
Supporting Exceptions to Behavioral Schema Consistency
to Ease Schema Evolution in OODBMS

Eric Amiel Marie- Jo Bellosta Eric Dujardin Eric Simon

INRIA Pocquencourt Lamsiule INRIA Rocqnencourt INRIA Rocquencourt
BP 105, F-78153 Universite Paris Dauphine BP 105, F-78153 BP 105, F-78153

Le Chesnay Cedex F-75775 Paris Cedex 16 Le Chesnay Cedex Le Chesnay Cedex
AmielQrodin.inria.fr bellosta@%msade.dauphine.fr DujardinBrodin.inria.fr Simon@rodin.inria.fr

Abstract

Object-oriented databases enforce behavioral
schema consistency rules to guarantee type
safety, i.e., that no run-time type error can
occur. When the schema must evolve, some
schema updates may violate these rules. In
order to maintain complete behavioral schema
consistency, traditional solutions require sig-
nificant changes to the types, the type hierar-
chy and the code of existing methods. Such
operations are very expensive in a database
context. To ease schema evolution, we pro-
pose to support exceptions to the behav-
ioral consistency rules without sacrificing type
safety for all that. The basic idea is to de-
tect unsafe statements at compile-time and
check them at run-time. The run-time check
is performed by a specific clause that is
automatically inserted around unsafe state-
ments. This check clause warns the program-
mer of the safety problem and lets him pro-
vide exception-handling code. Schema up-
dates can therefore be performed with only
minor changes to the code of methods.
Keywords : Object-oriented databases, sche-
ma evolution, type safety, covariance, con-
travariance.

Permission to copy without fee all or port of this material
is granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and itr date appear, and notice
is given that copying ir by pemisrion of the Very Large Data
Base Endowment. To copy otherwise, or to republish, require8
a fee and/or rpecial permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

1 Introduction

An object-oriented database schema contains the
description of the types’, type hierarchy, and methods
used by all application programs. To ensure static type
checking, object-oriented systems typically enforce
that a schema satisfies three behavioral consis1cnc3y
rules. These rules are suficient conditions that
guarantee that no type error can occur during the
execution of a. method code. The wbstitutability
rule says that if a type Tl is a subtype of a type
T2 then whenever an instance of T2 is expected in a
variable assignment or a function invocation, it must
be allowed to pass an instance of Tl. The couariance
and contrauariance rules impose constraints when a
method is redefined for more specialized types. The
covariance rule says that the return type be also
specialized. The contravariance rule says that the
types of arguments that are not used for late binding
must be more general. If a database schema satisfies
these rules, it is said to be behaviorally consistent.

A typical situation in object-oriented databases is
that the schema must evolve in order to accommodate
evolutions of the application programs. As argued in
[BorM], this is particularly important in databases
“where it is in general impossible or undesirable to
anticipate all possible states of the world during
schema design”. The problem is that some schema
updates may violate the behavioral consistency rules.
For example, consider a database schema that contains
a type Patient having an attribute doctor of type
Physician. Suppose that we define a new type, called
Alcoholic, as a subtype of Patient and such that the
attribute doctor inherited from Patient is redefined
to be of type Psychologist. Since a Psychologist is
(usually) not a Physician, the method that retrieves
the doctor attribute value of an alcoholic violates
the covariance rule and the method that updates the
doctor attribute value of an alcoholic violates the

‘We intentionally avoid to talk about classes, which arc
viewed as types in some systems and aa type extenaiom in
othem.

108

contravariance rule.

There are also specific situations that are part of the
(real-life) application that osnstitute violations of the
behavioral consistency rules. For instance, in an hos-
pital database, one may say that ambulatory patients
are exactly like patients (i.e., Ambulatoryqatient is
a subtype of Patient) exbept that they have no hog-
pita1 ward. This leads to violate the substitutabil-
ity rule because the method that retrieves a ward
attribute value is not applicable to an instance of
Ambulatory-patient.

Existing systems have two attitudes with respect to
this problem. One is to encourage the programmer to
follow the rules but not actually force him to do so
(e.g., C++, or 02 for the contravariance rule). Incon-
sistent schemas are allowed and it is the programmer’s
responsibility to control what the program does and
avoid run-time type errors. The second attitude is to
prevent the user from violating the rules. In this case
there are several well-known solutions that lead to ei-
taller change the type hierarchy and introduce “fake”
types, or break the type hierarchy and loose the advan-
t,ages of polymorphism. These ‘solutions may require
significant changes to the code of methods. Following
[Bor88], we believe that both attitudes are clearly not
sat,isfactory since they result in either unsafe code or
substantial and artificial revisions to the schema.

The starting point of our research is that etcep-
tions to the behavioral consistency rules should be
supported to ease schema evolution and modelling.
However, they should be controlled to avoid type
safety problems. In this paper, we propose to have
a, tool that processes every method source code and
(i) determines whether a statement is unsafe, i.e.,
may result in a run-time type error, (ii) automat-
ically inserts a “check” clause around every unsafe
statement in the source code, and (iii) let the user
provide exception-handling code. The check clause
is merely an if-then-else statement where the if-part
performs a safety run-time check, the then-part con-
t.ains the original statement, and the else-part contains
the exception-handling code”. The insertion of check
clauses warns the user about possible run-time type er-
rors. The safety condition in the if-part of the “check”
cla.use is expressed intensionally, thereby avoiding to
reformulate the condition when the schema changes.
Our tool can also automatically generate some default
exception-handling code. However, if the programmer
provides his/her own exception-handling code then it
has to be inspected by our tool.

2 We do not focus on the issue of designing specific language
primitives for handling exceptions that can be harmoniously
integrated with existing 00 programming languages.

Our proposed approach facilitates schema evolution
by supporting exceptions while guaranteeing that
no run-time type error will occur. We focus on
the motivations for such an approach and the type
checking of statements in the presence of exceptions
to behavioral consistency. Our results apply to object-
oriented databases that support run-time method
selection using either a single method’s argument
(mend-methods) or all method’s arguments (multi-
methods) as in recent systems like CLOS [BDG%],.
Polyglot [ADLSl], and Cecil [Cha92].

The paper is organized as follows. Section 2 intro-
duces preliminary definitions about single and multi-
targetted methods, and defines the notion of behav-
iorally consistent schema. Section 3 gives an overview
of the problem whereas Section 4 sketches the pro-
posed solution. Section 5 introduces the material nec-
essary to present our type system. Section 6 describes
the type checking process allowing to distinguish be-
tween safe and unsafe statements. Section 7 relates
our work with existing work, and Section 8 concludes
the paper.

2 Behavioral Schema Consistency
In this section, we introduce our notations for the
types and methods of a schema, mostly defined in
[ADLSl]. Then, we define the behavioral schema
consistency rules and their exceptions.

2.1 Notations

We assume the existence of a partial ordering between
types, called subtyping ordering, denoted by 5. Given
two types Tl and T2, if Tl 5 Ta, we say that Tl
is a subtype of T2 and Ta is a supertype of TI. To
each generic function m corresponds a set of methods
md”~, . . . ,T) + &, where a is the type of the
ith formal argument, and where & is the type of the
result. We call the list of arguments (T,‘, . . . , q) of
method mk the signature of mk. An invocation of
a generic function m is denoted m(Tl,Tn). where
VI,... ,Tn) is the signature of the invocation, and
the Ti’s represent the types of the expressions passed
sa arguments. We shall use uppercase letters to
denote type names, and’ lowercase letters to denote
type instances, generic functions, methods and method
invocations.

In traditional object-oriented systems, functions
have a specially designated argument, the target,
whose run-time type is used to select the method
to execute (method resolution). Multi-methods, first
introduced in CommonLoops [BKK+86] and CLOS
[BDG+88], provide a generalization of single-targetted
methods by making all arguments targets. Multi-
methods are now a key feature of several systems such

109

y Polyglot [ADLSl], Kea [MHHSl], and Cecil [Cha92].
Henceforth, we consider that methods are targetted on
either one or all arguments. For the sake of uniformity,
we shall assume that the p first arguments of a function
(where p = 1 or p = n) are the target arguments. In
the examples, we underline the target arguments in
the signatures.

Person

t
Employee

equall (Person, Pereon)
equala(Employee Jmployee)

Figure 1: A simple schema

Example 2.1 Consider the type hierarchy of Figure
1, and suppose we wish to define a generic function
equal on persons and employ=. Since equality is
defined differently for persons and employees, two
methods equal(Person,Person) and equol(Employee,
Employee) are needed to implement the generic
function and we respectively denote them equal1 and
equal:!. Their signatures, given on Figure 1, show that
these methods have a single target, argument. On
invocation equal(Person, Employee), the run-time
met.hod dispatcher will select method equal1 based on
the first target argument. 0

Given a generic function invocation, the selection
of the corresponding method follows a two-step pro-
cess : first, based on the types of the target arguments,
a set of applicable methods is found and second, a
precedence relationship between applicable methods is
used to select what is called the Most Specific Applica-
ble method (MSA). Intuitively, a precedence relation-
ship determines which applicable method most closely
matches a function invocation. Given a function invo-
cation m and a particular method precedence ordering
noted <, if rni and mj are two applicable methods and
)l?i is more specific than mj, noted rni < mj, then rni
is the closest match for the invocation.

In the rest of this paper, we assume that for
a.ny function invocation m(Tl, . . . , T,), if there is an
applicable method, then there always exists a Most
Specific Applicable (henceforth, MSA) method and this
method is unique. We call this the Unique Most
Specific Applicable (UMSA) property. However, we
insist that our results do not depend on the means by
which the UMSA property is enforced.

Usually, types are represented using different data
structures such as set, tuple and list. We sssume
that for each type, there is a set of (representation)
operations that enable to manipulate (i.e., access and
update) the structure of instances of that type. For
example, if T is a type represented as a tuple : [al :
Tl,... ,a, : T,], where the ai’s denote attribute

names, then the generic functions ai and 8dAi,
respectively access and update the ai attribute value
of an instance of T.

2.2 Behavioral Consistency Rules

Object-oriented typing theory defines three consis-
tency rules to guarantee that no type error can occur
during the execution of a method code. A database
schema is said to be behaviorally consistent (in the fol-
lowing, consistent) iff every method satis& the con-
sistency rules. The first two rules impose constraints
on types returned by methods and the types of meth-
ods’s arguments. The third rule relaxes the condition
of type equality on substitution operations (variable
assignment or parameter passing) to take into account
the subtyping relationship. It is the basis of inclusion
polymorphism [CWSS]. The three rules are :

0 Covariauce rule : Given two methods
mi(T;,... ,r) * & and mj(q’,...,T) 4
Rj, where m < mj, then & 5 Rj.

0 Contravariauce rule : Given two methods
mj(cq)...)Iqy * & and mj(q,T) +
Rj, where no < mj, then Vk > p , !$ 5 qk (p is
the number of target arguments).

l Substitutability rule : An instance of Tl can
be substituted to an instance of Ta if and only if
Tl 5 T2 (substitutability condition).

Note that imposing the covariance and the substi-
tutability rules on the methods accessing the structure
of types amounts to enforce the rules of structural sub-
typing defined by [CWSS]. For instance, according to
these rules, a tuple-structured type Tl may be a sub-
type of T2 if TI has all the attributes of T2, and if
the types of common attributes in Tl are subtypes of
those in Tz. As a consequence, representation func-
tions available on T2 instances are also available on Tl
instances. Covariance also entails the domain compat-
ibility invariant defined by [BKKK87]. This invariant
states that the domain of an attribute that is rede-
fined in a subtype can only be specialized. The con-
travariance rule was originally developed for subtyping
of functions [Car84], and has been extended to subtyg
ing on partially targetted methods in [McK92, DanSO].
The substitutability rule is also called strict or full in-
heritance invariant in [BKKK87].

3 Problem Overview
In this section, we first define exceptions to schema
consistency and show how they arise with some schema
updates. Then, we summarize the safety problems
induced by exceptions. Finally, we present solutions
recommended by object-oriented design methods to
avoid schema inconsistencies.

110

3.1 Exceptions to Consistency and Schema
Updates

We define an exception as the violation of one of
the three consistency rules. The non-respect of the
covariance rule yields return-exceptions while the non-
respect of the contravariance rule yields orgument-
exceptions. Violations of the ‘substitutability rule
yields two kinds of exceptions. The first one is when a
signature is disallowed for a generic function, although
the substitutability condition for parameter passing is
satisfied. The second one is when the substitutability
condition is violated during assignment or parameter
passing. These exceptions are respectively called
disallowed signature and illegal substitution.

In the following, we only consider return-exceptions,
argument-exceptions, and disallowed signatures as
possible exceptions to the consistency rules. In-
deed, illegal substitutions have more far-reaching con-
sequences on static type checking than the three other
kinds of exceptions.

3.1.1 Return-exceptions

Method no is a return-exception to method mj
if rni < mj and the return type of mi is not a
subtype of the return type of mj.

Imposing covariance on the results ensures that
whatever method is selected at run-time, its result is
a subtype of the type expected by the context of the
invocation. An interesting case of return-exception is
the violation of the domain compatibility invariant.

Doctor Patient

Physician Psych.ologist Alcoholic

doctorl(Patient)+ Physician
doctor2(Alcoholic)+ Psychologist
set-doctorl(Patient,Physician)
set-doctor~(Alcoholic,Psychologist)
ho&all (Physician)+ Hospital

Figure 2: Doctor and Patient hierarchy

Example 3.1 Suppose that Patient is a type having
an attribute doctor of type Physician. Suppose we
want to add a new type Alcoholic to the schema as a
subtype of Patient, where attribute doctor is of type
Psychologist. The updated schema is shown on Figure
2. We have an exception because Psychologist is
usually not a subtype of Physician. Thus, the method
doctorz is a return-exception to method doctorl. This
exception can cause type errors ss shown below.
Consider the method that takes a set of patients
and refunds their expenses to the hospital they were
treated in using method re f und(Hosmtal,Dollar) :

refunding (patients : set [Patient])
{ for p in patients do

refund (hospital (doctor (p)) , bill (p)) ;
end do }

As Psychologists are not affiliated to an hospital
unlike Physicians, the invocation hospital(doctor(
mypatient)) causes an error if myPatient refers to an
alcoholic at run-time as there is no applicable method
for invocation hospital(Psychologist). Cl

3.1.2 Argument-exceptions
Method mi is an argument-ezception to method
mj if m < mj and there exists a non-target
argument T/ of mi which is not a supertype
of Tj.

Argument-exceptions only occur in systems with
single-targetted functions where run-time method se-
lection does not check that the non-target arguments
of an invocation are subtypes of the non-target formal
arguments of the selected method. This may result
in illegal substitutions when the actuals are assigned
to the formals. However, the possibility to specialize
any argument of a method is clearly needed in practice
and for this reason, most object oriented systems do
not actually enforce the contravariance constraint (see
[CCPLZ93], [Mey92], [CM92], [Os92]).

Example 3.2 In the schema of Figure 1 where
Employee is a subtype of Person, suppose we have a
method equall(Person,Person) targetted on the first
argument and the schema is updated by adding a new
method equal2(Employee,Employee). Then, invoca-
tion equal(myPersonl,myPerson2) leads to the se-
lection of equal2 if the target argument, myPerson1,
refers to an employee at run-time. But if the type of
myPerson refers to a person, an illegal substitution
occurs between the formal argument of type Employee
and myPerson2. Then, in the body of equal2, apply-
ing on this argument a function that is only defined
for Employee (e.g. to access an attribute specific to
Employee) causes a run-time error as there is no ap
plicable method. Cl

3.1.3 Disallowed Signatures
Signature s is a disallowed signature of m if
invoking m on s is forbidden, although there
exists an MSA method for m(s).

Example 3.2 has shown that some signatures should
be disallowed because they imply illegal substitutions
between non-target actual and formal arguments.
We refer to these signatures as implicitly disallowed
signatures as they can be inferred from argument-
exceptions. However, some disallowed signatures
cannot be inferred and must be explicitly given by
the user as part of the semantics of its application.

111

This is the case with inapplicable attributes (see e.g.,
[Bor88]). We call th ese signatures explicitly disallowed
signatures.

Person Beverage
/+ 4t

5
/\

5 5
/\

5
Professor Student Juice Alcohol

Figure 3: Disallowed signature

Example 3.3 Consider the schema of Figure 3
and suppose we update the schema by adding a
function purchase with a single associated method
purchase(Person,Beuerage). This method should
naturally not be applicable to signature (Student,
Alcohol), which is disallowed. All other signatures are
allowed. Cl

Person List [Person]

t
a

t
Student List [Student]

insertl(List[Person], Person)+ List[Person]

insert2(List[Student], Student)+ List[Student]

Figure 4: Type constructor

Example 3.4 Consider the schema of Figure 4. Sig-
nature (List[Student], Person) violates the composi-
tion integrity constraint on constructed types : for a
constructed type AM, its components objects are re-
quired to be subtypes of T. Thus, this signature must
be disallowed for insert. Note that it would be im-
plicitly disallowed if the first argument was the only
target. Cl

3.2 Inconsistent Schemas and Type Safety

A program is type safe if, during the execution of every
statement, no error can occur due to the absence of
an MSA for a method invocation. The purpose of
static type checking is to verify at compile-time that a
program is type safe. To this end, for each statement
of a method code, the declared types are used to check
that (i) every invocation has an MSA, and (ii) no illegal
substitution may occur. If the two above conditions
a.re satisfied, a statement is correct. Otherwise, it is
incorrect and there is a type error.

The central problem introduced by exceptions to
consistency is that a correct statement may be unsafe,
i.e., yield a type error at run-time. Thus, in presence of
exceptions to consistency, type checking must further
partition correct statements into safe and unsafe
statements.

Absence Invocation with an
of MSA - Src&ion Expl&itly Db8UOWGd

l/l ‘1
Return-Exception A*&ld- Explicitly Didlowed

Exception Signature

Figlire 5: Exceptions and Type Errors

Figure 5 summarizes the relationships between the
three different kinds of exceptions to consistency
(bottom of figure) and the three kinds of type errors at
run-time (top of ‘figure) : an arrow from 2 to y means
that an exception of kind 2 may lead to a type error
of kind y at run-time.

3.3 Existing Solutions to Avoid Inconsistent
Schemas

Object-oriented design offers several solutions to the
problems of inconsistency set by some schema updates.
They consist in modifying the type hierarchy and
the code of methods or introducing new methods.
These solutions avoid return-exceptions and explicitly
disallowed signatures, but not argument-exceptions.
However, they involve important modifications of the
type hierarchy or the code of methods. In a database
context, this can be expensive since changes to the
types must be propagated to the persistent instancea.
Most importantly, the burden of implementing these
solutions is left to the programmer. We examine four
of these solutions on Example 3.1.

The first solution eludes the problem by renouncing
to make Alcoholic a subtype of Patient. Thus, the
advantages of polymorphism a;e lost : alcoholics and
patients must be stored in different sets and they must
be handled separately, by different methods, despite
their similarities.

The second solution retains the advantages of poly-
morphism for the methods that use only the sim-
ilarities between Alcoholic and Patient. This so-
lution involves a new intermediate type to repre-
sent the common part, in our case Patient with-
out attribute doctor. This can be achieved in two
ways, illustrated in Figure 6 : (i) modify Patient
by removing attribute doctor and create a subtype
Patient-treated-by-Physician, or (ii) create Patient0
as a supertype of Patient, to represent patient with-
out attribute doctor. In both cases, Alcoholic is made
a subtype of the intermediate type. In methods that
do not use the difference between alcoholics and reg-
ular patients and that do not call methods using this
difference, patients and alcoholics can be manipulated
as being of the intermediate type. Such methods can

112

Patient

/ \
Alcoholic Patient-treated-by-Physician

doctorl(PatienLtreated-bg-Physician)-, Physician
doctorz(Alcoholic)+ Psychologist

Patient0

Patient Alcoholic

doctorl(Patient)+ Physician
doctorz(Alcoholic)-, Psychologist

Figure 6: Intermediate Supertype Creation

be termed as non-critical, whereas in our previous ex-
ample, refunding is critical.

The first problem with this solution is the multipli-
cation of artificial intermediate types, like PatientO,
which is combinatorial in nature (see [Bor88]) as they
represent objects with a subset of the attributes of
Patient. The second problem is that retaining poly-
morphism through the use of an intermediate type only
works for non-critical methods. In critical methods,
the intermediate type cannot be used. In our previous
example, every method that calls refunding is critical
and cannot pass a heterogeneous set containing both
regular patients and alcoholics. This is a major disad-
vantage in a database context, where applications are
collection-oriented. In this case, solution (ii) is prefer-
able because it only requires to modify methods but
not existing instances.

The third solution consists in re-conciliating physi-
cians and psychologists by declaring a method hospital
on Doctor. This method is defined as simply return-
ing a NULL reference to indicate that doctors who are
psychologists are affiliated to no hospital. This way,
invocation hospital(doctor(p)) is not an error even if p
refers to an alcoholic at run-time. The problem with
t,his solution is the definition of artificial methods, like
h.ospital(Doctor), which seems to indicate that a func-
tion is available on a certain type while it is actually
not. Moreover, it is the responsibility of the program-
mer to know that hospital invoked with a doctor may
return a NULL reference and that the result of the
function must be tested. In our example, refunding
must be rewritten as :

{ for p in patients do
if hospital(doctor(p)) <> NULL

refund(hospital(doctor(p)),
bill(p));

end do }

A last solution consists in defining two intermediate
methods foo(Patient) and foo(Alcoholics). The
first encapsulates the original statement refunding the
hospital, the second defines what must be done in
the case of an alcoholic. Method refunding is then
rewritten to call foo on patients :

refundingfpatients : setCPatient1)
{ for p in patients do

foo (PI i
end do }

foo(p:Patient)
{ refund(hospital(doctor(p)),bill(p));)

foo(p:Alcoholic)
{/* handles the case of alcoholics */}

The problem with this solution is the multiplication of
artificial switching methods.

4 The Proposed Solution

We propose to accept unsafe statements due to
exceptions while guaranteeing that no type error can
occur at run-time. The idea is to embed every
statement identified as unsafe at compile-time into a
check statement of the following form :

CHECK <condition>
<unsafe statement>

ELSE
<exception-handling code>

END

The condition part checks at run-time that the
unsafe statement is correct and if it is, the statement
is executed. Otherwise, an exception-handling code
is executed. Check statements enable to warn the
user about the possibility of run-time failure, let the
user provide exception handling code, and perform
dynamic type checking of the unsafe statement.

Throughout this paper, we consider statements that
are either function invocations or variable assignments
as shown below by the pseud&EBNF grammar :

statement ::= assignment 1 invocation

assignment ::= variable c expression

invocation ::= function-name(expression*)

expression : := variable 1 constant 1 invocation

For an unsafe invocation m(el, . . . , e,), the condition
part of the check statement is :

m IS CORRECT ON (el,...,e,)

113

For an unsafe assignment v c e, the condition part of
the check statement is :

e MAY BE ASSIGNED TO v

Example 4.1 In Example 3.1, invocation hospital(
doctor(myPatient)) was unsafe because myPatient
may contain an alcoholic. Thus, this statement will
be surrounded by the following check :

CHECK hospital IS CORRECT
ON (dodor(myPatient))

hospital(doctor(myPatient))
ELSE

Exception Handling Code
END Cl

Using check statements minimizes the modifications
of the schema that are needed to accommodate
exceptions to consistency. There is no need to create
uew types, add new artificial methods, or renounce
polymorphism by not declaring a type ss a subtype
of another one. Moreover, the changes to the code
of existing methods is minor and can be automatized
by a compiler, unlike solutions where the programmer
must test the result of methods that may return NULL
values.

Example 4.2 Suppose that a new type of physi-
cian, FamilyPractitioner, is introduced, on which
hospital is not applicable (i.e., an explicitly dis-
allowed signature). As our correction test is in-
t.ensional, the check does not need to be reformu-
lated. On the contrary, if explicit reference to the
exception on alcoholic were made, as in [Bor88],
the check would have to be changed from “CHECK
mypatient IS NOT Alcoholic” to “CHECK myPatient
IS NOT Alcoholic AND doctor(myPatient) IS NOT
FamilyPractitioner”. Cl

This example demonstrates the advantage of an
intensional expression of checks over an extensional
one. By not mentioning types, adding or removing
a method or a disallowed signature does not require
reformulating the check statement. The correctness
condition is evaluated using the state of the schema at
run-time (we implicitly assume that the schema can
be queried at run-time).

We assume that verifying the correctness of a
statement at run-time has no side-effects. As dynamic
type checking involves evaluating arguments, which
may be invocations, we assume that only functions
without side-effect are used as invocation’s arguments
of unsafe statements. Otherwise, temporary variables
must be used.

In summary, for every statement, the proposed type
checking process works as follows :

1.

2.

3.

4.

5.

Determine whether the statement is incorrect,
unsafe or safe.

If the statement is incorrect, report the type error.

If the statement is unsafe, generate the appropriate
check statements.

Prompt the user for exception-handling code.

Type check the statements of the exception-
handling code.

In the first step, determining if a statement is correct
relies on the types known at compile time, while
determining if it is safe relies on the potential types at
run time. In the third step, the generation of the check
statement must consider that several subexpressions
of a statement may be unsafe. In such cases, check
statements must be nested. The main problem with
nested checks is to avoid unnecessary checks. When
unsafe subexpressions share some variables or some
subexpressions, checks may become redundant. The
general idea is to allow the type checker to infer
the possible run-time types of sub-expressions along
a chain of nested checks (equivalent to a chain of
conditionals). The fourth step is deferred so that the
user gives, at the same time, the exception-handling
code for all unsafe statements. In the fifth step,
the types inferred along the checks are used to type-
check the exception-handling code in place of the types
known at compile time. Because of space limitations,
we only describe the first step of this process.

5 Basic Definitions
In this section, we introduce the notions of method
applicability, exact type and cover of a signature.

Total Match and Target Match. Let ma(Ti, . . . ,
q) and m(Tl,... , T,,) be respectively a method and
a function invocation for a generic function m. Then,
mk is said to be a total match for the invocation iff
ViE {l,... , n}, Ti 5 1”;) and mk is said to be a target
match for the invocation iff Vi E (1,. . . ,p}, Ti 5 G
(p is the number of target arguments).

By extension, we talk about a method as being a
total or target match for a signature. Note that in
multi-targetted systems, the two notions merge, i.e.,
every target is a total match.

Method Applicability. A method m&F,, . . . , q)
is applicable to a function invocation m(Tl , . . . , Tn) if
and only if mk is a target match for the invocation.

Consider again Figure 1 and suppose that equal is
invoked with equal(Employee, Person). Both meth-
ods equal1 and equal2 are applicable because they
are both target match to this invocation. However,

114

equall(Person,Person) is a total match for the invo-
cation and equ&(Employee Employee) is not a total
match.

In the following, we usesa function MSA which,
given an invocation m(Tl, . . . , Tn), returns the most
specific applicable method mk for this invocation if
any, and a specific method “ml” otherwise. The
method ml uses a specific “impossible” type, noted
Tl, as. the type of its arguments and result. TL is
in strict supertype relation with all other types, i.e.,
VT, T 4 TA. This special method is defined for every
generic function. MSA is used at run-time as the
method dispatcher.

We now introduce the notion of exact type of an
expression. The type of a constant c declared of type
T is eta&y T and not any type T’ 3 T. Similarly,
the object resulting from an explicit “new” creation
instruction is exactly the type given as argument
to “new”. Thus, a variable that gets assigned the
result of a “new” instruction is also of an exact type.
Exact typing applies to expressions that appear as
actual arguments of invocations or as right-hand side
of assignments.

Exact Typing. At compile-time, an expression e is
sa.id to be of an exact type T, denoted e : T, iff any
object referenced by e at run-time is of type T and not
of any type T’ such that T’ 5 T.

Note that, by default, any expression e is of free
type T, denoted e : T, i.e., e may yield at run-time
a,n object of any type T’ 2 T. We shall use letter
r t,o indifferently refer to T and T when typing an
expression.

Signature of Expressions. The signature of an
n-tuple of expressions (ei : 71, . . . , e, : 7,) is
the n-tuple (~1,. . . , TV). The signature of a method
mk(T;,... ,q) + Rk iS the signature of its formal
arguments, i.e., (T,‘, . . . , Tf). The signature of an
invocation m(el, . . . , e,) with ei : 71,. . . , e, : 7, is
the signature of its actual arguments, i.e., (~1,. . . , rn).
Abusively, we shall call signature any n-tuple of free
or exact types (~1, . . . , T,,), and omit their associated
espressions.

Cover of a Signature. Let s be a signature
(711 . . . , 7,). The cutrer of s, denoted by cover(s) is
defined as :

cower(s) = {(VI,. . . ,U,) 1 Vi E (1,. . . , n}

1

U;-cZ ifrj=7;((riisfree)
Uj = z if Ti = Ti (7i is exact) 1

By extension, we also define the cover of a method
m.i as the cover of its signature. Note that couer(mi)
is the set of signatures for which mi is a total match.

B

“\/

ml (&O
m2@3)

c m2 < ml

Figure 7: Example Schema

Example 5.1 Using the type hierarchy in Figure 7,
we have :

couer(A,x) = ((A, A), (C, A)}
couer(ml) = couer(A, A) = {(A, A), (A, C), (C, A),

(G m
couer(m2) = couer(B, B) = {(I?, B), (B, C), (C, B),

6 Type Checking with Exceptions
In this section, we consider the type checking of state-
ments in the presence of exceptions to consistency. To
specify type checking we use a generic function called
check. It has four methods to respectively handle con-
stants, variables, assignments of the form t +- ei and
invocations of the form m(ei, . . . , e,), where each ei
is an expression. The result of each check method is
either incorrect, safe or unsafe. As trivial cases, the
result for constants and variables is safe.

The last two methods (i.e., for assignments and
invocations) proceed in two steps. The first step
evaluates the safety of the statement using the types of
the expressions ei known at compile time, also called
the static types. If the statement is found to be safe,
then its safety is further evaluated in the second step.
This step uses the potential types, at run-time, of the
expressions ei composing the statement. These types
are called the dynamic types.

The distinction between the static and dynamic
types is required in the presence of return-exceptions.
When covariance of the result types is respected, the
type of an invocation known at compile-time is the
unique most general type that the invocation may have
at run-time. This is not true when a method is allowed
to return a type that is not a subtype of the types
returned by more general methods. Going back to
Example 3.1, the invocation doctor(myPotient) has
Physician for its static return type. However, due
to the return-exception doctorz, its possible types at
run-time are not only the subtypes of its static type
Physician, but also the subtypes of Psychologist.
Thus, its dynamic types are cower(Phyeician) U
couer(Psychologist).

This section is organized as follows. First we detail
the type checking algorithms for assignments and
invocations. They are baaed on the type checking
of reduced statements, i.e. statements where the

115

expressions ei of the input statements are replaced
by their static or dynamic types. We then specify
the type-checking of a reduced statement. Finally, we
define the static and dynamic types of expressions.

6.1 Static Type Checking of Assignments

To type check an assignment w c e, the first step
replaces v and e by their static types which are
computed by function static. The resulting reduced
statement is then checked using function checkR. If
it is incorrect or unsafe, i.e., not safe, then u c e is
respectively incorrect or unsafe. Otherwise, its safety
must be further probed using the type at run-time of
the right-hand side, e. An assignment can be unsafe
for two reasons : (i) e is not safe, or (ii) e may return,
at run-time, a type that is not a subtype of the type of
21. The set of most general types that e may evaluate
to at run-time is computed using function dynamics.

ciheck(v + e) /* check for assignments */
input: an assignment v + e
output: incorrect, safe or unsafe
St,ep 1: /*Safety w.r.t static types : replace v and e

by their static type using static */
reducedAssignment := (static(v) + static(e)) ;
result:= CheCkR(reducedAssignment);
if result is not safe

return result ;
St,ep 2: /*Safety w.r.t run-time types*/

if &e&(e) is not safe
return unsafe ;

/* Replace the right-hand side by each of its most
general types at run-time using dynamics */

for each T E dynamics(e) do
&u&Assignment := (static(v) + T) ;
if CheckR(reducedAssignment) is not safe

return unsafe ;
end do ;
return safe ;
end check

6.2 Static Type Checking of Invocations
To type check an invocation m(el, . . . , e,), the first
step replaces its arguments which are computed by
their static types. The resulting reduced invocation
is then checked using function checkR. If it is
incorrect or unsafe, i.e., not safe, then m(el,. . . ,e,)
is respectively incorrect or unsafe. Otherwise the
invocation is staticallylcorrect and its safety must be
further evaluated in the second step. At this step, the
invocation may be unsafe for two reasons : (i) there
exists an unsafe argument ei or (ii) for some signature
at run-time, the invocation is not safe. Otherwise,
the invocation is safe. Function signatures computes
the set of most general signatures that may appear as
arguments of a method invocation at run-time.

check(m(el,. . . , e,)) /* check for invocations */

input: an invocation m(el, . . . , en)
output: incorrect, so je or undo je
Step 1: /*Safety with respect to static types : replace the

arguments by their static type using static l /
reducedInvocation := (m(stalic(el), . . . , static(en))) ;
result:= chec)R(reducedInvocation) ;
if result is not safe

return result ;
Step 2: /*Safety with respect to run-time types l /

/*

for each argument ei do
if Chf?Ck(ei) is not safe

return unsafe ;
end do ;
Using signatures, replace the arguments .by each of the
most general signatures at run-time */
for each s E signotures(m(e1,. . . , e,)) do

reducedInvocation := m(s) ;
if &e&R (reducedInvocation) is not safe

return unsafe ;
end do ;
return safe ;
end check

6.3 Type Checking Reduced Statements
A reduced assignment is an expression of the form
TI c r2 while a reduced invocation is an expression of
the form m(s) = m(q , . . . , r,,). The type checking of
reduced assignments is defined as follows.

checkR(Tl + 72) =
safe if r2 5 Tl
unsafe if (Tl) E couer(r2)
incorrect otherwise

check(m(s)) = incorrect if

1

MSA(m(s)) = ml or
MSA(m(s)) is not a total match for m(s), or
s is explicitly disallowed for m

Note that we allow assignments where the static
type of the right-hand side is a supertype of the type
of the left-hand side variable. Such unsafe assignments
are similar to the reverse assignment of Eiffel [Mey92]
or the dynamic downward cast of C++ [Laj93].

The safety of a reduced invocation is defined as
follows :

check(m(s)) =

1

safe iff Vs’ E cower(s) check(m(s’)) # incorrect
unsafe otherwise

6.4 Static and Dynamic Types of an
Expression

The static type of an expression can now be defined aa
shown on Figure 8.

Example 6.1: Consider again the types and methods
of Figure 2 of Section 3. Let refund(Hospita1,
Dollar) be the method used in Example 3.1 to refund

116

Constant c 1 static(c) = T I
Variable ?.I static(v) = T
Reduced static(m(s)) =
Invocation
4s)

TL if chect(m(s)) = incorrect
retUrU type Of mk

= MSA(m(s)) otherwise

Invocation static(m(el, . . . , e,)) =
m(el , . . . , e,) static(m(static(el), . . . , etatic(e

Figure 8: Static Type of Expressions

the expenses of patients to hospitals. The first step
in the type-checking of invocation re f und(hospital(
doctor(p)),amount), where p is a variable of type
Patient and amount a variable of type Dollar,
consists of computing the static types of the arguments
hospital(doctor(p)) and amount as follows :

static(hospital(doctor(p))) =
static(hospital(static(doctor(p)))) =

static(hospital(static(doctor(static(p))))) =
static(hospital(static(doctor(Patien2)))) =

static(hospital(Physician)) = Hospital
and static(amount) = Dollar

As check(refund(Hospita1, Dollar)) # incorrect,
invocation refund(hospital(doctor(p)), amount) is cor-
rect. Cl

We now formally define the dynamic types of an
expression as shown on Figure 9. The set of dynamic
types of a reduced invocation contains only the highest
types that can be returned by the invocation at run-
time. By highest, we mean types that are not subtypes
of any other type in the set (we use operator maz< to

- obtain the highest types in a set of types).

Constant c dynamics(c) = {T}

Variable u dynamics(v) = {T}

Reduced dynamics(m(s))
Invocation = matd{& 1 mi E RTC(m(s))}
m(s)

Invocation dynamics(m(el, . . . , e,)) =
m(el, . . - yen) mazd(U dynamics(m(s)))

rEeignotures(m(e,,... ,c,))

Figure 9: Dynamic Types of an Expression

The definition of the dynamic types of a reduced
invocation m(s) relies on the notion of run-time correct
methods. They represent the methods that can be
selected at run-time for correct invocations covered by
m.(s).

Run-Time Correct Methods. Let m(s) be a
reduced invocation.

RTC(m(s)) = {MSA(m(s’)), s’ E cover(s) 1
check(m(s’)) # incorrect)

The definition of the dynamic types of an invocation
m(el , . .‘. , e,) relies on the set of signatures that may
appear at run-time as arguments of the invocation. As
usual, this set contains only the highest signatures, all
the signatures in their cover being implicitly included.
This set is denoted signatures(m(el, . . . , e,)) and
consists of the cross product of the dynamic types of
the invocation’s arguments :

Signatures of an Invocation. The set of highest
signatures that may appear at run-time for an invoca-
tion is :

. signatures(m(e1 , . . . , e,)) = fi dynamics(ei)
i=l

Example 6.2 : The second step in the type-checking
of invocation refund(hospital(doctor(p)), amount)
starts by type checking hospital(doctor(p)) and
amount. First, hospital(static(doctor(p)))=hospital(
Physician) is neither incorrect or unsafe. Thus the
safety of hospital(doctor(p)) must be checked. To
this end, the algorithm determines the signatures of
hospital(doctor(p)).

signatures(hospital(doctor(p)))
= {(T) 1 T E dynamics(doctor(p)))
= {(Physician), (Psychologist)}

One of the signatures of hospital(doctor(p)), namely
Psychologist, makes the invocation incorrect ss there
is no MSA. Thus hospital(doctor(p)) is unsafe. So
finally, ss one of its arguments is unsafe, refund(
hospital(doctor(p)), amount) is unsafe.

7 Related Work
The problems due to maintaining consistency rules
have been recognized by many researchers, each
focusing on a particular rule, but to our knowledge,
considering these problems in a single framework has
never been proposed.

[Coo89, McK92] forbid argument-exceptions. Hence,
subtyping between generic collections (list of Person
and list of Student) and attribute type redefinition are
also disallowed.

Esse [CPLZSl, CCPLZ93] and Eiffel [Mey92] use
data flow analysis to detect unsafe ikocations due
to argument-exceptions : the set of types to which
a variable may refer (called type set in [CPLZSl,

117

CCPLZ93] and dynamic class sei in [Mey92]), is
maintained during type checking and evaluated after
every statement. Using this “type.-flow” technique,
a slightly larger class of programs are statically
determined to be safe as exact types may be used to
replace constant objects or variables that have just
been assigned a newly created object. Although this
approach provides more accurate type checking, two
problems remain. First, statements that cannot be
proved to be safe are rejected (pessimistic option).
Second, this approach is leas applicable to a database
context where applications use collections. Indeed, a
variable iterating over a collection of T may refer to
objects of any subtype of T with no way of knowing
the exact subset of types present in the collection. Our
approach can be used as a complement to “type flow”
techniques, taking over when they have failed to prove
the safety of a statement.

Using a special construct called reverse assignment,
Eiffel [Mey92] allows a certain kind of illegal substitu-
tion : the assignment of an expression with static type
Tl to a variable of type Tz, although Tl is a supertype
of Tz. The assignment is checked at run-time to ensure
that the dynamic type of the expression is actually T2
or a subtype of Tz. Otherwise, a NULL reference is
assigned to the variable. It is the responsibility of the
programmei to check that the variable is not NULL
after the reverse assignment. A similar construct, the
dynamic cast [Laj93], is being incorporated into C++
to check at run-time the correctness of a down-ward
cnst (assertion by the programmer that an object of
static type TI is actually of type Tz with Tl supertype
of T2).

[CM921 uses bounded type quantification, restrict-
ing the application of subtyping to enforce the com-
position integrity constraint on constructed types.
Bounded universal quantification allows substitutabil-
ity only when passing parameters to a function. All
ot,her assignments must involve objects of the same
t,ype. Bounded existential quantification extends sub-
st,it,utability to assignments in the called function. In
all cases, bounded quantification requires the exact
t,ypes of actual parameters to be known statically. It
is this knowledge that allows static type checking of
cova.riant code. In particular, this prevents passing
bounded parameters to another function.

In the works on method schemas [AKWSO, Walgl],
no consistency rules are imposed on the schema
and the return type of user-defined methods is not
specified. Consistency is defined as type safety, i.e.,
absence of run-time type errors. Proving type safety
involves simulating the execution of methods from a
typing point of view. This is shown to be impossible in
the general case,i.e., with multi-targetted methods and

Our approach is very similar to [Bor88] in that
it aims at detecting unsafety at compile-time, using
dynamic type checking when necessary and allowing
the user to write exception handling code. [Bor88]
addresses the problem of inapplicable attributes and
return-exceptidns due to attribute domain redefini-
tion. The notion of etcuses serves to distinguish be-
tween desired exceptions and errors. A type sys-
tem that supports these excuses is formally defined
in [Bor89], along with an efficient algorithm to stati-
cally detect unsafe statements. Check clauses are pro-
vided by the user. He/she formulates the correction
condition in an extensional way, testing the run-time
type of expressions. The type system verifies that the
correction condition implies the safety of the checked
statement and of the exception-handling code. We ex-
tend this work in two directions. First, we address the
problem of exceptions on single- and multi-targetted
methods. Second, we provide an intensional formula-
tion of the correction condition, allowing this condition
to remain invariant when the type hierarchy is modi-
fied and/or new exceptions are introduced.

8 Conclusion

118

In this paper, we proposed to facilitate schema eve-,
lution in object-oriented databases by supporting ex-
ceptions to behavioral schema consistency while at the
same time guaranteeing type safety. After presenting
the three consistency rules of covaraiance, contravari-
ante and substitutability, we defined a typology of ex-
ceptions. We gave examples of schema updates that
naturally yield exceptions to the consistency rules, and
we showed that existing solutions that seek for pr+
serving schema consistency lead to expensive restruc-
turations of the type hierarchy and method codes. We
then proposed a new type checking process whereby
exceptions to consistency can be safely tolerated. To
guarantee type safety, every statement is first analyzed
to determine if it is correct or not and then further an-
alyzed to determine if it is safe or not. Then, every
unsafe statement is surrounded by a check clause. This
clause is merely an if-then-else statement where the if-
part performs a run-time type checking, the then-part
contains the original statement, and the else-part con-
tains some exception-handling code (user-defined or
system-generated).

Unlike traditional solutions offered by object-
oriented design, our approach enables to handle
schema updates that do not preserve schema ,consis-
tency without creating artificial types and methods or
modifying the type hierarchy. Schema updates can
only yield the additions of check clauses in the code of

recursion. Covariant updates are shown to maintain
consistency.

[ABDS94] E. Amiel, M.-J. Bellosta, E. Dujardin,
and E. Simon. Supporting exceptions
to behavioral schema consistency to ease
schema evolution in OODBMS. To appear
as INRIA Research Report, 1994.

[ADL91] R. Agrawal, L. G. DeMichiel, and B. G.
Lindsay. Static type checking of multi-
methods. In Proc. OOPSLA, 1991.

[AKW90] S. Abiteboul, P. Kanellakis,
and E. Waller. Method schemas. In Proc.
ACM PODS, 1990.

[BDG+88] D. G. Bobrow, L. G. DeMichiel, R. P.
Gabriel, S. Keene, G. Kiczales, and D. A.
Moon. Common Lisp Object System spe-
cification. SIGPLAN Notices, Sept. 1988.

[BKK+ 861 D. G. Bobrow, K. Kahn, G. Kiczales,
L. Masinter, M. Stefik, and F. Zdybel.
CommonLoops: Merging Lisp and object-
oriented programming. In Proc. OOP-
SLA, 1986.

[BKKK87] J. Banerjee, W. Kim, H.J. Kim, and H. F.
Korth. Semantics and implementation

existing methods. Another advantage of our solution
is that conditions in the check are specified intension-
ally, thereby avoiding to reformulate them when the
type hierarchy is modified or when exceptions are in-
troduced or removed. We believe our approach pro-
vides a useful complement to existing sophisticated
techniques for static type checking. Indeed, our pro-
posed system relieves these techniques when they fail
to prove the safety of a statement. Finally, we are not
aware of any other work in the field of object-oriented
systems and languages that considered exceptions to
schema consistency in the general framework of mono
and multi-targetted functions.

All the steps of the proposed type checking process
have now been specified (see [ABDS94]). Future work
involves providing the user with means to express ex-
plicitly disallowed signatures, and developing efficient
algorithms to implement our type checking. Finally,
an environment to help programming with exceptions
is being designed. Such an environment adresses im-
portant issues such as providing the user with expla-
nations about why some statements are unsafe and
assistance in writing exception-handling code.

Acknowledgments: We would like to thank Francois
Bancilhon and Guy Ferran for their interest in this
work. Special thanks go to Catriel Beeri, Fransoise
Fabret, Claude Delobel and Patrick Valduriez for their
insightful comments on an earlier version of this paper.

References

[Bor88]

[Bor89]

[Car841

[CCPLZ93]

[Cha92]

[CM921

[Coo89]

[CPLZSl]

[CWSS]

[DanSO]

[Laj93]

[McK92]

PWQI

[MHH91]

P2921

(Wa19 l]

of schema evolution in object-oriented
databases. In Proc. ACM SZGMOD, 1987.
A. Borgida. Modeling class hierarchies
with contradictions. In Proc. ACM SIG-
MOD, 1988.
A. Borgida. Type systems for querying
class hierarchies with non-strict inheri-
tance. In Proc. ACM PODS, 1989.

L. Cardelli. A semantics of multiple inhe-
ritance. In Proc. Ini. Symp. on Semantics
of Data Types, LNCS 179, 1984..
F. Cattaneo, A. Coen-Porisini, L. Lavaz-
za, and R. Zicari. Overview and progress
report of the ESSE project : Supporting
object-oriented database schema analysis
and evolution. In Proc. TOOLS, 1993.
C. Chambers. Object-oriented multi-
methods in Cecil. In Proc. ECOOP, 1992.
R.C.H. Connor and R. Morrison. Sub-
typing without tears. In Proc. Australian
Computer Science Conference, 1992.
W. Cook. A proposal to make Eiffel type-
safe. In Proc. ECOOP, 1989.
A. Coen-Porisini, L. Lavazza, and R. Zi-
cari. Updating the schema of an object-
oriented database. IEEE Data Engineer-
ing Bullefin, 14:33-37, 1991.
L. Cardelli and P. Wegner. On un-
derstanding types, data abstraction, and
polymorphism. ACM Computing Swueys,
17:471-522, 1985.
S. Danforth. Multi-targetted virtual func-
tions for OODB. In Proc. JournLes Bases
de Donnkes Auanckes, 1990.
J. Lajoie. The new language extensions.
C++ Report, July-August 1993.
R. McKenzie. An Algebraic Model of
Class, Inheritance, and Message Passing.
PhD thesis, Computer Science Dept.,
University of Texas at Austin, 1992.
3. Meyer. EIFFEL : The Language.
Prentice Hall Intl., 1992.
W. B. Mugridge, J. Hamer, and J. G.
Hosking. Multi-methods in a statically-
typed programming language. In Proc.
ECOOP, 1991.
02 Technology. The 02 User’s Manual,
1992.
E. Wailer. Schema updates and consis-
tency. In Proc. Intl. Conf. on Deductive
and Object-Oriented Databases, 1991.

119

