Query Optimization by Predicate Move-Around

Alon Y. Levy
AT&T Bell Laboratories
Murray Hill, NJ.
levy@research.att.com

Abstract

A new type of optimization, called predicate move-around, is
introduced. It is shown how this optimization considerably
improves the efficiency of evaluating SQL queries that have
query graphs with a large number of query blocks (which
is a typical situation when queries are defined in terms
of multiple views and subqueries). Predicate move-around
works by moving predicates across query blocks (in the query
graph) that cannot be merged into one block. Predicate
move-around is a generalization of and has many advantages
over the traditional predicate pushdown. One key advantage
arises from the fact that predicate move-around precedes
pushdown by pulling predicates up the query graph. As
a result, predicates that appear in the query in one part
of the graph can be moved around the graph and applied
also in other parts of graph. Moreover, predicate move-
around optimization can move a wider class of predicates in a
wider class of queries as compared to the standard predicate-
pushdown techniques. In addition to the usual comparison
and arithmetic predicates, other predicates that can be
moved around are the EXISTS and NOT EXISTS clauses, the
EXCEPT clause, and functional dependencies. The proposed
optimization can also move predicates through aggregation.
Moreover, the method can also infer new predicates when
existing predicates are moved through aggregation or when
certain functional dependencies are known to hold. Finally,
the predicate move-around algorithm is easy to implement
on top of existing query optimizers.

1 Introduction

Current benchmarks (e.g., TPC/D) have exposed a
serious weakness of commercial database systems when
it comes to query optimization. In some cases, several

*Research supported in part by Grant 4766-1-93 of the Israeli
National Council for Research and Development.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distriduted for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 20th VLDB Conference,
Santiago, Chile, 1994.

Inderpal Singh Mumick
AT&T Bell Laboratories
Murray Hill, NJ.

" mumick@research.att.com

96

Yehoshua Sagiv*
Hebrew University
Jerusalem, Israel.
sagiv@cs.huji.ac.il

person months have been spent to optimize queries by
hand in order to achieve better performance. Further
aggravating the problem is the growing complexity
of queries; for example, decision-support queries have
become very important in large organizations (e.g., the
world’s largest private computer is dedicated to running
decision-support queries for the retail giant WalMart).

In complex applications, such as decision-support
systems, a query usually depends on a large number
of subqueries and views. Each of the subqueries
and views forms a query block in the query graph.
However, most cost-based plan optimizers can only
handle one query block at a time. ~ Therefore, it
is valuable to merge subqueries and views into one
query block. Unfortunately, this is a complicated
and sometimes impossible task due to aggregates, the
SQL semantics of duplicates, correlations, EXISTS, KOT
EXISTS, EXCEPT, UNION, and INTERSECTION. The work
of [PHH92] has investigated this issue and provided
some solutions for merging blocks of queries when the
duplicate semantics can either be ignored or when all
duplicates are eliminated.

When query blocks cannot be merged, it is important
to rewrite the query so that predicates can be applied as
early as possible. Predicate pushdown [Ul189)] is a com-
mon and important optimization technique for pushing
selection predicates down a query graph, in order to
apply those selections as early as possible during eval-
uation. However, it works only on hierarchical queries,
which are nonrecursive queries without common subex-
pressions. Another approach is the adaptation of the
magic-set transformation for an early evaluation of se-
lection and join predicates in nonrecursive SQL queries
with common subexpressions [MFPR90a]. The magic-
set transformation (see [U1189] for details) pushes pred-
icates according to the order of doing joins and intro-
duces auxiliary magic views.

In this paper, we propose a generalization of the
predicate-pushdown technique, called predicate move-
around, that is capable of pushing predicates down, up
and sideways in the query graph; predicates are moved
up as an intermediate step before being pushed down.

As a result, predicates that appear in the query in one
part of the graph can be moved around the graph and
applied also in other parts of graph. Moreover, predi-
cate move-around can be applied even if some blocks
have aggregates and even if duplicates are retained
in some blocks and eliminated in others. Qur algo-
rithm for predicate move-around is extensible in the
sense that (1) a variety of predicates can be moved
around; for example, comparison and inequality pred-
icates, EXISTS and NOT BXISTS predicates, negated
base relations (the EXCEPT clause), arithmetic predi-
cates (e.g., X = Y + Z), the LIKE predicate, func-
tional dependencies and more, and (2) Predicates can
be moved through new operators like outer-join. The
predicate move-around results in applying a larger num-
ber of predicates to base and intermediate relations and
doing so as early as possible; hence, the evaluation be-
comes more efficient. Unlike the magic-set transforma-
tion, predicate move-around does not need auxiliary re-
lations (such as the magic and supplementary relations)
and does not depend upon the join order. Our move-
around algorithm applies to nonrecursive SQL queries,
including SQL queries with correlations. It can also be
generalized to recursive SQL queries (as defined in the
new proposed SQL3 standard [ISO93]), but doing so is
beyond the scope of this paper.

To summarize, following are the novel features of our
algorithm:

e Moving predicates up, down and sideways in the
query graph, across query blocks that cannot be
merged.

¢ Moving predicates through aggregation; in the pro-
cess, new predicates are deduced from aggregation.

¢ Using functional dependencies to deduce and move
predicates.

¢ Moving EXISTS and NOT EXISTS predicates. The
EXCEPT clause can also lead to a NOT EXISTS
predicate that can then be moved.

o Removing redundant predicates. This is important,
since redundant predicates can lead to incorrect se-
lectivity estimates that may result in access paths
and join methods that are far from optimal. More-
over, redundant predicates represent wasted compu-
tation.

Our algorithm can be incorporated easily on top of ex-
isting query optimizers, since it consists of rewriting the
original queries and views. For example, our algorithm
would fit well in the Starburst optimizer [PHH92].

The paper is organized as follows. Section 2 illustrates
the savings achieved by predicate move-around via
a detailed example. Section 3 describes the SQL
syntax and the query-tree representation on which the

97

algorithm operates. The query tree is a straightforward
parse-tree representation of a query, close to what is
used in several systems (e.g., [PHH92]). The predicate
move-around algorithm is detailed in Section 4. We
describe the general algorithm, and illustrate each step
of the algorithm on the example of Section 2. We
consider related work in Section 5, and conclude in
Section 6.

2 Illustrative Example

We consider a detailed example that illustrates the
benefits of the predicate move-around optimization. In
particular, this example illustrates how predicates can
be moved across query blocks, through aggregation and
using knowledge about functional dependencies.

This example is quite typical of the complexity of real
world decision-support queries. Further, it illustrates
the capabilities of our algorithm to deal with complex
queries as compared to more traditional methods.
The example uses the following base relations from a
telephone database.

calls(FromAC, FromTel, ToAC, ToTel, AccessCode,
StartTime, Length)

customers(AC, Tel, OwnerName, Type, MemLevel)

users(AC, Tel, UserName, AccessCode)

secret(AC, Tel)

promotion(AC, SponsorName, StartingDate, EndingDate)

The calls relation has a tuple for every call made. A
telephone number is represented by the area code (AC)
and the local telephone number (Tel). Foreign numbers
are given the area code “011.” A call tuple contains
the telephone number from which the call is placed,
the number to which the call is placed, and the access
code used to place the call (0 if an access code is not
used). The starting time of the call, with a granularity
of 1 minute, and the length of the call, again with
1 minute granularity, are included. Due to the time
granularity and multiple lines having the same phone
number, duplicates are permitted in this relation. In
particular, there can be several calls of 1 minute each
starting within the same 1 minute, and there can be
multiple calls running concurrently between two given
numbers.

The customers relation gives information about the
owner of each telephone number. The information
about owners consists of the owner’s name, his account
type (Government, Business, or Personal), and his
membership level (Basic, Silver, or Gold). The key
of the customers relation is {AC, Tel} and, so, the
following functional dependency holds:

{AC, Tel} — {OwnerName, Type, MemLevel}.

A telephone number can have one or more users that
are listed in the users relation. Each user of a telephone

number may have an access code. One user may have
multiple access codes, and one access code may be given
to multiple people. There are no duplicates in the users
relation.

A few telephone numbers have been declared secret,
as given by the secret relation.

The promotion relation has, for each planned market-
ing promotion, the name of the sponsoring organization,
the area codes to which calls are being promoted, and
the starting and ending dates of the promotion. Note
that there may be several tuples with the same area
code and same sponsor, but with different dates.

Example 2.1 Consider the query Q1 given in Figure 1.
Note that this query is defined in terms of two views.
The view fgAccounts, denoted as E1, lists all foreign
accounts (i.e., Area-Code=“011") of type “Govt” that
are not secret accounts. This view includes telephone
numbers and names of users of those numbers.

The second view ptCustomers (i.e., potential cus-
tomers), denoted as F1, first selects calls longer than
2 minutes and then finds, for each customer with a sil-
ver level membership, the maximum length amongst all
his calls to each area code other than the customer’s
own area code.

The query Q1 is posed by a marketing agency looking
for potential customers amongst foreign governments
that make calls longer than 50 minutes to area codes
in which some promotion is planned. The query lists
the phone number of each relevant foreign government,
the names of all users of that phone and the names
of the sponsors of the relevant promotions. Note that
duplicates are retained, since sponsors may have one or
more promotions in one or more area codes.

Since the view ptCustomers does aggregation and the
view fghccounts generates and eliminates duplicates
(while Q1 retains duplicates), neither the view E1 nor
the view F'1 can be merged into the query block of
@1. Consequently, an ordinary optimizer cannot deal
effectively with the query Q1, since it is forced to
optimize and evaluate each view separately and then
optimize and evaluate the query. For example, note
that the predicate MaxLen > 50 cannot be pushed
from the definition of Q1 into the definition of the view
ptCustomers (since that predicate is over a field that
is aggregated in ptCustomers). Thus, when evaluating
the view ptCustomers, we can only use the predicate
Length > 2; later, when evaluating the query, we
can use the predicate MaxLen > 50 to discard those
ptCustomers tuples that do not satisfy this selection.
Our optimization algorithm, in comparison, would do
much better, since it is capable of the following.

o Taking the predicate c.AC = “011” of the view
fghccounts and moving it into the view ptCustomers.
As a result, the join predicate ¢.AC = t.FromAC is

98

replaced with t.FromAC = “011” and t.ToAC <>
t.FromAC is replaced with t.ToAC <> “011”.

o Taking the predicate ¢.Type = “Govt” from the
view fgAccounts and moving it into the view
ptCustomers, where it is applied to the customers
relation. Note that determining soundness of this
move requires that we reason with knowledge about
functional dependencies. Specifically, in the query-
Q1, the views fgAccounts and ptCustomers are
joined on a key of the customers relation and,
therefore, the predicate ¢.Type = “Govt” can
be moved from fgAccounts into the definition of
ptCustomers.

o Taking the predicate

NOT EXISTS (SELECT * FROM secret =
WHERE 8.AC = c.FromAC AND
s.Tel = c.FromTel)

from the view fgAccounts and moving it into
the view ptCustomers. This leads to a more
efficient evaluation of the view ptCustomers, since
the customers relation can be restricted before
taking the join with calls and before the grouping
operation.

o Taking the predicate c.MemLevel = “Silver” from
the view ptCustomers and moving it into the view
fghccounts. Again, functional dependencies are
used for this move.

o Taking the predicate MaxLen > 50 from the query
and inferring that t.Length > 50 can be introduced
in the WHERE clause of ptCustomers. As a result,
the predicate t.Length > 2 can be eliminated from
the definition of ptCustomers and the predicate
ptc.MaxLen > 50 can be deleted from the query.
Note that this optimization amounts to pushing a
selection through aggregation, a novel feature of our
algorithm.

The optimized views and query are denoted in Figure 2
as El,, F1, and Q1,. Section 4 explains the behavior
of the predicate move-around algorithm on this example
in detail. O

3 Preliminaries: SQL Notation and the
Query-Tree Representation

For simplicity of presentation of the move-around
algorithm, we consider here a subset of SQL. Given an
SQL query, we first translate it into a gquery tree (see
Figure 5 for an example) and then apply the move-
around algorithm to the query tree. In this section,
we briefly describe the SQL syntax and explain how to
build the query tree.

calls(FromAC, FromTel, ToAC, ToTel, AccessCode, StartTime, Length)
customers(AC, Tel, OwnerName, Type, MemLevel)

users(AC, Tel, UserName, AccessCode)
secret(AC, Tel)

promotion(AC, SponsorName, StartingDate, EndingDate)

(E1):

CREATE VIEW fgAccounts(AC, Tel, UserName) AS

SELECT DISTINCT c.AC, ¢.Tel, u.UserName

FROM customers c, users u

WHERE ¢.AC = u.AC AND
¢.Tel = u.Tel AND
c.Type = “Govt” AND
c.AC = “011” AND

NOT EXISTS (SELECT x FROM secret s
WHERE 8.AC = ¢.AC AND 8.Tel = c.Tel)

(F1):

CREATE VIEW ptCustomers (AC, Tel, OwnerName, ToAC, MaxLen) AS

SELECT ¢.AC, c.Tel, c.OwnerName, t.ToAC, MAX (t.Length)

FROM customers c, calls t
WHERE t.Length > 2 AND
t.FromAC <> t.ToAC AND
¢.AC = t.FromAC AND
¢. Tel = t.FromTel AND
c.MemLevel = “Silver”

/* <> is the SQL symbol for not equal */

GROUPBY ¢.AC, c¢.Tel, c.OwnerName, t.ToAC

(Q1):

SELECT ptc.AC, ptc.Tel, £g.UserName, p.SponsorName

FROM ptCustomers ptc, fgAhccounts fg, promotion p

WHERE ptc.AC = £g.AC AND
ptc.Tel = £g.Tel AND
ptc.MaxLen > 50 AND
p.AC = ptc.ToAC

Figure 1: The original views for query Q1.

3.1 SQL Syntax
An SQL query consists of a sequence of view definitions
(or blocks). The following is a GROUPBY block.

CREATE VIEW V(Aj,...,A;) AS
SELECT X1,...,X;

FROM Rely ry, ..., Rely rp
WHERE ...

GROUPBY G4,...,Gi
HAVING ...

Each X; is either an attribute term (e.g., rj.B) or an
aggregate term (e.g., Maz(r;.B)); for simplicity, we
assume that the X;’s are distinct. If there are no
GROUPBY and HAVING clauses, and no aggregate terms,
then the above block is called a SELECT block; there
are also UNION and INTERSECTION blocks. One of the
blocks is the gquery block; it is similar to the above
block, but without the CREATE-VIEW clause. In this

99

paper, the search condition that appears in a WHERE
or HAVING clause is assumed to be in the conjunctive
normal form. Each conjunct in the search condition is
called a predicate. We consider predicates that are built
from comparisons (=, <, etc.), AND, OR, NOT, EXISTS,
and NOT EXISTS.

3.2 The Query Tree

The nodes of a guery tree correspond to blocks (the root
corresponds to the query block). The children of a node
n are the views (i.e., non-base relations) referenced in
the block corresponding to node n; e.g., a node for a
SELECT block has a child for every occurrence of a view
in the FROM clause.

Local and Exported Attributes: The local at-
tributes of node n are those appearing in the operands
of the corresponding block; the ezported atiributes are

(El,):

CREATE VIEW fgAccounts,(AC, Tel, UserName) AS

SELECT DISTINCT ¢.AC, c.Tel, u.UserName

FROM customers c, users u
WHERE ¢.AC = u.AC AND
c.Tel = u.Tel AND
c.Type = “Govt” AND
c.MemlLevel = “Silver” AND
c¢.AC = “011” AND

¥OT EXISTS (SELECT + FROM secret s
WHERE 8.AC = c.AC AND 8.Tel = c.Tel)

(Fl,):

CREATE VIEW ptCustomers, (AC, Tel, OwnerName, ToAC, MaxLen) AS

SELECT ¢.AC, c.Tel, c.OwnerName, t.ToAC, MAX (t.Length)

FROM customers c, calls t

WHERE t.Length > 50 AND
t.ToAC <> “011” AND
t.FromAC = “011” AND
c.Tel = t.FromTel AND
c¢.MemLevel = “Silver” AND
¢.Type = “Govt” AND
c.AC = “011” AND

NOT EXISTS (SELECT + FROM secret s
WHERE 8.AC = c.AC AND 8.Tel = ¢.Tel)
GROUPBY c.AC, c.Tel, c.OwnerName, t. ToAC

(QL,):

SELECT ptc.AC, ptc.Tel, £g.UserName, p.SponsorName

FROM ptCustomers, ptc, fgAccounts, fg, promotion p

WHERE ptc.AC = £g.AC AND
ptc.Tel = £g.Tel AND
p.AC = ptc.ToAC

Figure 2: The optimized views for query Q1.

those appearing in the result of that block (i.e., the at-
tributes of the defined view).

Labels: In the query tree, each node n has an
associated label, denoted L(n). The label contains
predicates that are applicable to attributes of n. Due to
functional dependencies, predicates appearing in labels
may also contain functional terms; for example, if the
attribute r.A functionally determines the attribute r.B,
then the predicate f(r.A) = r.B is added to nodes
having r.A and r.B as attributes. A predicate of a
label L(n) is called local if all its attributes are local
attributes of n; it is called exported if all its attributes
are exported attributes of n. Next, we explain the four
types of nodes in the query tree.

SELECT Nodes
When a view definition consists of a SELECT block!

CREATE VIEW V(4;,...,4) AS

1 A SELECT DISTINCT block is treated exactly as a SELECT block.

100

SELECT r,.By,...,r,.Bi
FROM Rely ry,..., Rely v
WHERE ...

we create a SELECT node n. For every Rel; that is a
view, node n has a child for the block of Rel;. The
local attributes of n are all the attributes of the form
r;.B, where B is an attribute of Rel; (1 < i < m).
The exported attributes are V.A;,...,V.4;. Note that
the exported attributes are just aliases of the local
attributes listed in the SELECT clause; that is, there
is a one-to-one correspondence between the local and
exported attributes (V.A; corresponds to r;.B;).

GROUPBY Triplets and Nodes

A view definition consisting of a GROUPBY block is
separated into three nodes (see Figure 3) in order
to highlight the movement of predicates through the
aggregation operators. The bottom node, n;, is a
SELECT node for the SELECT-FROM-WHERE part of the
view definition (it may have children as described

earlier). The middle node, ny, is a GROUPBY node and
it stands for the GROUPBY clause and the associated
aggregations, The top node, ng, is a HAVING node and
it stands for the predicate in the HAVING clause.

..» AL) nsll{AVIIG... l

CREATE VIEW V (A1, .

SELECT r.B, 8.C, Max(r.D)

FROMRr, S s Max(r.D)

WHERE r.B < r.C " GROUPBY r.A
8.C=r.A

GROUPBY r.A r.B<r.C

HAVING ... " 8.C=r.A

Figure 3: A triplet for a GROUPBY block.

The set of local attributes in n; (denoted by L) is
defined in the same way as it is defined for an ordinary
SELECT node, and is also the set of exported attributes
of ny. Let G denote the set of grouping attributes (i.e.,
the attributes in the GROUPBY clause), and let A denote
the set of aggregate terms (e.g., Maz(r.D)) used in the
SELECT and HAVING clauses. The attributes of the set
L U A are the local attributes of ny, whereas GU A
is the set of exported attributes of ns and the set of
local attributes of n3. The exported attributes of ngs
are {V.A1, ceey V.A:}.

A view definition may have aggregation in the
SELECT clause even without having GROUPBY and HAVING
clauses. In this case, we still construct a triplet (as if
there is an empty GROUPBY clause). Also note that if
there is no BEAVING clause, then we can omit the top
node and let V.Ay, ..., V.A; be the exported attributes
of na.

UNIOK and INTERSECTION Nodes

If a view definition includes UNION (or INTERSECTION),
we create a node n for this operation (see Figure 4).
Node n has a SELECT child for every SELECT block in
the view definition (some children may be triplets for
GROUPBY blocks). For the i child, the local attributes
are defined as usual and the exported attributes are
Vi.A1, ..., V;.A;, where V; is a newly created name. The
local attributes of the (UNION or INTERSECTION) node n
are the exported attributes from all the children of n.
The exported attributes of node n are V.A;,...,V.A;.
Note that there is a one-to-one correspondence between
the exported attributes of n and the exported attributes
of the #*? child; that is, V.A; — V;. Ay (1 < k<).

DAG Queries

In a DAG query, a view V may have several references
in the same or different blocks. In this case, we create
a distinct node for each occurrence of V.

CREATE VIEW V (A1, ..., Al)

SELECT ...
FRON ...

UKION

UNION
SELECT ...
WHERE ...

UNION

— N —

SELECT ...
FROM ...

Figure 4: The node structure built for UNION and
INTERSECTION.

Example 3.1 Figure 5 shows the query tree for the
query Q1 of Example 2.1 (the labels in the nodes
should be ignored for now). The view ptCustomers is
represented on the left by a pair of SELECT and GROUPBY
nodes. The GROUPBY block defining view ptCustomers
does not have a HAVING clause; hence the top SELECT
node of the GROUPBY triplet has been omitted. The
view fghccounts is represented on the right by a single
SELECT node. The query view itself is represented by
a single SELECT node at the top. The arcs from the
ptCustomers and fgAccounts nodes into the query
node arise from the usage of the views in defining the
query. O

Renamings

To move predicates around in the query tree, we utilize
two kinds of renamings. An internal renaming for node
n is a mapping from the logal attributes of node n to the
exported attributes of n or vice versa. Nodes created for
SELECT and GROUPBY blocks have exactly one internal
renaming in each direction. In the case of a UNION or
an INTERSECTIOR node n, there is a pair of internal
renamings (one in each direction) for each child ¢; this
pair relates the exported attributes of n to the local
attributes obtained from the child c. Internal renamings
are used to infer exported predicates from predicates
with local attributes and vice versa.

An ezternal renaming is simply a renaming from
the exported attributes of a node n to local attributes
referencing them in the parent of n. For example, the
attribute fgAccounts.AC is referenced as £g.AC in the
root of our example query tree. External renamings
are used in order to move predicates from a node to its
parent and vice versa.

101

QUERY

SELECT
ptc.ToAC = p.AC
ptc.MaxLen > 50
ptc.AC = £fg.AC
ptc.Tel = fg.Tel

fg.AC = "011"
NOT secret(fg.AC, fg.Tel)
£_1(fg.AC, fg.Tel) = "Govt"

ptc.MaxLen > 2
ptc.MaxLen = {_3(ptc.AC, pte.Tel, ptc.OwnerName, ptc.ToAC)
f_2(ptc.AC, ptc.Tel) = "Silver"

ptCustomers

SELECT
T.FromAC = c.AC
c.MemLevel = “"Silver"

t.Length > 2
t.ToAC <> t.FromAC
c.Tel = t.FromTel

c.Type = £_1(c.AC, c.Tel)
c.MemLevel = f£f_2(c.AC, ¢c.Tel)

fgAccounts
SELECT

L ¢.AC = u.AC

c.Tel = u.Tel

c.Type = "Govt*

c.AC = "011*

NOT secret{c.AC, c.Tel)

c.Type = £_1(c.AC, c.Tel)
c.MemLevel = f£_2(c.AC, c.Tel)

Figure 5: The query tree for Example 2.1. The predicates in roman font are inserted during initialization. The
predicates in bold font are added to the labels in the pullup phase.

4 The Move-Around Algorithm

We give an overview of the main steps of the predicate
move-around algorithm followed by a detailed descrip-
tion of each step.

4.1 The Main Steps of the Algorithm

1. Label initialization: Initial labels are created from
the predicates in the WHERE and HAVING clauses and
from functional dependencies.

2. Predicate pullup: The tree is traversed bottom up.
At each node, we infer predicates on the exported
attributes from predicates on the local attributes
and pull up the inferred predicates into the parent
node.

3. Predicate pushdown: The tree is traversed top
down. At each node, we infer predicates on the
local attributes from predicates on the exported
attributes and push down the inferred predicates
into the children of that node.

4. Label minimization: A predicate can be removed
from a node if it is already applied at a descendant
of that node.

5. (Optional:) Convert the query tree into SQL code
(the plan optimizer may also work directly with the
tree representation of the query).

102

.The algorithm is extensible in the sense that it can
be extended to new types of predicates (e.g., LIKE), to
new types of nodes (e.g., outer join), and to new rules
for inferring predicates. Next, we explain each step in
detail.

4.2 Label Initialization

SELECT Nodes: The initial label of a SELECT node
consists of the predicates appearing in the WHERE clause.
For example, in Figure 5, the first five predicates in the
fghccounts node come from the WHERE clause. Note
that (NOT secret(c.AC, c.Tel)) is simply a shorthand
for the NOT EXISTS subquery.

GROUPBY Triplets: In a node triplet for a GROUPBY
block (see Figure 3), the initial labels of the bottom and
top nodes are the predicates from the WHERE and HAVING
clauses, respectively. The initial label of the middle
node includes predicates stating that the grouping
attributes functionally determine the aggregated values.
For example, in the view ptCustomers, the predicate

Max(t.Length) = £.3(c.AC, ¢.Tel, c.OwnerName, t.ToAC)
appears in the GROUPBY node (see Figure 5).

UNION and INTERSECTION nodes: The initial label of
a UNION or an INTERSECTION node n is empty.

Functional Dependencies: Suppose that the follow-
ing functional dependency holds in a base relation R.

de{A1,...,Ak}—> {.Bl;---aBp}

If a WHERE or a HAVING clause refers to R, then the
predicates fyq;(r.A1,...,7Ax) = B; (1 < i < p) are
added to the label created for that clause (note that fd;
is an index that depends on fd and-i). For example, the
functional dependency

{AC, Tel} — {OwnerName, Type, MemLevel}
holds in the customer relation; hence, the predicate
c.Type = £.1(c.AC, c.Tel)

is added to the two SELECT leaves in Figure 5, since both
reference the customer relation.

Example 4.1 The initial labels for the query tree of
Example 2.1 are shown in regular font in Figure 5. O

4.3 Predicate Pullup

In the predicate-pullup phase, we traverse the tree bot-
tom up, starting from the leaves. At each node, we infer
predicates on the exported attributes from predicates on
the local attributes. The inferred predicates are added
to the labels of both the given node and its parent. The
particular method for inferring additional predicates de-
pends on the type of node under consideration and the
types of predicates in the label of that node.

4.3.1 Predicate pullup through SELECT nodes

To pull up predicates through a SELECT node n, having
a label L(n), we proceed as follows.

e Add to L(n) new predicates that are implied by
those already in L(n). For example, if both
r1.A < r2.B and r3.B < r3.C are in L(n), then
r1.A < r3.C is added to L(n). Ideally, we would
like to compute the closure of L(n) under logical
implications, since that would maximize the effect
of moving predicates around. However, the move-
around algorithm remains correct even if we are not
able to compute the full closure.?

o Infer predicates with exported attributes as follows.
If o is in L(n), then add 7(a) to L(n), where 7 is
the internal renaming from the local attributes to
the exported ones. For example, in the fgAccounts
node of Figure 5, the predicate fghccounts.AC =
“011” on the exported attributes is inferred from
the predicate ¢.AC = “011” on the local attributes.

2Note that when predicates are conjunctions of comparisons
(using <, < and =) among constants and ordinary attributes
(i.e., no aggregate terms), then the closure can be computed in
polynomial time [Ul189).

o If a is an exported predicate of L(n), then add o(a)
to the label of the parent of n, where o is the external
renaming from the exported attributes of n to local
attributes of its parent.

4.3.2 Predicate pullup through GROUPBY nodes

In principle, it is enough to perform the three steps of
the previous subsection at a GROUPBY node. In practice,
however, we need some rules for inferring predicates
involving aggregate terms. Following is a (sound but
not complete) set of such rules; these rules should be
applied to the label, L(n), of a GROUPBY node n (in all
these rules, < can be replaced with <).

1. If Min(B) is a local attribute of n, then add
Min(B) < B to L(n) (in words, the minimum value
of B is less than or equal to every value in column
B). Furthermore, if (B > ¢) € L(n), where c is a
constant, then add Min(B) > ¢ to L(n) (in words,
if ¢ is less than or equal to every value in column

B, then c is also less than or equal to the minimum
value of B).

2. If Maz(B) is an attribute of n, then add Maz(B) >
B to L(n). Furthermore, if (B < ¢) € L(n),
where ¢ is a constant, then add Maz(B) < c to
L(n). For example, consider the GROUPBY node in
Figure 5. First, we infer Max(t.Length) > t.Length.
Since t.Length > 2 is pulled up from the child of
the GROUPBY node, we infer Max(t.Length) > 2 (by
transitivity). Now, MaxLen > 2 is inferred, since
MaxLen is an exported attribute that is an alias
of Max(t.Length). For clarity, only MaxLen > 2
is shown in the figure.

3. Consider the following three predicates: Maz(B) >
Min(B), Avg(B) > Min(B) and Maz(B) >
Avg(B). Each of these predicates is added to L(n)
if its aggregate terms are attributes of n.

4. If Avg(B) is an attribute of n and (B < ¢) € L(n),
where c is a constant, then add Avg(B) < ¢ to L(n).
If (B > ¢) € L(n), then add (Avg(B) > ¢) to L(n).

4.3.3 Predicate pullup through UNION and
INTERSECTION nodes

Consider a UNION (or INTERSECTION) node n, as shown
in Figure 4. We infer new exported predicates of L(n) as
follows. Suppose that node n has m children, denoted
C1,.+.,Cm, and let D; be the conjunction of predicates
pushed up from ¢;. For 1 < i < m, we apply to D;
the internal renaming from the attributes in D; to the
exported attributes of n, and denote the result as D;. If
n is a UNION node, we add the CNF formof D1 V...VDy,
to L(n); if n is an INTERSECTION node, we add the
predicates D;,..., Dy, to L(n). Asin a SELECT node, if
a is an exported predicate in L(n), then add o(a) to the

103

label of the parent of n, where ¢ is the external renaming
from the exported attributes of n to local attributes of
its parent.

Example 4.2 In Figure 5, the labels generated by the
pullup phase are shown in bold font. For clarity, the
label of the GROUPBY node does not show the predicates
pulled up from its child. Also, we do not show all the
predicates in the closures of labels. O

4.4 Predicate Pushdown

This phase of the algorithm is a generalization of
predicate-pushdown techniques. The combination of
pullup and pushdown effectively enables us to move
predicates from one part of the tree to other parts. In
this phase, we traverse the query tree top down, starting
from the root. At each node, we infer new predicates
on the local attributes from predicates on the exported
attributes and push the inferred predicates down into
the children nodes. As earlier, the pushdown process
depends on the type of the node.

4.4.1 Predicate pushdown through SELECT
nodes

In a SELECT node n, with label L(n), we do as follows.

o Infer new predicates over the local attributes as
follows. For each predicate a in L(n), add r(a)
to L(n) (if it is not already there), where 7 is a
renaming from the exported attributes of n to the
local ones.

e Add to L(n) new predicates that are logically
implied by those already in L(n).

o For each child ¢ of n, if « is a predicate in L(n) that
includes only constants and renamings of attributes
in c, then add o(a) to L(c), where o is the external
renaming from the local attributes of n to the
exported attributes of c.

Example 4.3 In our example, we push the predicate
ptc.MaxLen > 50 from the root into the GROUPBY node,
where it is mapped onto the predicate MAX (t.Length) >
50 (see Figure 6; predicates added during the pushdown
phase are shown in italic; for clarity, we do not show the
full closure at each node.) O

4.4.2 Predicate pushdown through GROUPBY
nodes

The above three steps should also be performed at
the GROUPBY nodes. However, we also need rules for
inferring new predicates from predicates with aggregate
terms. Following is a (sound but not complete) set of
such rules; these rules should be applied to the label,
L(n), of a GROUPBY node n (in all these rules, < can be
replaced with <).

104

o Suppose that Maz(B) > c is in L(n), where c is
a constant. In this case, we only need to look
at tuples satisfying B > c¢ in order to compute
Maz(B). However, if there are other aggregates to
compute, we may also have to consider tuples that
do not satisfy B > c. Therefore, if Maz(B) > ¢
is in L(n), we add B > ¢ to L(n) provided that
Maz(B) is the only aggregate term in n. As an
example, consider the GROUPBY node in Figure 6.
The predicate MaxLen > 50 is pushed into this node
from the root. By renaming into local attributes,
we get Max(t.length) > 50. Since Max(t.length)
is the only aggregate term in the GROUPBY node,
we can infer the predicate t.length > 50. Note
that by pushing t.length > 50 down, we discover
that we only need tuples satisfying t.length > 50
in the view ptCustomers, because the maximum of
t.length should be greater than 50.

If Min(B) < cisin L(n), where ¢ is a constant, and
Min(B) is the only aggregate term in n, then we
can add B < ¢ to L(n).

When B > c cannot be inferred from Maz(B) > e,
we can use Maz(B) > c directly in order to optimize the
evaluation; however this extension is beyond the scope
of this paper.

4.4.3 Predicate pushdown through UNION and
INTERSECTION nodes

Consider a UNION (or INTERSECTION) node n, as shown
in Figure 4, and let ¢ be a child of n. If « is an exported
predicate of L(n), then we add 7(a) to L(n) and to
L(c), where 7 is the internal renaming from the exported
attributes of n to the local attributes of n (which are
also the external attributes of c).

4.5 Label Minimization

At the end of the top-down phase, new predicates
appear in labels of nodes. As a result, we can apply
predicates earlier than was possible in the original tree.
There is the possibility, however, of applying predicates
redundantly. In fact, even an evaluation of the original
tree could result in redundant applications of predicates;
this may happen, for example, when the original query
is formulated using predefined views and the user is
oblivious to the exact predicates that are used in those
views (and, hence, he may redundantly repeat the same
predicates in the query). In the move-around algorithm,
redundancies are introduced in two ways.

o As a result of renamings between attributes of nodes
and the associated pullup (or pushdown), some
predicate may appear in a node and in the parent of
that node (and, possibly, also in other ancestors of
that node). There is no need, however, to apply a

QUERY

SELECT
«ptc.ToAC = p.AC
ptc.MaxLen > 50
«Dtc.AC = £g.AC
+ptc.Tel = f£g.Tel

ptc.MaxLen>2
ptc.MaxLen

fg.AC ="011"
NOT secret(fg.AC, fg.Tel)
f 1(fg.AC, fg.Tel) = "Govt"

= {_3(ptc.AC, ptc.Tel, ptc.OwnerName, ptc.ToAC)
£_2(ptc.AC, ptc.Tel) = "' Silver”

* T.FromAC = "011"
«C.MemlLevel = *Silver*
t.Length > 2
*1.ToAC <> "011"
+C.Tel = t.FromTel

c.Type = £_1(c.AC, c.Tel)
c.MemLevel = £_2(c.AC, c.Tel)
* t.Length > 50
= cAC="011"
* NOT secret(c.AC, c.Tel)
» ¢.Type = "Govt"

fgAccounts
SELECT

*«C.AC = u.AC

#c.Tel = u.Tel

*c.Type = *Govt"

$Cc.AC = *011"

*NOT secret(c.AC, c.Tel)
c.Type = £_1(c.AC, c.Tel)
c.MemLevel = £_2(c.AC, c.Tel)

sc.MemLevel = "Silver”

Figure 6: The query tree for Example 2.1 after the pushdown and minimization phases. The predicates in italic font
are added during pushdown. Only predicates annotated with a star remain in labels after the minimization phase.

predicate at a node if it has already been applied at
a descendant of that node.

¢ Redundancies are introduced at labels when adding
predicates that are logically implied by existing ones.

Removing redundancies is important for two reasons.
First, it saves time, since fewer tests are applied during
the evaluation of the query. Secondly, redundant
predicates might mislead the plan optimizer due to
incorrect selectivity estimates.

Redundancies of the first kind are removed as follows.
Suppose « is a local predicate of L(n) and that o(7(a))
is the result of applying to a the internal renaming
(to the exported attributes) followed by the external
renaming (to the attributes of n’s parent). Then
a predicate B in the parent of n is redundant if §
is logically implied by o(r(a)). After removing
redundancies in this way, we should also discard all
predicates that have some exported attributes.

Redundancies of the second kind are removed by the
known technique of transitive reduction; we repeatedly
remove a predicate from a label if it is implied by the
rest of the predicates. We get a nonredundant label

when no more predicates can be removed.

Finally, we can completely remove labels of UNION,
INTERSECTION and GROUPBY nodes. Moreover, predi-
cates containing functional terms (that were generated
from functional dependencies and aggregations) are also
dropped from all nodes. In Figure 6, the predicates an-
notated with a star remain after minimization and form
the final labels in our example.

4.6 Translating the Query Tree to SQL

The query tree may be used directly for further rewrite
and cost-based optimizations as well as evaluation of the
query. In fact, the query tree is similar to the internal
representations of queries used by some existing query
processors. If desired, however, we can easily translate
the query tree back into SQL as follows. SELECT,
UNION and INTERSECTION nodes, and GROUPBY triplets
are translated into the appropriate SQL statements;
the WHERE and HAVING clauses consist of the minimal
labels of the corresponding nodes. In our example,
the optimized SQL query and views of Figure 2 are the
result of applying the above translation to the iquery
tree of Figure 6.

105

4.6.1 Translating DAG Queries

When a query tree is created from a DAG query, several
subtrees of the tree may correspond to the same view.
These subtrees are identical at the beginning of the
move-around algorithm, but may become different at
the end of the algorithm. Consider two subtrees, 71 and
T, generated from the same view V. If, at the end of
the algorithm, T} and T, are equivalent (i.e., they have
logically equivalent labels in corresponding nodes), then
it is sufficient to evaluate just one of T} and T3. If T} is
contained in T3, then the view for T> may be computed
from the view for 7} by applying an additional selection.
If neither one is contained in the other, it may still be
possible to compute one view from which the two views
can be obtained by additional selections.

4.7 Correctness of the Algorithm

Theorem 4.1 Let Q be a query and Q' be the rewritien
query produced by the predicate move-around algorithm.
The queries Q and Q' are equivalent, i.c., they produce
the same answer for all databases. O

Proof: (Sketch:) The proof proceeds by induction
on the steps of the algorithm. Let bu(n) and td(n)
denote the labels of node n at the end of the pullup
and pushdown phases, respectively. A bottom-up
induction on the nodes in the query tree shows that
any tuple computed at node n must satisfy du(n). A
top-down induction on the nodes of the query tree
shows that in order to compute at node n all the
tuples that satisfy td(n), it suffices to consider at the
children ni,...,n, of n only those tuples that satisfy
td(ny),...,td(nm), respectively. Finally, we show that
the label-minimization phase removes only redundant
predicates, i.e., predicates that are guaranteed to be
applied at lower nodes during the evaluation of the
query. O

For queries without aggregation, our algorithm pro-
duces an optimal query in the following sense. Any
attempt to add a predicate to the label of some node
either would not change the set of tuples generated at
that node or, for some databases, a wrong result would
be computed by the query tree. Consequently, predi-
cates are applied as early as possible in the evaluation
in the resulting query.

5 Related Work

Our work generalizes predicate-pushdown techniques
(e.g., [UN189]). The main contribution, compared to
earlier work, is that we can handle aggregation and
other constructs such as NOT EXISTS ; our methods
can also be extended to recursive queries. In addition,
we move predicates both up and down the query tree,
thereby enabling predicates from one side of the tree to
be moved to applicable places on the other side.

106

A similar technique for propagating predicates in a
query tree was first developed by [LS92] in order to de-
tect and delete redundant Datalog rules. In [LMSS93],
this technique was extended to detect satisfiability of
Datalog queries in the presence of negated base relations
and order predicates. In this paper, we generalize the
constraint-propagation techniques of [LS92, LMSS93] to
SQL with aggregation operators and other types of con-
straints (e.g., functional dependencies); in the full pa-
per, we also deal with other SQL constructs (e.g., sub-
queries). Our optimigzation algorithm is essentially a
rewriting of the query in an optimized form and, hence,
is easily implemented on top of existing query opti-
migers. Finally, by using the termination condition
from [LS92] (for terminating the construction of the
query-tree), we can extend predicate move-around to
recursive SQL queries.

Srivastava and Ramakrishnan [SR92] describe a re-
lated technique for pushing predicates in Datalog pro-
grams using fold/unfold transformations. Their tech-
nique, however, is applicable only when views can be
merged and, therefore, cannot be extended to deal with
aggregation and relations containing duplicates. Sudar-
shan & Ramakrishnan [SR91] describe a method for
pushing down, through Datalog rules, predicates stem-
ming from aggregate operations. Their method uses a
set of rewrite rules and introduces aggregate selectors
that should be processed directly by the query evalua-
tor; hence, the query evaluator needs to be extended. in
order to use their method. In addition, their approach
does not combine pushing of other types of predicates
with aggregate selectors.

Pirahesh et al. [PHH92] discuss the problem of
merging query blocks. Doing so eliminates the need
for predicate pushdown. However, that can not always
be done (e.g., in the presence of aggregation). Our
method can be used in conjunction with the techniques
of [PHH92].

Our method complements magic sets [BMSUS6,
BR87] and GMST [MFPR90b, MFPR90a]. The key
differences from the magic-set approach are as follows.
First, the magic-set transformation depends upon the
join order; it can move predicates up from a relation
and then down into another relation that appears later
in the join order. In contrast, predicate move-around
does not depend upon the join ordering; predicates can
be moved up from every relation and down into any

-other relation. Secondly, predicate move-around pushes

predicates defined on single relations (also known as lo-
cal predicates), while the magic-set transformation can
also push join predicates defined across relations (how-
ever, it introduces auxiliary magic relations even when
moving only local predicates). It is, therefore, much bet-
ter to move local predicates using the predicate move-
around algorithm, since we can do so without determin-

ing the join order and, moreover, can move predicates in
all directions, without creating an additional overhead
of auxiliary predicates. Furthermore, doing predicate
move-around improves the ability to determine the op-
timal join order. The magic-set transformation can be
applied after predicate move-around in order to move
join predicates in the direction of the join order.

There has been a lot of work on optimizing subqueries
and eliminating correlations [Kim82, GW87, Day87,
Mur92]. Our technique complements well with that
work by providing a new powerful means of pushing
predicates after correlations are removed.

A predicate is said to be ezpensive if the cost of
applying the predicate is high. Placement of expensive
predicates has been studied by [HS93, Hel94]. The
move-around algorithm, as presented above, assumes
that predicates are inexpensive. However, expensive
predicates can be handled by modifying the label-
minimalization phase.

6 Conclusions

We have described a very general technique for moving
predicates around in a query, thus determining the ear-
liest point when predicates can be applied. Our method
can handle hierarchical and dag queries. The predicates
moved around include arithmetic comparisons, negative
predicates (NOT EXISTS and EXCEPT), functional depen-
dencies and aggregation constraints. Furthermore, we
can also handle the LIKE predicate of SQL [ISO93] (in
a fashion similar to equality) and arithmetic constraints
(e.g, X =Y 4+ Z). When moving predicates, we can
also consider the constraints that hold in database re-
lations. For example, if it is known that the range of
an attribute A of a relation R is between 0 and 10, we
insert the predicates r.A > 0 and r.A < 10 in the label
of any node that refers to R.

In many cases, the result of the predicate move-
around algorithm is optimal (in the sense that predi-
cates are moved to all parts of the query in which they
are applicable). In particular, optimality is guaranteed
for queries without aggregation. Achieving an optimal
result for queries involving aggregation requires a bet-
ter understanding of techniques for reasoning about ag-
gregation constraints, which is a subject of current re-
search. The work of [SRSS94] is a first step in that
direction. The query-tree technique is a general algo-
rithm and is easily extensible to new kinds of predicates
and operators, including recursive SQL queries.

Predicate move-around is a generalization of pred-
icate pushdown techniques. When predicate move-
around detects optimizations that cannot be found by
ordinary pushdown techniques, the additional savings
may be arbitrarily large, depending upon the selectivity
of the predicates being moved. Furthermore, such sav-
ings are very likely to be discovered in complex queries,

such as those encountered in decision-support applica-
tions. A significant aspect of the improved performance
of predicate move-around is the ability to deal with ag-
gregation operators, which are a major cause for poor
performance of current optimizers. The move-around
algorithm is easy to implement and can simply replace
an existing pushdown module in a query optimizer.

Acknowledgements

We thank Brian Hart and Andrew Witkowski for dis-
cussions on the topics discussed here and for comments
on earlier drafts of this paper.

References

{BMSUS86] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman.

Magic sets and other strange ways to implement logic

programs. In PODS 1986, pages 1-15.

C. Beeri and R. Ramakrishnan. On the power of

magic. In PODS 1987, pages 269-283.

U. Dayal. Of nests and trees: A unified approach to

processing queries that contain nested subqueries,

aggregates, and quantifiers. In VLDB (987, pages

197-208.

R. Ganski and H. Wong. Optimizationof nested SQL

queries revisited. In SIGMOD 1987, pages 23-33.

J. Hellerstein. Practical predicate placement. In

SIGMOD 1994.

J. Hellerstein and M. Stonebraker. Predicate migra-

tion: Optimizing queries with expensive predicates.

In SIGMOD 1993.

ISO.ANSI. ISO-ANSI working draft: Database

language SQL3, 1993,

W. Kim. On optimizing an SQL-like nested query.

ACM TODS, 7(3), September 1982,

A. Levy, I. Mumick, Y. Sagiv, and O. Shmueli.

Equivalence, query-reachability, and satisfiability in

Datalog. In PODS 1998, pages 109-122.

(Ls92] A. Levy and Y. Sagiv. Constraints and redundancy
in datalog. In PODS 1992, pages 67-80.

[MFPR90a] I. Mumick, S. Finkelstein, H. Pirahesh, and R.
Ramakrishnan. Magic is relevant. In SIGMOD 1990,

' pages 247-258.

[MFPRO0Ob] I. Mumick, S. Finkelstein, H. Pirahesh, and R.

Ramakrishnan. Magic conditions. In PODS 1990,

pages 314-330.

M. Muralikrishna. Improved unnesting algorithms

for join aggregate SQL queries. In VLDB 1992, pages

91-102.

H. Pirahesh, J. Hellerstein, and W. Hasan. Exten-

sible/rule based query rewrite optimization in star-

burst. In SIGMOD 1992, pages 39—48.

D. Srivastava and R. Ramakrishnan. Pushing

Constraint Selections. In PODS 1992.

D. Srivastava, K. Ross, P. Stuckey and S. Sudarshan.

Foundations of Aggregation Constraints. In PPCP

1994.

S. Sudarshan and R. Ramakrishnan. Aggregation

and Relevance in Deductive Databases. In VLDB

1891.

J. Ullman. Principles of Database and Knowledge-

Base Systems, Volumes 1 and 2. Computer Science

Press, 1989.

[BRs7)
[Day87]

[GW87]
[Helo4)

[HS93)

(1s093]
[Kim82)
[LMSS93)

Murg2]

[PHH92]

[SR92)

[SRSS94]

[SRe1]

(Ulsg)

