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Abstract 

Global clustering has rarely been investigated in 
the area of spatial dambase systems although dra- 
matic performance improvements can be 
achieved by using suitable techniques. In this pa- 
per, we propose a simple approach to global clus- 
tering called cluster organization. We will demon- 
strate that this cluster organization leads to con- 
siderable performance improvements without any 
algorithmic ovedxad. Based on real geographic 
data, we perfm a detailed empirical perform- 
ance evaluation and compare the clusterorganixa- 
tion to other organization models not using global 
clustering. We will show that global clustering 
speeds up the processing of window queries as 
well as spatial joins without decreasing the per- 
formanceoftbeinsertionofnewobjectsaodofse, 
lective queries such as point queries. lhe spatial 
join is sped up by a factor of about 4, whereas 
non-selective window queries are accelerated by 
even higher speed up factors. 

1 Introduction 
The demand for using dambase systems in application ar- 
eas such as graphics and image prousing, computer aided 
design, and geography and cartography is increasing con- 
siderably. The important chamcteristic of these applica- 
tions is the ocxunmce of spatial objects. The management 
of such objects imposes stringent new requirements on so- 
called spatial database systems. 

Spatial dahbaxs are very large databases. Fmt, spatial 
database systems have to manage extremely high numbers 
of objects; applications exist where billions of spatial ob- 
jects are organized by the database system. Second, the 
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data objects show a high variation in their complexity; 
small objects requiring only a few bytes of storage as well 
as very complex objects consisting of several thousands of 
componentsoccurinthesamedambase.Alltogether,data 
volumes of up to 100 terabytes ate attain& Mole detailed 
discussions about the mquiremems for spatial database sys- 
tems can he found in [SFGM93], Pm911 and [BHKS93]. 

In spatial query proce&ng, efficiency is the bottlen&, 
a bottleneck which camrot be ehmimued without the help 
of suitable data structures and adequate techniques for 
query processing. Cormspondmg to the high variation of 
the complexity of spatial objects, a spatial database system 
should support a selective spatial access to single objects in 
secondary storage as well as access to sets of objects 
caused by large data requests. Spatial access methods al- 
low an efficient access to objects containing a given query 
point (point query) or intmecting a small query rectangle 
(window query). Most spatial access methods proposed un- 
til now accommodate either a relatively large number of 
object approximations (e.g. minimum bounding lectan- 
gles) includmg a pointer to the exact representation or a 
small number of exact mpresentations of spatial objects in 
their data pages. In a dynamic da&base environment, how- 
ever, diierent pages storing spatially adjacent objects are 
arbitrarily distributed over the secondary storage. As acon- 
sequence, access to large sets of spatial objects is very ex- 
pensive. 

In view of permauently increasing database and main 
memory sizes, the processing of “huge” queries which re- 
turn hundreds of objects becomes more and more impor- 
tant. Cansequently, large range queries require the contents 
ofmanydatapagestoberetrievedfkomthedataba&For 
efficient query p mcessing, it is necesmry to associate spa- 
tially adjacent objects to physically consecutive pages. 
‘Ihis is the task of glubal clustering: A set of data pages 
qresenting spatidly adjacent objects is stored on consec- 
utive pages of the magnetic dii (e.g. on one cylinder). 
Sinceaglobalreorganix&onofallobjectsintheda&tse 
is not reasonable in a dynamic environment where insert 
and delete operations are intermixed with queries, global 
clustering is one of the mostchaUenging problems for spa- 
tial damase systeuls today. 

In the last few years, concepts have heen presented for a 
dynamic organization of spatial objects which support glo- 
bal clustering. Hutfiesx et aL [HSWSS] faced the problem 
of global clustering of multidiiensional points by using a 
multidimensional hashing scheme. A similar concept was 
appliedtominimmn bounding rectangles in cHWz91]. In 
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[BHKS931, we proposed the concept of a scene organixa- 
tion which is based on R*-trees. DrOge and Schek IDS931 
presented a grid-based approach which uses multi-page 
storage clusters of variable size. All these concepts com- 
bine global clustehg with the use of a spatial access 
method. 

Additionally, several techniques for supporting the ac- 
cess to storage clusters have been proposed. For example, 
Weikum [wei89] demonstrated the advantage of a set-ori- 
ente4lpageinterfacethatallowsustoaccesslargespatial 
objects by a single call to the I/Q-system. Seeger et al. 
[SLM93] investigated how a set of data pages can be effi- 
ciently cad into main memory. In [BKS93a], a geometric 
threshold was proposed for increasmg the performance of 
spatial query processing. 
In this paper, we pursue two goals: 
1.) We want to obtain an evaluation of the importance of 

several techniques for global clustering which were 
presented in the litemtnre. ‘Ibis investigation is per- 
formed in the context of spatial da&base systems. It is 
clear that all known techniques improve spatial query 
processing, however the questions arise: How much 
does a proposed technique improve the performance? 
It is worthwhile to use this technique? Do& a simple 
technique lead to a small and a sophisticated technique 
to a high performance gain? 

2.) Most of the known techniques have been investigated 
for some types of range queries. For spatial database 
systems, the cmespondiug query is the window query, 
however, another important operation in a spatial data- 
base system is the join. According to our knowledge, 
the impacts of global clustering on spatial joins have 
not been investigated yet. The questions then arise: 
Does global clustering have any impacts on spatial join 
processing? Which of the known techniques are suita- 
ble for spatial joins? Are modiied approaches neces- 
sary for spatial join pmcessing? 

In order to investigate these questions, we designed a sim- 
ple architecture for global clustering in spatial da@ase 
systems. We will demoustrate that, in comparison to other 
architectures, this approach leads to considerable perfor- 
mance improvements without au algorithmic overhead. 
Furthermore, this architecture is the framework in which 
we investigate the improvements of several techniques 
withrespecttostorageutilization andtotheperformauceof 
selective queries, non-selective queries, and spatial joins. 

The paper is organized as follows. First, we take a short 
look at the queries in a spatial database system. In Section 
3, we describe different models for storing spatial objects. 
Our concept for handlhtg large sets of spatial objects in set- 
ondary storage is demibed in Section 4. lherest of thepa- 
per contains an evahration of the impact of global cluster- 
ing and of the applied techniques on the performance of 
different operations in spatial database systems. In particu- 
lar, we carry out a detailed empirical performance compar- 
ison based on real geographic data from the US Bureau of 
the Census. The paper concludes with the main contribu- 
tions and gives a brief outlook on future work. 

2 Queries in Spatial Database Systems 
Spatial databam systems are used in very different applica- 
tion environments. ‘lberefore it is not possible to find a 
compact set of spatial queries and operations fulfilling all 
the requirements of geographic applications. Thus it is nec- 
essary to provide a small set of basic spatial queries which 
are efficiently supported by the database facilities. Three of 
the most important basic queries in a spatial da&base sys- 
tem are the point query, the window query, and the spatial 
join: 

l Point query; Given a query point P and a set of objects 
M, the point query yields all the objects of M geometri- 
cally containing P. 

l Window query: Given a rectilinear query window Wand 
a set of objects M, the window query yields all the objects 
of M sharing points with W. The window query is the 
most important range query in a spatial database system. 

I 1 

Figure 1: Examples for a Point and a Window Query 

l Spatial join: A relatiotnzl @join of two relations A and B 
on columns i and j, denoted by A@B , combmes those tu- 
ples where the i-tb column of A and the j-th column of B 
fullill the predicate 8. A join AQB is called a spatial join 
if the i-tb column of A and the j-th column of B are spatial 
attfibutes and if 8 is a predicate consisting of at least one 
spatial query conditiou. Hence, the spatial join computes 
a subset of the Carte&m product of the relations A and B, 
a tuple of the result consists of a pair of objects fmm A 
and B. The most imporumt spatial join is the intersection 
join where 8 is the intersection predicate. In this paper, 
the discussion is restricted to the intemection join, but the 
major results of this paper also hold for spatial joins us- 
ingotherpredicates. 

3 The Storage of Spatial Objects 

3.1 Object Access and Clustering 

Access methods as an essential part of the physical level of 
ada&asesystemareusedtoorganizeadynamicsetofob- 
jects in secondary storage. Qnedimensional access meth- 
ods like B-trees or lineur hushing are not suitable for spa- 
tial database systems. For these systems we need data 
shuctures which organixe the spatial objects with respect to 
their location and extension in the data space. Due to the ar- 
bitrary complexity of spatial objects, it is not possible to 
develop an efficient structure indexing the complete object 
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description. Therefore, spatial access methods (SAMs) zip- 
proximate the geometry of the objects by simpler hvodi- 
mensional spatial primitives, e.g minim1 bounding rectun- 
gles (MBRs), and use these primitives as spatial keys. Sev- 
eral appmaches for SAMs ate presenn~$ e.g. in [NHS84], 
[Gut841, l-Fre871, [SRF871, lIISW891, [BKSS!30], and 
[SIDOI. A survey of spatial access methods can be found in 
[sam90]. 

The basic principle of SAMs is to group spatial objects 
whichareclose~eachotherindataspaceclosebeach 
other in the data pages. The size of a page is fixed and de- 
pends on the individual system; typical page sixes are be- 
twecnland8KB.AdatapagcconspoadstoaplrysicaZ 
page in secondary storage; a physical page consists of one 
or a number of sectors in secondary storage. On magnetic 
disks, still the most important seco&ry storage medium, 
the pages am organixed in cylinders and tracks where mul- 
tiple mad/write-heads ate used. ‘Ihe access time to a page 
consists of three components namely 

l seek time (fS); this is the time to move the read/write-head 
to the proper track 

l latency time (fl); this is the time to mtate the disk into the 

right position (rotationul delay) 
l transfer time (tt); this is the time to transfer one page 

For typical disks the following relation holds: ts > tl> tr. 
Two pages on a disk are called physically consecutive if 

one page can be red directly after the other without addi- 
tional seek or latency time. Two consecutive pages are on 
thesamecylindetbutdonotneedtobeontbtsametrack 
(i.e. the time to switch from one track to another track of 
the same cylinder is neglected in the following). It is as- 
sumed that physically consecutive pages can be read with a 
single read request. Such a read request will uot be inter- 
nipted by other requests. 

The goal of clustering is to mmimixethemunherofseek 
operations and the rotatioual &lay in oltla to tednce lE:- 
cess cost. In spatial database systems, the uotion of cluster- 
ing is nsed when spatiaUy adjacent objects, which are often 
required jointly by queries, are stored physically together 
in secondary storage. An adequate access mechanism for 
spatial database systms has to support three types of clus- 
tering in order to efficiently perfotm spatial queries: 

l Internal clustering: In order to speed up access to single 
objects, the complete mpresentation of one object is 
stoml in one page, assnming its size is smaller than the 
free space on the page. Otherwise, the object is stored on 
multiple physically consecutive pages. In this case, the 
number of pages occupied by the object is at most 1 
higher than the miniium number of pages which are 
necessary to store the object 

l Lfxul clustering: In order to speed up access to several 
objects, a set of spatial objects (or approximations) is 
grouped onto one page. This grouping is peiformed ac- 
cording to the knxticm of the objects (or apptoximations) 
iUdataSpU!&?. 

l Global cZusrering: In contrast to local clustering, a set of 
spatially adjacent objects are stored not on one but on 
several physically consecutive pages which can be ac- 
cessed by one single mad request. 

3.2 Organizatio~~Models 

In this subsection, we desaibe three basic approaches for 
storing huge sets of spatial objects and discuss them with 
respect to the aforean~tioned clustering demands. Internal 
clustering is easily malixed if each spatial object is defined 
and represented indepet&ntly from other objects. Iftopo- 
logical data models [Bur86) = use4 internal clustering 
canbeachievedatthelevelofthebasii~tsofthe 
spatial ol#43s, e.g. border lines modelling a map of coun- 
tli~.Tbcrefort,tbe~andresultsiIlthiSpapet~ 

almostindependentofthedatamodelused. 
Basically, thereexistthreedifferentappma&sforstor- 

ing~esctsof~objectscambiotdwitbtheuseof 
spatial amess methods. These approarbts am called orgu- 
nizution models in the following. 
3.2.1 secondary orgamon 
Iu this organ&&m nmdel, the approximations and the 
pointers to the exact repmsentations of the objects ate 
storedintbedatapagesofthcSAM.~eex~representa- 
tion is stored outside of the access method, e.g. in a sequen- 
tial file. This organization model is used, for instance, in 
quadtrees (see [HS92]). In other words, the spatial access 
methodisaprimaryindexfortheapproximaUonsanda 
secmby index for the spatial objects. Ibetefore, we cell 
this appmch secondby organization; it is shown in 
Figure 2. The main aivantage of this scheme is the large 
number of approximations stored together in one data page, 
i.e. a maximum degree of local clustering at the level of the 
appmxhmons ispreaeaved. Fhrwmoq thereisnolimit 
tothesixeoftheexactobjectrepmsentation.Afundamen- 
tal drawback is the fact that the cl-g refras simply to 
the object approxiun&ns and not to the objects them- 
selves. consequently, when proces&g window queries, 
eachafxesstoanexactobjectrepresentatcmneedsanad- 
ditional seek operation. 
3.202 Primary organlzatlon 
In the second orgm mode& the exact tepresentations 
oftheobjectsarestoredonthedatapagesinadditiontothe 
approximations. ‘Ibercfon, spatial neighborhood is physi- 
cally pmerved at the level of the exact object repmsenta- 
tions. Objects within one data page are tmnsferred into 
mainmemoryusingjustaiediskaccess.Incontmsttothe 
flrstorganiMionmodel,thespatialaccessmethodisapri- 
mary index forthespatialobjectsanddeterminestheirstor- 
age location (primmy ofgunimion). An esmtial draw- 
backoftheprimaxyorganixationisthelown~berofob- 
jectsfi~g~~oaepegefortypicalpegcsizesoflKBto 
8 KB. As a consequence, adjacent objects am often stored 
in diffenmt pages and local clusteaing is reduced. Another 
disadvantageisthataccesstotheapproximatkmofauob 
jectrequimsatransferofthecompleteobjectintomain 
memory.Handlingobjectslargerthancnedatapageisa 
difliculttaskfortheprimtayorgani&onbecauseaspecial 
page overtlow mechauism has to be implemented. 
3.2.3 An Organlzatlon Model for Global Clustering 
Considering existing SAMs and the laoperties of spatial 
objects to be stmd, we can observe the following facts: 
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l The objects are very large in comparison to the size of the 
pages they are stored in. Even in the case of large pages, 
the number of objects per page is usually rather small. 

l In a dynamic environment, the pages used for storing ob- 
jects are distributed on the secondary storage device in- 
dependent of spatial aspects, i.e. objects lying adjacent in 
space lose their neighborhood on the storage device. 
Large range queries transfer a large number of spatially 
adjacent pages into main memory. As mentioned before, 
the arbitrary distribution of these pages on the disk leads 
to a very high access cost during query processing. 

Therefore, a global clustering of larger sets of objects is ad- 
vantageous. Global clustering can be achieved by combm- 
ing sets of data pages with larger storage units, referred to 
as cluster units. The assignment of spatial objects to cluster 
units should be handled by a spatial access method because 
the objects within the cluster units should be spatially adja- 
cent. The concepts proposed in PS93] and [BHKS93] fol- 
low this type of org,anization model. 

In Figure 2, the three organization models are depicted. 

ages 

external representation 
secondary orgunizution 

A 
primary orgunization 

orgunizutidn model supphhng global clustering 

Figure 2: Organization Models for Storing Spatial Objects 

4 The Cluster Organization 
In thii section, we design a concrete organization model for 
supporting global clustering called cluster orgwizution. 
The basic requirements for the design of thii cluster orga- 
nization are the following: 

l In order to construct an efficient scheme for global clus- 
tering, we need a spatial access method using a high 
quality space partitioning scheme. 

l Due to the changes in the spatial database, the access 
method and the cluster organization must support inser- 
tions and deletions. 

l The following operations should be efficiently sup- 
ported: point queries, window queries and spatial join 
operations. 

l For the I/O-system it is easier to handle cluster units of 
liiited size. Consequently, we assume that a maximum 
cluster size exists. 

l A reasonable storage utilization should be realized. 

An additional goal in the context of this paper is to design 
an organization model which is as simple as possible with- 
out unnecessary algorithmic overhead. This allows us to 
identify the impact of global clustering on the one hand and 
of more elaborated techniques which can be applied to the 
cluster organization on the other. 

The first step in the design of the cluster organization is 
the selection of a suitable access method. 

4.1 R*-tree 

An R-tree [Gut841 is a B+-W-like access method that 
clusters sets of spatial objects or their minimum bounding 
rectangles (MBRs) in its data pages. The R*-tree 
[BKSS90] is one of the most efficient variants of the R-tree 
due to its usage of more sophisticated insertion and split- 
ting algorithms. 

There is almost no difference between the data struc- 
tures of R- and R*-trees. A node of the R(*)-tree corre- 
sponds to a page on secondary storage. A non-leaf node (di- 
rectory page) contains entries of the form (reJ rect) where 
ref is the address of a chid node and rect is the minimum 
bounding rectangle of all rectangles which are entries 
within that child node. A leaf node (data page) contains en- 
tries that consist at least of the MBRs of the corresponding 
spatial objects. The data entries are grouped together ac- 
cording to the location in space. R(*%ees neither clip nor 
transform the spatial objects. Instead, overlap is allowed, 
i.e. rectangles of different entries may have a common in- 
tersection. Since a high overlap results in poor query per- 
formance, one of the most important design goals of the 
R*-tree was the reduction of overlap. As a consequence, 
the R*-tree shows a very efficient space partitioning 
scheme. 

An R(*)-tree is completely dynamic; insertions and dele- 
tions can be intermixed with queries without any global re- 
organization. Following the similarities in the data struc- 
tures, there is almost no difference between an R-tree and 
an R*-tree with respect to specific queries lie the window 
query. Let S be a query rectangle of a window query. The 
query is then performed by starring in the root and comput- 
ing all entries whose rectangle intersects S. For these en- 
tries, the corresponding child nodes are read into main 
memory and the query process is repeated, unless the node 
in question is a leaf node. 

‘II r 

t 
t 

Figure 3: Example of an R(*)-tree 

An example of an R(*Uree is given in Figure 3. The tree 
consists of three data pages and one directory page. The 
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query window is depicted by the gray colored rectangle S. 
First, the query is performed against the root of the R-tree 
where the rectangles r and t intersect the window. Thus, the 
two corresponding data pages are read into memory and 
their entries are checked for a common intersection with 
the window. Eventually, rectangle UI is found to be an an- 
swer of the window query. 

Due to its good performance, robustness and simplicity, 
we take the R*-tree as a major component of the cluster or- 
ganization. The interested reader is referred to the original 
papers [Gut841 and [BKSS90] for a more detailed discus- 
sion of R(*)-trees. 

4.2 The Cluster Organization 

The most important decision in the design of the cluster or- 
ganization is the definition of the cluster units. The investi- 
gations in PHKS93J show that the size of a cluster unit 
does not considerably affect the performance of query pro- 
cessing. Therefore, it is reasonable to use a static definition 
of the size of a cluster unit from the spatial access method 
(see also Section 5.4.4). We propose to cluster all objects in 
a cluster unit whose approximations (i.e. their MBRs) are 
stored in one data page. For a page size of 4 KB, an entry 
size of 46 Bytes, and a storage utilization of 66% an aver- 
age of 58 objects per cluster unit will be clustered. If the re- 
sulting number of objects is not considerably higher than 
the number of objects clustered by the primary organiza- 
tion, another defmition may be used. 

We can distinguish three levels in the cluster organiza- 
tion. The directory of the R*-tree is the fmt level. It orga- 
nizes the second level consisting of data pages, where the 
MBRs of the spatial objects are stored. Each data page ref- 
erences one cluster unit. Within a cluster unit, the spatial 
objects are stored in an arbitrary order, i.e. for one object 
internal clustering is maintained, a local clustering does not 
exist within a cluster unit. 

Figure 4 depicts the schematic structure of the cluster 
organization. 

. . . : cluster units 

Figure 4: Schematic Structure of the Cluster Organization 

4.2.1 Modifications of the R*-tree 
As mentioned before, it is easier for the I/O-system to han- 
dle cluster units of limited size. Using the described assign- 
ment between data pages and cluster units, no maximum 
cluster size can be maintained. Usually, the R*-tree split is 
invoked if the number of entries in a node exceeds the max- 
imum capacity h4 of a page. Therefore, we have to change 
the split strategy of the R*-tree as follows: If the size of all 
objects in one cluster unit exceeds the maximum cluster 

size Smax, we split the cluster unit and the corresponding 
data page. This cluster split is independent of the structure 
of the R*-tree, Consequently, the number of entries in the 
data pages is Smaller than in an R*-tree without cluster or- 
ganization. For the following tests, we compute S,, as fol- 
lows C&j describes the average size of an object): 

&UlT- 1.5 * M. s&j. 

One property of the R*-tree is not very suitable for a cluster 
organization: whenever an entry is inserted into a full node 
in the R*-tree, the node is generally not split, but some frac- 
tion of its entries is deleted and reinserted on the same 
level in the R*-tree. The entries for this reinsert operation 
are selected such that they have the largest distance born 
the center of the original MBR of the node. If, during a re- 
insertion process, an entry should be inserted into a full 
node, the node is split in two. The re-insertion of one entry 
into another data page requires the transfer of a complete 
spatial object from one cluster unit into another one. Such 
a transfer would cause considerable overhead and increase 
the insertion cost. Therefore, we need a second modifica- 
tion of the R*-tree: an R*-tree with cluster organization 
that performs no re-insertion on the data page level. 

4.2.2 The Processing of Insertions and Queries 
The insertion of a new spatial object into the database is 
performed in four steps’: 
1.) Determine a data page using the corresponding R*-tree 

algorithm. 
2.) Insert the MBR (and additional information) of the ob- 

ject into the data page. 
3.) Append the spatial object to the corresponding cluster 

unit. 
4.) If the size of the cluster unit exceeds the maximum size 

S,, or if the number of entries in the data page ex- 
ceeds M, split the data page into exactly two cluster 
units and distribute the objects onto these cluster units 
according to the R*-tree split algorithm. 

The cluster organization should efficiently support small 
queries as well as large queries. They are processed in ba- 
sically the same way as in the secondary organization: 
First, we compute all data pages containing MBRs which 
fulfill the query condition (filtering [Ore89]). Using the ab- 
solute address of the cluster unit and the relative address as- 
signed to the entry in the data page, we access the represen- 
tation of the spatial object and check the query condition 
using the exact representation of the object (rejinement). 
For window queries, global clustering can be exploited: In- 
stead of transferring the exact geometry of one object into 
main memory, several objects are read by one read request. 
Thii may be extended to transferring the complete cluster 
unit into main memory. The description and investigation 
of different techniques for reading sets of spatial objects is 
given in Section 5.4. 

1. It is assumed that the size of one object is smaller than 
S -. Objects larger than S,, can be stored in separate stor- 
age units. The access to such a storage unit may need sev- 
eral read requests. 

172 



5 Evaluation 
One important goal when designing the cluster organiza- 
tion was to avoid any algorithmic overhead. In this section, 
we will investigate the performance of the cluster organiza- 
tion compared to the other organization models. Further- 
more, the cluster organization is the framework in which 
we evaluate several techniques for improving storage utili- 
zation, the performance of selective and non-selective que- 
ries and of spatial join processing. We start the investiga- 
tion by a description of the test environment. 

5.1 Test Environment 

Our test data are based on data from the US Bureau of the 
Census [Bur891 describing several Californian counties. 
We use two maps: mup 1 consists of 131,461 streets 
whereas mup 2 represents administrative boundaries, rivers 
and railway tracks with 128,971 objects. The objects were 
approximated by using MBRs. For the representation of an 
object entry in a data page, 46 Bytes are used (including the 
MBR and, if necessary, a pointer to the ex‘act object repre- 
sentation). We developed three test series which show dif- 
ferent object sizes. Table 1 gives an overview of the main 
characteristics of the maps and test series. The combination 
of test series X with map Y is denoted by X -Y. 

Table 1: The Maps and the Test Series 

The page capacity for our tests is 4 KB. The seek time (rs) 
is assumed to be on the average 9 msec, the average latency 
time (tl) 6msec and the transfer time (tt) for one page 
1 msec. These parameters are average values for current 
disks [HS94]. A more detailed description of the test envi- 
ronment and the experiments performed can be found in 
the appendix of [BK94]. 

5.2 Cost for Constructing 

First, we built up the R*-trees and stored the sp‘atial objects 
according to the three different organization models. The 
input data were unsorted. For the secondary organization, 
the storage of the MBRs was determined by a regular R*- 
tree. The objects themselves were stored in a sequential file 
according to the order of insertion. For the primary organi- 
zation, both the MBRs and the objects were managed by a 
regular R*-tree. Spatial objects not fitting into a data page 
were stored outside of the R*-tree in a separate file where 
internal clustering was maintained. Such objects occupied 

their individual pages exclusively. The cluster organization 
worked as described in Section 4.2 with a modified R*- 
tree. 

Figure 5 shows the resulting I/O-cost. Although the 
cluster organization has to copy large sets of objects when 
a cluster unit is split, its construction is less expensive than 
that of the other organization models since it already takes 
advantage of the global clustering during the cluster split 
and does not perform the reinsert operation. The secondary 
and cluster organizations are nearly independent of the av- 
erage object size whereas the primary organization shows 
asi&fi&nt dependency. - - 

12000 1 I I 8 I I I 
set 
8000 

4000 

0 
I A-l I B-1 I C-l I A-2 I B-2 I c-2 

m sec. org. q prim. org. •j cluster org. 

Figure 5: I/O-Cost for Constructing 
the Organization Models 

5.3 Storage Utilization 

Figure 6 depicts the obtained storage utilization measured 
by the number of occupied pages. For each cluster unit, the 
maximum size S,, is considered since the non-occupied 
pages of a cluster unit cannot be used for other purposes 
within the cluster organization. The secondary organiza- 
tion exhibits the best storage utilization since the objects 
are stored in a sequential file without sacrificing storage. 
The primary organization shows a worse storage utilization 
which is caused by the 70%~storage utiliiation of the R*- 
tree. The poorer storage utilization of the cluster organiza- 
tion is caused by underfilled cluster units. Therefore, more 
sophisticated techniques for organizing cluster units have 
to be applied In the following, we investigate the buddy 
system. 

’ A-l ’ B-l ’ C-l ’ A-2 ’ B-2 ‘C-2 ’ 

n sec. org. q prim. org. q clusterorg. 

Figure 6: Storage Utilization of the Organization Models 

5.3.1 Buddy System 
Every cluster unit corresponds to a physical unit of limited 
size. The buddy system, a common technique of file man- 
agement [GR93], works with a liited number of physical 
units of different sizes. Each physical unit (buddy) has the 
size S,, e 2-’ (i 2 0) and each cluster unit uses the buddy 
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of the smallest possible size. If the size of a cluster unit ex- 
ceeds the buddy size because of an insertion and if the clus- 
ter size is smaller than the allowed maximum, the cluster 
unit is moved from its old buddy into a new buddy of the 
smakst possible size. If a cluster unit is split, the two new 
cluster units are generally stored in smaller buddies. Bud- 
dies which are no longer used are given back to the file 
management system. 

The buddy system adapts the size of the physical units 
to the size of the cluster units which results in a better stor- 
age utilization. A buddy system with log#,& different 
buddy sizes guarantees a minimum storage utilization of 
50% and NI average utilization of 66.7%. On the other 
hand, the cost for building up the cluster organization in- 
creases since cluster units are moved from one buddy to an- 
0th. 

In the next experiment, we investigate the influence of 
the buddy system with a restricted number of buddy sizes 
on the storage utiliition and on the construction cost. Only 
3 different buddy sizes (S-, OS+-, 0.25&,.J are used 
in these tests. The results depicted in Figure 7 demonstrate 
that the cluster organization with the restricted buddy sys- 
tem obtains about the same storage utiliiation as the pri- 
mary organization. The cost of construction is only slightly 
higher than before. 
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Figure 7: Storage Utilization and Construction Cost (I/O) 
Using a Restricted Buddy System 

5.4 Window Queries 

In order to compare the performance of the different orga- 
nization models, we performed a number of experiments 
with window queries of different size. For each test, 678 
queries were started. The distribution of the query windows 
followed the distribution of the MBRs in such a way that 
each window center was contained in the MBR of a stored 
object. The areas of the query windows were between 
0.001% and 10% of the area of the data space; the average 
number of answers was between 5.3 (0.001%) and 22,569 

(10%). In the cluster organization, we used the simplest 
technique possible; the complete cluster unit was trans- 
ferred into main memory as soon as an object existed 
whose MBR intersected the query window. 

Figure 8 shows the results of our comparison. Because 
the different queries strongly vary in their accessed data 
volume, we had to normalize the I/O-cost to the amount of 
data queried. Since the page size is 4 KB, the I/O-time is 
given in msed4KB. We report only the I/O-cost because 
the evaluation of the query condition for the MBRs can be 
neglected according to our measurements and because the 
CPU-cost for testing the exact geometry of the objects is 
not influenced by the different organization models. 
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Figure 8: Comparison of the Different Organization 
Models for Window Queries 

The larger the window sizes, the better the performance of 
the cluster organization is. For the test series with larger ob- 
jects (C-l), a speed up factor of up to 12.5 is obtained and 
for the test series with smaller objects (A-l) a speed up fac- 
tor of up to 20 is obtained when compared to the secondary 
organization. The results show another effect Since the lo- 
cal clustering of the primary approach works better for 
small objects, the primary organization realizes higher per- 
formance improvements compared to the secondary orga- 
nization in test series A-l than in C-l. 

The very simple query technique used for the cluster or- 
ganization up to now may handicap the cluster organiza- 
tion. Therefore, we investigate more sophisticated query 
techniques in the following subsections. 

5.4.1 Geometric Threshold 
The threshold technique uses the degree of overlap be- 
tween the region of the cluster unit and the query window 
as a measure to decide whether the cluster unit is com- 
pletely transferred into main memory or whether the query 
is answered by single page accesses. More precisely, a win- 
dow query proceeds as follows: Using the R*-tree, all clus- 
ter units (i.e. data pages) intersecting the query window are 
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determined. If the degree of overlap between the region of 
a cluster unit and the query window is smaller than a given 
geometric threshold T, the window query reads the neces- 
sary objects page-by-page. Otherwise, the cluster unit is 
completely transferred into main memory. In this c,ase, a 
cluster unit may contain a number of objects not fuUilling 
the query condition (f&e hits). A relatively small number 
of false hits does not, however, affect performance consid- 
erably, since the latency time for a page drastically exceeds 
the time for transferring a page. 

In order to compute a suitable query threshold T, we es- 
timate the cost of reading a complete cluster c at once 
(tco,,,&c)) and page-by-page (tpge) using the following 
equations: 

tcompl(c) = t, + tl + t, . size(c) 

t 
Pa@ 

= ts + nos* . (t, + nopa. ‘J 

where ts, tl, and tt denote the seek, the latency, ‘and the 
tmnsfer time, size(c) denotes the cluster size in the number 
of pages, and noe@ ‘and noppr denote the average number of 
entries per data page ‘and the average number of pages oc- 
cupied by 1an object, respectively. 

Under the ‘assumption that the degree of overlap be- 
tween the cluster unit and the query region is a good mea- 
sure for the number of objects fulfilling a window query, 
we can determine an estimate for an optimal query thresh- 
old Tby 

(4 T(c) = t+LJL 
Page 

5.4.2 The SLM-Technique 
Another method for reading objects of a cluster unit is 
based on the idea of reading requested <and non-requested 
pages within one read request instead of performing several 
read requests for the required pages. For physically consec- 
utive pages, the major advantage of such an approach is 
that the transfer operations for reading the non-requested 
pages are less expensive than performing additional seek 
operations. Figure 9 demonstrates thii effect for an exam- 
ple. 

Y”YYnnnYYnYY 
II II II II 11 1 II 

reading only required pages: 
t- -- 

cost: 4t1+7tt=31 msec 
read request 

reuding also non-required pages: 
b * 

cost: 2 tl + 9 tt = 21 msec 

b 1=3’ (as example) 

Figure 9: Example for SLM-technique 

requested? (yes or no) 
pages on disk 

Seeger et al. [SLM93] performed a detailed analysis of this 
‘approach, called the S&U-technique in the following, and 
proposed a formula for computing a read schedule which is 
close to optimal. Their main idea wIas to interrupt the read 
request when sequences of length 1 with non-requested 
pages occur. The length I of such a sequence can be com- 
puted by: 

1 = Q- (...) 

The last part of the equation, indicated by (...), can be ig- 
nored for our purposes. 

5.43 Performance Comparison 
For the following tests, we assume that a cluster unit which 
is read using several read requests or page-by-page, is not 
interrupted. As a consequence, one seek operation is suffi- 
cient for reading one cluster unit in both cases. 
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Figure 10: Comparison of the Different Query Techniques 
for Window Queries 

Figure 10 shows the results of our performance comparison 
between the different techniques. The optimum (opt.) is 
computed assuming 1 seek and 1 rotational delay per clus- 
ter unit and the minimum number of transfers which is nec- 
essary to transfer the result of the query. Test series A-l 
shows no big differences between the different techniques. 
Even for the O.OOl%-query, the optimum is only about 
12% better than the technique which always reads a com- 
plete cluster unit (complete). This is due to the relatively 
small cluster units with a maximum size of 20 pages. The 
diagram for test series C-l with larger objects and larger 
cluster units shows a slightly different result. For the small- 
est query type (O.OOl%), the threshold technique saves 
about 15% and the SLM-technique about 27% of the I/O- 
cost which is not far from the optimum where 35% can be 
saved. For larger queries (0.1% and more) there is again no 
significant diierence between the different techniques. In 
environments where small window queries as well as large 
queries should be supported, the SLM-technique is the best 
choice; if no vector read optimization is available, the 

175 



threshold technique also realizes some performance im- 
provements for small queries. 

5.4.4 Adaptation of the Cluster Size 
In [DS93], Droge and Schek propose to adapt the size of 
the cluster units to the actual size of the queries. In order to 
investigate this approach, we performed different window 
queries with varying cluster sizes and determined for each 
window size the cluster size s1 with the best performance. 
In a second step, we increased and decreased the area of the 
window queries by factors of 10 and 100. Again, we deter- 
mined the cluster sizes s2 with the best performance. Then 
we compared the cost c2 obtained by s2 with the cost cl 
which we would have obtained by using sl for the changed 
window size. The difference between cl and c2 gives the 
potential of the adaptation technique. In Figure 11, the av- 
erage performance gains <are depicted in per cent for test se- 
ries B-l. 

% 
20 

10 

0 
’ factor 10 ’ factor 100 ' O.OOl-A.1 ' 

n complete q threshold q SLM 

Figure 11: Performance Gains by an Adaptation 
of the Cluster Size 

The results show that the performance gains depend on the 
query technique used If the simplest technique is used, we 
obtain a performance gain of 6% (factor 10) and of 23% 
(factor 100). If amore sophisticated technique is used, how- 
ever, the performance is only slightly increased. Even if the 
window area is changed by a factor of 100, the performance 
gain is on the average 6.5% for the threshold technique and 
11% for the SLM-technique. Therefore, an adaptation does 
not seem to be essential for a cluster organization. Only one 
exception can be observed (0.001 + 0.1): If first very 
small window queries with a size of 0.001% of the data 
space are perform& the best cluster size will be rather 
smalI (10 pages). In this case, performing larger window 
queries (0.01%) later on is not well supported independent 
of the used query technique. This observation is not very 
surprising, however, because it corresponds to the state- 
ment that global clustering is better than local clustering for 
larger window queries. 

5.5 Point Queries 

The cluster organization is &signed for large range que- 
ries, but selective queries such as the point query should be 
efficiently supported too. Therefore, we investigated the 
performance of the three organization models by making 
678 point queries with the query points being the centers of 
the window queries used in Section 5.4. Figure 12 depicts 
the measured I/O-cost normaliied to the amount of data 
which is queried. The results show almost no difference be- 

hveen the secondary organization and the cluster organiza- 
tion but the primary organization performs differently. For 
the smallest objects (A-l), the primary organization shows 
the best performance, in the other cases the worst. The rea- 
sons are the objects that do not tit into a data page, causing 
an extra page access. Therefore, the primary organization 
shows the relatively worst performance for the largest ob- 
jects (C-l). 
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Figure 12: Comparison of.the Different Organization 
Models for Point Queries 

The spatial join - one of the most important operations in 
spatial database systems - has not yet been investigated in 
the context of global clustering. In [BKSS94], we proposed 
several techniques for reducing the CPU-cost and I/O-cost 
of spatial join processing, but there remains a major cost in 
accessing to the spatial objects (see also Figure 17). There- 
fore, it is essential to investigate the impact of global clus- 
tering on the spatial join. 

The basic idea of performing a join on R*-trees is to use 
the property that directory rectangles form the minimum 
bounding rectangle of the data rectangles in the corre- 
sponding subtrees. Thus, if the rectangles of two directory 
entries ER and Es do not have a common intersection, there 
will be no pair (recfh reefs) of intersecting data rectangles 
Where fectR is in the subtree of ER and rects is in the subtree 
of Es. Otherwise, there might be a pair of intersecting data 
rectangles in the corresponding subtrees. 

When joining two R(*&ees, two difficulties arise: Fit, 
each tree partitions the data space independently and sec- 
ond, each tree allows overlap between the page regions. 
Therefore, the objects of a tree fulfilling the join condition 
with objects of one page of the other tree are generally 
spread over several pages. In other words, when the join 
processes a pair of pages, it is unknown whether or not one 
or both pages are required for further join processing. As a 
consequence, the order of processing is very essential for 
the performance of the spatial join. 

In [BKS93b], we demonstrated that spatial ordering 
combined with an LRU-buffer of reasonable size leads to a 
close-to-optimal performance, i.e. most pages of the R*- 
tree are transferred into main memory only once. The basic 
idea is to sort the rectangles according to their smallest x- 
coordinates and to process the pairs of subtrees (Tl,Q) ac- 
cording to this order. Additionally, some “pinmng” mech- 
anism is used, i.e. one of the subtrees of the pair (Tm) is 
processed with all other subtrees whose rectangles poten- 
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tially intersect a rectangle of TJ~ before the next pair of in- 
tersecting subtrees is determined. This approach is dis- 
cussed in detail in [BKS93b]. Figure 13 shows an example. 

m rectangle in tree 1 
0 rectangle in tree 2 
m iutersection II 

sequence of the processing of the 
corresponding paim of subtrees: 

I, II, III, Iv 

Figure 13: Example for the Order of Processing 

The previous discussion refers to R*-trees and MBRs. For 
computing a spatial join, complete spatial objects must be 
considered. In the context of this paper, we especially have 
to investigate the transfer of these objects from secondary 
storage into main memory. The order in which the objects 
are read is based on the technique described before, 
whereas the impact of different organization models and 
query techniques is investigated in the following subsec- 
tions. 

6.1 Comparison of the Organization Models 

In order to evaluate the impact of global clustering on the 
spatial join, we performed several joins on map I and 
map 2. Based on the presented data, we derived two differ- 
ent test series by using MBRs with different extensions. In 
version a, 86,094 p<ai.rs of MBRs intersect, i.e. each MBR 
intersects roughly 0.65 MBRs on the other map. Version b 
has a larger output some 1.2 million pairs intersect, which 
corresponds to 9 intersections per MBR. Each experiment 
was run with buffer sizes ranging from 200 to 6,400 pages. 
Note that for a join of the maps C-l and C-2, a buffer of 
1,600 pages stores about 0.9% of the input data. 

Figure 14 shows acomparison of the performance of the 
different organization models. The I/O-cost is reported in 
seconds. In these tests, the cluster organization always 
reads complete cluster units. In both versions, the cluster 
organization achieves considerable performance gains. For 
the test series with a smaller output (a), speed up factors of 
up to 4.9 compared to the secondary organization and of up 
to 4.6 compared to the primary organization are reached. 
For version b, the corresponding speed up factors are 9.5 
‘and 6.2. For spatial joins with smaller object sizes (B-112 
and A-1/2), the performance gains are even higher. 

6.2 Query Techniques for the Cluster Organization 

The main difference between processing window queries 
and processing spatial joins is that a window query ac- 
cesses each object only once, where‘as the join may read an 
object in an unpredictable manner many times. This prop- 
erty of the join has consequences on the techniques for 
reading the objects of a cluster unit. The threshold tech- 
nique - even with a modified threshold - achieves no signif- 
icant gain compared to the technique that always read the 
complete cluster unit. 
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Figure 14: Comparison of the Different Organization 
Models for Spatial Joins 

In the following, we investigate the SLM-technique using 
two different read operations. The normal read-operation 
allocates all transferred pages of the actual request into the 
buffer whereas the vector read stores only pages which are 
requested. Figure 15 illustrates the way theses operations 
work. 

read operation (reading 12 consecutive pages): 
y n y y n n y y y n y y requested? (yes or no) 

pages on disk 

pages in main memory 

vector read operation (reading consecutive 12 pages): 
ynyynnyyynyy requested?@xorno) 

pages on disk 

ages in main memory 

Figure 15: Example for Read and Vector Read 

In addition to the two SLM-approaches, the technique 
which reads a complete cluster unit (complete) and an opti- 
mum (opt.) are compared. For computing the optimum, it is 
assumed that 1 seek and 1 rotational delay per cluster unit 
occur and that only pages which contain queried data are 
transferred. Figure 16 depicts the results of our experi- 
ments. 
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Figure 16: Comparison of the Query Techniques 
for Spatial Joins 

only for small buffer sizes does the vector read-technique 
outperform the technique that always reads complete clus- 
ter units. The SLM-technique using the read operation al- 
ways performs better than the vector-read <approach; but 
only for small buffer sizes is it more efficient than reading 
complete cluster units. For buffer sizes of 1,600 pages and 
more, the obtained cost is close to the theoretical optimum. 
In other words, the maximum transfer rate of the disk is 
RXhed. 

6.3 Impact of Global Clustering on the Performance of 
a Complete Spatial Join 

In this subsection, we want to give an impression of the im- 
pacts of global clustering on the performance of a complete 
intersection join. Such joins are performed in three steps 
(see [BKSS94] - due to clarity, we leave out one step in this 
presentation): 1. the pairs of MBRs fulfilling the join con- 
dition are computed with help of the R*-tree (MRR-join), 
2. the complete geometry of the objects is transferred into 
main memory, and 3. the exact geometry of the objects is 
tested against the join condition. 

The lefthand portions of the two charts in Figure 17 
show the cost for an intersection join between C-l and C-2 
using the secondary organization. The buffer consists of 
1,600 pages. The exact geometry test for intersection is 
supported by a decomposed representation of the objects 
[SK911 where one test needs roughly 0.75 msec. The right- 
hand portions of the charts depict the cost using the cluster 
orgcanization where complete clusters are always trans- 
ferred: The cost for the exact geometry test is unchanged 
and the performance of the MBR-join is only slightly 
changed, but the cost for transferring the objects is drasti- 

tally decreased. The complete cost for thii join is sped up 
by a factor of 3.9 for version a and 4.3 for version b. 
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Figure 17: The Performance of a Complete 
Intersection Join 

7 Conclusions 
Global clustering in the area of spatial database systems 
has rarely been investigated although dramatic perfor- 
mance improvements can be achieved by using suitable 
techniques. Our investigations show that global clustering 
speeds up the access to spatial objects for large window 
queries as well as for spatial joins without decreasing the 
performance of the insertion of new objects and of selec- 
tive queries such as point queries. 

In this paper, we designed a simple concept for global 
clustering within spatial database systems. This cluster or- 
ganization leads to considerable performance improve- 
ments without an algorithmic overhead; e.g. large window 
queries are sped up by factors of up to 20 compared to the 
other organization models. In addition, the proposed clus- 
ter organization provides a suitable framework for investi- 
gating several techniques for improving the storage utiliza- 
tion, the performance of selective and non-selective que- 
ries, and of spatial join processing. The main results of our 
investigation are: 

l Using a restricted buddy system, the cluster organization 
has nearly the same storage utilization as the primary or- 
ganization with less construction cost. 

l The SLM-technique is the best choice for supporting 
window queries of any size. 

l If the SLM-technique or a geometric threshold is used for 
processing window queries, the performance is nearly in- 
dependent of the size of the cluster units. 
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l The cluster organization has about the same performance 
for processing point queries as the secondary organiza- 
tion. 

l The object access for the spatial join is greatly improved 
compared to the secondary and the primary organization. 
Speed up factors of around 4 hold true when the total 
time for processing complete spatial joins is measured. 

l The simplest query technique (i.e. reading of the corn- 
plete cluster unit) exhibits the best performance for join 
processing in the most cases. 

Overall, a simple cluster organization, enriched by few ad- 
ditional query techniques seems to be a very suitable and 
efficient approach for spatial database systems. 

The design of a parallel cluster organization is the next 
challenge for future research activities. Parallelism could 
be exploited in two ways: First, we want to use a multi-pro- 
cessor system to process spatial queries in a massively par- 
allel way. Second, multi-disk systems should be investi- 
gated in order to organize the high data volume of spatial 
applications more efficiently. 
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