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Abstract 

Object-oriented databases enforce behavioral 
schema consistency rules to guarantee type 
safety, i.e., that no run-time type error can 
occur. When the schema must evolve, some 
schema updates may violate these rules. In 
order to maintain complete behavioral schema 
consistency, traditional solutions require sig- 
nificant changes to the types, the type hierar- 
chy and the code of existing methods. Such 
operations are very expensive in a database 
context. To ease schema evolution, we pro- 
pose to support exceptions to the behav- 
ioral consistency rules without sacrificing type 
safety for all that. The basic idea is to de- 
tect unsafe statements at compile-time and 
check them at run-time. The run-time check 
is performed by a specific clause that is 
automatically inserted around unsafe state- 
ments. This check clause warns the program- 
mer of the safety problem and lets him pro- 
vide exception-handling code. Schema up- 
dates can therefore be performed with only 
minor changes to the code of methods. 
Keywords : Object-oriented databases, sche- 
ma evolution, type safety, covariance, con- 
travariance. 
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1 Introduction 

An object-oriented database schema contains the 
description of the types’, type hierarchy, and methods 
used by all application programs. To ensure static type 
checking, object-oriented systems typically enforce 
that a schema satisfies three behavioral consis1cnc3y 
rules. These rules are suficient conditions that 
guarantee that no type error can occur during the 
execution of a. method code. The wbstitutability 
rule says that if a type Tl is a subtype of a type 
T2 then whenever an instance of T2 is expected in a 
variable assignment or a function invocation, it must 
be allowed to pass an instance of Tl. The couariance 
and contrauariance rules impose constraints when a 
method is redefined for more specialized types. The 
covariance rule says that the return type be also 
specialized. The contravariance rule says that the 
types of arguments that are not used for late binding 
must be more general. If a database schema satisfies 
these rules, it is said to be behaviorally consistent. 

A typical situation in object-oriented databases is 
that the schema must evolve in order to accommodate 
evolutions of the application programs. As argued in 
[BorM], this is particularly important in databases 
“where it is in general impossible or undesirable to 
anticipate all possible states of the world during 
schema design”. The problem is that some schema 
updates may violate the behavioral consistency rules. 
For example, consider a database schema that contains 
a type Patient having an attribute doctor of type 
Physician. Suppose that we define a new type, called 
Alcoholic, as a subtype of Patient and such that the 
attribute doctor inherited from Patient is redefined 
to be of type Psychologist. Since a Psychologist is 
(usually) not a Physician, the method that retrieves 
the doctor attribute value of an alcoholic violates 
the covariance rule and the method that updates the 
doctor attribute value of an alcoholic violates the 

‘We intentionally avoid to talk about classes, which arc 
viewed as types in some systems and aa type extenaiom in 
othem. 
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contravariance rule. 

There are also specific situations that are part of the 
(real-life) application that osnstitute violations of the 
behavioral consistency rules. For instance, in an hos- 
pital database, one may say that ambulatory patients 
are exactly like patients (i.e., Ambulatoryqatient is 
a subtype of Patient) exbept that they have no hog- 
pita1 ward. This leads to violate the substitutabil- 
ity rule because the method that retrieves a ward 
attribute value is not applicable to an instance of 
Ambulatory-patient. 

Existing systems have two attitudes with respect to 
this problem. One is to encourage the programmer to 
follow the rules but not actually force him to do so 
(e.g., C++, or 02 for the contravariance rule). Incon- 
sistent schemas are allowed and it is the programmer’s 
responsibility to control what the program does and 
avoid run-time type errors. The second attitude is to 
prevent the user from violating the rules. In this case 
there are several well-known solutions that lead to ei- 
taller change the type hierarchy and introduce “fake” 
types, or break the type hierarchy and loose the advan- 
t,ages of polymorphism. These ‘solutions may require 
significant changes to the code of methods. Following 
[Bor88], we believe that both attitudes are clearly not 
sat,isfactory since they result in either unsafe code or 
substantial and artificial revisions to the schema. 

The starting point of our research is that etcep- 
tions to the behavioral consistency rules should be 
supported to ease schema evolution and modelling. 
However, they should be controlled to avoid type 
safety problems. In this paper, we propose to have 
a, tool that processes every method source code and 
(i) determines whether a statement is unsafe, i.e., 
may result in a run-time type error, (ii) automat- 
ically inserts a “check” clause around every unsafe 
statement in the source code, and (iii) let the user 
provide exception-handling code. The check clause 
is merely an if-then-else statement where the if-part 
performs a safety run-time check, the then-part con- 
t.ains the original statement, and the else-part contains 
the exception-handling code”. The insertion of check 
clauses warns the user about possible run-time type er- 
rors. The safety condition in the if-part of the “check” 
cla.use is expressed intensionally, thereby avoiding to 
reformulate the condition when the schema changes. 
Our tool can also automatically generate some default 
exception-handling code. However, if the programmer 
provides his/her own exception-handling code then it 
has to be inspected by our tool. 

2 We do not focus on the issue of designing specific language 
primitives for handling exceptions that can be harmoniously 
integrated with existing 00 programming languages. 

Our proposed approach facilitates schema evolution 
by supporting exceptions while guaranteeing that 
no run-time type error will occur. We focus on 
the motivations for such an approach and the type 
checking of statements in the presence of exceptions 
to behavioral consistency. Our results apply to object- 
oriented databases that support run-time method 
selection using either a single method’s argument 
(mend-methods) or all method’s arguments (multi- 
methods) as in recent systems like CLOS [BDG%],. 
Polyglot [ADLSl], and Cecil [Cha92]. 

The paper is organized as follows. Section 2 intro- 
duces preliminary definitions about single and multi- 
targetted methods, and defines the notion of behav- 
iorally consistent schema. Section 3 gives an overview 
of the problem whereas Section 4 sketches the pro- 
posed solution. Section 5 introduces the material nec- 
essary to present our type system. Section 6 describes 
the type checking process allowing to distinguish be- 
tween safe and unsafe statements. Section 7 relates 
our work with existing work, and Section 8 concludes 
the paper. 

2 Behavioral Schema Consistency 
In this section, we introduce our notations for the 
types and methods of a schema, mostly defined in 
[ADLSl]. Then, we define the behavioral schema 
consistency rules and their exceptions. 

2.1 Notations 

We assume the existence of a partial ordering between 
types, called subtyping ordering, denoted by 5. Given 
two types Tl and T2, if Tl 5 Ta, we say that Tl 
is a subtype of T2 and Ta is a supertype of TI. To 
each generic function m corresponds a set of methods 
md”~, . . . ,T) + &, where a is the type of the 
ith formal argument, and where & is the type of the 
result. We call the list of arguments (T,‘, . . . , q) of 
method mk the signature of mk. An invocation of 
a generic function m is denoted m(Tl, . . ..Tn). where 
VI,... ,Tn) is the signature of the invocation, and 
the Ti’s represent the types of the expressions passed 
sa arguments. We shall use uppercase letters to 
denote type names, and’ lowercase letters to denote 
type instances, generic functions, methods and method 
invocations. 

In traditional object-oriented systems, functions 
have a specially designated argument, the target, 
whose run-time type is used to select the method 
to execute (method resolution). Multi-methods, first 
introduced in CommonLoops [BKK+86] and CLOS 
[BDG+88], provide a generalization of single-targetted 
methods by making all arguments targets. Multi- 
methods are now a key feature of several systems such 
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y Polyglot [ADLSl], Kea [MHHSl], and Cecil [Cha92]. 
Henceforth, we consider that methods are targetted on 
either one or all arguments. For the sake of uniformity, 
we shall assume that the p first arguments of a function 
(where p = 1 or p = n) are the target arguments. In 
the examples, we underline the target arguments in 
the signatures. 

Person 

t 
Employee 

equall (Person, Pereon) 
equala( Employee Jmployee) 

Figure 1: A simple schema 

Example 2.1 Consider the type hierarchy of Figure 
1, and suppose we wish to define a generic function 
equal on persons and employ=. Since equality is 
defined differently for persons and employees, two 
methods equal( Person,Person) and equol( Employee, 
Employee) are needed to implement the generic 
function and we respectively denote them equal1 and 
equal:!. Their signatures, given on Figure 1, show that 
these methods have a single target, argument. On 
invocation equal(Person, Employee), the run-time 
met.hod dispatcher will select method equal1 based on 
the first target argument. 0 

Given a generic function invocation, the selection 
of the corresponding method follows a two-step pro- 
cess : first, based on the types of the target arguments, 
a set of applicable methods is found and second, a 
precedence relationship between applicable methods is 
used to select what is called the Most Specific Applica- 
ble method (MSA). Intuitively, a precedence relation- 
ship determines which applicable method most closely 
matches a function invocation. Given a function invo- 
cation m and a particular method precedence ordering 
noted <, if rni and mj are two applicable methods and 
)l?i is more specific than mj, noted rni < mj, then rni 
is the closest match for the invocation. 

In the rest of this paper, we assume that for 
a.ny function invocation m(Tl, . . . , T,), if there is an 
applicable method, then there always exists a Most 
Specific Applicable (henceforth, MSA) method and this 
method is unique. We call this the Unique Most 
Specific Applicable (UMSA) property. However, we 
insist that our results do not depend on the means by 
which the UMSA property is enforced. 

Usually, types are represented using different data 
structures such as set, tuple and list. We sssume 
that for each type, there is a set of (representation) 
operations that enable to manipulate (i.e., access and 
update) the structure of instances of that type. For 
example, if T is a type represented as a tuple : [al : 
Tl,... ,a, : T,], where the ai’s denote attribute 

names, then the generic functions ai and 8dAi, 
respectively access and update the ai attribute value 
of an instance of T. 

2.2 Behavioral Consistency Rules 

Object-oriented typing theory defines three consis- 
tency rules to guarantee that no type error can occur 
during the execution of a method code. A database 
schema is said to be behaviorally consistent (in the fol- 
lowing, consistent) iff every method satis& the con- 
sistency rules. The first two rules impose constraints 
on types returned by methods and the types of meth- 
ods’s arguments. The third rule relaxes the condition 
of type equality on substitution operations (variable 
assignment or parameter passing) to take into account 
the subtyping relationship. It is the basis of inclusion 
polymorphism [CWSS]. The three rules are : 

0 Covariauce rule : Given two methods 
mi(T;,... ,r) * & and mj(q’,...,T) 4 
Rj, where m < mj, then & 5 Rj. 

0 Contravariauce rule : Given two methods 
mj(cq)... )Iqy * & and mj(q, . . ..T) + 
Rj, where no < mj, then Vk > p , !$ 5 qk (p is 
the number of target arguments). 

l Substitutability rule : An instance of Tl can 
be substituted to an instance of Ta if and only if 
Tl 5 T2 (substitutability condition). 

Note that imposing the covariance and the substi- 
tutability rules on the methods accessing the structure 
of types amounts to enforce the rules of structural sub- 
typing defined by [CWSS]. For instance, according to 
these rules, a tuple-structured type Tl may be a sub- 
type of T2 if TI has all the attributes of T2, and if 
the types of common attributes in Tl are subtypes of 
those in Tz. As a consequence, representation func- 
tions available on T2 instances are also available on Tl 
instances. Covariance also entails the domain compat- 
ibility invariant defined by [BKKK87]. This invariant 
states that the domain of an attribute that is rede- 
fined in a subtype can only be specialized. The con- 
travariance rule was originally developed for subtyping 
of functions [Car84], and has been extended to subtyg 
ing on partially targetted methods in [McK92, DanSO]. 
The substitutability rule is also called strict or full in- 
heritance invariant in [BKKK87]. 

3 Problem Overview 
In this section, we first define exceptions to schema 
consistency and show how they arise with some schema 
updates. Then, we summarize the safety problems 
induced by exceptions. Finally, we present solutions 
recommended by object-oriented design methods to 
avoid schema inconsistencies. 
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3.1 Exceptions to Consistency and Schema 
Updates 

We define an exception as the violation of one of 
the three consistency rules. The non-respect of the 
covariance rule yields return-exceptions while the non- 
respect of the contravariance rule yields orgument- 
exceptions. Violations of the ‘substitutability rule 
yields two kinds of exceptions. The first one is when a 
signature is disallowed for a generic function, although 
the substitutability condition for parameter passing is 
satisfied. The second one is when the substitutability 
condition is violated during assignment or parameter 
passing. These exceptions are respectively called 
disallowed signature and illegal substitution. 

In the following, we only consider return-exceptions, 
argument-exceptions, and disallowed signatures as 
possible exceptions to the consistency rules. In- 
deed, illegal substitutions have more far-reaching con- 
sequences on static type checking than the three other 
kinds of exceptions. 

3.1.1 Return-exceptions 

Method no is a return-exception to method mj 
if rni < mj and the return type of mi is not a 
subtype of the return type of mj. 

Imposing covariance on the results ensures that 
whatever method is selected at run-time, its result is 
a subtype of the type expected by the context of the 
invocation. An interesting case of return-exception is 
the violation of the domain compatibility invariant. 

Doctor Patient 

Physician Psych.ologist Alcoholic 

doctorl(Patient)+ Physician 
doctor2(Alcoholic)+ Psychologist 
set-doctorl(Patient,Physician) 
set-doctor~(Alcoholic,Psychologist) 
ho&all (Physician)+ Hospital 

Figure 2: Doctor and Patient hierarchy 

Example 3.1 Suppose that Patient is a type having 
an attribute doctor of type Physician. Suppose we 
want to add a new type Alcoholic to the schema as a 
subtype of Patient, where attribute doctor is of type 
Psychologist. The updated schema is shown on Figure 
2. We have an exception because Psychologist is 
usually not a subtype of Physician. Thus, the method 
doctorz is a return-exception to method doctorl. This 
exception can cause type errors ss shown below. 
Consider the method that takes a set of patients 
and refunds their expenses to the hospital they were 
treated in using method re f und( Hosmtal,Dollar) : 

refunding (patients : set [Patient] ) 
{ for p in patients do 

refund (hospital (doctor (p) ) , bill (p) ) ; 
end do } 

As Psychologists are not affiliated to an hospital 
unlike Physicians, the invocation hospital(doctor( 
mypatient)) causes an error if myPatient refers to an 
alcoholic at run-time as there is no applicable method 
for invocation hospital( Psychologist). Cl 

3.1.2 Argument-exceptions 
Method mi is an argument-ezception to method 
mj if m < mj and there exists a non-target 
argument T/ of mi which is not a supertype 
of Tj. 

Argument-exceptions only occur in systems with 
single-targetted functions where run-time method se- 
lection does not check that the non-target arguments 
of an invocation are subtypes of the non-target formal 
arguments of the selected method. This may result 
in illegal substitutions when the actuals are assigned 
to the formals. However, the possibility to specialize 
any argument of a method is clearly needed in practice 
and for this reason, most object oriented systems do 
not actually enforce the contravariance constraint (see 
[CCPLZ93], [Mey92], [CM92], [Os92]). 

Example 3.2 In the schema of Figure 1 where 
Employee is a subtype of Person, suppose we have a 
method equall(Person,Person) targetted on the first 
argument and the schema is updated by adding a new 
method equal2(Employee,Employee). Then, invoca- 
tion equal(myPersonl,myPerson2) leads to the se- 
lection of equal2 if the target argument, myPerson1, 
refers to an employee at run-time. But if the type of 
myPerson refers to a person, an illegal substitution 
occurs between the formal argument of type Employee 
and myPerson2. Then, in the body of equal2, apply- 
ing on this argument a function that is only defined 
for Employee (e.g. to access an attribute specific to 
Employee) causes a run-time error as there is no ap 
plicable method. Cl 

3.1.3 Disallowed Signatures 
Signature s is a disallowed signature of m if 
invoking m on s is forbidden, although there 
exists an MSA method for m(s). 

Example 3.2 has shown that some signatures should 
be disallowed because they imply illegal substitutions 
between non-target actual and formal arguments. 
We refer to these signatures as implicitly disallowed 
signatures as they can be inferred from argument- 
exceptions. However, some disallowed signatures 
cannot be inferred and must be explicitly given by 
the user as part of the semantics of its application. 
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This is the case with inapplicable attributes (see e.g., 
[Bor88]). We call th ese signatures explicitly disallowed 
signatures. 

Person Beverage 
/+ 4t 

5 
/\ 

5 5 
/\ 

5 
Professor Student Juice Alcohol 

Figure 3: Disallowed signature 

Example 3.3 Consider the schema of Figure 3 
and suppose we update the schema by adding a 
function purchase with a single associated method 
purchase(Person,Beuerage). This method should 
naturally not be applicable to signature (Student, 
Alcohol), which is disallowed. All other signatures are 
allowed. Cl 

Person List [Person] 

t 
a 

t 
Student List [Student] 

insertl(List[Person], Person)+ List[Person] 

insert2(List[Student], Student)+ List[Student] 

Figure 4: Type constructor 

Example 3.4 Consider the schema of Figure 4. Sig- 
nature (List[Student], Person) violates the composi- 
tion integrity constraint on constructed types : for a 
constructed type AM, its components objects are re- 
quired to be subtypes of T. Thus, this signature must 
be disallowed for insert. Note that it would be im- 
plicitly disallowed if the first argument was the only 
target. Cl 

3.2 Inconsistent Schemas and Type Safety 

A program is type safe if, during the execution of every 
statement, no error can occur due to the absence of 
an MSA for a method invocation. The purpose of 
static type checking is to verify at compile-time that a 
program is type safe. To this end, for each statement 
of a method code, the declared types are used to check 
that (i) every invocation has an MSA, and (ii) no illegal 
substitution may occur. If the two above conditions 
a.re satisfied, a statement is correct. Otherwise, it is 
incorrect and there is a type error. 

The central problem introduced by exceptions to 
consistency is that a correct statement may be unsafe, 
i.e., yield a type error at run-time. Thus, in presence of 
exceptions to consistency, type checking must further 
partition correct statements into safe and unsafe 
statements. 

Absence Invocation with an 
of MSA - Src&ion Expl&itly Db8UOWGd 

l/l ‘1 
Return-Exception A*&ld- Explicitly Didlowed 

Exception Signature 

Figlire 5: Exceptions and Type Errors 

Figure 5 summarizes the relationships between the 
three different kinds of exceptions to consistency 
(bottom of figure) and the three kinds of type errors at 
run-time (top of ‘figure) : an arrow from 2 to y means 
that an exception of kind 2 may lead to a type error 
of kind y at run-time. 

3.3 Existing Solutions to Avoid Inconsistent 
Schemas 

Object-oriented design offers several solutions to the 
problems of inconsistency set by some schema updates. 
They consist in modifying the type hierarchy and 
the code of methods or introducing new methods. 
These solutions avoid return-exceptions and explicitly 
disallowed signatures, but not argument-exceptions. 
However, they involve important modifications of the 
type hierarchy or the code of methods. In a database 
context, this can be expensive since changes to the 
types must be propagated to the persistent instancea. 
Most importantly, the burden of implementing these 
solutions is left to the programmer. We examine four 
of these solutions on Example 3.1. 

The first solution eludes the problem by renouncing 
to make Alcoholic a subtype of Patient. Thus, the 
advantages of polymorphism a;e lost : alcoholics and 
patients must be stored in different sets and they must 
be handled separately, by different methods, despite 
their similarities. 

The second solution retains the advantages of poly- 
morphism for the methods that use only the sim- 
ilarities between Alcoholic and Patient. This so- 
lution involves a new intermediate type to repre- 
sent the common part, in our case Patient with- 
out attribute doctor. This can be achieved in two 
ways, illustrated in Figure 6 : (i) modify Patient 
by removing attribute doctor and create a subtype 
Patient-treated-by-Physician, or (ii) create Patient0 
as a supertype of Patient, to represent patient with- 
out attribute doctor. In both cases, Alcoholic is made 
a subtype of the intermediate type. In methods that 
do not use the difference between alcoholics and reg- 
ular patients and that do not call methods using this 
difference, patients and alcoholics can be manipulated 
as being of the intermediate type. Such methods can 
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Patient 

/ \ 
Alcoholic Patient-treated-by-Physician 

doctorl(PatienLtreated-bg-Physician)-, Physician 
doctorz(Alcoholic)+ Psychologist 

Patient0 

Patient Alcoholic 

doctorl(Patient)+ Physician 
doctorz(Alcoholic)-, Psychologist 

Figure 6: Intermediate Supertype Creation 

be termed as non-critical, whereas in our previous ex- 
ample, refunding is critical. 

The first problem with this solution is the multipli- 
cation of artificial intermediate types, like PatientO, 
which is combinatorial in nature (see [Bor88]) as they 
represent objects with a subset of the attributes of 
Patient. The second problem is that retaining poly- 
morphism through the use of an intermediate type only 
works for non-critical methods. In critical methods, 
the intermediate type cannot be used. In our previous 
example, every method that calls refunding is critical 
and cannot pass a heterogeneous set containing both 
regular patients and alcoholics. This is a major disad- 
vantage in a database context, where applications are 
collection-oriented. In this case, solution (ii) is prefer- 
able because it only requires to modify methods but 
not existing instances. 

The third solution consists in re-conciliating physi- 
cians and psychologists by declaring a method hospital 
on Doctor. This method is defined as simply return- 
ing a NULL reference to indicate that doctors who are 
psychologists are affiliated to no hospital. This way, 
invocation hospital(doctor(p)) is not an error even if p 
refers to an alcoholic at run-time. The problem with 
t,his solution is the definition of artificial methods, like 
h.ospital( Doctor), which seems to indicate that a func- 
tion is available on a certain type while it is actually 
not. Moreover, it is the responsibility of the program- 
mer to know that hospital invoked with a doctor may 
return a NULL reference and that the result of the 
function must be tested. In our example, refunding 
must be rewritten as : 

{ for p in patients do 
if hospital(doctor(p)) <> NULL 

refund(hospital(doctor(p)), 
bill(p)); 

end do } 

A last solution consists in defining two intermediate 
methods foo(Patient) and foo( Alcoholics). The 
first encapsulates the original statement refunding the 
hospital, the second defines what must be done in 
the case of an alcoholic. Method refunding is then 
rewritten to call foo on patients : 

refundingfpatients : setCPatient1) 
{ for p in patients do 

foo (PI i 
end do } 

foo(p:Patient) 
{ refund(hospital(doctor(p)),bill(p));) 

foo(p:Alcoholic) 
{/* handles the case of alcoholics */} 

The problem with this solution is the multiplication of 
artificial switching methods. 

4 The Proposed Solution 

We propose to accept unsafe statements due to 
exceptions while guaranteeing that no type error can 
occur at run-time. The idea is to embed every 
statement identified as unsafe at compile-time into a 
check statement of the following form : 

CHECK <condition> 
<unsafe statement> 

ELSE 
<exception-handling code> 

END 

The condition part checks at run-time that the 
unsafe statement is correct and if it is, the statement 
is executed. Otherwise, an exception-handling code 
is executed. Check statements enable to warn the 
user about the possibility of run-time failure, let the 
user provide exception handling code, and perform 
dynamic type checking of the unsafe statement. 

Throughout this paper, we consider statements that 
are either function invocations or variable assignments 
as shown below by the pseud&EBNF grammar : 

statement ::= assignment 1 invocation 

assignment ::= variable c expression 

invocation ::= function-name(expression*) 

expression : := variable 1 constant 1 invocation 

For an unsafe invocation m(el, . . . , e,), the condition 
part of the check statement is : 

m IS CORRECT ON (el,...,e,) 
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For an unsafe assignment v c e, the condition part of 
the check statement is : 

e MAY BE ASSIGNED TO v 

Example 4.1 In Example 3.1, invocation hospital( 
doctor(myPatient)) was unsafe because myPatient 
may contain an alcoholic. Thus, this statement will 
be surrounded by the following check : 

CHECK hospital IS CORRECT 
ON (dodor(myPatient)) 

hospital(doctor(myPatient)) 
ELSE 

Exception Handling Code 
END Cl 

Using check statements minimizes the modifications 
of the schema that are needed to accommodate 
exceptions to consistency. There is no need to create 
uew types, add new artificial methods, or renounce 
polymorphism by not declaring a type ss a subtype 
of another one. Moreover, the changes to the code 
of existing methods is minor and can be automatized 
by a compiler, unlike solutions where the programmer 
must test the result of methods that may return NULL 
values. 

Example 4.2 Suppose that a new type of physi- 
cian, FamilyPractitioner, is introduced, on which 
hospital is not applicable (i.e., an explicitly dis- 
allowed signature). As our correction test is in- 
t.ensional, the check does not need to be reformu- 
lated. On the contrary, if explicit reference to the 
exception on alcoholic were made, as in [Bor88], 
the check would have to be changed from “CHECK 
mypatient IS NOT Alcoholic” to “CHECK myPatient 
IS NOT Alcoholic AND doctor(myPatient) IS NOT 
FamilyPractitioner”. Cl 

This example demonstrates the advantage of an 
intensional expression of checks over an extensional 
one. By not mentioning types, adding or removing 
a method or a disallowed signature does not require 
reformulating the check statement. The correctness 
condition is evaluated using the state of the schema at 
run-time (we implicitly assume that the schema can 
be queried at run-time). 

We assume that verifying the correctness of a 
statement at run-time has no side-effects. As dynamic 
type checking involves evaluating arguments, which 
may be invocations, we assume that only functions 
without side-effect are used as invocation’s arguments 
of unsafe statements. Otherwise, temporary variables 
must be used. 

In summary, for every statement, the proposed type 
checking process works as follows : 

1. 

2. 

3. 

4. 

5. 

Determine whether the statement is incorrect, 
unsafe or safe. 

If the statement is incorrect, report the type error. 

If the statement is unsafe, generate the appropriate 
check statements. 

Prompt the user for exception-handling code. 

Type check the statements of the exception- 
handling code. 

In the first step, determining if a statement is correct 
relies on the types known at compile time, while 
determining if it is safe relies on the potential types at 
run time. In the third step, the generation of the check 
statement must consider that several subexpressions 
of a statement may be unsafe. In such cases, check 
statements must be nested. The main problem with 
nested checks is to avoid unnecessary checks. When 
unsafe subexpressions share some variables or some 
subexpressions, checks may become redundant. The 
general idea is to allow the type checker to infer 
the possible run-time types of sub-expressions along 
a chain of nested checks (equivalent to a chain of 
conditionals). The fourth step is deferred so that the 
user gives, at the same time, the exception-handling 
code for all unsafe statements. In the fifth step, 
the types inferred along the checks are used to type- 
check the exception-handling code in place of the types 
known at compile time. Because of space limitations, 
we only describe the first step of this process. 

5 Basic Definitions 
In this section, we introduce the notions of method 
applicability, exact type and cover of a signature. 

Total Match and Target Match. Let ma(Ti, . . . , 
q) and m(Tl,... , T,,) be respectively a method and 
a function invocation for a generic function m. Then, 
mk is said to be a total match for the invocation iff 
ViE {l,... , n}, Ti 5 1”;) and mk is said to be a target 
match for the invocation iff Vi E (1,. . . ,p}, Ti 5 G 
(p is the number of target arguments). 

By extension, we talk about a method as being a 
total or target match for a signature. Note that in 
multi-targetted systems, the two notions merge, i.e., 
every target is a total match. 

Method Applicability. A method m&F,, . . . , q) 
is applicable to a function invocation m(Tl , . . . , Tn) if 
and only if mk is a target match for the invocation. 

Consider again Figure 1 and suppose that equal is 
invoked with equal(Employee, Person). Both meth- 
ods equal1 and equal2 are applicable because they 
are both target match to this invocation. However, 
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equall(Person,Person) is a total match for the invo- 
cation and equ&(Employee Employee) is not a total 
match. 

In the following, we usesa function MSA which, 
given an invocation m(Tl, . . . , Tn), returns the most 
specific applicable method mk for this invocation if 
any, and a specific method “ml” otherwise. The 
method ml uses a specific “impossible” type, noted 
Tl, as. the type of its arguments and result. TL is 
in strict supertype relation with all other types, i.e., 
VT, T 4 TA. This special method is defined for every 
generic function. MSA is used at run-time as the 
method dispatcher. 

We now introduce the notion of exact type of an 
expression. The type of a constant c declared of type 
T is eta&y T and not any type T’ 3 T. Similarly, 
the object resulting from an explicit “new” creation 
instruction is exactly the type given as argument 
to “new”. Thus, a variable that gets assigned the 
result of a “new” instruction is also of an exact type. 
Exact typing applies to expressions that appear as 
actual arguments of invocations or as right-hand side 
of assignments. 

Exact Typing. At compile-time, an expression e is 
sa.id to be of an exact type T, denoted e : T, iff any 
object referenced by e at run-time is of type T and not 
of any type T’ such that T’ 5 T. 

Note that, by default, any expression e is of free 
type T, denoted e : T, i.e., e may yield at run-time 
a,n object of any type T’ 2 T. We shall use letter 
r t,o indifferently refer to T and T when typing an 
expression. 

Signature of Expressions. The signature of an 
n-tuple of expressions (ei : 71, . . . , e, : 7,) is 
the n-tuple (~1,. . . , TV). The signature of a method 
mk(T;,... ,q) + Rk iS the signature of its formal 
arguments, i.e., (T,‘, . . . , Tf ). The signature of an 
invocation m(el, . . . , e,) with ei : 71,. . . , e, : 7, is 
the signature of its actual arguments, i.e., (~1,. . . , rn). 
Abusively, we shall call signature any n-tuple of free 
or exact types (~1, . . . , T,,), and omit their associated 
espressions. 

Cover of a Signature. Let s be a signature 
(711 . . . , 7,). The cutrer of s, denoted by cover(s) is 
defined as : 

cower(s) = {(VI,. . . ,U,) 1 Vi E (1,. . . , n} 

1 

U;-cZ ifrj=7;((riisfree) 
Uj = z if Ti = Ti (7i is exact) 1 

By extension, we also define the cover of a method 
m.i as the cover of its signature. Note that couer(mi) 
is the set of signatures for which mi is a total match. 

B 

“\/ 

ml (&O 
m2@3) 

c m2 < ml 

Figure 7: Example Schema 

Example 5.1 Using the type hierarchy in Figure 7, 
we have : 

couer(A,x) = ((A, A), (C, A)} 
couer(ml) = couer(A, A) = {(A, A), (A, C), (C, A), 

(G m 
couer(m2) = couer(B, B) = {(I?, B), (B, C), (C, B), 

6 Type Checking with Exceptions 
In this section, we consider the type checking of state- 
ments in the presence of exceptions to consistency. To 
specify type checking we use a generic function called 
check. It has four methods to respectively handle con- 
stants, variables, assignments of the form t +- ei and 
invocations of the form m(ei, . . . , e,), where each ei 
is an expression. The result of each check method is 
either incorrect, safe or unsafe. As trivial cases, the 
result for constants and variables is safe. 

The last two methods (i.e., for assignments and 
invocations) proceed in two steps. The first step 
evaluates the safety of the statement using the types of 
the expressions ei known at compile time, also called 
the static types. If the statement is found to be safe, 
then its safety is further evaluated in the second step. 
This step uses the potential types, at run-time, of the 
expressions ei composing the statement. These types 
are called the dynamic types. 

The distinction between the static and dynamic 
types is required in the presence of return-exceptions. 
When covariance of the result types is respected, the 
type of an invocation known at compile-time is the 
unique most general type that the invocation may have 
at run-time. This is not true when a method is allowed 
to return a type that is not a subtype of the types 
returned by more general methods. Going back to 
Example 3.1, the invocation doctor(myPotient) has 
Physician for its static return type. However, due 
to the return-exception doctorz, its possible types at 
run-time are not only the subtypes of its static type 
Physician, but also the subtypes of Psychologist. 
Thus, its dynamic types are cower(Phyeician) U 
couer(Psychologist). 

This section is organized as follows. First we detail 
the type checking algorithms for assignments and 
invocations. They are baaed on the type checking 
of reduced statements, i.e. statements where the 
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expressions ei of the input statements are replaced 
by their static or dynamic types. We then specify 
the type-checking of a reduced statement. Finally, we 
define the static and dynamic types of expressions. 

6.1 Static Type Checking of Assignments 

To type check an assignment w c e, the first step 
replaces v and e by their static types which are 
computed by function static. The resulting reduced 
statement is then checked using function checkR. If 
it is incorrect or unsafe, i.e., not safe, then u c e is 
respectively incorrect or unsafe. Otherwise, its safety 
must be further probed using the type at run-time of 
the right-hand side, e. An assignment can be unsafe 
for two reasons : (i) e is not safe, or (ii) e may return, 
at run-time, a type that is not a subtype of the type of 
21. The set of most general types that e may evaluate 
to at run-time is computed using function dynamics. 

ciheck(v + e) /* check for assignments */ 
input: an assignment v + e 
output: incorrect, safe or unsafe 
St,ep 1: /*Safety w.r.t static types : replace v and e 

by their static type using static */ 
reducedAssignment := ( static(v) + static(e) ) ; 
result:= CheCkR( reducedAssignment ); 
if result is not safe 

return result ; 
St,ep 2: /*Safety w.r.t run-time types*/ 

if &e&(e) is not safe 
return unsafe ; 

/* Replace the right-hand side by each of its most 
general types at run-time using dynamics */ 

for each T E dynamics(e) do 
&u&Assignment := ( static(v) + T ) ; 
if CheckR( reducedAssignment) is not safe 

return unsafe ; 
end do ; 
return safe ; 
end check 

6.2 Static Type Checking of Invocations 
To type check an invocation m(el, . . . , e,), the first 
step replaces its arguments which are computed by 
their static types. The resulting reduced invocation 
is then checked using function checkR. If it is 
incorrect or unsafe, i.e., not safe, then m(el,. . . ,e,) 
is respectively incorrect or unsafe. Otherwise the 
invocation is staticallylcorrect and its safety must be 
further evaluated in the second step. At this step, the 
invocation may be unsafe for two reasons : (i) there 
exists an unsafe argument ei or (ii) for some signature 
at run-time, the invocation is not safe. Otherwise, 
the invocation is safe. Function signatures computes 
the set of most general signatures that may appear as 
arguments of a method invocation at run-time. 

check(m(el,. . . , e,)) /* check for invocations */ 

input: an invocation m(el, . . . , en) 
output: incorrect, so je or undo je 
Step 1: /*Safety with respect to static types : replace the 

arguments by their static type using static l / 
reducedInvocation := ( m(stalic(el), . . . , static(en))) ; 
result:= chec)R(reducedInvocation) ; 
if result is not safe 

return result ; 
Step 2: /*Safety with respect to run-time types l / 

/* 

for each argument ei do 
if Chf?Ck(ei) is not safe 

return unsafe ; 
end do ; 
Using signatures, replace the arguments .by each of the 
most general signatures at run-time */ 
for each s E signotures(m(e1,. . . , e,)) do 

reducedInvocation := m(s) ; 
if &e&R (reducedInvocation) is not safe 

return unsafe ; 
end do ; 
return safe ; 
end check 

6.3 Type Checking Reduced Statements 
A reduced assignment is an expression of the form 
TI c r2 while a reduced invocation is an expression of 
the form m(s) = m(q , . . . , r,,). The type checking of 
reduced assignments is defined as follows. 

checkR(Tl + 72) = 
safe if r2 5 Tl 
unsafe if (Tl) E couer(r2) 
incorrect otherwise 

check(m(s)) = incorrect if 

1 

MSA(m(s)) = ml or 
MSA(m(s)) is not a total match for m(s), or 
s is explicitly disallowed for m 

Note that we allow assignments where the static 
type of the right-hand side is a supertype of the type 
of the left-hand side variable. Such unsafe assignments 
are similar to the reverse assignment of Eiffel [Mey92] 
or the dynamic downward cast of C++ [Laj93]. 

The safety of a reduced invocation is defined as 
follows : 

check(m(s)) = 

1 

safe iff Vs’ E cower(s) check(m(s’)) # incorrect 
unsafe otherwise 

6.4 Static and Dynamic Types of an 
Expression 

The static type of an expression can now be defined aa 
shown on Figure 8. 

Example 6.1: Consider again the types and methods 
of Figure 2 of Section 3. Let refund(Hospita1, 
Dollar) be the method used in Example 3.1 to refund 
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Constant c 1 static(c) = T I 
Variable ?.I static(v) = T 
Reduced static(m(s)) = 
Invocation 
4s) 

TL if chect(m(s)) = incorrect 
retUrU type Of mk 

= MSA(m(s)) otherwise 

Invocation static(m(el, . . . , e,)) = 
m(el , . . . , e,) static(m(static(el), . . . , etatic(e 

Figure 8: Static Type of Expressions 

the expenses of patients to hospitals. The first step 
in the type-checking of invocation re f und( hospital( 
doctor(p)),amount), where p is a variable of type 
Patient and amount a variable of type Dollar, 
consists of computing the static types of the arguments 
hospital(doctor(p)) and amount as follows : 

static(hospital(doctor(p))) = 
static(hospital(static(doctor(p)))) = 

static(hospital(static(doctor(static(p))))) = 
static(hospital(static(doctor(Patien2)))) = 

static(hospital(Physician)) = Hospital 
and static(amount) = Dollar 

As check(refund(Hospita1, Dollar)) # incorrect, 
invocation refund(hospital(doctor(p)), amount) is cor- 
rect. Cl 

We now formally define the dynamic types of an 
expression as shown on Figure 9. The set of dynamic 
types of a reduced invocation contains only the highest 
types that can be returned by the invocation at run- 
time. By highest, we mean types that are not subtypes 
of any other type in the set (we use operator maz< to 

- obtain the highest types in a set of types). 

Constant c dynamics(c) = {T} 

Variable u dynamics(v) = {T} 

Reduced dynamics(m(s)) 
Invocation = matd{& 1 mi E RTC(m(s))} 
m(s) 

Invocation dynamics(m(el, . . . , e,)) = 
m(el, . . - yen) mazd( U dynamics(m(s))) 

rEeignotures(m(e,,... ,c,)) 

Figure 9: Dynamic Types of an Expression 

The definition of the dynamic types of a reduced 
invocation m(s) relies on the notion of run-time correct 
methods. They represent the methods that can be 
selected at run-time for correct invocations covered by 
m.(s). 

Run-Time Correct Methods. Let m(s) be a 
reduced invocation. 

RTC(m(s)) = {MSA(m(s’)), s’ E cover(s) 1 
check(m(s’)) # incorrect) 

The definition of the dynamic types of an invocation 
m(el , . .‘. , e,) relies on the set of signatures that may 
appear at run-time as arguments of the invocation. As 
usual, this set contains only the highest signatures, all 
the signatures in their cover being implicitly included. 
This set is denoted signatures(m(el, . . . , e,)) and 
consists of the cross product of the dynamic types of 
the invocation’s arguments : 

Signatures of an Invocation. The set of highest 
signatures that may appear at run-time for an invoca- 
tion is : 

. signatures(m(e1 , . . . , e,)) = fi dynamics(ei) 
i=l 

Example 6.2 : The second step in the type-checking 
of invocation refund(hospital(doctor(p)), amount) 
starts by type checking hospital(doctor(p)) and 
amount. First, hospital(static(doctor(p)))=hospital( 
Physician) is neither incorrect or unsafe. Thus the 
safety of hospital(doctor(p)) must be checked. To 
this end, the algorithm determines the signatures of 
hospital( doctor(p)). 

signatures(hospital(doctor(p))) 
= {(T) 1 T E dynamics(doctor(p))) 
= {(Physician), (Psychologist)} 

One of the signatures of hospital(doctor(p)), namely 
Psychologist, makes the invocation incorrect ss there 
is no MSA. Thus hospital(doctor(p)) is unsafe. So 
finally, ss one of its arguments is unsafe, refund( 
hospital(doctor(p)), amount) is unsafe. 

7 Related Work 
The problems due to maintaining consistency rules 
have been recognized by many researchers, each 
focusing on a particular rule, but to our knowledge, 
considering these problems in a single framework has 
never been proposed. 

[Coo89, McK92] forbid argument-exceptions. Hence, 
subtyping between generic collections (list of Person 
and list of Student) and attribute type redefinition are 
also disallowed. 

Esse [CPLZSl, CCPLZ93] and Eiffel [Mey92] use 
data flow analysis to detect unsafe ikocations due 
to argument-exceptions : the set of types to which 
a variable may refer (called type set in [CPLZSl, 
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CCPLZ93] and dynamic class sei in [Mey92]), is 
maintained during type checking and evaluated after 
every statement. Using this “type.-flow” technique, 
a slightly larger class of programs are statically 
determined to be safe as exact types may be used to 
replace constant objects or variables that have just 
been assigned a newly created object. Although this 
approach provides more accurate type checking, two 
problems remain. First, statements that cannot be 
proved to be safe are rejected (pessimistic option). 
Second, this approach is leas applicable to a database 
context where applications use collections. Indeed, a 
variable iterating over a collection of T may refer to 
objects of any subtype of T with no way of knowing 
the exact subset of types present in the collection. Our 
approach can be used as a complement to “type flow” 
techniques, taking over when they have failed to prove 
the safety of a statement. 

Using a special construct called reverse assignment, 
Eiffel [Mey92] allows a certain kind of illegal substitu- 
tion : the assignment of an expression with static type 
Tl to a variable of type Tz, although Tl is a supertype 
of Tz. The assignment is checked at run-time to ensure 
that the dynamic type of the expression is actually T2 
or a subtype of Tz. Otherwise, a NULL reference is 
assigned to the variable. It is the responsibility of the 
programmei to check that the variable is not NULL 
after the reverse assignment. A similar construct, the 
dynamic cast [Laj93], is being incorporated into C++ 
to check at run-time the correctness of a down-ward 
cnst (assertion by the programmer that an object of 
static type TI is actually of type Tz with Tl supertype 
of T2). 

[CM921 uses bounded type quantification, restrict- 
ing the application of subtyping to enforce the com- 
position integrity constraint on constructed types. 
Bounded universal quantification allows substitutabil- 
ity only when passing parameters to a function. All 
ot,her assignments must involve objects of the same 
t,ype. Bounded existential quantification extends sub- 
st,it,utability to assignments in the called function. In 
all cases, bounded quantification requires the exact 
t,ypes of actual parameters to be known statically. It 
is this knowledge that allows static type checking of 
cova.riant code. In particular, this prevents passing 
bounded parameters to another function. 

In the works on method schemas [AKWSO, Walgl], 
no consistency rules are imposed on the schema 
and the return type of user-defined methods is not 
specified. Consistency is defined as type safety, i.e., 
absence of run-time type errors. Proving type safety 
involves simulating the execution of methods from a 
typing point of view. This is shown to be impossible in 
the general case,i.e., with multi-targetted methods and 

Our approach is very similar to [Bor88] in that 
it aims at detecting unsafety at compile-time, using 
dynamic type checking when necessary and allowing 
the user to write exception handling code. [Bor88] 
addresses the problem of inapplicable attributes and 
return-exceptidns due to attribute domain redefini- 
tion. The notion of etcuses serves to distinguish be- 
tween desired exceptions and errors. A type sys- 
tem that supports these excuses is formally defined 
in [Bor89], along with an efficient algorithm to stati- 
cally detect unsafe statements. Check clauses are pro- 
vided by the user. He/she formulates the correction 
condition in an extensional way, testing the run-time 
type of expressions. The type system verifies that the 
correction condition implies the safety of the checked 
statement and of the exception-handling code. We ex- 
tend this work in two directions. First, we address the 
problem of exceptions on single- and multi-targetted 
methods. Second, we provide an intensional formula- 
tion of the correction condition, allowing this condition 
to remain invariant when the type hierarchy is modi- 
fied and/or new exceptions are introduced. 

8 Conclusion 
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In this paper, we proposed to facilitate schema eve-, 
lution in object-oriented databases by supporting ex- 
ceptions to behavioral schema consistency while at the 
same time guaranteeing type safety. After presenting 
the three consistency rules of covaraiance, contravari- 
ante and substitutability, we defined a typology of ex- 
ceptions. We gave examples of schema updates that 
naturally yield exceptions to the consistency rules, and 
we showed that existing solutions that seek for pr+ 
serving schema consistency lead to expensive restruc- 
turations of the type hierarchy and method codes. We 
then proposed a new type checking process whereby 
exceptions to consistency can be safely tolerated. To 
guarantee type safety, every statement is first analyzed 
to determine if it is correct or not and then further an- 
alyzed to determine if it is safe or not. Then, every 
unsafe statement is surrounded by a check clause. This 
clause is merely an if-then-else statement where the if- 
part performs a run-time type checking, the then-part 
contains the original statement, and the else-part con- 
tains some exception-handling code (user-defined or 
system-generated). 

Unlike traditional solutions offered by object- 
oriented design, our approach enables to handle 
schema updates that do not preserve schema ,consis- 
tency without creating artificial types and methods or 
modifying the type hierarchy. Schema updates can 
only yield the additions of check clauses in the code of 

recursion. Covariant updates are shown to maintain 
consistency. 
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existing methods. Another advantage of our solution 
is that conditions in the check are specified intension- 
ally, thereby avoiding to reformulate them when the 
type hierarchy is modified or when exceptions are in- 
troduced or removed. We believe our approach pro- 
vides a useful complement to existing sophisticated 
techniques for static type checking. Indeed, our pro- 
posed system relieves these techniques when they fail 
to prove the safety of a statement. Finally, we are not 
aware of any other work in the field of object-oriented 
systems and languages that considered exceptions to 
schema consistency in the general framework of mono 
and multi-targetted functions. 

All the steps of the proposed type checking process 
have now been specified (see [ABDS94]). Future work 
involves providing the user with means to express ex- 
plicitly disallowed signatures, and developing efficient 
algorithms to implement our type checking. Finally, 
an environment to help programming with exceptions 
is being designed. Such an environment adresses im- 
portant issues such as providing the user with expla- 
nations about why some statements are unsafe and 
assistance in writing exception-handling code. 
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