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Abstract 

Spatial data mining is the discovery of inter- 
esting relationships and characteristics that 
may exist implicitly in spatial databases. In 
this paper, we explore whether clustering 
methods have a role to play in spatial data 
mining. To this end, we develop a new 
clustering method called CLAHANS which is 
based on randomized search. We also de- 
velop two spatial data mining algorithms that 
use CLAHANS. Our analysis and experiments 
show that with the assistance of CLAHANS, 
these two algorithms are very effective and 
can lead to discoveries that are difficult to 
find with current spatial data mining algo- 
rithms. Furthermore, experiments conducted 
to compare the performance of CLAHANS 
with that of existing clustering methods show 
that CLAHANS is the most efficient. 

1 Introduction 

Data mining in general is the search for hidden pat- 
terns that may exist in large databases. Spatial data 
mining in particular is the discovery of interesting 
relationships and characteristics that may exist im- 
plicitly in spatial databases. Because of the huge 
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amounts (usually, tersbytes) of spatial data that may 
be obtained from satellite images, medical equipments, 
video cameras, etc., it is costly and often unrealistic 
for users to examine spatial data in detail. Spatial 
data mining aims to automate such a knowledge dis- 
covery process. Thus, it plays an important role in a) 
extracting interesting spatial patterns and features; b) 
capturing intrinsic relationships between spatial and 
non-spatial data; c) presenting data regularity con- 
cisely and at higher conceptual levels; and d) helping 
to reorganize spatial databases to accommodate data 
semantics, as well as to achieve better performance. 

Many excellent studies on data mining have been 
conducted, such as those reported in [l, 2, 4, 7, 11, 
13, 161. [l] considers the problem of inferring classi- 
fication functions from samples; [2] studies the prob- 
lem of mining association rules between sets of data 
items; [7’J proposes an attributeoriented approach to 
knowledge discovery; [ll] develops a visual feedback 
querying system to support data mining; and [16] in- 
cludes many interesting studies on various issues in 
knowledge discovery such as finding functional depen- 
dencies between attributes. However, most of these 
studies are concerned with knowledge discovery on 
non-spatial data, and the study most relevant to our 
focus here is [13] which studies spatial data min- 
ing. More specifically, [13] proposes a spatial data- 
dominant knowledgeextraction algorithm and a non- 
spatial data-dominant one, both of which aim to ex- 
tract high-level relationships between spatial and non- 
spatial data. However, both algorithms suffer from 
the following problems. First, the user or an expert 
must provide the algorithms with spatial concept hi- 
erarchies, which may not be available in many appli- 
cations. Second, both algorithms conduct their spatial 
exploration primarily by merging regions at a certain 
level of the hierarchy to a larger region at a higher 
level. Thus, the quality of the results produced by 

144 



both algorithms relies quite crucially on the appropri- 
ateness of the hierarchy to the given data. The prob- 
lem for most applications is that it is very difficult to 
know a priori which hierarchy will be the most appro- 
priate. Discovering this hierarchy may itself be one of 
the reasons to apply spatial data mining. 

To deal with these problems, we explore whether 
cluster analysis techniques are applicable. Cluster 
Analysis is a branch of statistics that in the past three 
decades has been intensely studied and successfully ap 
plied to many applications. To the spatial data mining 
task at hand, the attractiveness of cluster analysis is its 
ability to find structures or clusters directly from the 
given data, without relying on any hierarchies. How- 
ever, cluster analysis has been applied rather unsuc- 
cessfully in the past to general data mining and ma- 
chine learning. The complaints are that cluster anal- 
ysis algorithms are ineffective and inefficient. Indeed, 
for cluster analysis algorithms to work effectively, there 
need to be a natural notion of similarities among the 
“objects” to be clustered. And traditional cluster anal- 
ysis algorithms are not designed for large data sets, say 
more than 2000 objects. 

For spatial data mining, our approach here is to ap 
ply cluster analysis only to the spatial attributes, for 
which natural notions of similarities exist (e.g. Eu- 
clidean or Manhattan distances). As will be shown 
in this paper, in thii way, cluster analysis techniques 
are effective for spatial data mining. Aa for the e%l- 
ciency concern, we develop our own cluster analysis al- 
gorithm, called CLAHANS, which is designed for large 
data sets. More specifically, we will report in this p& 
per: 

l the development of CLAHANS, which is based on 
randomized search and is partly motivated by two 
existing algorithms well-known in cluster analysis, 
called PAM and CLARA; and 

l the development of two spatial mining algorithms 
SD(CLAHANS) and NSD(CLAHANS). 

Given the nature of spatial data mining, and the fact 
that CLAHANS is based on randomized search, the 
methodology we have adopted here ia one baaed on 
experimentation. In particular, we will preeent: 

l experimental results showing that CLAHANS is 
more efficient than the existing algorithms PAM 
and CLARA; and 

l experimental evidence and analysis demonstrat- 
ing the effectiveness of SD(CLAHANS) and 
NSD(CLAHANS) for spatial data mining. 

The paper is organized as follows. Section 2 in- 
troduces PAM and CLARA. Section 3 presents our 
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clustering algorithm CLAHANS, as well as experimen- 
tal result8 comparing the performance of CLAHANS, 
PAM and CLARA. Section 4 studies spatial data 
mining and presents two spatial data mining algo- 
rithms, SD(CLAH,ANS) and NSD(CLAHANS). Sec- 
tion 5 gives an experimental evaluation on the ef- 
fectiveness of SD(CLAHANS) and NSD(CLAHANS) 
for spatial data mining. Section 0 discusaea how 
SD(CLAHANS) and NSD(CLAHANS) can assist in 
further spatial discoveries, and how they can con- 
tribute towards the building of a general-purpose and 
powerful spatial data mining package in the future. 

2 Clustering Algorithms based on Par- 
titioning 

2.1 PAM 

In the past 30 years, cluster analysis has been widely 
applied to many areas such as medicine (classification 
of diseases), chemistry (grouping of compounds), so- 
cial stud& (claseification of statistical findings), and 
so on. Its main goal is to identify structures or clusfers 
present in the data. While there is no general defini- 
tion of a cluster, algorithms have been developed to 
find several kinds of clusters: spherical, linear, drawn- 
out, etc. See [lo, 181 for more detailed discussions and 
analyses of these issues. Among all the existing clus- 
tering algorithms, we have chosen the k-medoid meth- 
ods as the basis of our algorithm for the following rea- 
sons. First, unlike many other partitioning methods, 
the k-medoid methods are very robust to the existence 
of outliers (i.e. data points that are very far away from 
the rest of the data points). Second, clusters found 
by A-medoid methods do not depend on the order in 
which the objects are examined. Furthermore, they 
are invariant with respect to translations and orthogo- 
nal transformations of data points. La& but not least, 
experiments have shown that the k-medoid methods 
described below can handle very large data sets quite 
efficiently. See [lo] for a more detailed comparison 
of k-medoid methods with other partitioning meth- 
ods. In this section, we present the two beat-known 
k-medoid methods on which our algorithm is based. 

PAM (Partitioning Around Medoids) was developed 
by Kaufman and Housseeuw [lo]. To find k clusters, 
PAM’s approach is to determine a representative ob- 
ject for each cluster. Thii representative object, called 
a medoid, is meant to be the most centrally located ob- 
ject within the cluster. Once the medoids have been 
selected, each non-selected object ia grouped with the 
medoid to which it is the most similar. More pre- 
cisely, if Oi is a non-selected object, and Oi is a (ae- 
lected) medoid, we say that Oj belongs to the C~US- 
ter represented by Oi, if d(Oj, Oi) = mino,d(Oj, O,), 
where the notation mine, denotes the minimum over 



all medoids O,, and the notation d(O,,Ob) denotes 
the dissimilarity or distance between objects 0, and 
Ob. All the dissimilarity values are given as inputs 
to PAM. Finally, the quality of a cludcring (i.e. the 
combined quality of the chosen medoids) is measured 
by the average dissimilarity between an object and the 
medoid of its cluster. 

To find the k medoids, PAM begins with an arbi- 
trary selection of ) objects. Then in each step, a swap 
between a selected object Oi and a non-selected ob- 
ject Oh is made, as long as such a swap would result 
in an improvement of the quality of the clustering. In 
particular, to calculate the effect of such a swap be- 
tween Oi and Oh, PAM computes COSb Cjih for all 
non-selected objects Oj . Depending on which of the 
following csxs Oj is in, Cjih is defined by one of the 
equations below. 

First Case: suppose Oj currently belongs to the 
cluster represented by Oi. Furthermore, let Oj be 
more similar to Oj,a than Oh, i.e. d(Oj, Oh) 2 
CyOj, Oj,z), where Oj,r is the second most similar 
medoid to Oj. Thus, if Oi is replaced by Oh as a 
medoid, Oj would belong to the cluster represented 
by Oj,2. Hence, the cost ofthe swap ae far as Oj is 
concerned is: 

C.. j*h = d(Oj,Oj,a)-d(Oj,Oi). (1) 

This equation always gives a non-negative Cjih, indi- 
cating that there is a non-negative cost incurred in 
replacing Oi with Oh. 

Second Case: Oj currently belongs to the cluster 
represented by Oi. But this time, Oj is less similar to 
Oj,2 than Oh, i.e. d(Oj,Oh) < d(Oj,Oj,a). Then, if 
Oi is replaced by Oh, Oj would belong to the cluster 
represented by Oh. Thus, the cost for Oj is given by: 

c*. ash = d(Oj 9 Oh) - d(Oj 9 Oi). (2) 

Unlike in Equation (l), Cjih here can be positive or 
negative, depending on whether 0, is more similar to 
oi Or to oh. 

Third Case: suppose that Oj currently belongs to a 
cluster other than the one represented by Oi. Let Or,2 
be the representative object of that cluster. Further- 
more, let Oj be more similar to Oil2 than Oh. Then 
even if Q is replaced by Oh, Oj would stay in the 
cluster represented by Oj,2. Thus, the cost is: 

Cjih = 0. (3) 

Fourth Case: Oj currently belongs to the cluster 
represented by Oj,2. But Oj is le~e similar to Oj,2 
than Oh. Then replacing Oi with Oh would cause Oj 
to jump to the cluster of Oh from that of Oj,2. Thus, 
the cost is: 

c., t*h = d(Oj 9 Oh) - d(Oj 9 Oj,2), (4) 

and is always negative. Combining the four cases 
above, the total cost of replacing Oi with Oh is given 
by: 

TCih = c Cjih 
i 

We now present Algorithm PAM. 

Algorithm PAM 

Select B representative objects arbitrarily. 

lupus T&, for cdl pairs of objects Oi,Oh 
where Oi is currently selected, and Oh is not. 

Select the pair Oi, Oh which corresponds to 
minoi,o, TCih. If the minimum TCih is nega- 
tive, replace Oi with Oh, and go back to Step (2). 

Otherwise, for each non-selected object, find the 
most similar representative object. Halt. 0 

Experimental results show that PAM works satisfac- 
torily for small data sets (e.g. 100 objects in 5 clus- 
ters [lo]). But it is not efficient in dealing with medium 
and large data sets. Thii is not too surprising if we per- 
form a complexity analysis on PAM. In Steps (2) and 
(3), there are altogether k(n - h) pairs of Oi, Oh. For 
each pair, computing TCih requires the examination 
of (n - k) non-selected objects. Thus, Steps (2) and 
(3) combined is of O(k(n - E)2). And this is the com- 
plexity of only one iteration. Thus, it is obvious that 
PAM becomes too costly for large values of n and h. 
This analysis motivates the development of CLARA. 

2.2 CLARA 

Designed by Kaufman and Bousseeuw to handle large 
data sets, CLARA (Clustering LARge Applications) 
relies on sampling [lo]. Instead of finding represen- 
tative objects for the entire data set, CLARA draws 
a sample of the data set, applies PAM on the sam- 
ple, and finds the medoids of the sample. The point 
is that if the sample is drawn in a sufficiently random 
way, the medoids of the sample would approximate the 
medoids of the entire data set. To come up with bet- 
ter approximations, CLARA draws multiple samples 
and gives the best cl~tering as the output. Here, for 
accuracy, the quality of a clustering is measured based 
on the average dissimilarity of all objects in the entire 
data set, and not only of those objects in the samples. 
Experiments reported in [lo] indicate that 5 samples 
of size 40 + 2L give satisfactory results. 

Algorithm CLARA 

1. Fori= 1 to 5, repeat the following steps: 
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2. 

3. 

4. 

5. 

Draw a sample of 40 + 2k objects randomly from 
the entire data set l, and call Algorithm PAM to 
find k medoids of the sample. 

For each object Oj in the entire data set, deter- 
mine which of the k medoids is the most similar 
t0 Oj. 

Calculate the average dissimilarity of the cluster- 
ing obtained in the previous step. If this value is 
less than the current minimum, use this value 8s 
the current minimum, and retain the k medoids 
found in Step (2) as the best set of medoids ob- 
tained so far. 

Return to Step (1) to start the next iteration. 0 

Complementary to PAM, CLARA performs satisfac- 
torily for large data sets (e.g. 1000 objects in 10 clus- 
ters). Recall from Section 2.1 that each iteration of 
PAM is of O(k(n - k)‘). But for CLARA, by ap- 
plying PAM just to the samples, each iteration is of 
O(k(40 + k)2 + k(n - k)). This explains why CLARA 
is more efficient than PAM for large values of n. 

3 A Clustering Algorithm based on 
Randomized Search 

In this section, we will present our clustering algo- 
rithm - CLARANS (Clustering Large Applications 
based on RANdomized Search). We will first introduce 
CLARANS by giving a graph abstraction of it. Then 
after describing the details of the algorithm, we will 
present experimental results showing that CLARANS 
outperforms CLARA and PAM in terms of both efll- 
ciency and effectiveness. In the next section, we will 
show how CLARANS can be used to provide effective 
spatial data mining. 

3.1 Motivation of CLARANS: a Graph Ab- 
straction 

Given n objects, the process described above of find- 
ing k medoids can be viewed abstractly as search- 
ing through a certain graph. In this graph, de 
noted by &,r, a node is represented by a set 
of k objects (O,, , . . . , O,, ), intuitively indicat- 
ing that O,, , . . . , O,, are the selected medoids. 
The set of nodes in the graph is the set 
{ {O,,, . . .,O,,) 1 O,,, . . .,O,,,,, are objects in the 
data set). 

1 [lo] reports a useful hemietic to draw samples. Apart from 
the first sample, eubeequent samples include the beet set of 
medoids found 80 far. In other words, apart from the ibxt itera- 
tion, m&sequent iterations draw 40 + k objects to add on to the 
best k medoids. 

Two nodes are neighbors (i.e. connected by 8i1 arc) 
if their sets differ by only one object. More for- 
mally, two nodes Si = {O,,, . . . , O,,} and Sz = 
wwl,“‘>owy) are neighbors if and only if the car- 
dinality of the intersection of Sl and Sz is A - 1, i.e. 
ISin&(=k-1. Itiseasytoseethateachnodehas 
k(n-k) neighbors. Since a node represents a collection 
of k medoids, each node corresponds to a clustering. 
Thus, each node can be assigned a cost that is defined 
to be the total dissimilarity between every object and 
the medoid of its cluster. It is not difficult to see that 
if objects Oi, Oh sre the differences between neighbors 
Sl and S8 (i.e. Oi,Oh e Si n S8, but Oi E Si and 
Oh E SZ), the cost differential between the two neigh- 
bors is exactly given by n:‘h defined in Equation (5). 

By now, it is obvious that PAM can be viewed ss a 
search for a minimum on the graph f&k. At each step, 
all the neighbors of the current node are examined. 
The current node is then replaced by the neighbor with 
the deepest descent in costs. And the search continues 
until a minimum is obtained. For large values of n and 
k (like n = 1000 and k = lo), examining all k(n - k) 
neighbors of a node is time consuming. This accounts 
for the inefficiency of PAM for large data sets. 

On the other hand, CLARA tries to examine fewer 
neighbors and restricts the search on subgraphs that 
are much smaller in sise than the original graph Gn,k. 
However, the problem is that the subgraphs examined 
8re defined entirely by the objects in the samples. Let 
Sa be the set of objects in a sample. The subgraph 
GScl,k consists of all the nodes that are subsets (of car- 
dim&ties k) of Sa. Even though CLARA thoroughly 
examines Gs,,,k via PAM, the trouble is that the search 
is fully confined within Gs,,,k. If M is the minimum 
node in the original graph G,,,k, and if M is not in- 
cluded in G&,,k, M will never be found in the search 
of Gs,,,k, regardless of how thorough the search is. To 
atone for this deficiency, many, many samples would 
need to be collected and processed. 

Like CLARA, our algorithm CLARANS does not 
check every neighbor of a node. But unlike CLARA, 
it does not restrict its search to a particular subgraph. 
In fact, it searches the original graph G,,k. One key 
difference between CLARANS and PAM is that the 
former only checks a sample of the neighbors of a node. 
But unlike CLARA, each sample is drawn dynamically 
in the sense that no nodes corresponding to particular 
objects are eliminated outright. In other words, while 
CLARA draws a sample of nodes at the beginning of a 
search, CLARANS draws a sample of neighbors in each 
step of a search. This has the benefit of not confining 
a search to a localiaed area. As will be shown later, a 
search by CLARANS gives higher quality clusterings 
than CLARA, and CLARANS ‘requires a very small 
number of searches. We now present the details of 
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Algorithm CLARANS. 

3.2 CLARANS 

Algorithm CLARANS 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Input parameters numlocal and maxneighbor. 
Initialize i to 1, and mincost to a large number. 

Set current to an arbitrary node in G,,k. 

Set j to 1. 

Consider a random neighbor S of current, and 
based on Equation (5) calculate the cost differ- 
ential of the two nodes. 

If 5’ haa a lower cost, set current to S, and go to 
Step (3). 

Otherwise, increment j by 1. If j 5 maxneighbor, 
go to Step (4). 

Otherwise, when j > maxneighbor, compare the 
cost of current with mincost. If the former is less 
than mincoet, set mincost to the cost of current, 
and set bestnode to current. 

Increment i by 1. If i > numlocal, output 
bestnode and halt. Otherwise, go to Step (2). 0 

Steps (3) to (6) above search for nodes with progres- 
sively lower costs. But if the current node has al- 
ready been compared with the maximum number of 
the neighbors of the node (specified by maxneighbor) 
and is still of the lowest co&, the current node is de- 
clared to be a “local” minimum. Then in Step (7), the 
cost of this local minimum L compared with the lowest 
coat obtained so far. The lower of the two coats above 
is stored in mincost. Algorithm CLARANS then re- 
peats to search for other local minima, until numiocul 
of them have been found. 

Aa shown above, CLABANS has two parame 
tern: the maximum number of neighbors exam- 
ined (maxneighbor), and the number of local min- 
ima obtained (numlocal). The higher the value of 
maxneighbor, the closer is CLABANS to PAM, and 
the longer is each search of a local minima. But the 
quality of such a local minimais higher, and fewer local 
minima needs to be obtained. Like many applications 
of randomized search [8, 91, we rely on experiments to 
determine the appropriate value-s of these parameters. 
All the performance results of CLARANS quoted in 
the remainder of this paper are baaed on the version of 
CLABANS that set numIoca1 to 2 and maxneighbor 
to be the larger value between 1.25% of h(n - k) and 
250. See [15] f or more information on how and why 
these specific values are chosen. 

40 60 80 100 

number of objects 

Figure 1: Efficiency: CLABANS vs PAM 

3.3 Experimental Results: CLARANS vs 
PAM 

In the following we present experimental results com- 
paring CLARANS with PAM. As discussed before, 
for large and medium data sets, it is obvious that 
CLABANS, while producing clusterings of very com- 
parable quality, is much more efficient than PAM. 
Thus, our focus here was to compare the two algo 
rithma on small data sets. We applied both algorithms 
to data sets with 40,60,80 and 100 points in 5 clusters. 
Figure 1 shows the runtime taken by both algorithms. 
Note that for all those data sets, the clusterings pro- 
duced by both algorithms are of the same quality (i.e. 
same average distance). Thus, the difference between 
the two algorithms is determined by their efficiency. 
It is evident from Figure 1 that even for small data 
sets, CLABANS outperforms PAM significantly. As 
expected, the performance gap between the two algo 
rithms grows, as the data set increases in size. 

3.4 Experimental Results: CLARANS vs 
CLARA 

In this series of experiments, we compared CLARANS 
with CLARA. As discussed in Section 2.2, CLARA is 
not designed for small data sets. Thus, we ran thii set 
of experiments on data sets whose number of objects 
exceeda 100. And the objects were organized in differ- 
ent number of clusters, aa well as in different types of 
clusters [15]. 

When we conducted this series of experiments run- 
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Figure 2: Relative Quality: Same Time for CLARANS 
and CLARA 

ning CLARA and CLARANS as presented earlier, 
CLARANS is always able to find clusterings of bet- 
ter quality than those found by CLARA. However, 
in some cazes, CLARA may take much leas time 
than CLARANS. Thus, we wondered whether CLARA 
would produce clusterings of the same quality, if it 
was given the same amount of time. This leads to 
the next series of experiments in which we gave both 
CLARANS and CLARA the same amount of time. 
Figure 2 shows the quality of the clusterings produced 
by CLARA, normalized by the corresponding value 
produced by CLARANS. 

Given the same amount of time, CLARANS clearly 
outperforms CLARA in all cazes. The gap between 
CLARANS and CLARA increases from 4% when k, 
the number of clusters, is 5 to 20% when k is 20. 
This widening of the gap as k increases can be best 
explained by looking at the complexity analyses of 
CLARA and CLARANS. Recall from Section 2.2 that 
each iteration of CLARA is of O(ks + nk). On the 
other hand, the cost of CLARANS is basically linearly 
proportional to the number of objects a. Thus, an 

2There is a random aspect and a non-random wect to the 
execution of CLAFUNS. The non-random aspect corresponds 
to the part that finds the cost differential between the curre-nt 
node and its neighbor. This part, as defiued in Equation (5) 
is linearly proportional to the number of objects in the data 
set. On the other hand, the random aspect corresponds to the 
part that searches for a local minimum. As the values to plot 
the eaphs are average values of 10 runs, which have the &ect 
of reducing the influence of the random aspect, the runtimes 

increase in k imposes a much larger cost on CLARA 
than on CLARANS. 

The above complexity comparison also explains why 
for a fixed number of clusters, the higher the number of 
objects, the narrower the gap between CLAFfANS and 
CLARA is. For example, when the number of objects 
is 1000, the gap is as high as 30%. The gap drops 
to around 20% as the number of object increases to 
2000. Since each iteration of CLARA is of O(k3 + nk), 
the first term k3 dominatea the second term. Thus, 
for a fixed k, CLARA is relatively less sensitive to 
au increase in n. On the other hand; since the co@ of 
CLARANS is roughly linearly proportional to n, an in- 
creaze in n imposes a larger cost on CLAB,ANS than on 
CLARA. This explains why for a fixed k, the gap nar- 
rows as the number of objects increases. Nonetheless, 
the bottom-line shown in Figure 2 is that CLARANS 
beats CLARA in all c88es. 

In sum, we have presented experimental evidence 
showing that CLARANS is more efficient than PAM 
and CLARA for small and large data sets. Our ex- 
perimental results for medium data sets (not included 
here) lead to the same conclusion. In the next section, 
we will present two spatial data mining algorithms 
that use clustering methods. Later we will present 
experimental evidence on the effectiveness of these al- 
gorithms. 

4 

4.1 

Spatial Data Mining based on Clus- 
tering Algorithms 

Spatial Dominant Approach: 
SD(CLARANS) 

There are different approaches to spatial data min- 
ing. The kind of spatial data mining considered in 
this paper assumes that a spatial database consists of 
both spatial and non-spatial attributes, and that non- 
spatial attributes are stored in relations [3, 12, 171. 
The general approach here is to use clustering alge 
rithms to deal with the spatial attributes, and use 
other learning tools to take care of the non-spatial 
counterparts. 

DBLEARN is the tool we have chosen for min- 
ing non-spatial attributes [7]. It takes as inputs re- 
lational data, generalization hierarchies for attributes, 
and a learning query specifying the focus of the min- 
ing task to be carried out. From a barning re 
quest, DBLEARN first extracts a set of relevant tu- 
ples via SQL queries. Then based on the general- 
ization hierarchies of attributes, it ,iteratively gener- 
alizes the tuples. For example, suppose the tuples 
relevant to a certain learning query have attributes 

of CLARANS used in our graphs are largely dominated by the 
non-random aspect of CLAFtANS. 
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(major, ethnicgroup). Further assume that the gen- 
eralization hierarchy for ethnicgroup has Indian and 
Chinese generalized to Asians. Then a generalization 
operation on the attribute ethnicgroup causes all tu- 
ples of the form (m, Indian) and (m, Chinese) to be . merged to the tuple (m, Asians). Thii mergmg has 
the effect of reducing the number of remaining (gen- 
eralized) tuples. As described in [q, each tuple has 
a system-defined attribute called count which keeps 
track of the number of original tuples (as stored in 
the relational database) that are represented by the 
current (generalized) tuple. Thii attribute enables 
DBLEARN to output such statistical statements as 
8% of all students majoring in Sociology are Asians. 
In general, a generalization hierarchy may have mul- 
tiple levels (e.g. Asians further generalized to non- 
Canadians), and a learning query may require more 
than one generalization operation before the final num- 
ber of generalized tuples drops below a certain thresh- 
old 3. At the end, statements such as 90% of all Arts 
students are Canadians may be returned as the find- 
ings of the learning query. 

Having outlined what DBLEARN does, the specific 
issue we address here is how to extend DBLEARN 
to deal with spatial attributes. In particular, we 
will present two ways to combine clustering al- 
gorithms with DBLEARN. The algorithm below, 
called SD(CLARANS), combines CLARANS and 
DBLEARN in a spatial dominant fashion. That is, 
spatial clustering is performed first, followed by non- 
spatial generalization of every cluster. 

Algorithm SD(CLARANS) 

Given a learning request, find the initial set of 
relevant tuples by the appropriate SQL queries. 

Apply CLARANS to the spatial attributes and 
find the most natural number knelt of clusters. 

For each of the k,,,,t clusters obtained above, 

(a) collect the non-spatial components of the tu- 
ples included in the current cluster, and 

(b) apply DBLEARN to this collection of the 
non-spatial components. cl 

Similarly, Algorithms SD(PAM) and SD(CLARA) can 
be obtained. But as shown in the last section that 
CLARANS is more efficient than PAM and CLARA, 
the experimental evaluation to be reported in Section 5 
only considers SD(CLAR.ANS). 

3Apart from generaliestion operations (also known as hier- 
archy ascension operations), DBLEABN, in its full form, may 
sometimes choose to drop an attribute, if generalizing such an 
attribute would produce wintereating resulta (e.g. generali5h~~ 
names of students). 

4.2 Determining knot for CLARANS 

Step (2) of Algorithm SD(CLARANS) tries to find 
knat clusters, where knot is the most natural number 
of clusters for the given data set. However, recall that 
CLARANS and all partitioning algorithms require the 
number k of clusters to be given as input. Thus, an 
immediate question to ask is whether SD(CLARANS) 
knows beforehand what Anot is and can then simply 
pass the value of k,,* to CLARANS. The unfortunate 
answer is no. In fact, determining knot is one of the 
most difficult problems in cluster analysis, for which no 
unique solution exists. For SD(CLARANS), we adopt 
the heuristics of computing the silhouette coeflcients, 
first developed by Kaufman and Rousseeuw [lo]. (For 
a survey of alternative criteria, see [14].) For space 
considerations, we do not include the formulas for com- 
puting silhouettes, and will only concentrate on how 
we use silhouettes in our algorithms. 

Intuitively, the silhouette of an object Oj , a dimen- 
sionless quantity varying between -1 and 1, indicates 
how much Oi truly belongs to the cluster to which Oj 
is classified. The closer the value is to 1, the higher the 
degree Oj belongs to its cluster. The silhouette width 
of a cluster is the average silhouette of all objects in 
the cluster. Based on extensive experimentation, [lo] 
proposes the following interpretation of the silhouette 
width of a cluster: 

For a given number k 2 2 of clusters, the silhouette 
coefficient for A ia the average silhouette widths of the 
k clusters. Notice that the silhouette coefficient does 
not necessarily decrease monotonically as k increases 4. 
If the value k is too small, some distinct clusters are 
incorrectly grouped together, leading to a small silhou- 
ette width. On the other hand, if k is too large, some 
natural clusters may be artificially split, again leading 
to a small silhouette width. Thus, the most natural k 
is the one whose silhouette coefficient is the highest. 
However, our experiments on spatial data mining show 
that just using the highest silhouette coefficient may 
not lead to intuitive results. For example, some clus- 
ters may not have reasonable structures, i.e. widths 
5 0.5. Thus, we use the following heuristics to deter- 
mine the value k,,,$ for SD(CLARANS). 

‘However, this is not the case for the average disshnikity 
of an object from its medoid. The larger the w&e of k, the 
snmller the weage didmihity b. Thin explaiM why average 

. . dwshmkity is only suitable as a measumm ent criterion for fixed 
k, but ie otherwise not e&able to be umed to compare the quality 
of clwtehga produced by different k values. 
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Heuristics for Determining knat 

Find the value k with the highest silhouette coef- 
ficient . 

If all the k clusters have silhouette widths 2 0.51, 
k nat = k, and halt.. 

Otherwise, remove the objects in those clusters 
whose silhouette widths are below 0.5, provided 
that the total number of objects removed so far is 
less than a threshold (e.g. 25% of the total num- 
ber of objects). The objects removed are consid- 
ered to be outliers or noises. Go back to Step (1) 
for the new data set without the outliers. 

If in Step (3), the number of outliers to ,be re- 
moved exceeds the threshold, simply set knot = 1, 
indicating in effect that no clustering is reason- 
able. 0 

In Section 5, we will see the usefulness of the heuristics. 
Having described SD(CLARANS), we are now in 

a position to compare SD(CLARANS) with an ear- 
lier approach reported in [13] .whose goal is to enhance 
DBLEARN with spatial learning capabilities. One of 
the two proposed approaches there is to first perform 
spatial generalizations, and then to use DBLEARN to 
conduct non-spatial generalizations. The fundamen- 
tal difference between SD(CLARANS) and that algo 
rithm in [13] is that a user of the latter must give 
a priori as input generalization hierarchies for spatial 
attributes. The problem is that without prior analy- 
sis, it is almost impossible to guarantee that the given 
hierarchies are suitable for the given data set. (This 
may in fact be one of the discoveries to be found out 
by the spatial data mining task!) For example, sup 
pose a spatial data mining request is to be performed 
on all the expensive houses in Greater Vancouver. A 
default spatial hierarchy to use may be the one that 
generalizes streets to communities and then to cities. 
However, if some of the expensive houses are spatially 
located along something (such ss a river, the bottom 
of a range of mountains, etc.) that runs through many 
communities and cities, then the default spatial hierar- 
chy would be very ineffective, generating such general 
statements as that the expensive houses are more or 
less scattered in all the cities in Greater Vancouver. 

Far extending the capability of the algorithm in [13], 
SD(CLARANS) finds the cl~ters dire&y from the 
given data. To a certain extent, the clustering al- 
gorithm, CLARANS in this case, can be viewed as 
computing the spatial generalization hierarchy dynam- 
ically. The result of such computation, combined with 
the above heuristica to find k,,,,f, precisely finds the 
clusters (if indeed exist in the data set) in terms of the 
x- and y coordinates of the points, and not confined 

by any hierarchies specified a priori. For the expen- 
sive houses example discussed above, SD(CLARANS) 
could directly identify clusters along the river or the 
bottom of the mountain range, and could lead to such 
statements as 80% of all mansions have either a moun- 
tain or a river view. In Section 5, we will see how well 
our spatial data minii algorithms can handle a data 
set arguably more complex than the example discussed 
here. 

4.3 Non-Spatial Dominant Approach: 
NSD(CLARANS) 

To a large extent, spatial dominant algorithms, such 
as SD(CLARANS), can be viewed as focusing asym- 
metrically on discovering non-spatial characterizations 
of spatial clusters. Non-spatial dominant algorithms, 
on the other hand, focus on discovering spatial clus- 
ters existing in groups of non-spatial data items. For 
example, these algorithms may find interesting diicov- 
eries based on the spatial clustering or diitribution 
of a certain type of houses. More specifically, unlike 
spatial dominant algorithms, non-spatial dominant al- 
gorithms first apply non-spatial generalizations, fol- 
lowed by spatial clustering. The following algorithm, 
NSD(CLARANS), uses DBLEARN and CLARANS to 
perform data mining on non-spatial and spatial at- 
tributes respectively. 

Algorithm NSD(CLARANS) 

4. 

Given a learning request, find the initial set of 
relevant tuples by the appropriate SQL queries. 

Apply DBLEARN to the non-spatial attributes, 
until the final number of generalized tuples fall 
below a certain threshold (cf. Section 4.1). 

For each generalized tuple obtained above, 

(4 

O-9 

collect the spatial components of the tuples 
represented by the current generalized tuple, 
and 

apply CLARANS and the heuristics pre- 
sented above to find the most natural num- 
ber knot of clusters. 

For all the clusters obtained above, check if there 
are clusters that intersect or overlap. If exist, such 
clusters can be merged. Thii in turn causes the 
corresponding generalized tuplea to be combined. 

cl 

Recall from the previous section on clustering algo 
rithms that for a given da;ta set, clusters do not over- 
lap or intersect. This is why SD(CLARANS) does not 
include .a step analogous to Step (4) above. However, 
for NSD(CLARANS) (and other non-spatial dominant 
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algorithms such as NSD(PAM)), clusters obtained for 
different generalized tuples can overlap or intersect. 
In that csse, opportunities arise for further gener- 
alization of spatial and non-spatial data. This is 
the purpose of Step (4) above. In the following, we 
present experimental results evaluating the effective- 
ness of NSD(CLARANS), as well as SD(CLARANS). 

5 Evaluation of SD(CLARANS) and 
NSD(CLARANS) 

5.1 A Real Estate Data Set 

One way to evaluate the effectiveness of a data mining 
algorithm is to apply it to a real data set and see what 
it finds. But sometimes it may be difficult to judge the 
quality of the findings, without knowing a priori what 
the algorithm is supposed to find. Thus, to evaluate 
our algorithms, we generated a data set that honors 
several rules applicable to the 2500 expensive housing 
units in Vancouver. These rules, very close to reality 
to the best of our knowledge, are as follows: 

A. house type, price and size: 

1. If the house type is mansion, the price falls 
within the range [1500K,3500K], and the size 
within the range [6000,10000] square feet. 

2. If the house type is single-house, the 
price and size ranges are [800K,1500K] and 
[3000,7000]. 

3. If the house type is condo(minium), the 
price and size ranges are [300K,800K] and 
[1000,2500]. For simplicity, we assumed uni- 
form distributions within all the ranges. 

B. distribution: 

1. There are 1200 condos uniformly distributed 
in the Vancouver downtown area - the rect- 
angular region at the top of Figure 3. From 
now on, this region will be referred to as Area 
Bl. 

2. Along Marine Drive, there are about 320 
mansions and about 80 single-houses - the 
stripe at the bottom left-hand corner of Fig- 
ure 3. This area will be referred to as Area 
B2. 

3. Around Queen Elizabeth Park, there are 800 
singlr+houses -the polygonal area at the bot- 
tom right-hand corner of Figure 3. This area 
will be referred to as Area B3. 

4. Finally, to complicate the situation, there 
are 100 singkhouses uniformly distributed 
in the rest of Vancouver. 

600 600 ltiOO 1200 1400 

x-coordinates 

Figure 3: Spatial Distribution of the 2500 Housing 
Units 

5.2 Effectiveness of SD( CLARANS) 

Based on the heuristics presented in Section 4.2, Step 
(2) of SD(CLARANS) appropriately sets the value of 
k,,of to 3. The silhouette coefficient for knot = 3 is 
0.7, indicating that all 3 clusters are quite strong. 
Thus, Steps (3) and (4) of the heuristics are not 
needed in this case. After computing knal, it takes 
CLARANS about 25 seconds to identify the 3 clue- 
ters (in a time-sharing SPARC-LX workstation en- 
vironment). The first cluster contains 832 units all 
single-houses, 800 of which are those in Area B3 de- 
fined in Section 5.1. For this cluster, DBLEABN in 
Step (3) of SD(CLARANS) correctly finds the price 
and size ranges to be [800K,1500K] and [3000,7000]. 
It also reveals that the prices and sizes are more or 
less uniformly distributed. 

The second cluster contains 1235 units, 1200 of 
which are condos, and the remainders single-houses. 
It contains all the units in Area Bl introduced in 
Section 5.1. For this cluster, DBLEARN finds the 
condo prices and sizes uniformly distributed within 
the ranges [300K,8OOK] and [1000,2500] respectively. 
It also discovers that the single-house prices and sizes 
fall within [800K, 15OOK] and [3000,7000]. 

The third cluster contains 431 units, 320 of which 
are mansions, and the remainders single-houses. This 
cluster includes all the units along the stripe Area 
B2. For this cluster, DBLEARN llnds the man- 
sion prices and sizes uniformly distributed within the 
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Figure 4: Clusters for the First Generalized Tuple for 
Mansions 

ranges [1500K,3500K] and [6000,10000]. As for the 
singlehouses in the cluster, DBLEARN again finds the 
right ranges. 

In sum, SD(CLARANS) is very effective. This is 
due primarily to the clusters found by CLARANS, 
even in the presence of outliers (cf. B.4 of Sec- 
tion 5.1). Once the appropriate clusters are found, 
DBLEARN easily identifies the non-spatial patterns. 
Thus, CLARANS and DBLEARN together enable 
SD(CLAB,ANS) t o successfully discover all the rules 
described in Section 5.1 that it is supposed to find. 

5.3 Effectiveness of NSD(CLARANS) 

In Step (2) of NSD(CLAR.ANS), DBLEARN finds 12 
general&d tuples, 4 for each type of housing units. 
Let us first consider the 4 generalised tuples for man- 
sions. The 4 tuples represent respectively mansions in 
the following categories: a) price in [1500K,26OOK], 
size in [6000,8500]; b) price in [1500K,2600K], sise 
in [8500,10000]; c) price in [2600K,3500K], sire in 
[6000,8500]; and d) price in [2600K,3500K], sise in 
[8500,10000]. The graph in Figure 4 shows the spa 
tial distributions of the mansions in the first category. 
When CLARANS is applied to the points shown in the 
graph, 2 clusters are found (points in the two clusters 
represented by either dots or +). The graphs for the 
other catergories b), c) and d) are very similar, and 
again two clusters are found in each case. Now when 
Step (4) of NSD(CLARANS) is executed, overlapping 
clusters are merged, which in turn causes the 4 gen- 

eralized tuples to be combined as well. As a result, 
NSD(CLARANS) finds out that all mansions are lo- 
cated in the stripe area, and have prices and sizes in 
the ranges [1500K,3500K] and [6000,10000]. 

The 4 tuples for condos correspond respectively 
to the following categories: a) price in [300K,600K], 
size in [1000,1800]; b) price in [300K,600K], size 
in [1800,2500]; c) price in [600K,800K], size in 
[1000,1800]; and d) price in [SOOK,SOOK], size in 
[1800,2500]. Th e p recessing of these tuples is very 
similar to the processing of those for mansions above. 
The only difference is that for all 4 tuples, no 
cluster is found 5, i.e. knot set to 1 in Step (4) 
of the heuristics in Section 4.2. Thus, in the fi- 
nal step of NSD(CLARANS), all 4 regions/clusters, 
which overlap, are merged into an area that coin- 
cides precisely with Area Bl Figure 3. Consequently, 
NSD(CLARANS) discovers that all (expensive) con- 
dos are located in the Vancouver downtown area, and 
have prices and sises in the ranges [300K,800K] and 
[1000,2500]. 

The processing of singlehouses is the most com- 
plicated. The 4 tuples correspond to the categories: 
a) price in [1200K,1500K], size in [3000,5500]; b) 
price in [12OOK,1500Kj, size in [5500,7000]; c) price 
in [800K,1200K], sise in (3000,5500]; and d) price in 
[8OOK,1200K], size in [5500,7000]. When CLARANS 
is applied to the houses in the category a), the high- 
est silhouette coefficient is found when the number of 
clusters is 4. However, even though the silhouette coef- 
ficient is above 0.5, the silhouette widths of two of the 
clusters are below 0.5. Thus, Step (3) of the heuristics 
in Section 4.2 is invoked. As a result, 15 out of the orig- 
inal 253 points are removed. For this new collection, 
two clusters are identified: i) along the stripe Area 
B2 in Figure 3, and ii) around Area B3 in Figure 3. 
The clusterings for categories b), c) and d) of single 
houses are very similar to the ones described above. 
Again, outliers need to be removed. At the end, af- 
ter merging has taken place in Step (4), 2 regions are 
found, which are identical to the ones listed i) and ii) 
above. hrthermore, NSD(CLARANS) correctly iden- 
tifies the price and size ranges for singl~houses to be 
[800K,1500K] and [3000,7000]. 

5.4 summary 

With respect to the rules listed in Section 5.1, both 
SD(CLARANS) and NSD(CLARANS) find most of 
what they are supposed to find. In terms of per- 
formance and effectiveness, SD(CLARANS) has the 
edge. As discussed earlier, this is due to CLARANS’ 
success in identifying the clusters right away. On 

525% ia the threshold used in Step (3) of the heuristics in 
Section 4.2. 
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the other hand, in NSD(CLARANS), performing non- 
spatial generalizations divides the entire set of points 
into different groups/tuples. This may have the ef- 
fect of breaking down the tightness of some clusters. 
Outliers removal may then be needed to extract rea- 
sonable clusters from each group. This procedure, as 
we have seen, may weaken the eventual findings and 
takes more time. Finally, merging overlapping and in- 
tersecting clusters can also be costly. 

However, to be fair with NSD(CLARANS), the 
rules described in Section 5.1 are more favorable to 
SD(CLARANS). There is a strong emphasis on find- 
ing out non-spatial characterizations of spatial clus- 
ters, which is the focus of spatial dominant algorithms. 
In contrast, a non-spatial dominant algorithm focuses 
more on finding spatial clusters within groups of data 
items that have been generalized non-spatially. For 
example, if the spatial distribution of singlehouses is 
primarily determined by their price and size categories, 
then NSD(CLARANS) could be more effective than 
SD( CLARANS). 

6 Discussions 

6.1 Exploring Spatial Relationships 

Thus far, we have shown that clustering algorithms, 
such as CLARANS, are very promising and effective 
for spatial data mining. But we believe that there is 
an extra dimension a clustering algorithm can provide. 
As discussed in Section 4.2, a clustering algorithm does 
not require any spatial generalization hierarchy to be 
given, and directly discovers the groups/clusters that 
are the most appropriate to the given data. In other 
words, clustering can provide very tight spatial charac- 
terizations of the groups. The tightness and specificity 
of the characterizations provide opportunities for ex- 
ploring spatial relationships that may exist between 
the clusters and other interesting objects. 

Consider again the real estate example discussed 
in the previous section. SD(CLARANS) finds 3 clus- 
ters of expensive housing units (cf. Figure 3). Those 3 
clusters can then be overlaid with Vancouver maps of 
various kinds (e.g. parks, highways, lakes, etc.) The 
following findings can be obtained: 

l About 96% of the houses in the first cluster (as 
described in Section 5.2) are within 0.6km from 
Queen Elizabeth Park. 

l About 97% of the housing units in the second clus- 
ter are located in the Vancouver downtown area 
which is adjacent to Stanley Park 6 

gDming the summit meeting between Russia and the US 
in 1993, Clinton dined in Queen Elizabeth Park and jogged in 
Stanley Park! 

l About 92% of houses in the third cluster are 
within 0.4km from the western coast line of Van- 
couver . 

The point here is that while SD(CLARANS) or 
NSD(CLARANS) d o not directly find the above fea- 
tures (which is the job of another package that can 
provide such spatial operations as map overlays), they 
do produce structures or clusters that can lead to fur- 
ther discoveries. 

6.2 Towards Building a More General and Ef- 
ficient Spatial Data Mining Framework 

A natural extension to SD(CLARANS) and 
NSD(CLARANS) will be the integration of the two al- 
gorithms by performing neither spatial dominant nor 
non-spatial dominant generalizations, but interleaved 
or balanced generalizations between spatial and non- 
spatial components. At each step, the data mining 
algorithm may select either a spatial or a non-spatial 
component to generalize. For example, if a clustering 
method can detect some high quality clusters, cluster- 
ing may be performed first. These clusters may trigger 
generalization on non-spatial components in the next 
step if such a generalization may group objects into 
interesting groups. It is an interesting research issue 
to study how to compare the quality of spatial and 
non-spatial generalizations. 

A spatial database may be associated with several 
thematic maps, each of which may represent one kind 
of spatial data. For example, in a city geographic 
database, one thematic map may represent the lay- 
out of streets and highways, another may outline the 
emergency service network, and the third one may de- 
scribe the distribution of educational and recreational 
services. To many applications, it will be very use- 
ful if data mining on multiple thematic maps can be 
conducted simultaneously. This would involve not 
only clustering, but also other spatial operations such 
as spatial region growing, overlays and spatial joins. 
Thus, it is an interesting research issue to study how 
to provide an effective framework that integrates all 
these operations together for simultaneous mining of 
multiple maps. 

There are many kinds of spatial data types, such as 
regions, points and lines, in spatial databases. Cluster- 
ing methods, as presented here, are most suitable for 
points or small regions scattered in a relatively large 
background. However, it remains an open question as 
to how they can be effectively applied to deal with line- 
typed spatial data, such as to examine how highways 
are located in cities. 

Furthermore, due to the nature of spatial data, 
noise or irrelevant information is prevalent in spatial 
databases. The development of a general framework 
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for removing noises and filtering out irrelevant data is 
important to the effectiveness of spatial data mining. 
It is also interesting to find out what roles approxima- 
tion and aggregation can play in the framework. 

7 Conclusions 

In this paper, we have presented a clustering aIgo 
rithm called CLARANS which is based on randomized 
search. We have also developed two spatial data min- 
ing aIgorithmsSD(CLARANS) and NSD(CLARANS). 
Experimental results and analysis indicate that both 
algorithms are effective, and can lead to discoveries 
that are difficult to obtain with existing spatial data 
mining algorithms. Finally, we have presented exper- 
imental results showing that CLABANS itself is more 
efficient than existing clustering methods. Hence, 
CLARANS has established itself as a very promising 
tool for efficient and effective spatial data mining. 
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