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Abstract 

We study the effectiveness of probabilistic se- 
lection of join-query evaluation plans, t&h- 
out reliance on tree transformation rules. In- 
stead, each candidate plan is chosen uniformly 
at random from the space of valid evaluation 
orders. This leads to a transformation-free 
strategy where a sequence of random plans is 
generated and the plans are compared on their 
estimated costs. The success of this strat- 
egy depends on the ratio of “good,, evalua- 
tion plans in the space of alternatives, the ef- 
ficient generation of random candidates, and 
an accurate estimation of their cost. To avoid 
a biased exploration of the space, we solved 
the open problem of efficiently generating ran- 
dom, uniformly-distributed evaluation orders, 
for queries with acyclic graphs. This bene- 
fits any optimization or sampling scheme in 
which a random choice of (initial) query plans 
is required. A direct comparison with iter- 
ative improvement and simulated annealing, 
using a proven cost-evaluator, shows that our 
transformation-free strategy converges faster 
and yields solutions of comparable cost. 
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1 Introduction 

Query optimizers must find an “optimal,, execution 
plan from a space of many semantically equivalent 
alternatives. For join queries, the space of feasi- 
ble evaluation orders grows very quickly, and to find 
an optimal plan, known deterministic search algo- 
rithms take exponential time on the number of rell~ 
tions of the query [OL99]. This combinatorial explo- 
sion makes heuristics and probabilistic algorithms the 
prime vehicle for query optimization. Simulated An- 
nealing (SA) and Itewdiue Imprauement (II) are com- 
monly used as reference points for research in this area 
[TWS’I, SG88, Swa89a, Swa89b, IK99, IK91, LVZ93]. 

The probabiiitic search algorithms SA, II, and their 
variations rely heavily on transformation rules to gen- 
erate candidate execution plans. These transform* 
tions are based on properties of the underlying alge- 
bra, such as commutativity and associativity of the r~+ 
lational join. The performance of these algorithms de 
pends, in addition to the cost distribution in the search 
space, on the set of transformations being used. In par- 
ticular, a complete set of transformations -i. e. one 
that is sufficient to transform a starting plan into any 
other plan in the space- does not guarantee good be- 
havior, and it is sometimes necessary to add redun- 
dant transformations to improve the performance of 
algorithms [IK90]. 

Several sets of transformation rules have been stud- 
ied, but the extent to which they allow rigorous anal- 
ysis and prediction of the behavior of transformation- 
based algorithms is somewhat limited -rather, they 
serve to provide qualitative insight [IK91]. A question 
that motivates the present work is the following: if 
we are allowed to explore only a limited, fixed num- 
ber of plans, then what is more likely to produce good 
plans, the application of transformations or a random 
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selection from the complete space? 

The distribution of cost in the search-space of join 
queries is the focus of [SwaSl], which concludes that 
the proportion of “good” plans decreases quickly as 
the number of relations in the query increases. But 
even if “good” plans were only 1% of the space, ran- 
dom selection of 70 plans will produce a “good” one 
with 50% probability -i. e. a coin toss. The results in 
[IK91] show that the proportion of “good” plans also 
depends on the relative size of relations, and they give 
evidence that this proportion is not insignificant. 

Then, since there is evidence of a considerable num- 
ber of ‘good” plana in the space, and given the di&ul- 
ties in analyzing how transformations lead to them, we 
study the behaviour of a hansformation-jke optimba- 
tion algorithm. Thii algorithm generates a sequence of 
random plans and applies a calibrated cost-evaluator 
to estimate their cost. Then the plan with minimal 
cost becomes the preferred plan of execution. 

We start our experiments by exploring exhaustively 
the search space of small queries, to check the ratio of 
“good” plans -i. e. those within a given factor times 
the optimum plan. This CPU-intensive exercise shows 
the cost distribution over the search space. The results 
coincide with those of other, similar studies [SwaSl]. 

In order to explore the search space, we solve the 
problem of efficiently generating random, uniformly- 
distributed execution plans, for acyclic queries. In 
the process, we also determine the exact number of 
valid join-orders for a given query graph. Results on 
counting and efficient uniform generation of random 
plans were previously known only for query graphs 
with a very “uniform” topology, such as star, chain, 
and clique [IK91, LVZ93]; for other graph topologies, 
unbiased random generation of a single plan could take 
several minutes of CPU time for a query of 20 relations 
[Swa89a, Swasl]. 

Besulta of our experiments favor a transformation- 
free optimization algorithm in a direct comparison 
with the transformation-based SA and II, for the prob- 
lem of join-order selection. The surprising observation 
is that our algorithm converges after exploring fewer 
execution plans than the others, finding plans of com- 
parable cost. 

R.oad map. Section 2 presents basic definitions, and 
describes the queries and cost estimation functions 
used in our experiments. Section 3 presents results 
on exhaustive exploration of search spaces for small 
queries. Section 4 describes algorithms for random 
generation of plans. Section 5 studies the quality of 
several random sampling methods. Section 6 com- 
pares query optimization strategies, transformation- 
free with SA and II. Section 7 presents our conclusions, 

a comparison with related work, and some directions 
for future research. 

2 Qur hmework 

Query evaluation plans. We represent a query by 
means of a query graph. Nodes of such graph are I& 
beled by relation names, and edges are labeled by pred- 
icates. An edge labeled p exists between the nodes of 
two relations, say &, Rj, if p references attributes of 
&, Rj. The nsult of a query graph G = (V, E) is 

defined as a Cartesian product followed by relational 
selection: 0~~h...*~*(R1x...x~),where(pl,..., p,} 
arethelabelsofedgesEand(Rr,...,R,,,)arethela- 
bels of nodes V. 

Query evaluation plan8 (f&W%) are used to evalu- 
ate queries, instead of the straight definition of product 
followed by selection given above. A QEP is an opercc 
tor tree whose inner nodes are labeled by a join oper+ 
tor and whose leaves are labeled by relations. The re- 
suit of a QEP is computed bottom-up in the usual way. 
QEPa also include annotations on the join-algorithm 
to use -e. g. nested loops, hash, merge, etc.- when 
several are available. The results presented in this pclr 
per are only bDr the ha&-join algorithm. 1 

Not every binary tree on the relations of the query 
is an appropriate QEP, because some may require the 
use of Cartesian products. Those that do not require 
products are called did [OLgO], and their topology is 
captured aa follows. Given a connected query graph G, 
an unordered binary tree T ia dled an asmciation tree 
of G, when it satisfies the following recursive definition: 
The leaves of T correspond one-to-one with the nodes 
of G, and every subtree of T is an association tree of 
a connected subgraph of G. 

Association trees are unordered -i. e. do not dii 
tinguish left from right subtree- because not all 
join-algorithm distinguish a left and right argument 
[Gra93]. For those who do, we consider ordering the 
tree as part of the join algorithm selection. Ordering a 
tree of n leaves requires a binary choice in each of the 
n - 1 internd nodes, so there are 2”-’ ordered trees 
for each unordered tree of n relations. 

Some systems restrict the topology of QEPe fur- 
ther, so that each join operates on at least one base 
relation. Such restriction leads to the apace of linear 
QEPs. We do not impose such restriction, so we work 
on the more general bwhy space. Studies presented 
in [IK91] snggest that the space of bushy plana has a 
higher number of good plans. 

‘Ikee transformations. Our implementation of the 
traditional transformation-based algorithms uses the 

‘We did experimentr with nuted-laop join M well, and the 
renulta are similar to those for hash-join. 
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tree transformations of [IK99, IKSl] for bushy trees, 
except for algorithm selection, because we use only 
hash-join. The transformation rules are: Commu- 
tativity, A w B c* B w A; associativity, (A w 
B) w C c* A w (B w C); left join exchange, 
(A w B) w C t) (A w C) w B; and right join ex- 
change, A w (B w C) -Bw(AwC). Onlythoim 
transformations that lead to a valid QEP can actually 
be used on a given tree. 

Queries tmed. The experiment8 foreseen require 
care in the design and population of the test databases. 
Traditional benchmark databases, such as Wieconein 
and AS3AP, are primarily geared toward8 performance 
assessment of the algorithm8 in relation to the archi- 
tecture. Moreover, their database statistics do not 
n&y reflect real-world applications, which make 
them less suitable for asseesing the quality of an op 
timider. On the other hand, designing a new bench- 
mark database complicates comparison with published 
results. 

As in [LVZ93], we run our experiment8 against 
the Portfolio Club Experimental Model (PEM). This 
model wa8 designed to provide a realistic experi- 
mental application base for complex query definition, 
evaluation, and benchmarking in the EDS project 
[va192]. Within this databare, we consider several 
acyclic queries containing from 4 to 12 relationa, and 
3 catalog8 with different database profiles. Both the 
queries and the catalogs used in [LVZ!%] constitute our 
starting point. 

Coat model. We used the Analytical Performance 
Evaluator (APE) developed and tuned for DBS3 
[ACVSl]. The APE tool provide8 accurate costs for 
query plan execution on the DBS3 prototype. In par- 
ticular, the cost model has been calibrated towards 
thii system architecture for nested loop joins [AKK93]. 
The coet model we use for hssh-join is similar to that 
used for main-memory databases in (KanSl], namely: 

({R} + {S}) * hash + {R} * moue + {S) * cornp * F 

With (R} and {S} the sixes of the two relations in 
tuples. It is assumed that {R} < {S}, denoting that 
the hash-table is build on the smallest relation. 

Systems used. Our experiments were performed on 
a Silicon Graphics Challenge Series machine, with 6 
processor8 running at 15OMBz. Optimization algo- 
rithms were programmed in SWI Prolog [wie92]. 

3 Cost distribution in search spaces 

This section presents our results on the cohlt distribu- 
tion of small spaces, obtained by exhaustive search. Of 

particular interest is the ratio of “good” plans, since 
it is an important factor for a transformation-free op 
timization strategy. Because of limited resources the 
largest apace we explored exhaustively ~88 of a query 
having 8 relations. Using a sampling technique de- 
scribed in Section 4 and 5, the cost distributions of 
biir space8 can be estimated. 

What is a good plan? A good QEP is one whose 
estimated cost is within a given factor time8 the opti- 
mum plan. Here we follow the classification of [SwaSl], 
where plans are considered & when their cost is up 
to twice the optimum; they are acceptable when their 
cost is more than twice, but up to ten times the op 
timum; and hod otherwise. We al8o use hi8 format in 
the presentation of our hi8togran.1 of good plans. 

Exhaustive generation of QEPs. Since we con- 
sider queries with connected, acyclic query graphs, re- 
moval of any edge disconnects the graph, leaving two 
connected grapha. The set of valid QEPs can be enu- 
merated by recursively splitting a query graph G 88 
follows. If the graph ha8 one node, then the only QEP 
is the relation that label8 such node; otherwise remove 
an edge, say labeled p, to disconnect the graph, then 
find QEPs Qi,Q8 for the two connected graph8 that 
remain, and finally return (Qr E% 98) 8s a QEP for G. 

If the selection of edge8 is done such that at each 
recursion level all poesible splittings of a graph are 
considered, then all valid QEPs are generated. Using 
the backtracking faciity of Prolog, the algorithm takes 
only a few lines of code. 

Results. Figure 1 shows the cost distribution in the 
space of valid QEPs for queries having from 4 to 8 
relations, all on the same catalog. Although this fig- 
ure is oversimplified it gives an indication of how the 
ratios of good plans are for the specific queries. It is 
representative of the distributions we found on all our 
catalogs. For these spaces, the number of good plans is 
sufficiently large that a run of several ten8 of randomly 
selected plans will hit a good one with high probabii- 
ity. Figure 2 show8 this probability as a function of the 
sequence length, for the queries of 4, 5 and 8 relations. 

We coincide with [Swa69a] in observing that, in gen- 
eral, the percentage of good plans decreases as the 
number of relations increasee -although this percent- 
age also depends on the particular query, as shown 
in the graph for query 6, in which the ration of good 
queries is slightly lower than that of queries 7 and 8. 
We do point out that this percentage is still significant 
to apply a transformation-free optimization approach. 
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Figure 1: Histograms of finding a good plan in a ran- 
dom sample. 

a- - -- 
-b-a--- 

Figure 2: Probability of finding a good plan in a ran- 
dom sample. 

4 Random generation of QEPs 

For large queries it becomes impossible to explore the 
search space exhaustively, so we are forced to use sam- 
pling. In thii section we describe qua&random tech- 
niques as well as uniformly-distributed generation of 
random plans. 

Quasi random QEPs. The following two proce 
dures generate quosCrandom QEPs. They are easy to 
implement, but either do not guarantee uniform prob- 
ability over the space, or else take a very long time. 

Random-walk. This procedure is based on transfor- 
mation rules to move from one valid plan to an- 
other. If we start at some plan in the space and 
successfully apply transformation rules at ran- 
dom, we get a sample from the space being ex- 
plored. 

Random-edge selection. This procedure is similar 
to the technique used in section 3 to generate 
plans exhaustively. Here, instead of considering 
all possible graph splittings, we split the graphs 
by randomly selecting an edge at each step, which 
results in a random plan. 

Random walks in graphs have been widely studied 
-see, for example, [GJ74, Ald89, Bag90]. In particu- 
lar, if all nodes in a graph have equal degree, as is the 
case in the search space for acyclic queries [Kan91], 
then we are equally likely to be at any node of the 
graph after n steps, for a sufficiently large n, regard- 
less of the starting point. In practice, however, the 
length of the walk seems too large to be used to gen- 
erate a single uniformly-diitributed plan. Instead, we 
consider all plans visited in a random walk as a random 
sample of the space. 

To see why the random-edge method does not pro- 
duce equi-probable QEPs, consider the query graph 
((o,b), (6, c), (c,d)}. If we select (6,~) as the first edge 
to split the graph, then the plan is already completely 
specified -remember that left and right children are 
not distinguished. If, instead, the first edge selected 
is either (u, b) or (c, d) we must make a second choice. 
If choices are made uniformly from the available op 
tions, the table in Fire 3 shows the probability of 
generation of each plan. In principle, it seems that the 
procedure can be mod&d to use weighted instead of 
uniform selection at each step, so that the resulting 
QEPs are all equi-probable. But computation of the 
appropriate weights is difficult, and we have not found 
a way to do it efficiently. 

Uniformly distributed random QEPs. Uni- 
formly distributed generation of random plans is diffi- 
cult, because there is no one-to-one mapping between 
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Figure 3: Generation of quasi random QEPs by edge 
selection. 

TfW 
W W UJ 

Figure 4: Adding a new leaf to a tree. 

valid association trees and simple combinatorial struc- 
tures -e. g. a permutation of graph edges- except 
for query graphs with a very “uniform” topology such 
as star, chain, or clique.a 

Next, we sketch a new construction that allows 
efficient generation of uniformly distributed random 
QEPs, for arbitrary acyclic query graphs. In the pro- 
cess, we also count the exact number of existing plans. 
Due to lack of space, we do not present formal proofs 
and complete algorithms here, but only the key ideas 
behind them. The interested reader is referred to 
[GLPK94b] for detailes and algorithms. 

For convenience, we sometimes represent trees using 
lists anchored on a leaf w, which contain the subtrees 
found when traversing the tree from the root to W. For 
example, the liits anchored on w of the trees in Figure 
4 me (Tl,E), (v,Tl,Td, (Tl,v,W, ad (TI,%,v), 
respectively. 

Given a query graph G on n relations, and a relation 
v used in G, we start by considering those association 
trees in which v is at some level k or, equivalently, the 
trees whose list anchored on v has length k. Thii set 
of trees is denoted by G @I. The set of all association 
trees for the graph is denoted 70. Some elementary 
observations are the following: 

l If the graph haa only one node, then there is ex- 
actly one association tree, and v is at level 0; that 

aFor arbitrary graphs, an approach to uniform generation of 
random QEPs ie to generate random binary treea on the rela- 
tione, check them to eee if they requin Carte&m pmduetcl, and 
stop as soon an a valid QEP is found. This procedure ia not 
feasible in practice, an shown in [SwaSl], since a vaet majority 
of binary treea do require Carte&m products, eo it takee a long 
time to generate a single valid QEP. 

l There is no association tree in whi 
greater than or equal to n; that is, 
i 2 n. 

l Since v appears at some unique level in any asso- 
ciation tree of G, the total number of association 
trees is 

The previous observations provide base cases for 
the computation of 7:(j) I I , and establish their relation 
with 17~1. The next lemmas give recurrence equations 
to compute the number of association trees of a graph, 
based on the number of treea of some of its subgraphs. 
The first case &ends a subgraph by adding one more 
node; and the second case takes the union of two sub- 
graphs whose intersection is a single node. 

Lemma 1. Let G = (V, E) be an acyclic query 
graph. Let v be a node in V such that G’ = GJY-(~) 
is connected, and let (v, w) E E. Then 

‘zp’ = c ‘7;(i)’ . 
ilk-1 

Proof sketch. There is a one-t+one mapping be- 
tween trees in 7~ and pairs of the form (T’, k), 
whereT’= @‘I,..., Z’i) is the list anchored on w of 
atreein7&,andl<k<i+l. Toobtainthetree 
T E 7~ corresponding to such a pair, insert a new 
leaf v in position k of the anchored list of T’. Figure 
4 shows an example of T’, and the trees obtained 
from pairs (T’, l), (T’, 2), (T’, 3). The equation fol- 
lows from the fact that the tree obtained from a 
pair (T’, k) is in 7;(‘), and the length of the list of 
T’ is at least k - 1. a 

Lemma 2. Let G = (V, E) be an acyclic query gmph. 
Let VI, I.5 be sets of nodes such that V = VI U V2, 
& n & = {u}, and the gmphs G1 = G(vl and Ga = 
Glv. are connected. Then 

)?p( = F ppq. 17;yI. ( : ) . 



QSl{ca, 
Go’1 = 1 

Qd{ob} Qd{obe) Q&d) 

ppl = 1 I?$‘)( = 1 
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In each column, G is the subgraph of Qg specified in the top row. 

Figure 6: Counting the number of association trees. 

Figure 5: Merging two trees that share a leaf. 

Proof sketch. There is a one-to-one mapping 
between trees in @) and triplets of the form 
(Tl,Ts,c), where Tl = (Tt,. . . , Tt) is the list an- 
choredonvofatreeinZ$‘);T~=(T~,...,T~-’) 
is the lit anchored on v of a tree in Gi’-‘); and 
c= (al,... 3 a&i+l) is a composition of i in k-i+1 
[Nw78]. To obta% the tree T E @) corre- 
sponding to such a triplet, merge the liits for TI 
and Ts as specified by c -each oj indicates how 
many subtrees of *the list of Tl go between sub- 
trees T,f’ and T,j in the merged list. For exam- 
ple, Figure 5 shows how to find the T of a triplet 
((Tt,Tf), (TJ,Tt), (l,l,O)). The equation results 

from the fact that there are compositions of 

iin k-i+l. 8 

Figure 6 shows how the above lemmas are used to 
compute the number of association trees for a graph 
Qg = (V, E) of five nodes; V = {a, b, c, d, e} and E = 

{(qb), (b, c), (c, d), (c, e)}. The graph is neither a star 
nor a chain. Each column of the table shows the data 
for a subgraph of G, and it is computed based on the 
values of previous columns. The bottom row shows 
the total number of trees for the subgraph. 

For e-pie, since &l{obcda} =tends Q&kdj by 
one node, lemma 1 is used to compute the entries of 
the lsst column. The new node e is connected to old 
node c, so we need to know the number of trees in 
Qgj{&d} in which c appears at various levels. This 
information is available in the second-to-last column, 
whose values were in turn computed using lemma 2 on 
the result of earlier columns. 

The following theorems follow from the application 
of lemmas 1 and 2. The first theorem refers to the 
time required to compute a matrix similar to that of 
Figure 6. 

Theorem 1. The number of association tree8 for 
a given acyclic query gmph G on n relations can be 
computed in polynomial time.3 

The second theorem is based on a natural number- 
ing, or ru&ng of all trees of a given graph, extracted 
from the matrix used in the computation of the num- 
ber of trees. For example, from the last column of the 
matrix in Figure 6, we assign the numbers 1 through 5 
to the trees of Qg in which e appears at level 1; num- 
bers 6 through 10 to those in which e is at level 2; 
11 through 15 to those in which e is at 3; and finally 
16 through 18 to those trees in which e is at level 4. 
Our unranlcing procedure is based on those presented 
in @H77, Li86]. 

Theorem 2. Association trees of a given acyclic 
query gmph G on n relations can be unmnked in poly- 
nomial time. 

Since trees are numbered, and we can reconstruct 
efficiently any of them given its number, the next the- 
orem follows. 

SA loooe upper bound on theorems 1,2 and 3 is O(ns). 
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Figure 7: Correlation of approximations to coat distri- 
bution using random sampling. 

Theorem 3. Assuming a souse of rrrndom numbers 
is available, association trees of a given acyclic query 
graph G on n relations can be genenated at nandom 
with uniform distribution in polpnnial time. 

5 Quality of random sampling 

To evaluate experimentaly the quality of a random 
sampling procedure, i.e. whether or not the samples 
are fair, we compare the cost distributions of Section 
3 to the cost distribution of the samples. Basically, 
the idea is that a fair sample from a space should pre- 
serve the coat distribution in that space. Note that we 
are not evaluating if the sample contains many good 
plans, just how fair is the sampling procedure. 

We use the accumulated cost distribution as the bllr 
sis of our analysis. This distribution can be seen as a 
function on cost c, which gives the percentage of plans 
having a cost less or equal to c. Formally, in a space 
S the accumulated cost distribution is 

Fs(c) = NP 1 P E 4 CdP) 5 41 * 100 
ISI 

. 

As samples become larger, they are expected to ap- 
proximate the real cost distribution function of the 
space. For spaces of up to eight relations, we obtained 
the exact accumulated cost distribution in section 3, 
which allows us to compute the accuracy of the sam- 
ples taken. Therefore, we compute the correlation co- 
efficient of the function J’s(c) with Fsl(c), where S is 

the complete search space and 5” is a random sam- 
ple obtained by one of our methods. Figure 7 shows 
the correlation coefficients found for a query of eight 
relations, for increasing sample sizes. 

The random-edge sampling method does not ap- 
proach the exact cost distribution, because it favors 
certain plans. Since we do not know the quality of the 
plans that are favored, the effect of using this method 
in an optimization strategy is not clear. 

The random-walk and uniformly-random method 
give a more accurate sample and improved their ap- 
proximation as the sample size increased, but the 
uniform-random method converges faster to the known 
cost distribution. 

With the uniformly-random method we also sam- 
pled spaces that could not be explored exhaustively. 
These big spaces still showed some “good” plans but 
the pe’rcentage of “good” plans decreased. This is in 
line with the observations of [Swa89b] for the spaces 
of linear execution plans and with our results of sec- 
tion 3. The decreasing number of good plans im- 
plies an increase in the number of plans required by 
a transformation-free optimization strategy. But also 
other optimization strategies need to explore more 
plans as the search space increases. 

6 Comparison of optimization algo- 
rit hms 

We now compare the performance of an optimize 
tion method that relies completely on uniform random 
generation of candidates with two transformation- 
based optimization algorithms, Simulated-annealing 
and Itenrtive-improvement. Detailed descriptions of 
these algorithms can be found in [IK90, SG88]. Our 
implementation of SA and II follows the pseudo-code 
presented in [IK90]. We also set the parameters of the 
algorithms to the values suggested in that paper. 

Simulated Annealing (SA) starts at a random 
plan and randomly generates moves to other 
plans. If the next plan is an improvement the 
move is accepted; if the move leads to a plan 
with higher cost, then it is accepted with a certain 
probability. As time progresses this probability is 
decreased until it disallows moves to higher costs. 

Iterative Improvement (II) performs a large num- 
ber of local optimizations. Each local optimization 
starts at a random plan and then generates ran- 
dom moves to other plans, accepting a move only 
if it improves the current coat. 

Tkansformation-Free (TF) generates valid plans 
at random in a uniform way and ‘keeps track of 
the one with the lowest cost. 
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Figure 8: Average of cost of solutions found. 

The behaviour of an optimization strategy can be 
represented by a function mapping the number n of 
plans explored, to the estimated cost of the best plan 
found so-far. For a given algorithm A, we call this cost 
the solution after n, and denote it by S,“. Formally, 
using U,” as the set of the first n plans visited by A, 
the solution after n is: 

St = min{cost(p) 1 p E U,“]. 

Since the algorithms are probabilistic, U,” is a ran- 
dom subset of size n from the search space, and there- 
fore S,” is a random variable. Based on this, we metG 
sure the success of these algorithms using the mean 
and standard deviation of the solution. As n increases, 
the mean of S,” should approach the minimum cost in 
the search space; while at the same time the standard 
deviation of S,” approaches zero. The second condi- 
tion ensures that the algorithm, though probabilistic, 
behaves in a stable way. Although the number of plans 
explored does not account for all the resources required 
by an algorithm, we follow [LVZ93] in using it as an ap 
proximation of an implementation-independent me(G 
sure for optimization cost. 

Reeults. In our experiments, we measured the val- 
ues of S,” for various queries and catalog, for algo- 
rithms II, SA, and TF. In each run, we let each algo- 
rithm explore 10,000 plans. The number of repetitions 
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Figure 9: Standard deviation of cost of solutions 
found. 

for each experiment was 20, each leading to a different 
observation of the random variables S,“. At the end of 
the experiments, costs were scaled to the best found; 
for example, a cost of 2 corresponds to a plan that is 
twice as expensive as the best found by any method. 

To analyze the results we computed the average and 
standard deviation of the solutions Sir, Sf” and STF, 
for 1 5 n 5 10,000. The result of this analysis, for a 
query of 12 relations, is shown in figure 8 and 9. In 
[GLPK94a] more details on the performed experiments 
can be found. To get a more readable graph, figures 8 
and 9 are limited to 4,000 plans. The graph is typical 
of the results we obtained on all queries and catalogs 
examined. 

The average of the solutions found after 10,000 
plans by each algorithm were avg(S$$,s) = 1.045, 

w5(S&00) = 1.000, and avg(S~FOO,,) = 1.055. 
The standard deviations were std(&s,,s) = 0.055, 
std(S&,,s) = 0.000, std(S$$,,) = 0.015. 

On the average, SA is not able to find a good plan 
within 4000 plans; it finds these only after exploring 
2000 more plans (not visible in the graph). On the 
average, TF finds good plans faster than II -e. g. TF 
finds plans with a scaled cost of 2 after exploring about 
300 plans while II needs about a 1000. When II and TF 
keep exploring more plans II will find slightly better 
plans than TF. The maximum difference occurs after 
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exploring 1800 plans but is very small (1.01 V.S. 1.08). 
Figure 9 shows that TF not only finds good plans 

fast, on average, but that the quality of the plans 
found in different runs are also close together. After 
600 plans the standard deviation of TF is already 0.04 
while that of II is only about 3.90. This leads to con- 
sider the time of convergence, defined as the number 
of plans required to reach a given maximum standard 
deviation. Setting the threshold to 0.1, SA converges 
after exploring 8985 plans, finding a solution of average 
cost 1.11 at that point; II converges after 1559 plans, 
finding a solution of cost 1.05; and TF converges after 
575 plans, finding a solution of cost 1.12. 

7 Conclusions 

Why ume transformations? In abstract terms, a 
set of transformation rules imposes a topology on the 
search space, but it is difficult to determine how a 
specific topology affects the performance of search al- 
gorithms. For the problem of join-order selection, 
the thorough studies of Ioannidii and Kang provide 
an empirical basii to understand the search space 
[IK90, IK91, KanSl]. Close analysis reveals that our 
results are not only consistent with their studies, but in 
fact complement them. They observe that “...starting 
at a random state, many downhill moves are needed 
[by II] to reach a local minimum” [KanSl, p. 651. In 
the spaces we considered, II had to explore well over a 
100 plans to reach a local minimum, on average -yet 
we point out that the expected length of a sequence of 
random plans that finds one in the best 1% is 100. 

Ioannidis and Kang conclude that SA finds very 
good solutions but takes a long time, compared with 
II. Their two-phase optimization algorithm uses II 
to find several local minima that are then used as 
starting points for SA. A similar multi-phased ap 
proach is taken in the tou4 simulated annealing of 
Lanzelotte, Valduriez, and Zait [LVZ93], where start- 
ing points of SA are obtained using’ a greedy de- 
terministic algorithm. In this context, our result is 
that transformation-baaed optimizers find very good 
solutions but take a long time, compared with our 
transformation-free algorithm. To be concrete, in a 
query of 12 relations II converges in 1559 steps to a 
solution of cost 1.05, while TF converges in 575 steps 
to a solution of cost 1.12. 

We are currently investigating multi-phase, hybrid 
algorithms for fast-convergence/high-quality, based on 
our results. Nevertheless, a pure transformation-free 
algorithm has some specific advantages that should 
not be casually ignored. In our view, a key property 
of transformation-free optimization is that it has no 
“knobs to tune.” For other algorithms, the setting of 
parameters for optimum performance is not obvious; 

results on the sensitivity of the algorithm to these set- 
tings are not available; and both optimum setting and 
sensitivity may depend on the specific cost model and 
database. Also, in parallel systems, transformation- 
free optimization can easily take advantage of available 
processors, achieving nearly optimal speedup -simply 
replicate the original algorithm in various processors, 
and add a final phase to determine the best solution 
found. Transformation-based “walks,” on the other 
hand, are inherently sequential. 

Contributions. The prime novelty of this paper 
is its transformation-free query optimization scheme, 
which provides a cheap and effective alternative to 
transformation-based algorithms. The mechanism re- 
lies on both an accurate estimation of query evalue 
tion cost and an efficient mechanism to generate query 
plans uniformly distributed over the search space. 
This leads to a strategy where a random sequence of 
valid plans is generated and analyzed on their per- 
ceived cost. The best plan within the run is selected 
for execution. 

Exhaustive exploration or sampling of the search 
apace of a class of queries provides a precise measure 
of the run length required to hit a good plan. Our re- 
sults then provide a natural baseline against which the 
added value of applying transformations and heuristics 
can be quantified. 

To realize our proposed optimization scheme, we 
solve the problem of efficiently generating uniformly- 
distributed random plans, for queries with acyclic 
graphs. In the process, we also count the exact num- 
ber of existing plans. Generation of a uniformly- 
distributed random plan is a basic primitive that 
other randomized algorithms can now use -due to the 
complexity of previously known methods, only quaa& 
random selection had been used for non-star graphs. 

Related work. Transformation-based optimization 
is a general and powerful techniques with applica- 
tions beyond join-order selection; see, for example, 
FMV94]. More related to our present work, re- 
search on randomized optimization of join queries 
has been performed by Swami and Gupta [SG88, 
Swa39a, Swa39b, SI92], Ioannidis and Kang [IK90, 
IK91, KanSl], and Lanzelotte, Valduriez, and Z& 
[LVZ93]. In contrast to our work, their approach is 
baaed mostly on tree transformations. In terms of 
search space, Swami and Gupta, and Ioannidis and 
Kang study very large queries (up to 100 relations); 
Swami and Gupta, and Lanzelotte, Valduriez, and 
ZaIt allow cyclic query graphs; but Swami and Gupta 
only explore linear QEPs. Finally, the cost model of 
Lanzelotte, Valduriez, and Ztit is that of a parallel 
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database. [GLPK94b] C. Galindo-Legaria, A. Pellenkoft, and 

Future research. Our agenda for future research 
includes, first, the extension of our experiments to 
larger queries. Then, to remove our current restric- 
tion on the query graph topology, we need an efficient 
procedure to generate uniformly-distributed plans on 
cyclic graphs. 

We are currently studying hybrid, multi-phase aigo 
rithms baaed on a “mix” of randomized choices, trans- 
formations, and heuristics. Depending on the ratio of 
optimization cost over query evaluation cost, and on 
the number of times the optimized query will be exe 
cuted, some applications do need such a “mix,” despite 
the likely necessary tuning. 

Finally, we are also interested in the accuracy of 
the estimation of query evaluation cost -e. g. cost 
model calibration and size estimation of intermediate 
results- and how it affects the quality of the opti- 
mization output. 
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