S. Ellis. Concurrent search and insertion
in 2-3-trees. Acta Informatica, 14(1):63-86,
1980.

L.J. Guibas and R. Sedgewick. A dichro-
matic framework for balanced trees. In
Proc. 19th Annual Symposrum Foundation
of Computer Science, pages 8-21, 1978.

D.E. Knuth. The Art Computer Pro-
gramming: Sorting and Searching, vol-
ume 3. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1973.

H.F. Korth and A. Silberchatz. Database
System Concepts. MC. Graw Hill Inc., New
York, 1986.

Y.S. Kwong and D. Wood. In Proc. 4th In-
ternational Symposium Programming, vol-
ume 83 of Lecture Notes in Computer Sci-
ence, chapter Concurrent Operations in
Large Ordered Indexes, pages 208-221.
Springer, 1980.

Y.S. Kwong and D. Wood. In Proc. MFCS,
volume 88 of Lecture Notes in Computer
Science, chapter Approaches to Concur-
rency in B-Trees, pages 402413. Springer,
1980.

Y.S Kwong and D. Wood. A new method of
concurrency in B-trees. IEEE fiansactions
on Software EGgineering, SE&8(3):211-222,
May 1982.

M.A. Keller and G. Wiederhold. Concur-
rent use of B-trees with variablelength en-
tries. Siymod Records, 17(2):89-90, June
1988.

247

[Lam771 L. Lamport. Concurrent reading and wag731 R.E. Wagner. Indexing design considera-
writing. Communicdlions of the ACM, tions. IBM System Journal, (4):351-367,
20(11):806-811, November 1977. 1973.

[LY81] P.L. Lehman and S.B. Yao. Efficient lock- [Zis93] A. Zisman. The B-trees and an implemen-
ing for concurrent ‘operations on B-tree. tation proposal (in Portuguese). Master’s
ACM Transactions on Databae Systems, thesis, Institute of Mathematics and Statis-
6(4):650-670, December 1981. tics, USP, !%o Paulo, 1993.

[MPRS79] E.R. Miller, N. Pippenger, A.L. Rosem-

[MR85]

[MS781

[Nag901

[Par771

[PHH71]

[SakWl

[Sam761

[SC921

berg, and L. Snyder. Optimal 2-3 trees.
Siam Journal of Computing, 8(1):42-59,
February 1979.

Y. Mond and Y. Raz. Concurrency control
in B+-trees databases using preparatory
operations. In Proc. of the llth Interna-
tional Conference on Very Large Database,
pages 331-334, Stockholm, 1985.

E.R. Miller and L. Snyder. Multiple ac-
cess to B-trees. In Proc. Conference Infor-
mation Sciences and Systems, pages 400-
407, John Hopkins University - Baltimore,
March 1978.

S. Nagayama. Decision tables and the im-
plementation of the I-M-E generator (in
Portuguese). Master’s thesis, Institute
of Mathematics and Statistics, USP, Sb
Paulo, 1990.

J.R. Parr. An access method for concur-
rently sharing a B-tree index. Technical
Report 36, University of Western Ontario,
Departament of Computer Science, April
1977.

S.L. Pollack, H.J. Hicks, and W.J. Harri-
son. Decision Tables: Theory and Practice.
John Wiley and Sons, New York, 1971.

Y. Sagiv. Concurrent operations on B*-
trees with overtacking. Journal of Com-
puter and Systems Science, 33:275-296,
1986.

B. Samadi. B-trees in a system with multi-
ple users. Inj. Processing Letters, 5(4):107-
112, October 1976.

R.M.F. Sousa and O.S.F. CarvaIho. Con-
currency control of B-trees. (in por-
tuguese). IV- Simpbsio Brasileiro de Ar-
quitetura de Computadores - Processa-
mento de Alto Desempenho (IV SBAC
PAD), pages 397-412, 1992.

248

