
The Impact of Global Clustering on Spatial Database Systems

Thomas Brinkhoff Hans-Peter Kriegel

Institute for Computer Science, University of Munich
Leopoldstr. 11 B, D-80802 Miinchen, Germany

e-mail: {brink, kriegel} @info~atik.uni-muenchen.de

Abstract

Global clustering has rarely been investigated in
the area of spatial dambase systems although dra-
matic performance improvements can be
achieved by using suitable techniques. In this pa-
per, we propose a simple approach to global clus-
tering called cluster organization. We will demon-
strate that this cluster organization leads to con-
siderable performance improvements without any
algorithmic ovedxad. Based on real geographic
data, we perfm a detailed empirical perform-
ance evaluation and compare the clusterorganixa-
tion to other organization models not using global
clustering. We will show that global clustering
speeds up the processing of window queries as
well as spatial joins without decreasing the per-
formanceoftbeinsertionofnewobjectsaodofse,
lective queries such as point queries. lhe spatial
join is sped up by a factor of about 4, whereas
non-selective window queries are accelerated by
even higher speed up factors.

1 Introduction
The demand for using dambase systems in application ar-
eas such as graphics and image prousing, computer aided
design, and geography and cartography is increasing con-
siderably. The important chamcteristic of these applica-
tions is the ocxunmce of spatial objects. The management
of such objects imposes stringent new requirements on so-
called spatial database systems.

Spatial dahbaxs are very large databases. Fmt, spatial
database systems have to manage extremely high numbers
of objects; applications exist where billions of spatial ob-
jects are organized by the database system. Second, the

Permission to copy without fee all or part of this material is
granted proviakd that the copies are not made or distributed for
direct commercial advantage, the VWB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Lurge Lhta Base Endow-
ment. To copy otherwbe, or to republish, require a fee an&or spe-
cial’pennissionfrvm the hdowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994.

data objects show a high variation in their complexity;
small objects requiring only a few bytes of storage as well
as very complex objects consisting of several thousands of
componentsoccurinthesamedambase.Alltogether,data
volumes of up to 100 terabytes ate attain& Mole detailed
discussions about the mquiremems for spatial database sys-
tems can he found in [SFGM93], Pm911 and [BHKS93].

In spatial query proce&ng, efficiency is the bottlen&,
a bottleneck which camrot be ehmimued without the help
of suitable data structures and adequate techniques for
query processing. Cormspondmg to the high variation of
the complexity of spatial objects, a spatial database system
should support a selective spatial access to single objects in
secondary storage as well as access to sets of objects
caused by large data requests. Spatial access methods al-
low an efficient access to objects containing a given query
point (point query) or intmecting a small query rectangle
(window query). Most spatial access methods proposed un-
til now accommodate either a relatively large number of
object approximations (e.g. minimum bounding lectan-
gles) includmg a pointer to the exact representation or a
small number of exact mpresentations of spatial objects in
their data pages. In a dynamic da&base environment, how-
ever, diierent pages storing spatially adjacent objects are
arbitrarily distributed over the secondary storage. As acon-
sequence, access to large sets of spatial objects is very ex-
pensive.

In view of permauently increasing database and main
memory sizes, the processing of “huge” queries which re-
turn hundreds of objects becomes more and more impor-
tant. Cansequently, large range queries require the contents
ofmanydatapagestoberetrievedfkomthedataba&For
efficient query p mcessing, it is necesmry to associate spa-
tially adjacent objects to physically consecutive pages.
‘Ihis is the task of glubal clustering: A set of data pages
qresenting spatidly adjacent objects is stored on consec-
utive pages of the magnetic dii (e.g. on one cylinder).
Sinceaglobalreorganix&onofallobjectsintheda&tse
is not reasonable in a dynamic environment where insert
and delete operations are intermixed with queries, global
clustering is one of the mostchaUenging problems for spa-
tial damase systeuls today.

In the last few years, concepts have heen presented for a
dynamic organization of spatial objects which support glo-
bal clustering. Hutfiesx et aL [HSWSS] faced the problem
of global clustering of multidiiensional points by using a
multidimensional hashing scheme. A similar concept was
appliedtominimmn bounding rectangles in cHWz91]. In

168

[BHKS931, we proposed the concept of a scene organixa-
tion which is based on R*-trees. DrOge and Schek IDS931
presented a grid-based approach which uses multi-page
storage clusters of variable size. All these concepts com-
bine global clustehg with the use of a spatial access
method.

Additionally, several techniques for supporting the ac-
cess to storage clusters have been proposed. For example,
Weikum [wei89] demonstrated the advantage of a set-ori-
ente4lpageinterfacethatallowsustoaccesslargespatial
objects by a single call to the I/Q-system. Seeger et al.
[SLM93] investigated how a set of data pages can be effi-
ciently cad into main memory. In [BKS93a], a geometric
threshold was proposed for increasmg the performance of
spatial query processing.
In this paper, we pursue two goals:
1.) We want to obtain an evaluation of the importance of

several techniques for global clustering which were
presented in the litemtnre. ‘Ibis investigation is per-
formed in the context of spatial da&base systems. It is
clear that all known techniques improve spatial query
processing, however the questions arise: How much
does a proposed technique improve the performance?
It is worthwhile to use this technique? Do& a simple
technique lead to a small and a sophisticated technique
to a high performance gain?

2.) Most of the known techniques have been investigated
for some types of range queries. For spatial database
systems, the cmespondiug query is the window query,
however, another important operation in a spatial data-
base system is the join. According to our knowledge,
the impacts of global clustering on spatial joins have
not been investigated yet. The questions then arise:
Does global clustering have any impacts on spatial join
processing? Which of the known techniques are suita-
ble for spatial joins? Are modiied approaches neces-
sary for spatial join pmcessing?

In order to investigate these questions, we designed a sim-
ple architecture for global clustering in spatial da@ase
systems. We will demoustrate that, in comparison to other
architectures, this approach leads to considerable perfor-
mance improvements without au algorithmic overhead.
Furthermore, this architecture is the framework in which
we investigate the improvements of several techniques
withrespecttostorageutilization andtotheperformauceof
selective queries, non-selective queries, and spatial joins.

The paper is organized as follows. First, we take a short
look at the queries in a spatial database system. In Section
3, we describe different models for storing spatial objects.
Our concept for handlhtg large sets of spatial objects in set-
ondary storage is demibed in Section 4. lherest of thepa-
per contains an evahration of the impact of global cluster-
ing and of the applied techniques on the performance of
different operations in spatial database systems. In particu-
lar, we carry out a detailed empirical performance compar-
ison based on real geographic data from the US Bureau of
the Census. The paper concludes with the main contribu-
tions and gives a brief outlook on future work.

2 Queries in Spatial Database Systems
Spatial databam systems are used in very different applica-
tion environments. ‘lberefore it is not possible to find a
compact set of spatial queries and operations fulfilling all
the requirements of geographic applications. Thus it is nec-
essary to provide a small set of basic spatial queries which
are efficiently supported by the database facilities. Three of
the most important basic queries in a spatial da&base sys-
tem are the point query, the window query, and the spatial
join:

l Point query; Given a query point P and a set of objects
M, the point query yields all the objects of M geometri-
cally containing P.

l Window query: Given a rectilinear query window Wand
a set of objects M, the window query yields all the objects
of M sharing points with W. The window query is the
most important range query in a spatial database system.

I 1

Figure 1: Examples for a Point and a Window Query

l Spatial join: A relatiotnzl @join of two relations A and B
on columns i and j, denoted by A@B , combmes those tu-
ples where the i-tb column of A and the j-th column of B
fullill the predicate 8. A join AQB is called a spatial join
if the i-tb column of A and the j-th column of B are spatial
attfibutes and if 8 is a predicate consisting of at least one
spatial query conditiou. Hence, the spatial join computes
a subset of the Carte&m product of the relations A and B,
a tuple of the result consists of a pair of objects fmm A
and B. The most imporumt spatial join is the intersection
join where 8 is the intersection predicate. In this paper,
the discussion is restricted to the intemection join, but the
major results of this paper also hold for spatial joins us-
ingotherpredicates.

3 The Storage of Spatial Objects

3.1 Object Access and Clustering

Access methods as an essential part of the physical level of
ada&asesystemareusedtoorganizeadynamicsetofob-
jects in secondary storage. Qnedimensional access meth-
ods like B-trees or lineur hushing are not suitable for spa-
tial database systems. For these systems we need data
shuctures which organixe the spatial objects with respect to
their location and extension in the data space. Due to the ar-
bitrary complexity of spatial objects, it is not possible to
develop an efficient structure indexing the complete object

169

description. Therefore, spatial access methods (SAMs) zip-
proximate the geometry of the objects by simpler hvodi-
mensional spatial primitives, e.g minim1 bounding rectun-
gles (MBRs), and use these primitives as spatial keys. Sev-
eral appmaches for SAMs ate presenn~$ e.g. in [NHS84],
[Gut841, l-Fre871, [SRF871, lIISW891, [BKSS!30], and
[SIDOI. A survey of spatial access methods can be found in
[sam90].

The basic principle of SAMs is to group spatial objects
whichareclose~eachotherindataspaceclosebeach
other in the data pages. The size of a page is fixed and de-
pends on the individual system; typical page sixes are be-
twecnland8KB.AdatapagcconspoadstoaplrysicaZ
page in secondary storage; a physical page consists of one
or a number of sectors in secondary storage. On magnetic
disks, still the most important seco&ry storage medium,
the pages am organixed in cylinders and tracks where mul-
tiple mad/write-heads ate used. ‘Ihe access time to a page
consists of three components namely

l seek time (fS); this is the time to move the read/write-head
to the proper track

l latency time (fl); this is the time to mtate the disk into the

right position (rotationul delay)
l transfer time (tt); this is the time to transfer one page

For typical disks the following relation holds: ts > tl> tr.
Two pages on a disk are called physically consecutive if

one page can be red directly after the other without addi-
tional seek or latency time. Two consecutive pages are on
thesamecylindetbutdonotneedtobeontbtsametrack
(i.e. the time to switch from one track to another track of
the same cylinder is neglected in the following). It is as-
sumed that physically consecutive pages can be read with a
single read request. Such a read request will uot be inter-
nipted by other requests.

The goal of clustering is to mmimixethemunherofseek
operations and the rotatioual &lay in oltla to tednce lE:-
cess cost. In spatial database systems, the uotion of cluster-
ing is nsed when spatiaUy adjacent objects, which are often
required jointly by queries, are stored physically together
in secondary storage. An adequate access mechanism for
spatial database systms has to support three types of clus-
tering in order to efficiently perfotm spatial queries:

l Internal clustering: In order to speed up access to single
objects, the complete mpresentation of one object is
stoml in one page, assnming its size is smaller than the
free space on the page. Otherwise, the object is stored on
multiple physically consecutive pages. In this case, the
number of pages occupied by the object is at most 1
higher than the miniium number of pages which are
necessary to store the object

l Lfxul clustering: In order to speed up access to several
objects, a set of spatial objects (or approximations) is
grouped onto one page. This grouping is peiformed ac-
cording to the knxticm of the objects (or apptoximations)
iUdataSpU!&?.

l Global cZusrering: In contrast to local clustering, a set of
spatially adjacent objects are stored not on one but on
several physically consecutive pages which can be ac-
cessed by one single mad request.

3.2 Organizatio~~Models

In this subsection, we desaibe three basic approaches for
storing huge sets of spatial objects and discuss them with
respect to the aforean~tioned clustering demands. Internal
clustering is easily malixed if each spatial object is defined
and represented indepet&ntly from other objects. Iftopo-
logical data models [Bur86) = use4 internal clustering
canbeachievedatthelevelofthebasii~tsofthe
spatial ol#43s, e.g. border lines modelling a map of coun-
tli~.Tbcrefort,tbe~andresultsiIlthiSpapet~

almostindependentofthedatamodelused.
Basically, thereexistthreedifferentappma&sforstor-

ing~esctsof~objectscambiotdwitbtheuseof
spatial amess methods. These approarbts am called orgu-
nizution models in the following.
3.2.1 secondary orgamon
Iu this organ&&m nmdel, the approximations and the
pointers to the exact repmsentations of the objects ate
storedintbedatapagesofthcSAM.~eex~representa-
tion is stored outside of the access method, e.g. in a sequen-
tial file. This organization model is used, for instance, in
quadtrees (see [HS92]). In other words, the spatial access
methodisaprimaryindexfortheapproximaUonsanda
secmby index for the spatial objects. Ibetefore, we cell
this appmch secondby organization; it is shown in
Figure 2. The main aivantage of this scheme is the large
number of approximations stored together in one data page,
i.e. a maximum degree of local clustering at the level of the
appmxhmons ispreaeaved. Fhrwmoq thereisnolimit
tothesixeoftheexactobjectrepmsentation.Afundamen-
tal drawback is the fact that the cl-g refras simply to
the object approxiun&ns and not to the objects them-
selves. consequently, when proces&g window queries,
eachafxesstoanexactobjectrepresentatcmneedsanad-
ditional seek operation.
3.202 Primary organlzatlon
In the second orgm mode& the exact tepresentations
oftheobjectsarestoredonthedatapagesinadditiontothe
approximations. ‘Ibercfon, spatial neighborhood is physi-
cally pmerved at the level of the exact object repmsenta-
tions. Objects within one data page are tmnsferred into
mainmemoryusingjustaiediskaccess.Incontmsttothe
flrstorganiMionmodel,thespatialaccessmethodisapri-
mary index forthespatialobjectsanddeterminestheirstor-
age location (primmy ofgunimion). An esmtial draw-
backoftheprimaxyorganixationisthelown~berofob-
jectsfi~g~~oaepegefortypicalpegcsizesoflKBto
8 KB. As a consequence, adjacent objects am often stored
in diffenmt pages and local clusteaing is reduced. Another
disadvantageisthataccesstotheapproximatkmofauob
jectrequimsatransferofthecompleteobjectintomain
memory.Handlingobjectslargerthancnedatapageisa
difliculttaskfortheprimtayorgani&onbecauseaspecial
page overtlow mechauism has to be implemented.
3.2.3 An Organlzatlon Model for Global Clustering
Considering existing SAMs and the laoperties of spatial
objects to be stmd, we can observe the following facts:

170

l The objects are very large in comparison to the size of the
pages they are stored in. Even in the case of large pages,
the number of objects per page is usually rather small.

l In a dynamic environment, the pages used for storing ob-
jects are distributed on the secondary storage device in-
dependent of spatial aspects, i.e. objects lying adjacent in
space lose their neighborhood on the storage device.
Large range queries transfer a large number of spatially
adjacent pages into main memory. As mentioned before,
the arbitrary distribution of these pages on the disk leads
to a very high access cost during query processing.

Therefore, a global clustering of larger sets of objects is ad-
vantageous. Global clustering can be achieved by combm-
ing sets of data pages with larger storage units, referred to
as cluster units. The assignment of spatial objects to cluster
units should be handled by a spatial access method because
the objects within the cluster units should be spatially adja-
cent. The concepts proposed in PS93] and [BHKS93] fol-
low this type of org,anization model.

In Figure 2, the three organization models are depicted.

ages

external representation
secondary orgunizution

A
primary orgunization

orgunizutidn model supphhng global clustering

Figure 2: Organization Models for Storing Spatial Objects

4 The Cluster Organization
In thii section, we design a concrete organization model for
supporting global clustering called cluster orgwizution.
The basic requirements for the design of thii cluster orga-
nization are the following:

l In order to construct an efficient scheme for global clus-
tering, we need a spatial access method using a high
quality space partitioning scheme.

l Due to the changes in the spatial database, the access
method and the cluster organization must support inser-
tions and deletions.

l The following operations should be efficiently sup-
ported: point queries, window queries and spatial join
operations.

l For the I/O-system it is easier to handle cluster units of
liiited size. Consequently, we assume that a maximum
cluster size exists.

l A reasonable storage utilization should be realized.

An additional goal in the context of this paper is to design
an organization model which is as simple as possible with-
out unnecessary algorithmic overhead. This allows us to
identify the impact of global clustering on the one hand and
of more elaborated techniques which can be applied to the
cluster organization on the other.

The first step in the design of the cluster organization is
the selection of a suitable access method.

4.1 R*-tree

An R-tree [Gut841 is a B+-W-like access method that
clusters sets of spatial objects or their minimum bounding
rectangles (MBRs) in its data pages. The R*-tree
[BKSS90] is one of the most efficient variants of the R-tree
due to its usage of more sophisticated insertion and split-
ting algorithms.

There is almost no difference between the data struc-
tures of R- and R*-trees. A node of the R(*)-tree corre-
sponds to a page on secondary storage. A non-leaf node (di-
rectory page) contains entries of the form (reJ rect) where
ref is the address of a chid node and rect is the minimum
bounding rectangle of all rectangles which are entries
within that child node. A leaf node (data page) contains en-
tries that consist at least of the MBRs of the corresponding
spatial objects. The data entries are grouped together ac-
cording to the location in space. R(*%ees neither clip nor
transform the spatial objects. Instead, overlap is allowed,
i.e. rectangles of different entries may have a common in-
tersection. Since a high overlap results in poor query per-
formance, one of the most important design goals of the
R*-tree was the reduction of overlap. As a consequence,
the R*-tree shows a very efficient space partitioning
scheme.

An R(*)-tree is completely dynamic; insertions and dele-
tions can be intermixed with queries without any global re-
organization. Following the similarities in the data struc-
tures, there is almost no difference between an R-tree and
an R*-tree with respect to specific queries lie the window
query. Let S be a query rectangle of a window query. The
query is then performed by starring in the root and comput-
ing all entries whose rectangle intersects S. For these en-
tries, the corresponding child nodes are read into main
memory and the query process is repeated, unless the node
in question is a leaf node.

‘II r

t
t

Figure 3: Example of an R(*)-tree

An example of an R(*Uree is given in Figure 3. The tree
consists of three data pages and one directory page. The

171

query window is depicted by the gray colored rectangle S.
First, the query is performed against the root of the R-tree
where the rectangles r and t intersect the window. Thus, the
two corresponding data pages are read into memory and
their entries are checked for a common intersection with
the window. Eventually, rectangle UI is found to be an an-
swer of the window query.

Due to its good performance, robustness and simplicity,
we take the R*-tree as a major component of the cluster or-
ganization. The interested reader is referred to the original
papers [Gut841 and [BKSS90] for a more detailed discus-
sion of R(*)-trees.

4.2 The Cluster Organization

The most important decision in the design of the cluster or-
ganization is the definition of the cluster units. The investi-
gations in PHKS93J show that the size of a cluster unit
does not considerably affect the performance of query pro-
cessing. Therefore, it is reasonable to use a static definition
of the size of a cluster unit from the spatial access method
(see also Section 5.4.4). We propose to cluster all objects in
a cluster unit whose approximations (i.e. their MBRs) are
stored in one data page. For a page size of 4 KB, an entry
size of 46 Bytes, and a storage utilization of 66% an aver-
age of 58 objects per cluster unit will be clustered. If the re-
sulting number of objects is not considerably higher than
the number of objects clustered by the primary organiza-
tion, another defmition may be used.

We can distinguish three levels in the cluster organiza-
tion. The directory of the R*-tree is the fmt level. It orga-
nizes the second level consisting of data pages, where the
MBRs of the spatial objects are stored. Each data page ref-
erences one cluster unit. Within a cluster unit, the spatial
objects are stored in an arbitrary order, i.e. for one object
internal clustering is maintained, a local clustering does not
exist within a cluster unit.

Figure 4 depicts the schematic structure of the cluster
organization.

. . . : cluster units

Figure 4: Schematic Structure of the Cluster Organization

4.2.1 Modifications of the R*-tree
As mentioned before, it is easier for the I/O-system to han-
dle cluster units of limited size. Using the described assign-
ment between data pages and cluster units, no maximum
cluster size can be maintained. Usually, the R*-tree split is
invoked if the number of entries in a node exceeds the max-
imum capacity h4 of a page. Therefore, we have to change
the split strategy of the R*-tree as follows: If the size of all
objects in one cluster unit exceeds the maximum cluster

size Smax, we split the cluster unit and the corresponding
data page. This cluster split is independent of the structure
of the R*-tree, Consequently, the number of entries in the
data pages is Smaller than in an R*-tree without cluster or-
ganization. For the following tests, we compute S,, as fol-
lows C&j describes the average size of an object):

&UlT- 1.5 * M. s&j.

One property of the R*-tree is not very suitable for a cluster
organization: whenever an entry is inserted into a full node
in the R*-tree, the node is generally not split, but some frac-
tion of its entries is deleted and reinserted on the same
level in the R*-tree. The entries for this reinsert operation
are selected such that they have the largest distance born
the center of the original MBR of the node. If, during a re-
insertion process, an entry should be inserted into a full
node, the node is split in two. The re-insertion of one entry
into another data page requires the transfer of a complete
spatial object from one cluster unit into another one. Such
a transfer would cause considerable overhead and increase
the insertion cost. Therefore, we need a second modifica-
tion of the R*-tree: an R*-tree with cluster organization
that performs no re-insertion on the data page level.

4.2.2 The Processing of Insertions and Queries
The insertion of a new spatial object into the database is
performed in four steps’:
1.) Determine a data page using the corresponding R*-tree

algorithm.
2.) Insert the MBR (and additional information) of the ob-

ject into the data page.
3.) Append the spatial object to the corresponding cluster

unit.
4.) If the size of the cluster unit exceeds the maximum size

S,, or if the number of entries in the data page ex-
ceeds M, split the data page into exactly two cluster
units and distribute the objects onto these cluster units
according to the R*-tree split algorithm.

The cluster organization should efficiently support small
queries as well as large queries. They are processed in ba-
sically the same way as in the secondary organization:
First, we compute all data pages containing MBRs which
fulfill the query condition (filtering [Ore89]). Using the ab-
solute address of the cluster unit and the relative address as-
signed to the entry in the data page, we access the represen-
tation of the spatial object and check the query condition
using the exact representation of the object (rejinement).
For window queries, global clustering can be exploited: In-
stead of transferring the exact geometry of one object into
main memory, several objects are read by one read request.
Thii may be extended to transferring the complete cluster
unit into main memory. The description and investigation
of different techniques for reading sets of spatial objects is
given in Section 5.4.

1. It is assumed that the size of one object is smaller than
S -. Objects larger than S,, can be stored in separate stor-
age units. The access to such a storage unit may need sev-
eral read requests.

172

5 Evaluation
One important goal when designing the cluster organiza-
tion was to avoid any algorithmic overhead. In this section,
we will investigate the performance of the cluster organiza-
tion compared to the other organization models. Further-
more, the cluster organization is the framework in which
we evaluate several techniques for improving storage utili-
zation, the performance of selective and non-selective que-
ries and of spatial join processing. We start the investiga-
tion by a description of the test environment.

5.1 Test Environment

Our test data are based on data from the US Bureau of the
Census [Bur891 describing several Californian counties.
We use two maps: mup 1 consists of 131,461 streets
whereas mup 2 represents administrative boundaries, rivers
and railway tracks with 128,971 objects. The objects were
approximated by using MBRs. For the representation of an
object entry in a data page, 46 Bytes are used (including the
MBR and, if necessary, a pointer to the ex‘act object repre-
sentation). We developed three test series which show dif-
ferent object sizes. Table 1 gives an overview of the main
characteristics of the maps and test series. The combination
of test series X with map Y is denoted by X -Y.

Table 1: The Maps and the Test Series

The page capacity for our tests is 4 KB. The seek time (rs)
is assumed to be on the average 9 msec, the average latency
time (tl) 6msec and the transfer time (tt) for one page
1 msec. These parameters are average values for current
disks [HS94]. A more detailed description of the test envi-
ronment and the experiments performed can be found in
the appendix of [BK94].

5.2 Cost for Constructing

First, we built up the R*-trees and stored the sp‘atial objects
according to the three different organization models. The
input data were unsorted. For the secondary organization,
the storage of the MBRs was determined by a regular R*-
tree. The objects themselves were stored in a sequential file
according to the order of insertion. For the primary organi-
zation, both the MBRs and the objects were managed by a
regular R*-tree. Spatial objects not fitting into a data page
were stored outside of the R*-tree in a separate file where
internal clustering was maintained. Such objects occupied

their individual pages exclusively. The cluster organization
worked as described in Section 4.2 with a modified R*-
tree.

Figure 5 shows the resulting I/O-cost. Although the
cluster organization has to copy large sets of objects when
a cluster unit is split, its construction is less expensive than
that of the other organization models since it already takes
advantage of the global clustering during the cluster split
and does not perform the reinsert operation. The secondary
and cluster organizations are nearly independent of the av-
erage object size whereas the primary organization shows
asi&fi&nt dependency. - -

12000 1 I I 8 I I I
set
8000

4000

0
I A-l I B-1 I C-l I A-2 I B-2 I c-2

m sec. org. q prim. org. •j cluster org.

Figure 5: I/O-Cost for Constructing
the Organization Models

5.3 Storage Utilization

Figure 6 depicts the obtained storage utilization measured
by the number of occupied pages. For each cluster unit, the
maximum size S,, is considered since the non-occupied
pages of a cluster unit cannot be used for other purposes
within the cluster organization. The secondary organiza-
tion exhibits the best storage utilization since the objects
are stored in a sequential file without sacrificing storage.
The primary organization shows a worse storage utilization
which is caused by the 70%~storage utiliiation of the R*-
tree. The poorer storage utilization of the cluster organiza-
tion is caused by underfilled cluster units. Therefore, more
sophisticated techniques for organizing cluster units have
to be applied In the following, we investigate the buddy
system.

’ A-l ’ B-l ’ C-l ’ A-2 ’ B-2 ‘C-2 ’

n sec. org. q prim. org. q clusterorg.

Figure 6: Storage Utilization of the Organization Models

5.3.1 Buddy System
Every cluster unit corresponds to a physical unit of limited
size. The buddy system, a common technique of file man-
agement [GR93], works with a liited number of physical
units of different sizes. Each physical unit (buddy) has the
size S,, e 2-’ (i 2 0) and each cluster unit uses the buddy

173

of the smallest possible size. If the size of a cluster unit ex-
ceeds the buddy size because of an insertion and if the clus-
ter size is smaller than the allowed maximum, the cluster
unit is moved from its old buddy into a new buddy of the
smakst possible size. If a cluster unit is split, the two new
cluster units are generally stored in smaller buddies. Bud-
dies which are no longer used are given back to the file
management system.

The buddy system adapts the size of the physical units
to the size of the cluster units which results in a better stor-
age utilization. A buddy system with log#,& different
buddy sizes guarantees a minimum storage utilization of
50% and NI average utilization of 66.7%. On the other
hand, the cost for building up the cluster organization in-
creases since cluster units are moved from one buddy to an-
0th.

In the next experiment, we investigate the influence of
the buddy system with a restricted number of buddy sizes
on the storage utiliition and on the construction cost. Only
3 different buddy sizes (S-, OS+-, 0.25&,.J are used
in these tests. The results depicted in Figure 7 demonstrate
that the cluster organization with the restricted buddy sys-
tem obtains about the same storage utiliiation as the pri-
mary organization. The cost of construction is only slightly
higher than before.

120000
.$ @x44

.g -O
=
= 6oooo
&
g 30000
03

0

n sec. org. q prim. org. q dusterorg.

10000
(s=)
7500

5000

2500

0
' A-l ' B-l ' C-l '

n without &Jdy q with buddy

Figure 7: Storage Utilization and Construction Cost (I/O)
Using a Restricted Buddy System

5.4 Window Queries

In order to compare the performance of the different orga-
nization models, we performed a number of experiments
with window queries of different size. For each test, 678
queries were started. The distribution of the query windows
followed the distribution of the MBRs in such a way that
each window center was contained in the MBR of a stored
object. The areas of the query windows were between
0.001% and 10% of the area of the data space; the average
number of answers was between 5.3 (0.001%) and 22,569

(10%). In the cluster organization, we used the simplest
technique possible; the complete cluster unit was trans-
ferred into main memory as soon as an object existed
whose MBR intersected the query window.

Figure 8 shows the results of our comparison. Because
the different queries strongly vary in their accessed data
volume, we had to normalize the I/O-cost to the amount of
data queried. Since the page size is 4 KB, the I/O-time is
given in msed4KB. We report only the I/O-cost because
the evaluation of the query condition for the MBRs can be
neglected according to our measurements and because the
CPU-cost for testing the exact geometry of the objects is
not influenced by the different organization models.

30

0

A-l 0.001% 0.01 % 0.1 % 1 % 10%

-SW. 0~. -m * prim. org. -cluster org.

32
I/0-00st

24
(msec/4KB)

16

8

0

C-l 0.001% 0.01 % 0.1 % 1 % 10%
area of the query window in Y. of the data space

Figure 8: Comparison of the Different Organization
Models for Window Queries

The larger the window sizes, the better the performance of
the cluster organization is. For the test series with larger ob-
jects (C-l), a speed up factor of up to 12.5 is obtained and
for the test series with smaller objects (A-l) a speed up fac-
tor of up to 20 is obtained when compared to the secondary
organization. The results show another effect Since the lo-
cal clustering of the primary approach works better for
small objects, the primary organization realizes higher per-
formance improvements compared to the secondary orga-
nization in test series A-l than in C-l.

The very simple query technique used for the cluster or-
ganization up to now may handicap the cluster organiza-
tion. Therefore, we investigate more sophisticated query
techniques in the following subsections.

5.4.1 Geometric Threshold
The threshold technique uses the degree of overlap be-
tween the region of the cluster unit and the query window
as a measure to decide whether the cluster unit is com-
pletely transferred into main memory or whether the query
is answered by single page accesses. More precisely, a win-
dow query proceeds as follows: Using the R*-tree, all clus-
ter units (i.e. data pages) intersecting the query window are

174

determined. If the degree of overlap between the region of
a cluster unit and the query window is smaller than a given
geometric threshold T, the window query reads the neces-
sary objects page-by-page. Otherwise, the cluster unit is
completely transferred into main memory. In this c,ase, a
cluster unit may contain a number of objects not fuUilling
the query condition (f&e hits). A relatively small number
of false hits does not, however, affect performance consid-
erably, since the latency time for a page drastically exceeds
the time for transferring a page.

In order to compute a suitable query threshold T, we es-
timate the cost of reading a complete cluster c at once
(tco,,,&c)) and page-by-page (tpge) using the following
equations:

tcompl(c) = t, + tl + t, . size(c)

t
Pa@

= ts + nos* . (t, + nopa. ‘J

where ts, tl, and tt denote the seek, the latency, ‘and the
tmnsfer time, size(c) denotes the cluster size in the number
of pages, and noe@ ‘and noppr denote the average number of
entries per data page ‘and the average number of pages oc-
cupied by 1an object, respectively.

Under the ‘assumption that the degree of overlap be-
tween the cluster unit and the query region is a good mea-
sure for the number of objects fulfilling a window query,
we can determine an estimate for an optimal query thresh-
old Tby

(4 T(c) = t+LJL
Page

5.4.2 The SLM-Technique
Another method for reading objects of a cluster unit is
based on the idea of reading requested <and non-requested
pages within one read request instead of performing several
read requests for the required pages. For physically consec-
utive pages, the major advantage of such an approach is
that the transfer operations for reading the non-requested
pages are less expensive than performing additional seek
operations. Figure 9 demonstrates thii effect for an exam-
ple.

Y”YYnnnYYnYY
II II II II 11 1 II

reading only required pages:
t- --

cost: 4t1+7tt=31 msec
read request

reuding also non-required pages:
b *

cost: 2 tl + 9 tt = 21 msec

b 1=3’ (as example)

Figure 9: Example for SLM-technique

requested? (yes or no)
pages on disk

Seeger et al. [SLM93] performed a detailed analysis of this
‘approach, called the S&U-technique in the following, and
proposed a formula for computing a read schedule which is
close to optimal. Their main idea wIas to interrupt the read
request when sequences of length 1 with non-requested
pages occur. The length I of such a sequence can be com-
puted by:

1 = Q- (...)

The last part of the equation, indicated by (...), can be ig-
nored for our purposes.

5.43 Performance Comparison
For the following tests, we assume that a cluster unit which
is read using several read requests or page-by-page, is not
interrupted. As a consequence, one seek operation is suffi-
cient for reading one cluster unit in both cases.

40
I/Ocost

30
(msecl4KB)

20

10

0

A- 1 0.001% 0.01 % 0.1% 1% 10%
-complete W~l threshold :+:.:.:.:.:.:.: SLM v opt.

15
trn-2054

(msecJ4KB)

10

5

0
C-l

0.001% 0.01 % 0.1% 1% 10%
area of the query window in % of the data space

Figure 10: Comparison of the Different Query Techniques
for Window Queries

Figure 10 shows the results of our performance comparison
between the different techniques. The optimum (opt.) is
computed assuming 1 seek and 1 rotational delay per clus-
ter unit and the minimum number of transfers which is nec-
essary to transfer the result of the query. Test series A-l
shows no big differences between the different techniques.
Even for the O.OOl%-query, the optimum is only about
12% better than the technique which always reads a com-
plete cluster unit (complete). This is due to the relatively
small cluster units with a maximum size of 20 pages. The
diagram for test series C-l with larger objects and larger
cluster units shows a slightly different result. For the small-
est query type (O.OOl%), the threshold technique saves
about 15% and the SLM-technique about 27% of the I/O-
cost which is not far from the optimum where 35% can be
saved. For larger queries (0.1% and more) there is again no
significant diierence between the different techniques. In
environments where small window queries as well as large
queries should be supported, the SLM-technique is the best
choice; if no vector read optimization is available, the

175

threshold technique also realizes some performance im-
provements for small queries.

5.4.4 Adaptation of the Cluster Size
In [DS93], Droge and Schek propose to adapt the size of
the cluster units to the actual size of the queries. In order to
investigate this approach, we performed different window
queries with varying cluster sizes and determined for each
window size the cluster size s1 with the best performance.
In a second step, we increased and decreased the area of the
window queries by factors of 10 and 100. Again, we deter-
mined the cluster sizes s2 with the best performance. Then
we compared the cost c2 obtained by s2 with the cost cl
which we would have obtained by using sl for the changed
window size. The difference between cl and c2 gives the
potential of the adaptation technique. In Figure 11, the av-
erage performance gains <are depicted in per cent for test se-
ries B-l.

%
20

10

0
’ factor 10 ’ factor 100 ' O.OOl-A.1 '

n complete q threshold q SLM

Figure 11: Performance Gains by an Adaptation
of the Cluster Size

The results show that the performance gains depend on the
query technique used If the simplest technique is used, we
obtain a performance gain of 6% (factor 10) and of 23%
(factor 100). If amore sophisticated technique is used, how-
ever, the performance is only slightly increased. Even if the
window area is changed by a factor of 100, the performance
gain is on the average 6.5% for the threshold technique and
11% for the SLM-technique. Therefore, an adaptation does
not seem to be essential for a cluster organization. Only one
exception can be observed (0.001 + 0.1): If first very
small window queries with a size of 0.001% of the data
space are perform& the best cluster size will be rather
smalI (10 pages). In this case, performing larger window
queries (0.01%) later on is not well supported independent
of the used query technique. This observation is not very
surprising, however, because it corresponds to the state-
ment that global clustering is better than local clustering for
larger window queries.

5.5 Point Queries

The cluster organization is &signed for large range que-
ries, but selective queries such as the point query should be
efficiently supported too. Therefore, we investigated the
performance of the three organization models by making
678 point queries with the query points being the centers of
the window queries used in Section 5.4. Figure 12 depicts
the measured I/O-cost normaliied to the amount of data
which is queried. The results show almost no difference be-

hveen the secondary organization and the cluster organiza-
tion but the primary organization performs differently. For
the smallest objects (A-l), the primary organization shows
the best performance, in the other cases the worst. The rea-
sons are the objects that do not tit into a data page, causing
an extra page access. Therefore, the primary organization
shows the relatively worst performance for the largest ob-
jects (C-l).

60
I/O-cost

40
(msecl4KB)

20

0

6 Spatial Join

’ A-l ’ B-1 ’ C-l ’
n sec. org. q prim. org. @ clusterorg.

Figure 12: Comparison of.the Different Organization
Models for Point Queries

The spatial join - one of the most important operations in
spatial database systems - has not yet been investigated in
the context of global clustering. In [BKSS94], we proposed
several techniques for reducing the CPU-cost and I/O-cost
of spatial join processing, but there remains a major cost in
accessing to the spatial objects (see also Figure 17). There-
fore, it is essential to investigate the impact of global clus-
tering on the spatial join.

The basic idea of performing a join on R*-trees is to use
the property that directory rectangles form the minimum
bounding rectangle of the data rectangles in the corre-
sponding subtrees. Thus, if the rectangles of two directory
entries ER and Es do not have a common intersection, there
will be no pair (recfh reefs) of intersecting data rectangles
Where fectR is in the subtree of ER and rects is in the subtree
of Es. Otherwise, there might be a pair of intersecting data
rectangles in the corresponding subtrees.

When joining two R(*&ees, two difficulties arise: Fit,
each tree partitions the data space independently and sec-
ond, each tree allows overlap between the page regions.
Therefore, the objects of a tree fulfilling the join condition
with objects of one page of the other tree are generally
spread over several pages. In other words, when the join
processes a pair of pages, it is unknown whether or not one
or both pages are required for further join processing. As a
consequence, the order of processing is very essential for
the performance of the spatial join.

In [BKS93b], we demonstrated that spatial ordering
combined with an LRU-buffer of reasonable size leads to a
close-to-optimal performance, i.e. most pages of the R*-
tree are transferred into main memory only once. The basic
idea is to sort the rectangles according to their smallest x-
coordinates and to process the pairs of subtrees (Tl,Q) ac-
cording to this order. Additionally, some “pinmng” mech-
anism is used, i.e. one of the subtrees of the pair (Tm) is
processed with all other subtrees whose rectangles poten-

176

tially intersect a rectangle of TJ~ before the next pair of in-
tersecting subtrees is determined. This approach is dis-
cussed in detail in [BKS93b]. Figure 13 shows an example.

m rectangle in tree 1
0 rectangle in tree 2
m iutersection II

sequence of the processing of the
corresponding paim of subtrees:

I, II, III, Iv

Figure 13: Example for the Order of Processing

The previous discussion refers to R*-trees and MBRs. For
computing a spatial join, complete spatial objects must be
considered. In the context of this paper, we especially have
to investigate the transfer of these objects from secondary
storage into main memory. The order in which the objects
are read is based on the technique described before,
whereas the impact of different organization models and
query techniques is investigated in the following subsec-
tions.

6.1 Comparison of the Organization Models

In order to evaluate the impact of global clustering on the
spatial join, we performed several joins on map I and
map 2. Based on the presented data, we derived two differ-
ent test series by using MBRs with different extensions. In
version a, 86,094 p<ai.rs of MBRs intersect, i.e. each MBR
intersects roughly 0.65 MBRs on the other map. Version b
has a larger output some 1.2 million pairs intersect, which
corresponds to 9 intersections per MBR. Each experiment
was run with buffer sizes ranging from 200 to 6,400 pages.
Note that for a join of the maps C-l and C-2, a buffer of
1,600 pages stores about 0.9% of the input data.

Figure 14 shows acomparison of the performance of the
different organization models. The I/O-cost is reported in
seconds. In these tests, the cluster organization always
reads complete cluster units. In both versions, the cluster
organization achieves considerable performance gains. For
the test series with a smaller output (a), speed up factors of
up to 4.9 compared to the secondary organization and of up
to 4.6 compared to the primary organization are reached.
For version b, the corresponding speed up factors are 9.5
‘and 6.2. For spatial joins with smaller object sizes (B-112
and A-1/2), the performance gains are even higher.

6.2 Query Techniques for the Cluster Organization

The main difference between processing window queries
and processing spatial joins is that a window query ac-
cesses each object only once, where‘as the join may read an
object in an unpredictable manner many times. This prop-
erty of the join has consequences on the techniques for
reading the objects of a cluster unit. The threshold tech-
nique - even with a modified threshold - achieves no signif-
icant gain compared to the technique that always read the
complete cluster unit.

0 j
I

C-1/2a 200 400 800 1600 3200 6400

-am. org. *I- prim. org. ~clusterorg.
8000

I/O-cost
6ooo

64
4000

2ooo

0

C-1/2b 200 400 800 1600 3200 6400
buffer size (in pages)

Figure 14: Comparison of the Different Organization
Models for Spatial Joins

In the following, we investigate the SLM-technique using
two different read operations. The normal read-operation
allocates all transferred pages of the actual request into the
buffer whereas the vector read stores only pages which are
requested. Figure 15 illustrates the way theses operations
work.

read operation (reading 12 consecutive pages):
y n y y n n y y y n y y requested? (yes or no)

pages on disk

pages in main memory

vector read operation (reading consecutive 12 pages):
ynyynnyyynyy requested?@xorno)

pages on disk

ages in main memory

Figure 15: Example for Read and Vector Read

In addition to the two SLM-approaches, the technique
which reads a complete cluster unit (complete) and an opti-
mum (opt.) are compared. For computing the optimum, it is
assumed that 1 seek and 1 rotational delay per cluster unit
occur and that only pages which contain queried data are
transferred. Figure 16 depicts the results of our experi-
ments.

177

600
I/Ocost

(se@
400

00
C-1/2a *do 400 800 1600 3200 6400

- complete a c vector read -- read .:‘.‘..F>>>.. opt.

\---,
1000

500

=I I I I I I
O-1

C-1/2b *A0 ’
I I I I

400 800 1600 3200 6400

buffer size (in pages)

Figure 16: Comparison of the Query Techniques
for Spatial Joins

only for small buffer sizes does the vector read-technique
outperform the technique that always reads complete clus-
ter units. The SLM-technique using the read operation al-
ways performs better than the vector-read <approach; but
only for small buffer sizes is it more efficient than reading
complete cluster units. For buffer sizes of 1,600 pages and
more, the obtained cost is close to the theoretical optimum.
In other words, the maximum transfer rate of the disk is
RXhed.

6.3 Impact of Global Clustering on the Performance of
a Complete Spatial Join

In this subsection, we want to give an impression of the im-
pacts of global clustering on the performance of a complete
intersection join. Such joins are performed in three steps
(see [BKSS94] - due to clarity, we leave out one step in this
presentation): 1. the pairs of MBRs fulfilling the join con-
dition are computed with help of the R*-tree (MRR-join),
2. the complete geometry of the objects is transferred into
main memory, and 3. the exact geometry of the objects is
tested against the join condition.

The lefthand portions of the two charts in Figure 17
show the cost for an intersection join between C-l and C-2
using the secondary organization. The buffer consists of
1,600 pages. The exact geometry test for intersection is
supported by a decomposed representation of the objects
[SK911 where one test needs roughly 0.75 msec. The right-
hand portions of the charts depict the cost using the cluster
orgcanization where complete clusters are always trans-
ferred: The cost for the exact geometry test is unchanged
and the performance of the MBR-join is only slightly
changed, but the cost for transferring the objects is drasti-

tally decreased. The complete cost for thii join is sped up
by a factor of 3.9 for version a and 4.3 for version b.

1500

1000

500

0 I sec. org. ’ cluster org. ’

q MBR-join q obj. transfer w exact test

8000

SW2

8000

4000

2000

0
I

sec. org. ’ cluster org. ’

Figure 17: The Performance of a Complete
Intersection Join

7 Conclusions
Global clustering in the area of spatial database systems
has rarely been investigated although dramatic perfor-
mance improvements can be achieved by using suitable
techniques. Our investigations show that global clustering
speeds up the access to spatial objects for large window
queries as well as for spatial joins without decreasing the
performance of the insertion of new objects and of selec-
tive queries such as point queries.

In this paper, we designed a simple concept for global
clustering within spatial database systems. This cluster or-
ganization leads to considerable performance improve-
ments without an algorithmic overhead; e.g. large window
queries are sped up by factors of up to 20 compared to the
other organization models. In addition, the proposed clus-
ter organization provides a suitable framework for investi-
gating several techniques for improving the storage utiliza-
tion, the performance of selective and non-selective que-
ries, and of spatial join processing. The main results of our
investigation are:

l Using a restricted buddy system, the cluster organization
has nearly the same storage utilization as the primary or-
ganization with less construction cost.

l The SLM-technique is the best choice for supporting
window queries of any size.

l If the SLM-technique or a geometric threshold is used for
processing window queries, the performance is nearly in-
dependent of the size of the cluster units.

178

l The cluster organization has about the same performance
for processing point queries as the secondary organiza-
tion.

l The object access for the spatial join is greatly improved
compared to the secondary and the primary organization.
Speed up factors of around 4 hold true when the total
time for processing complete spatial joins is measured.

l The simplest query technique (i.e. reading of the corn-
plete cluster unit) exhibits the best performance for join
processing in the most cases.

Overall, a simple cluster organization, enriched by few ad-
ditional query techniques seems to be a very suitable and
efficient approach for spatial database systems.

The design of a parallel cluster organization is the next
challenge for future research activities. Parallelism could
be exploited in two ways: First, we want to use a multi-pro-
cessor system to process spatial queries in a massively par-
allel way. Second, multi-disk systems should be investi-
gated in order to organize the high data volume of spatial
applications more efficiently.

Acknowledgements

We would like to thank Ralf Schneider and Bernhard See-
ger for valuable discussions on the topic.

References

[BHKS93] Brinkhoff T., Horn H., Kriegel H.-P., Schneider
R.: ‘A Storage and Access Architecture for E$icknt
Query Processing in Spatial Database Syskms’, Proc.
3rd Int. Symp. on Large Spatial Databases, Singapore,
1993, pp. 357-376.

[BK94] Brinkhoff T., Kriegel H.-P.: ‘The Zmpact of Global
Clusrering on Spatial Database Systems’, Technical IV-
port 9407, University of Munich, 1994.

[BKS93a] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Scene
Organization: A Techniquefor Global Clustering in Spa-
tial Database Systems’, Technical report 9322, Univer-
sity of Munich, 1993.

[BICS93b] Brink&ff T., Kriegel H.-P., Seeger B.: ‘Efiienr

Processing of Spatial Joins Using R-trees’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Washing-
ton, DC, 1993, pp. 237-246.

[BKSS90] Beckmann N., Kriegel H.-P., Schneider R., Seeger
B.: ‘The R*-tree: An Emknt and Robust Access Method
for Points and Rectangles’, Prop. ACM SIGMOD Int.
Conf. on Management of Data, Atlantic City, NJ, 1990,
pp. 322-331.

[BKSS94] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger
B.: ‘Multi-Step Processing of Spatial Joins’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Minneapo-
lis, MN, May 1994.

[Bur86] Burrough P.A.: ‘Principles of Geographical Infonnu-
tion Sysretns for Land Resources Assessment’, Oxford
University Press, 1986.

[B&39] Bureau of the Census: ‘TIGER/L&e Percensus Fiks,
1990 Technical Docutnenration’, Washington, DC, 1989.

[DSF3] Driige G., Schek H.J.: ‘Query-Adaptive Data Space
Partiming using Variable-Size Storage Clusrers’, Proc.
3rd Int. Symp. on Large Spatial Databases, Singapore,
1993, pp. 337-356.

[Fra91] Frank, A.U.: ‘Properties of Geographic Data’, Proc.
2nd Symp. on Large Spatial Databases, Zurich, Switzer-
land, 1991, in: Lecture Notes in Computer Science, Vol.
525, Springer, 1991, pp. 225-234.

[F&7] Free&on M.: ‘The BANGfik: a new kind of gridjik’,
Proc. ACM SIGMOD Int. Conf. on Management of Data,
San Francisco, CA, 1987. pp. 260-269.

[GR93] Gray J., Reuter A.: ‘Transaction Processing: Con-
cepts and Techniques’, Morgan Kaufmann, 1993.

[G&4] Guttman A.: ‘R-trees: A Dynti Index Structure for
Sparial Searching’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Boston, MA, 1984. pp. 47-57.

[HS92] Hoe1 E.G., Samet H.: ‘A Qualitative Comparison
Study of Data Structums for Large Line Segment Data-
bases’, Proc. ACM SIGMOD Int. Conf. on Management
of Data, San Diego, CA, 1992, pp 205-214.

[HS94] Hilgefort U., Schneider R.: ‘RunaWagen: Leistungs-
schau 47 neuer Festplatten’. c’t 3l94, pp. 102- 111.

[HSWSS] Hufflesz A., Six H.-W., Widmayer P.: ‘Globally
Or&r Preserving MuUdimensional Linear Hashing’,
Proc. 4th Int. Conf. on Data Engineering, Los Angeles,
CA, 1988, pp. 572-579.

[HSW89] Henrich A., Six H.-W., Widmayer P.: ‘The LSD
twe: spatial access fo multidimensional point and non-
point objects’, Proc. 15th Int. Conf. on Very Large Data
Bases, Amsterdam, Netherlands, 1989, pp. 45-53.

[HWZ91] Hutflesz A., Widmayer P., Ziirmann C.: ‘Glo-
bal Order Makes Spatial Access Faster’, Int. Workshop
on Database Management Systems for Geographical Ap-
plications, Capri, Italy, 1991, in: Geographic Database
Management Systems, Springer, 1992, pp. 161-176.

MS841 Nievergelt J., Hinterberger H., Sevcik K.C.: ‘The
Grid File: An Adaptable, Symmetric Multikey Fik %w-
ture’, ACM Trans. on Database Systems, Vol. 9, No. 1,
1984, pp. 38-71.

[Ore891 Orenstein J.A.: ‘Redundancy in Spatial Databases’,
Proc. ACM SIGMOD Int. Conf. on Management of Data,
Portland, OR, 1989, pp. 294-305.

[Sam!Xl] Samet H.: ‘The Design and Ana&sis of Spatial Data
Strucwes’, Addison-Wesley, 1990.

[SFGM93] Stonebraker M., Frew J., Gardemeredith J.:
‘The Sequoia 2W Storage Benchmark’, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Washing-
ton, DC, 1993, pp. 2-l 1.

[X90] Seeger B., Kriegel H.-P.: ‘The Buddy Tree: An E#i-
cienr and Robust Access Method for Spatial Databases’,
Pm. 16th Int. Conf. on Very Large Data Bases, Bris-
bane, Australia, 1990, pp. 590-60 1.

[SK911 Schneider R., Kriegel H.-P.: ‘The ZR*-tree: A New
Representation of Polygonal Objects Supporting Spatial
Queries and Operations’, Proc. 7th Workshop on Corn
putational Geometry, Bern, Switzerland, 1991, in: L.ec-
ture Notes in Computer Science, Vol. 553, Springer,
1991, pp. 249-264.

[SLM93] Seeger B., Larson P.-A., McFadyen R.: ‘Reading a
Set of Dkk Pages’, Proc. 19th Int. Conf. on Very Large
Databases, Dublin, Ireland, 1993, pp. 592-603.

[SRF87] Sellis T., Roussopoulos N., Faloutsos C.: ‘The
R+-Tree: A Dynamic Index for Multi-Dimensional Ob-
jects’, Proc. 13th Int. Conf. on Very Large Databases,
Brighton, England, 1987, pp 507-5 18.

[wei89] Weikum G.: ‘Set-Or&red Dtik Access to Large
Complex Objects’, Proc. 5th Int. Conf. on Data
Engineering, Los Angeles, CA, 1989, pp. 426-433.

179

