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Abstract 
In this paper we explore the problem of automatically adjusting 

DBMS multiprogramming levels and memory allocations in order to 
achieve a set of per-class msponse time goals for a complex mul- 
ticlass wotkload. We start by describing the phenomena that make 
this a very challenging problem, the foremost of which is the inter- 
dependence between classes that results from their competition for 
shared tesources. We then describe M&M, a feedback-based algo- 
rithm for determining the MPL and memory settings for each class 
independently, and we evaluate the algorithm’s effectiveness using 
a detailed simulation model. We show that our algorithm can suc- 
cessfully achieve response times that are within a few percent of 
the goals for mixed workloads consisting of shott transactions and 
longer-running ad hoc join queries. 

1 Introduction 
As database management systems continue to increase in func- 
tion and to expand into new application areas, the diversity 
of dambase workloads is increasing as well. In addition to 
the classic relational DBMS “prOblem workload” consisting 
of short transactions running concurrently with long deci- 
sion support queries [Pirahesh 90, Dewitt 921, we can ex- 
pect to see workloads comprising an even wider range of 
resource demands and execution times in the future. New 
b types (e.g. image, audio, video) and more complex 
query processing (rules, recursion, user defined operations, 
etc.) will result in widely varying memory, processor, and 
disk demands. The performance goals for each workload class 
will vary widely as well, and may or may not be related to 
their resource demands. For example, two classes that exe- 
cute the exact same application and DBMS code could have 
differing performance goals simply because they were sub- 
mitted from different departments in an organization. Con- 
versely, even though two classes have similar performance 
objectives, they may have very different resource demands. 
Controlling the perfomnmce for such a workload by manu- 
ally adjusting low-level DBMS performance “knobs” will be- 
come increasingly impractical, as has been argued previously 
[Nikolaou 92, Brown 93b, Weikum 931. Ideally, a DBMS 
should be able to accept performance goals for each class 
as inputs, and should dynamically adjust its own low-level 
performance knobs using the goals as a guide. 

Given performance objectives for each class, there are a 
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number of mechanisms that a DBMS can use to achieve them: 
load control, transaction routing, CPU and diskrscd\&cii 
memory management, data placement, processo 
query optimization. etc. Each of these could be driven b; 
perfotmance objectives. Recently, techniques have been pro- 
posed for goal-oriented transaction touting [Ferg 931 and goal- 
oriented buffer management [Brown 93aJ. However, a com- 
plete solution to the problem of automatically satisfying mul- 
ticlass performance goals must employ more than one mecha- 
nism; each class can have different tesource consumption pat- 
terns, so the most effective knob for controlling perfotmance 
may be different for each class. 

With a choice of knobs to turn. a goal-oriented DBMS is 
faced with several non-trivial decisions. Perhaps the most ob- 
vious one is which knob should be turned. For example. if a 
response time reduction can be accomplished by either a mul- 
tiprogramming level (MPL) increase or a memory allocation 
increase, which knob should be used? Should both be used si- 
multaneously? Even if the DBMS can de&amine which knobs 
to adjust, it must still decide in which dim&ion and how far 
each one should be turned. In other words, the DBMS must 
translate a performance goal specification into a particular te- 
source allocation that will achieve that goal. How should it 
perform this translation? The problem is further complicated 
by the fact that classes can interfere with each other’s per- 
formance through competition for shared resources. Because 
of this interference, the DBMS may find a knob setting that 
achieves the goal for one class but at the same time makes it 
impossible to achieve the goal for some other class. 

This paper proposes an algorithm that dynamically adjusts 
both multiprogramming levels and memory allocations in order 
to achieve a set of per-class response time goals for complex 
multiclass workloads. Although the rcquirancnt hem is for 
a simultaneous solution’ across ail classes, our algorithm at- 
tempts to find a solution for every class i&pendently; at the 
same time, it tries to avoid solutions for one class that prohibit 
solutions for other classes. Such an approach significantly 
simplifies the problem, finds solutions relatively quickly, and 
eventually discovers a reasonable simultaneous solution in a 
large number of cases. Similar to other work in this a the 
algorithm uses a set of heuristics and estimation techniques to 
control a feedback mechanism. In addition, it exploits a novel 
scheme that provides for non-integral MPL limits in order to 
provide much finer grained control over response times. 

The remainder of the paper is organized as follows: We be- 
gin by reviewing existing techniques for automatically achiev- 
ing multiclass performance goals in Section 2. Section 3 gives 
background information on the problem of goal-oriented MPL 
and memory management and introduces some of the diffi- 
culties that arise in attempting to solve this problem. Our 
algorithm for adjusting multiprogramming levels and memory 

‘A solution for a class is defined as a set of resource ailocalions that 
achieves the response time goal for the class. 
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allocations is then presented in Section 4. We describe our 
detailed simulation model in Section 5, and we use this model 
to analyxe the behavior of our algorithm on multiclass work- 
loads involving short transactions and longer-running queries 
in Section 6. Finally, we discuss future work and summarixe 
our conclusions in Section 7. 

2 Related Work 
The case for goal-oriented resource management has 
been argued for distributed computing systems in general 
[Nikolaou 921 and for dambase management systems in par- 
ticular [Brown 93b], The COMFORT project at RTII Zurich 
is also directed toward the automation of DBMS performance 
tuning, and is described in [weikum 931. While these posi- 
tion papers describe the motivation for goal-driven systems, 
very little has been published to date on actual mechanisms 
for achieving per-class performance goals in a DBMS. A large 
amount of reseamh exists on the allocation of memory and 
pmcessors in a DBMS, but the vast majority of this work is 
directed toward optimizing some system-wide objective (e.g. 
maximizing buffer hit rates or minimizing individual query 
execution times). A system-wide performance objective will 
not, in general, satisfy a set of class-specific goals. The re- 
mainder of this section reviews the few published techniques 
for automatically achieving per-class performance goals in a 
dambase or operating system environment. 

Two predictive algorithms for goal-oriented transaction 
routing in distributed transaction processing systems ate de- 
scribed in [Ferg 931. These two algorithms attempt to predict 
the effect of a routing decision on the response times of each 
class. Their inputs include the average processor, disk, and 
communication demands for transactions of each class, the 
number of transactions of each class running on each node, and 
the observed perclass response times on each node. These in- 
puts are used to estimate the CPU queuing &lays and response 
times that would result from a particular routing decision. A 
routing is then selected that minimizes the murimum perjor- 
mance index for any class, where the performance index is 
&fined as the observed response time divided by the response 
time goal. Because it is normalized relative to the goal, the 
performance index is a useful indicator of performance that al- 
lows comparisons across classes. An objective of minimizing 
the maximum performance index means that the algorithms do 
not have to maintain specific response times very accurately. 
Rather, they need only determine the correct relative response 
times when comparing between dit%%nt routing possibilities. 

Another mh to achieving per-class performance goals, 
called fragment fencing [Brown 93a], uses disk buffer alloca- 
tion to explicitly manage buffer hit rates Fragment fencing 
maintains per-class statistics on dambase reference frequencies 
and observed hit rates, and uses them to determine a minimum 
number of memory resident pages for each “fragment” of the 
dambase. Fragments are normally files or subsets of file pages 
that have relatively uniform access probabilities. This algo- 
rithm uses a feedback mechanism guided by simple predictions 
to determine the number of memory resident pages for each 
databae fragment required to achieve the response time goals 
of each class. A limitation of this algorithm is that it cannot 
satisfy goals for classes which have low buffer hit rates (e.g. 
sequential scans of infrequently accesr& files). 

The adaptive memory allocation and MPL adjustment algo- 
rithm described in [Mehta 931 showed the importance of in- 
tegrating memory allocation and load control to achieve good 
perfotmance. While it does not specifically accept response 

time goals, the adaptive algorithm is of interest here because its 
objective of maximizingfairness is very close to the objective 
of the goal-oriented transaction routing algorithms described 
in [Ferg 931. The adaptive algorithm computes a performance 
metric for each class which is the ratio of the observed re- 
sponse time to the best possible response time (as obtained 
by running single queries of that class alone in the system). 
Fairness is then defined as the absence of variance in this met- 
ric across all classes, so the adaptive algorithm’s objective of 
maximizing fairness is similar to minimizing the maximum 
performance index. The adaptive algorithm accomplishes its 
objective by dynamically determining the MPL limit for each 
class using simple heuristics that guide a feedback mechanism. 
A memory allocation for each class is derived from the class’s 
multiprogramming level using another set of heuristics. While 
the adaptive algorithm w memory allocation for pur- 
poses such as join hash tables and sort merge work areas, it 
assumes that all data is disk-resident and thus does not con- 
trol the allocation of memory for longer-term buffering of disk 
Pages. 

IBM’s MVS operating system has long provided mecha- 
nisms for achieving perclass performance goals [IBM93]. 
MVS performance goal specification is much more compli- 
cated than simply indicating the desired response times for 
each class, but the net effect is still the same. Much like the 
adaptive algorithm of [Mehta 931, the System Resources Man- 
ager (SRM) component of MVS uses a set of heuristics to guide 
a feedback mechanism that determines MPLa and working set 
sizes for each class. SRM is more aggressive than the sdap- 
tive algorithm in achieving its goals - it will swap out active 
processes (along with their virtual address spaces) in order to 
achieve its objectives. Swapping out active transactions is an 
action that may not be desirable (or even possible) in the con- 
text of a DBMS, where transactions may need to be aborted 
in order to free up their resources. The cost of rolling back 
aborted transactions would likely limit the extent to which this 
technique could be used in a DBMS. The SRM does not under- 
stand disk buffer memory and in this respect it is again similar 
to the adaptive algorithm. 

In summary, we note that very few examples of goal-oriented 
resource management algorithms exist in the literature. More- 
over, with the exception of the MVS SRM, the few existing 
examples all primarily control a single‘knob.” The most com- 
prehensive approach (the MVS SRM) is not directed toward 
a DBMS environment, and because it is part of a commer- 
cial product, detailed implementation data is not readily avail- 
able. Clearly, if automated goaldriven performance tuning for 
database management systems is to become a reality, compte- 
hensive algorithms need to be developad and evaluated. The 
algorithm described and analyzed in this paper is a first step in 
this direction. 

3 Background 
This section provides some background information that will 
define the problem of goal-oriented MPL and memory man- 
agement and illustrate the difficulties that must be addressed 
in order to solve this problem. First, the terms performance 
goal, MPL knob, and memory knob are defined. The prob- 
lem of goal-oriented MPL and memory management is then 
described, and a solution strategy is outlined. The section 
closes with an investigation of the MPL and memory manage- 
ment knobs and their effect on query response times using a 
simulated complex workload. 
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3.1 Goal Specification 
While there are many possible ways to specify a set of perfor- 
mance goals, they will be defined for our purposes as follows: 
For each workload class, the DBMS will attempt to maintain 
a user-specified average response time. Because the start and 
length of the period over which average response times are 
computed greatly determines whether this goal can be met, we 
will examine both average and transient response times when 
evaluating our algorithm. If a response time goal is not spec- 
ified for a workload class, then the DBMS is expected to ‘do 
its beat” with respect to that class. While it may be desirable 
from an administrative point of view to define mote than one 
such “‘no-goal” class, in this paper we will assume that all no- 
goal work is collected into a single no-goal class. Note that 
because we want to provide the best possible performance for 
the no-goal class, we need to allocate resoumes in a way that 
not only meets. the ~rformance objectives of the goaI c+e& 
Fw:; also mmtmizes response times for no-goal transactions 

. 
We will assume throughout this paper that the system is 

configured such that it is possible to satisfy the goals for all 
classes in steady state. In other words, the system does not 
operate in “‘degraded mode” [Nilcolaou 921 except possibly for 
transient periods. This ‘*nondegraded mode” assumption is 
important because it allows us to avoid situations in which 
the algorithm must decide which class (or classes) should be 
sacrificed so that others may meet their goals. Realistically, 
such decisions about the relative importance of each class must 
come from system administrators as patt of a more detailed 
goal specification. Here, however, we restrict our attention 
to the mote likely scenario in which the specified goals ate 
realistic (on average) with respect to the given configuration. 

3.2 The MPL and Memory Knobs 
Most current dambase management systems provide only asin- 
gle, system-wide MPL knob which is set statically (if they pro- 
vide one at all). The objective for setting a system-wide MPL 
knob is to find the “ideal” point between under-utilizing and 
over-utilizing DBMS resources. A static system-wide MPL 
knob is not a sufficient mechanism for achieving per-class re- 
sponse time goals, however. Each class will likely have differ- 
ent goals and/or resource demands and must therefore IX con- 
trolled individually. Our work uses a dynamically adjustable 
MPL knob for each class. The objective for setting such a 
per-class MPL knob is not only to prevent over-utilization of 
resources, but also to achieve each class’s response time goal. 
Unfortunately. it may not be possible to produce a particular 
average response time value by turning the MPL knob alone. 
MPL limits are discrete integers and, holding other knobs con- 
stant, they will result in a discrete set of response times-none 
of which may actually equal the goal. 

Database management systems typically provide memory 
knobs as well, but these too are normally system-wide knobs. 
As was the case for MPL, our work will use a memory knob 
for each class. We consider two types of classes whose te- 
sponse times can be reduced by allocating additional memory 
beyond the minimum required to execute: disk bt&er classes 
and working storage classes. Disk buffer classes benefit from 
additional memory by experiencing increased buffer hit rates 
on the database pages that they reference. In contrast, working 
storage classes use memory for “‘computational” purposes (e.g. 
join hash tables or sort work areas); their benefit comes from 
query processing algorithms that can eliminate disk I/OS in 
exchange for additional memory, even in the case of negligible 
buffer hit rates on their input files. Wbileclasses certainly exist 

that benefit from both disk buffers and computational mem- 
ory, we will assume that such classes can be categorixed on 
the basis of which type of memory is more important in con- 
trolling their performance. We will not address classes whose 
response times are insensitive to memory allocation in this 
paper, as mechanisms other than memory allocation and mul- 
tiprogramming levels are required to control the performance 
of such classes. 

3.3 Problem Statement 
The objective of goal-oriented MPL and memory manage- 
ment is to find the <MPL. memory> pairs for each class c 
<mpl,, mem,> that allow every class to achieve its goal and 
leave the hugest amount of left-over resources available for 
the no-goal class. Finding such a set of pairs is a difficult 
task for a number of reasons, the foremost being the infenle- 
pendence between classes. Classes am interdependent because 
their response times are determined not only by their own MPL 
and memory settings, but also by the amount of competition 
that they experience at shared reaoum (processors, memory, 
disks, locks, etc.). The amount of competition seen by 8 class 
is, in turn, determined by the MPL and memory settings of all 
other classes. Thus, the response time of any given class is 
determined both by its own MPL and memory settings and by 
the settings of all other classes as well. More formally, 

c 
memc 5 M 

VC 

where hiPL[c] = mpl, and MEU[c] = mem,, and M stands 
for the total amount of memory that is available for allocation. 
Note that each class has a unique response time function, fe. 

Ideally, it would be possible to derive the response timefunc- 
tions (the fc’s) for each class and then use these functions to- 
gether with established mathematical optimization techniques 

in order to determine the 6~5 and MG& vectors that sat- 
isfy the goals for all classes and minimize the no-goal response 
times. Unfortunately, deriving fc for each class is beyond the 
current state of the art. While cost-based query optimizers 
have formulas that can be used to estimate pmcessor and disk 
service times, these formulas offer no insight into the queu- 
ing delays that occur at the system entry point, the CPU, and 
the disks. Techniques from queuing theory could be applied 
to account for these delays, but predicting such delays even 
for a single hash join running alone on a centralized DBMS 
turns out to be non-trivial due to complexities such as caching 
disk controllers and intra-operator concurrency [PateI 93 . At 
best, the application of queuing theory to complex diiikse 
workloads is a difficult open research challenge. 

3.4 A Per-Class Solution Strategy 
Looking at the problem of goal-oriented MRL and memory 
management from an implementation perspective, we can clas- 
sify possible solutions to this problem in one of two ways: al- 
gorithms with a system-wide orientation and algorithms with 
a per-class orientation. A system-wide orientation means that 
the algorithm is activated on a global basis (e.g. on a timer 
pop, or some system-wide event) and, once activated, takes 
actions based on an analysis across 011 classes. The advantage 
of such an approach is that it provides the potential for dealing 
with the interdependence of classes; changes can be made to 
the system “as a whole.” The disadvantage.of a system-wide 
orientation is that it requires, after any resource allocation 
change, a sufficient waiting period to elapse in order to let the 
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entire system “settle” to a new steady state. This requirement 
effectively ties the responsiveness of a system-wide algorithm 
to the slowest-moving class in the system (i.e. the one with 
the lowest throughput). 

In contrast, a per-class orientation means that the algorithm 
is activated for each class on a time frame that is specific 
to that class. Once activated, its actions are oriented toward 
a specific class and are based largely on an analysis of that 
class in isolation. The advantage of a per-class orientation is 
that it treats each class independently, allowing fast moving 
classes to respond quickly without being tied to the behavior 
of slower classes. Decoupling classes from each other by us- 
ing a per-class orientation is especially important for complex 
workloads, where response times can vary by three or four 
orders of magnitude across classes. The disadvantage of a 
per-class orientation is that it completely ignores the interde- 
pendence between classes. Despite its disadvantages, we will 
adopt a per-class orientation because of its superior respon- 
siveness. Additional heuristics can be used to compensate for 
the insensitivity of this approach to inter-class dependencies. 

Because it ignores inter-class dependencies, a per-class ap- 
proach greatly simplifies the problem. Instead of having to 

tied the J@L and J4?%4 vectors that achieve the goals for 
all classes in the system, we can independently search for each 
class’s solution (i.e. an <mpl,, mem,> pair that achieves its 
goal). Even for a single class, however, it is difficult to pm- 
diet response times as a function of MPL and memory. Chte 
method that is guaranteed to find a solution is to exhaustively 
search the entire solution space, trying every possible <MPL, 
memory> combination. An exhaustive approach may actually 
be feasible if the search space is small, but obviously becomes 
too time consuming in the case of multiple knobs where there 
can be hundreds or thousands of possible combinations. Be- 
cause our search space is so large, we will settle on a feedback 
approach which is controlled by heuristics and simple estima- 
tion techniques. The heuristics and estimates are used to get 
“in the ball park”, while the feedback mechanism is necessary 
because any heuristic or prediction will eventually fail on such 
a complex problem; the system must be continuously observed 
to insure that the outcome of any knob adjustment is actually 
what was intended. 

3.5 The Effect of MPL and Memory on Re- 
sponse Times 

Any feedback mechanism is based on a continual process of 
observing, adjusting knobs, observing, adjusting, etc. The 
success of this process is dependent on the feedback con- 
troller, whose job is to translate observations into the knob 
adjustments that will eventually achieve the goal. It is much 
easier to develop good controllers for feedback mechanisms 
that adjust a single knob (such as those in [Brown 93a] and 
[Mehta 931). as the search space is one dimensional; the only 
decision required is whether to turn the knob “up” or “‘down.” 
We have two knobs, however, and are thus faced with a two- 
dimensional search space. In order to design a controher that 
can move efficiently through this space toward the class’s goal, 
we need to have some idea of how the different points on a two 
dimensional <MPL, memory> grid relate to response times. 
In the remainder of this section, we will explore this relation- 
ship empirically using a simulated multiclass workload. These 
simulations will provide some of the background information 
needed to develop our two-dimensional <MPL, memory> 
feedback controller. 

The simulated workload and configuration that we use here, 

and throughout the paper, are explained in greater detail in 
Section 5. For the purposes of this section, a brief overview 
will be sufficient. The configuration consists of a single 25 
MIPS processor, 8 MB of memory, and five 1 GB disks.* The 
workload consists of three classes: ‘*queries,” Yransactions,” 
and “big queries.” The query class represents a consumer of 
working storage memory. It consists of binary hybrid hash 
join queries [Dewitt 841 whose performance is related to the 
amount of memory allocated for their join hash tables. File 
sixes referenced by the query class are chosen such that their 
join hash tables can consume 20% of the configuration’s mem- 
ory at their maximum allocation.3 The transaction class per- 
forms random single-record lookups on four common files via 
B+ tree indices, modeling a disk buffer class. The big query 
class is similar to the query class except that its file sixes yield 
hash tables capable of consuming 80% of the configuration’s 
memory at the maximum allocation. Each class references its 
own unique set of database files, and all files are horizontally 
partitioned (i.e. fully declustemd) across the five disks. 

Following a per-class approach, the experiments in this sec- 
tion will examine the effects of a range of MPL and memory 
combinations for the query class only, while ignoring the effect 
of these combinations on the transaction and big query classes. 
The big query class is-set.& an MPL limit of one query, which 
is allocated its minimum memory requirement, while the trans- 
action class has no MPL limit and receives whatever memory 
is left over after the big query and query classes have been al- 
located their memory requirements. Figures 1 and 2 show two 
different representations of the query class response times that 
result from various MPL and memory combinations. Figure 1 
shows query response times as a function of memory per qzury 
(with each query receiving the same allocation), while Figure 
2 shows response times as a function of memory per class (i.e. 
class MPL times memory per query). Query response times 
att shown on the y-axes (in seconds) and memory allocations 
are shown on the x-axes (in megabytes). Each sloping line 
in the graphs corresponds to a different MPL limit, and the 
straight horizontal lines represent a 130 second response time 
goal for the query class. 

Table 1: 130 set goal solution characteristics 

The most significant phenomenon shown by Figures 1 and 
2 is the existence of multiple solutions to a particular response 
time goal. Each of the five points where the 130 second goal 
line intersects an MPL line represents a possible solution. Ta- 
ble 1 lists the characteristics of each of these solutions. While 
all of the solutions are equivalent as far as the query class is 
concerned (since they all achieve its 130 second goal), each 
one represents a different trade-off between memory and disk 
consumption. For example, the first solution in Table 1 (with 
an MPL limit of one) consumes 1.64 megabytes of memory and 
results in a 49% disk utilization, while the last solution (with 
an MPL limit of four) consumes only half as much memory 

21%ii configuration is scaled up in later experiments. 
%c maximum memory allocation for a hash join is defined as enough 

memory to hold a hash table repnsentmg the entire “build” (smaller) relation; 
this is approximately I .2 times the size of the build relation. The minimum 
memory allocation is the square root of the maximum allocation. 
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Figure 1: MPL and memory per query Figure 2: MPL and memory per class 

but results in a disk utilization of 75%. 
How should a feedback controller decide which of these so- 

lutions is the %est” one? This is an important decision because 
the choice of a solution for any one class will determine the 
level of competition seen by other classes at shared tesoutces, 
and thus will also indirectly determine their set of feasible so- 
lutions as well. Among those listed in Table 1, the sohrtions 
with MPL limits of two and three are poor choices because 
the others consume either less memory or less disk. Which of 
the remaining solutions is “best” depends upon what tesources 
are needed by other classes in the system. Unfortunately, the 
other classes in the system will also have multiple solutions to 
choose from, and each of their solutions will represent a differ- 
ent trade-off between resources. Thus, it is extremely difficult 
to anticipate the best solution for a particularctass without 
determining the solutions for every class simultaneously. 

Even if only a single solution existed for any particular re- 
sponse time goal, the feedback controller must still understand 
how the memory and MPL knobs effect response times in or- 
der to use those knobs to move a class toward its response time 
goal. Figures I and 2 illustrate this relationship between MPL. 
memory, and response times. Figure 1 shows that if memory 
per query is held constant (i.e. for any vertical line drawn 
through the graph), an MPL increase will result in a response 
time improvement for this workload. However, this improve- 
ment diminishes as the MPL increases because the benefits of 
increased concurrency eventually reach a point of diminishing 
returns. Increasing the MPL is not the only way to improve 
response time and throughput, however. Increasing memory 
per query will also allow queries to flow through the system 
faster. We can see this effect by looking at the right hand 
side of Figure 1 (huger memory allocations). There, MPL 
increases (especially beyond two or three) have less of an ef- 
fect on response times than MPL increases at smaller memory 
allocations do. This is because execution times are improved 
enough by the increased memory allocation that higher degrees 
of concurrency are less effective in that region of operation. 

The relationship between MPL and memory per class is 
more complex. Figure 2 shows that if the query class memory 
is held constant (i.e. for any vertical line), higher MPLs do 
not necessarily result in lower response times. For example, 
if we draw a vertical line at three megabytes of memory in 
Figure 2, we can see that running two queries provides the best 
perfomance (because those queries will be operating at close 
to their maximum memory requirement). Similarly, for 4.5 
megabytes, an MPL of three produces the best response times 

0 I 2 3 4 5 
mdcl~ f~bytcd 

because there is enough memory to run three queries at their 
maximum requirement. While it is not shown in Figure 2, this 
behavior tepeats itself for higher MPLs: when there is enough 
memory to run N queries at their maximum requitemart, then 
an MPL of N provides the best query performance. On the 
other hand, the best performance for only one megabyte of 
query class memory is obtained with an MPL- of six. In this 
region of operation, the reduction in MPL queuing provided 
by a higher MPL outweighs the penalty of a reduced memory 
allocation per query. These observations support the conclu- 
sions of Cornell and Yu [Yu 931, who showed that the best 
query performance is obtained when queries are allocated ei- 
ther their minimum or maximum memory requitwnents. Our 
algorithm will exploit the Cornell and Yu results, as will be 
explained in !Section 4. 

While space limitations prevent a detailed description of 
the other simulated workloads that we have explored, we can 
summarize our findings as follows. First, we observed that 
in nearly all cases, multiple solutions will exist to a class’s 
response time goal. Second, the relationship between MPL, 
memory per class, memory per query, and CPU/disk utiliza- 
tions is a complex function of the memory demand of the class, 
its arrival rate, its goal, and the degree of competition faced 
by the class from others in the system. As a result, a feedback 
controller cannot easily predict the response time that will re- 
sult from a particular cMPL, memory> knob setting. In f&zt, 
it may not even be able to predict whether response times will 
increase or decrease. 

4 M&M: Goal-Oriented MPL and 
Memory Management 

This section describes M&M, our algorithm for goal-oriented 
M PL and M emory management. M&M’s key components 
ate a general feedback mechanism and controllers that set the 
MPL and memory knobs for each class. Before describing 
these components in detail, we first detine a few basic mem- 
ory management principles that are used by M&M. ‘Ihe first 
principle is that both working storage and disk buffer memory 
are allocated out of a single shared memory pool that is man- 
aged by M&M. Without this unification, it would be difficult 
for M&M to manage the trade-offs between the two types of 
memory usage. Out of this single shared pool, M&M sets 
aside a small portion of available memory to insure that the 
minimum requirements of concurrently executing transactions 
can be met under normal operating conditions. This set-aside 
area is necessary to insure that MPL limits are the primary 
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admission criteria, and not memory availability. 

M&M associates a memory pool with each goal class that 
rtpresents the amount of memory required by the class to meet 
its goal. The size of this pool varies dynamically in response 
to changing system loads and as each class compensates for 
interference caused by changes in other classes. Any memory 
remaining after subtracting the set-aside areas and the goal 
class pools from the total available memory is called the unre- 
served pool, which is made available to the no-goal class. Any 
&tease in the pool size for a goal class is taken from the unre- 
served pool, and any decrease is given back to the unreserved 
pool. If the unreserved pool is empty, no pool increases are 
allowed and the no-goal class is forced to execute at its min- 
imum memory tequimnent (using memory from the set-aside 
-1. 

4.1 Feedback Mechanism 
M&M’s feed&k mechanism is largely based on the feedback 
mechanism of the fragment fencing algorithm, which is de 
scribed in detail in [Brown 93a]. We will give a brief overview 
of M&M’s feedback mechanism here, primarily highlighting 
the diffetences between M&M and fragment fencing. 

M&M analyzes the performance of each class indepen- 
dently, adjusting the memory or MPL knobs if requited, at well 
defined intervals. ‘Ihe length of these per-class intervals is de- 
termined by a predefined number of transaction completions, 
and is thus unique to each class. The number of transaction 
completions is chosen to strike a balance between the need 
for statistically significant samples (where more completions 
are better) and the requirement for responsive behavior (where 
fewer completions are better). M&M’s decisions are based on 
statistical observations computed over the current interval or 
on exponentially weighted averages of curmnt and past interval 
statistics (depending on the particular statistic). 

To determine whether a class is meeting its goal, its aver- 
age observed response time is compared to the msponse time 
goal for the class. If the observed response time is within 
some tolerance band around the goal (i.e. plus or minus some 
percentage of the goal), then the goal is considered satisfied. 
otherwise, the controller for the class will be invoked to ad- 
just its memory and/or MPL knob(s), and the goal will be 
checked again after the changes take effect M&M automat- 
ically computes the tolerance band arouhd each class’s goal 
by observing the “natural” variance in response times for each 
class in steady state. Higher variance will result in a wider 
tolerance band. Automatically computing a tolerance band for 
each class allows classes with lower variance to be controlled 
mote aggressively and prevents the algorithm from attempting 
to manage natural statistical fluctuations within a class. 

Because statistics on class behavior will not exist upon a 
system “cold start”, M&M defines a warm-up period for each 
class of one interval in length in order to allow these statistics 
to be accumulated. Because of the initial lack of statistical 
data, M&M cannot decide what the MPL limits for each class 
should be during the warm-up period. A system administrator 
must therefore supply the initial MPL limits to M&M on a 
cold start. For the simulated workloads in this paper, we use 
a cold-start MPL limit of two for working storage classes and 
an infinite MPL limit for disk buffer classes (i.e. no load con- 
trol). Queries from working storage classes are allocated their 
minimum memory requirements during warmup, and transac- 
tions from disk buffer classes compete freely for any remaining 
physical memory. 

4.2 Disk Buffer Class Controller 
M&M adopts the fragment fencing algorithm [Brown 93a] to 
control the memory knob for disk buffer classes. Fragment 
fencing uses observed response times and hit rates for each 
class to set a minimum number of pages that must remain 
memory resident for each database fragment4 referenced by 
a class; these minimums are called furget residencies. The 
buffer manager’s native page replacement policy is modified 
to prevent a page from being chosen for replacement if mplac- 
ing it would bring the number of memory-resident pages for 
its fragment below the fragment’s target residency. If a class’s 
response time goals are being violated, fragment fencing re- 
sponds by increasing the target residencies for fragments ref- 
erenced by the class. Conversely, if goals are being exceeded, 
target residencies will be lowerad. A disk buffer class’s pool 
size is computed as the sum of the target residencies for every 
fragment referenced by the class. 

M&M takes the sim 
Ii 

lest possible approach in setting the 
MPL limit for disk bu er classes - it sets them all to infin- 
ity. The rationale for this choice is that the actual amount of 
memoty needed by a disk buffer transaction at any particular 
moment is very small. For example, an index scan requites at 
most one page per index level and one or a few pages for the 
indexed data file. Thus, the cost of admitting an additional disk 
buffer class transaction is very low in terms of the minimum 
memory requited, making it feasible to run disk buffer classes 
at very high multiprogramming levels without causing a high 
degree of memory contention. 

While fragment fencing is an effective mechanism for meet- 
ing disk buffer class performance goals, them is a subtle prob- 
lent with its approach when it operates concurrently with con- 
trollers for working storage classes. The basic premise of 
fragment fencing is that memory is the bottleneck tesoutce, 
so it always tries to lower a class’s target tesidencies to the 
minimum possible amount that can achieve its response time 
goals (i.e. it favors “low memory/high disk” solutions). If the 
disks are the bottleneck resource, however, the high disk uti- 
lizations that result from this approach may prevent working 
storage classes from meeting their goals, regardless of what 
their own MPL and memory settings are. This situation is a 
classic example of an inter-class dependency. 

We account for this inter-class dependency by allowing 
M&M to modify fragment fencing’s assumption that memory 
consumption must be minimized. M&M does this by tequest- 
ing that disk buffer classes 

F 
ter an exceed mode. A disk buffer 

class in exceed mode wil increase its target residencies (and 
pool size) in order to incmase its buffer hit rates and decmase 
its disk utilization. The pool size will continue increasing in 
small increments (5% of configuration memory) at each inter- 
val until one of two events occurs either disk utilizations are 
reduced to a point where they no longer the primary reason 
for violating the goal (i.e. memory or MPL are once again the 
primary factors), or the unreserved pool is exhausted (i.e. the 
request for disk utilization reduction failed). As long as a disk 
buffer class is in exceed mode, fragment fencing will not shed 
the “excess” memory that is causing its response time goal to 
be exceeded. 

4.3 Working Storage Class Controller 
As Section 3 has shown, the huge number of possible <MPL, 
memory> combinations, the complex relationship of MPL 

*As trwttioned in Section 2, fragments are normally files or subsets of tile 
pages (e.g. one level of an index tree) that have relatively uniform access 
probabitities. 
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and memory to response times, and the existence of multiple 
solutions to a single goal make the design of a working stor- 
age controller very challenging. However, Section 3 has also 
provided some insight for developing heuristics to efficiently 
prune the search space of possible <MPL, memory> com- 
binations. This section will first explain these heuristics and 
then show how they are used by M&M to determine MPL and 
memory knob settings. It will then describe the concept of 
non-integral MPL limits, which will allow response times to 
be “‘fine-tuned” using the MPL knob. 

43.1 Working Storage Class Controller Heuristics 
The most important heuristic was suggested by the discussion 
of Figure 2: If there is enough memory available to run N 
queries at or near their maximum requirement, then the best 
response time is obtained with an MPL of N because those 
queries can execute with optimal performance. For small 
available memory amounts, the best response time is obtained 
with high MPLs and a perquery memory allocation close to 
the minimum requirement. These results confirm the mem- 
ory allocation heuristic derived by Cornell and Yu [Yu 931, 
which states that the best return on consumption is obtained 
by allocating only the minimum or the maximum memory re- 
quirement of any individual query. Return on consumption is a 
measure of response time improvement versus the space-time 
cost of memory. In addition, Cornell and Yu also showed that 
the return on consumption for a maximum allocation is much 
higher than for a minimum allocations These results form the 
basis for the first heuristic: 

Heuristic 1 Allocate the maximum memory requited by each 
individual query if this is possible; otherwise allocate the min- 
imum requirement. Allocate an amount in between mitt and 
max to only one query of a class at any moment, and only if 
there is no other alternative. 

The next heuristic sets an upper limit on the total MPL for 
a class and is based on the behavior of the MPL knob that 
was observed previously in Figure 1: As MPL queuing delays 
decrease, the potential response time benelits of increasing 
the MPL dectease as well. Clearly, the total MPL limit of 
the class should not be increased beyond the point at which 
nearly all MPL queuing delays are eliminated; memory would 
be underutilized as a result. M&M defines this point as an 
average MPL wait queue length of less than 0.5. In other 
words: 

Heuristic 2 Do not increase the UPL of a class if there are 
fewer than 0.5 waiters in its MPL queue, on average. 

M&M’s next MPL-limiting heuristic recognizes that an 
MPL increase implies a cost for the other classes in the system; 
this cost comes in the form of increased competition at shared 
resources. MPLs should therefore not be allowed to rise so 
high that resource utilizations become “unreasonable.” M&M 
translates the notion of “reasonable utilization** to “‘disk queue 
lengths that are less than or equal to one, on average.” In some 
cases, however, the only possible way to achieve a set of goals 
will be to run the system with average queue lengths above 
one. Thus, if there is no other option, M&M may choose to 
ignore its disk queue length limiting heuristic. Thus, the third 
heuristic is: 

‘The Cornell and Yu results apply to hash-based, sort-merge, and nested 
loops join methods. 

Heuristic 3 Do not increase the MPL of a class ifaverage disk 
queue lengths are greater than one, unless there is no other 
alternative. 

Given that only minimum or maximum memory require- 
ments are allocated to individual working storage queries, 
M&M sets the MPL limit for a class by determining how many 
of its queries should execute at min and how many should ex- 
ecute at max. The final heuristic deals specifically with one 
effect of an increase in the number of min queries, namely, a 
corresponding increase in the probability that an arriving query 
will be allocated its minimum memory requirement. Because 
a min query requires many mote I/OS than one running at max 
(roughly three times as many in the case of a hash join), any 
increase in the probability of a minimum allocation for a class 
will necessarily increase theclass’s average execution time (i.e. 
response time minus waiting time). Unfortunately, predicting 
whether the admission of an additional min query will increase 
or decrease the class’s average tesponse time is extremely dif- 
ficult. However, in all of our exploratory simulations, we have 
observed that any increase in the number of min queries always 
resulted in a response time increase when the number of max 
queries was two or greater While this observation may not 
apply under all conditions, its value in pruning non-productive 
combinations of min and max far outweighs the risk that it will 
dismiss a possible solution. Thus, our final heuristic is: 

Heuristic 4 Never increase the number of queries allowed to 
run at min if two or more queries are allowed to run at max. 

4.3.2 Determining a New <MPL, Memory> Setting 
Depending on the current state of the system, the working 
storage class controller will take one of four actions when 
invoked by M&M’s feedback mechanism to reduce the average 
response time of a class: 

max+ + Increase the number of queries allowed to run at max. 
The pool size for the class is increased enough to allow 
one more query to execute at max (based on the average 
maximum requirement of the class). If the number of 
queries allowed to execute at min (minMPL) is non-zero, 
then minMPL is reduced by one and the total MPL limit 
for the class remains unchanged. If one query of the class 
had been permitted to execute in between min and max. 
then this is no longer allowed. 

min++ Increase the number of queries allowed to run at min. 
The pool size for the class is incteased enough to allow 
one more query to execute at min (based on the average 
minimum requirement of the class). If one query of the 
class had been permitted to execute in between min and 
max. then this is no longer allowed. 

disk-- Request a reduction in disk utilizations. 
This action is accomplished as described in Section 4.2. 

mem+ + Increase the memory allocation for the class. allowing 
one query to execute between min and max. 
This action is only taken as a last resort, and is only 
possible if at least one query is allowed to execute at min. 
The pool size for the class is increased by a fixed step 
size, which is set at 5% of configuration memory. 

Using the heuristics just derived, Figure 3 shows how M&M 
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decides what action to take and highlights the rational behind 
these decisions. 

int URPool; 
int avghiax; 

// current size of the unreserved pool 

int maxMPk 
// avg maximum memory demand of the class 
// # of max queries allowed for the class 

boo1 disksFull = (avg disk q lengths > 1 .O); 

if (there are no disk buffer classes OR 
a previous request failed to reduce disk queue lengths) then 
disksFull = FALSE;// ignore heuriStic # 3 

endif 

if<disksFull) then 
disk--: /J heuristic 3 prevents min++ or max++ 

// and heuristic 1 says mem++ is a last resort 
ekieif (there are fewer than 0.5 waiters in the MPL queue) then 

mem++: I/ heuristic 2 prevents min++ or map++, 
J/ no disk problem exists so disk-- is useless 

elseif (avghhx < URPoaO then 
max++; //heuristic 1 says try to maximize rctum 

It on memory consumption 
eLeif (maxh!Pf. < 2) then 

min++; //heuristic 1 says min++ if max won’t fit 
/I and heuristic 4 says min++ may help 

else 
mem++; // max won’t fit, heuristic 4 says min++ may hurt 

endif 

Figure 3: Algorithm to determine new <MPL, memory>. 

4.3.3 Non-Integral MPL Limits and MPL Reductions 
As we saw in Table 1, solutions to a particularresponse time 
goal will normally exist at multiple MPL limits. The amount 
of memory required to achieve the goal will be different for 
each MPL, and the exact amount will be difficult to predict. 
It would therefote seem that unless a search strategy explores 
a large range of memory knob settings at each integer MPL 
limit, it will very likely miss these solutions. If we could 
somehow set the MPL knob at non-integral settings, however, 
then we could fine-tune response times and find a solution for 
a wide range of memory knob settings. Given that there can IX 
only an integral number of queries present in the system at any 
moment, of course, such a non-integral MPL limit would have 
to apply to the average number of concurrent queries allowed 
in the system over time. 

M&M produces non-integral MPL limits by first locating 
the lowest integer MPL limit at which goals are exceeded, and 
then delaying the admission of the next query by an amount 
of time that is equal to the amount by which the previous 
query exceeded its goal. No delay is used if the previous 
query violated its goal. By delaying the admission of a new 
query, the average actual MPL is forced to be some fraction 
lower than the integer MPL limit. In effect, the delay makes 
the system behave as if each query’s response time exactly 
equals the goal for the class. This delay mechanism is used as 
follows: The search strategy of Section 4.3.2 is invoked to find 
the first <MPL, memory> setting that exceeds the response 
time goal for a class; this setting is called the home. During 
a home search, the delay mechanism is turned off. Once a 
home is found, the delay mechanism is turned on in order to 
fractionally reduce the MPL to a point at which the goals ate 
no longer exceeded. If the goals are violated again at any point 
(for example, due to a change in system load), then the delay 
mechanism is shut off and a new home search is initiated. 

One problem with this delay technique is that the MPL limit 
for a class could be set too high. For example, if the MPL 
and memory of a class were set during a period of heavy 
system load, and then the load drops, the delay would simply 
be increased to make up for any improvement in response 
times. As a result, the MPL and pool size for the class would 
be too high and memory would be underutilized. We thus 
need a way to detect that it has become possible to teduce a 
class’s MPL limit and still exceed its goals. M&M does this 
by continuously observing the average number of executing 
queries for each class (enecMpL). If exechfPL drops to more 
than one below the current integer MPL limit (excMPL < 
MPLLimit -I), then the delay is greater than that which would 
be produced by a lower maximum MPL; the curmnt MPL limit 
is therefore reduced by one. 

4.4 Controlling No-Goal Classes 
Memory for no-goal class transactions is allocated from the un- 
reserved pool. Thus, each individual no-goal transaction com- 
petes for unreserved pool memory on a first-come, first-served 
basis. If enough memory is available in the unreserved pool to 
run a no-goal transaction at its maximum demanded memory, 
then it is allocated its maximum. Otherwise, it takes what- 
ever is available (down to its minimum requirement). Note 
that even if the unreserved pool is empty, there should still 
be enough memory available in the set-aside um to allow a 
no-goal query to execute at min. 

In general, controlling no-goal class multiprogramming lev- 
els is required as well, as the additional competition for shared 
tesources that they provide represents a possible threat to the 
goal classes. However, it is difficult to decide on a “proper’* 
MPL for the no-goal class because there is no real basis for se- 
lecting appropriate resource allocations without a goal. For our 
initial version of M&M. we therefore simply limit the no-goal 
class to an MPL of one at all times. 

4.5 Algorithm Summary 
In this section, we quickly summarize M&M and describe its 
policy for allocating memory to individual disk buffer and 
working storage transactions upon admission into the DBMS. 
For disk buffer classes, the feedback mechanism periodically 
compares the observed average response time of the class 
against its goal. The disk buffer controller is caped to te- 
vise the target residencies and pool size for the class if it is 
violating or exceeding its goal. No adjustment is needed if the 
average response time falls within the dynamically computed 
tolerance band around the goal, or if the class has entered e.x- 
teed mode and is exceeding its goals in order to reduce disk 
utiiization. Individual disk buffer transactions are admitted 
immediately upon arrival, and they compete freely for any 
available (unpinned or unfenced) memory. 

The feedback mechanism for working storage classes will 
periodically monitor response times as well, and will invoke 
the working storage controller if the class’s goal is exceeded 
or violated. The working storage controller will then adjust 
one of the three knobs for the class: the number of queries 
allowed to execute with their maximum memory requirement 
(rrzu.MPL), the number of queries allowed to execute with 
their minimum memory requirement (minMPL), and the pool 
size for the class. It may also request that disk buffer classes 
enter exceed mode in order to reduce disk response times. An 
arriving working storage query is allocated max. in-between, 
or min. based on the number of queries currently executing at 
those allocations versus the number allowed. 
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File 
name 
b’ lil 
b$ iniex 
medium file 
medium index 
small file 
small index 
tiny file 
tiny index 
40% query files 
80% query files 
200% query files 

YFiGF (x Kw -mm I.600 
z 
320 
320 

: 
IO 

1:; 

Table 2: Database characteristics 

5 Simulation Model 

Parameter 
# Transaction termmals 
Mean tmn think time 
# Query terminals 
Mean auerv think time 
# Big due& terminals 
Big Query think time 
Number of CPUs 
CPU sped 
Number of disks 
Page size 
Memory size 
Disk cylinder size 
Disk seek factor 
Disk rotation time 
Disk settle time 
Disk transfer rate 
Disk cache context size 
Disk cache size 

Value 
lOtI 

IOsez 
60 

I SO/l 300/3200 set 
2 

osec 

25 MIP:: 
5 

8KB 
8 MB (I024 pages) 

83 rg; 

16.667 msec 
2.0 msec 

6.0 MB/set 
4pages 

24 contexts 

%ble 3: Simulation parameter settings 

This section provides a detailed description of the simulation 
model that we will use for evaluating the M&M goal-oriented 
MPL and memory management algorithm. The external wok- 
load source for the system is modeled by a set of simulated 
terminals. Each terminal submits a stream of transactions of 
a particular class, one after another. In between submissions, 
each terminal “thinks” (i.e. waits) for some random. exponen- 
tially distributed amount of simulated time. The number of 
terminals and the think times used in this study were chosen to 
provide an average disk utilization of 50 to 60% under normal 
operating conditions. 

The simulated disks are modeled after the Fujitsu Model 
M2266 (1 GB, 5.25”) disk drive. Our simulated disk pro- 
vides a 3/4 MB cache that we divide into twenty-four 32 KB 
cache contexts for use in prefetching 8K pages for sequential 
scans. In our model of the disk, which is a slight simplifi- 
cation of the actual Fujitsu disk, the cache is managed in the 
following manner: Each I/O request, along with the required 
page number, specifies whether or not @etching is desired. 
If so, one context’s worth of disk blocks (4 blocks) are read 
into a cache context after the originally requested data page 
has been transferred from the disk into memory; the requester 
is not released until the entire cache context is loaded (i.e. 
synchronous cache loading is assumed). Subsequent requests 
for one of the prefetched blocks can then be satisfied with- 
out incurring another I/O operation, and a simple round-robin 
replacement policy is used to allocate c&e contexts if the 
number of concumt pnfetch requests exceeds the number of 
available cache contexts. The disk queue is managed using an 
elevator algorithm. 

The CPU is scheduled using a round-robin policy with a 
5 millisecond time slice. The buffer pool consists of a set 
of main memory page frames of 8K bytes each. ‘Ihe buffa 
manager’s page n7placanen t scheme is a modified global LRU 
scheme augmented with three levels of hints. The hints are 
given by the query execution operatom when a page is un- 
fixed, and they define three levels of value as follows: ‘in- 
dex pages are considered more valuable than data pages, and 
randomly-accessad data pages are considered mart valuable 
than sequentially-a data pages. A memory reservation 
mechanism allows query execution operators to nzserve mem- 
ory for their working storage, thus preventing those reserved 
frames from being stolen while their reservation is in effect. 

Fun&on 
read EC liom buff page 
write EC to buff page 
insert in hash table 
probe hash table 
test index entry 
copy 8K msg 
start an ID 
apply @icate 
initiate select 
terminate select 
initiate join 
terminate join 

Table 4: Simulation instruction counts 

This function is used by hash join operators to reserve memory 
for their hash tables. 

‘Ihedatabaseitselfismodeledasasetoffiles,someofwhich 
have associated B+ tree indices. Index key sizes are 12 bytes, 
and key/pointer pairs a~ 16 bytes long. Table 2 lists the files 
and indices used for all of the en 
large, medium, small, and tiny K”” 

‘ments in this study. The 
les and indices a used by 

the “transaction” class (described next). The various “query” 
files arc actually sets of 50 identical files, two of which are 
randomly chosen for use as inputs for the execution of any 
particular “query” class transaction. 

The sizea of the files and indices used by the transadion 
class were chosen to result in a wide variety of possible hit 
rates. The size of the query files were chosen primarily to 
determine the average memory demand of these classes; the 
20%. 809b, and 20096 files result in average 
demands of 20% 80%. and 2ooRb of con t?= 

query memory 
guration memory, 

respectively. All files and indices a~ horixontally partitioned 
(declustered) across all five disks. 

The simulated workload for most of this study consists of 
three classes: “transactions,” “queries,” and “no-goal queries.” 
“Transactions” represent a disk buffer class with short (sub- 
second) execution times. They perform single-record index 
selects on 4 files: big, medium, small, and tiny (see Table 2). 
The file indices range from 1 to 3 levels deep, and accounting 
for some index nodes with less than full fanout, this implies 
between 12and 16randompagerefe~~espertransactionwith 
a mean of 13. We fix the number of transaction terminals at 
a population of 100 with exponentially distributed think times 
having a mean value of 10 seconds. 

The “query” class models a working storage class with 
longer execution times (tens of seconds or minutes). The indi- 
vidual queries consist of binary joins of two randomly chosen 
query files (see Table 2). We use the hybrid hash join algorithm 
[Dewitt 84) because it is generally accepted as a good ad hoc 
join method. Allocating the maximum amount of memMy to 
a join query will allow it to execute with the minimum number 
of I/OS, i.e. with a single scan of each relation. Allocating less 
memory (down to a minimum of approximately the squan root 
of the number of file pages) increases the number of I/Os rc- 
quired in a linear fashion. The queries scan the query files with 
uniformly distributed random selectivities ranging from 33% 
to 100% which (after accounting for a hash table ovemead 
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expansion factor of 1.2) results in uniformly distributed max- 
imum memory demands ranging from IO-30%. 40-120%. or 
100-300% of configuration memory, depending on the partic- 
ular set of files chosen (see Table 2). The query class terminal 
population is set at 60 with an ex 
time whose mean depends on P 

nentially distributed think 

150 seconds for the lO-30% fi % 
le size assigned to the class: 
, 1300 seconds for the 40- 

120% files, and 3200 seconds for the lOO-3005b files. These 
think times were chosen to insuicq that MPL limits up to five 
or six could be explored before triggering the MPL limiting 
heunstic (heuristic # 2). Note that the randomness in both the 
amival process and memory deman 
high degree of variance in resource fern 

for queries results in a 
ands within the class. 

The last class the -no-goal queryy class. is identical to 
a “query” class which references the 40-12046 query files. 
‘Ihe no-goal query class is used to measute the ‘*goodness*’ of 
solutions chosen for the transaction and query classes (which 
are both goal classes) - since the mote resoutces that are left 
available for no-goal queries, the lower their response times 
and the better the solution. Because no-goal queries are used 
to evaluate solutions chosen for the other two goal classes, we 
sim 

ar 
ly requite that one no-goal query be present in the system 

at 1 times. Thus, we fix the terminal population for no-goal 
queries at two, with no think time, recall that their MPL limit 
is fixed at one by M&M. 

The important parameters of the simulated DBMS are listed 
in Tables 3 and 4. Our system is certainly undaconfigured 
with respect to memory; the choice of 8 MB was made purely 
to achieve tolerable simulation times. We thus include an 
experiment where we scale up both memory and query file 
sixesbyafactorof8(to64MB).‘Ilte25MIPSCPUresults 
in CPU utilizations of SO-75%. The number of disks. num- 
ber of terminals, and think times were chosen to ensure that 
disk utilizations lie in the 50 to 60% range and to su tt 

% a reasonable range of feasible multiprogramming levels. e 
software-related parameters in Table 4 are based on instruction 
counts taken from the Gamma parallel dambase system pro- 
totype [DeWttt 901, and the disk characteristics approximate 
those of the Fujitsu Mode1 M2266 disk drive, as stated earlier. 

6 Experiments and Results 
In this section, we use our simulation model to examine how 
well M&M can achieve a variety of goals for several variations 
of a simulated multiclass workload. Each version consists of 
transactions, queries, and no-goal query classes, as described 
in Section 5. The difference between each variation is in the 
average memory demanded by the query class. We will ex- 
amine workio&s whete the average maximum query memory 
demand is 20, 80, and 200% of configuration memory. In 
all variants. the actual perquery memory demand varies uni- 
formly f50% about the mean. 

In order to obtain statistically meaningful simulation results, 
the 20 and 80% memory demand versions of the workload are 
executed for ten simulated hours, and the 200% version is 
executed for twenty hours. We collect and report response 
time statistics only for the last half of the simulation in order 
to factor out the solution searching time tiom the averages, as 
the averages are meant to indicate steady-state behavior. We 
also include a transient analysis of response times to indicate 
how the algorithm operates over the entire range of simulated 
time. For all experiments, we ensure minimums of 170,ooO 
transaction completions, 500 query completions, and 350 no- 
goal query completions. 

The performance metrics that we will use for judging 

M&M’s behavior are the performance index of each class and 
the average response time of the no-goal query class. The per- 
formance index of a class is defined as the average response 
time of the class (over the statistics collection period) divided 
by its response time goal. Thus, a performance in&x of one 
is ideal, an index gteater than one indicates a goal violation, 
and an in&x less than one indicates that the goal has been 
exceeded. We use the no-goal class response times to roughly 
indicate the amount of “excess” resources left over after the 
goal classes have been allocated what they need to meet their 
goals; the larger the amount of left-over resources, the lower 
the no-goal response times. 

In order to set “reasonable** goals for these workloads, we 
first ran a series of simulations that explored a wide range of 
static minMPL, maxMPL, and pool size settings for the query 
class in each version of the workload (i.e. for each different 
average query memory demand). The no-goal class’s memory 
allocation was set at its minimum requirement for these static 
simulations, and the transaction class was given all of the 
remaining memory. Using the response times that resulted 
from these simulations, we then derived a set of per-class 
goals that spanned a range from “loo&to %ght.*’ 
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‘Ihble 5: 1030% memory demand workload 

‘Ihble 5 shows the results from the base case ex ‘ment 
with perquery memory demands ranging from lO- x ofthe 
configuration memory. Each row mprwents a different com- 
bination of goals for the transaction and query classes. The 
performance indices in Table 5 show that, except in the case of 
very tight or very loose goals, both the transaction and query 
classes am kept to within a few percent of their goals. The 
first row represents a very loose goal for the transactions (350 
msecs). lhe disk buffer controller (fragment fencing) initially 
decided that no memory was requited to achieve this goal, but 
its low memory/high disk solution created disk response times 
that were too high to meet the goal for the query class. M&M 
then placed the transaction class in exceed mode in order to 
lower disk tesponse times to a point that allowed the query 
class to meet its goal. This type of behavior is the reason that 
loose trans&ztion goals ate more likely to be exceeded than 
tighter transaction goals. 

The last row represents an unachievable goal and is used 
to show how M&M balances resources across the classes in 
a degr&d mode of operation. ‘Ihe response times gener- 
ated by M&M for this unachievable goal (8.64 seconds, 270 
milliseconds, and 130 seconds) are comparable to the best6 
response times achievable with static settings for the query 
class’s maxMPL. minMPL and pool size (7.6 seconds, 290 
milliseconds, and 139 seconds). Note that the no-goal re- 
sponse times are best for the loosest goals (at the top of the 

“Defining the “best’ set of mspnsc times for a multiclass workload is a 
subjective process. since one can usually achieve a better 1*1 
oneclassbydrgmdilytbe 

=xzr 

gye’” 
thncsfurolherciasses. crrtuxafor 

sekcdngthc”bcSsWically nedmsponscthnc3triestochooacasetof 
msponsc times which minimizes the distance to the best case response time 
for each class. ‘km am certainly other valid criteria for making this choke. 
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Figure 4: Query resp, 10-3096 queries, (100,275) goal Figure 5: Tran reap. lo-30% queries, (100,275) goa! 

table), degrading progressively as the goals tighten. 
To examine M&M’s transient behavior for this worklorul, 

we select the (100,275) goal pair and graph the average inter- 
valmsponsetimeaforbothqueryand~clrseesasa 
function of time in Figures 4 and 5, respactivdy. Turning first 
to the query response times in pigum 4, we can see multipk 
sharp downward spikes that appear immediately after shorter 
upward spikes. The upward spikea are tmnaients in arrivals 
or memory demand that tanporaril increased the system load 
enough to trigger an increase in MIk for the query clas& Dur- 
ing this adjustment, the delay mechanism was turned off and 
queries temporarily exceeded their goals by a large amount be- 
cause the delay had been removed. Since this workload runs 
with a significant delay (the actual MPL is only 2.1 with an 
integer MPL limit of 3). a sharp downwatd spike occurs in 
the query response times any time the delay is turned off for 
a knob adjustment. Looking at the bansa&n response times 
for this workload in Figure 5, we can see upward spikes at the 
sa&ne&llre,query class has &mpomrily mcmased 

‘ncmasescaweda@npomryincmase 
in disk response times for the -on class. The tmnsac- 
tion class compensated for these incmases almost immediately, 
but the transient upward spikes in their response timea were 
unavoidable. 

Table 6: 40- 120% memory demand workload 

Table 6 shows the results of the base workload when per- 
query memory demands are larger, ranging from 40-12096 of 
the configuration memory. The msults are similar to the pre- 
vious experiment. Most of the goats are met to within a few 
percent, except for the last (tightest) goal pair which is un- 
achievable. As before, no-goal response times de easthe 
goals get tighter. For the unachievable goal pair, Ii? &M’s te- 
sponse times of 56 seconds, 285 milliseconds. and 102 seconds 
again compares favorably with the best statically obtainablere- 
sponse times: 48 seconds, 400 milliseconds, and 120 seconds. 
Table 6 shows an unusual result, however, query goals are vio- 
lated by 7% for the ( 100,300) goal pair, while the tighter (100, 
275) goal pair is achieved. To explain this violation, we turn 
to the graph of the transient query class response times for the 
(100,300) goal case in Figure 6. Since the average maximum 

memory demand for this query class is 80!% of configuration 
memory, thechance of an individualquuy (&&ted at max) 
havingtowaitforsuchalargeamountofmemorytofraup 
m signifkant. These fmquent memory waits combine with an 
aldy large variation in memory demand to product a huge 
response time variance for this class, as is shown in Figma 6. 

TheafomnaWt&varianccinmaponsetimesforthe40- 
120%quarieahasthmeeffecta: lhefiratisthatM&Mcom- 
puted a much larger tolerance band for these queries (up to 
f45%) than it did for the 1030% queries (f98 at most). 
While this tolerance band may seem excessive, it is the key 
mason that M&h4 is able to do us well 118 it doea for this work- 
load. Without this wide tolerance, M&M would be forced to 
au3 on transient increases andWinmaponsetimesby 
adjusting one or mom knobs. These knob adjustments would 
increase the variglce ofthe class even rnorr, creating a system 
too unstable to conbw1. Ins&ad, M&M only occrsianally asks 
far a reduction in disk response @tea; this action is sufficient 
to rutdress the worst upward spikes in query response time, 
leaving the query class MPL untouched. 

‘Ihesaconde&ctofthtlargtvcrrianceisitsimpactonthe 
average reaponae time statistic. Since our average response . . stahsWs are collected in the second half of the simulation 
kzrything to the right of 17,500 seconds in Figure 6). they 
include the upward spikes but exclude the largeat downward 
spike in the figure. If the statistics collection window had had 
muted earlier (e.g. atound lO,tXIO seconds), the downward 
and upward spikes would have canceled and our average m- 
sponsetime~wouldhaveshownthatthisgoelhadbear 
achieved. This analysis clearly shows how average response 
time statistics are sensitive to the positioning of the interval 
over which they am collected. 

A final effect of the increased variance in the query class 
memory demand can be seen by examining the transaction 
class response timea in Figure 7. Comparing this graph to that 
of the previous workload (Figure 5). we can see that the trans- 
action response times have a much higher variance for this 
workloed as well. This is because the fluctuations in physical 
memory demanded by the queryclass also cause fluctuations 
in the amount of buffer pool memory available to the trans- 
action class. Thus, an increase in the variance in one class 
can be “transmitted” to another class via interactions at shared 
IVSOUICCS. 

Table 7 shows that similar results are obtained for the lOO- 
300% memory demand queries. All goats are achieved to 
within a few percent except for the last (unachievable) goal. 
For this workload, we select the unachievable goal ‘r (200, 
350) for our examination of transient behavior, in r lgures 8 
and 9. Disk queue lengths am higher for this workload than 
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Figure 6: Query resp, 40- 120% querie& ( 100,300) goal Figure 7: Tran msp, 40-l 20% queries, ( 100,300) goal 

E 350 275 X:E xbs 53 

E 350 300 ;-ii 0:95 0.97 ;z 65 
200 350 1:14 0.95 97 

Table 7: 100300% memory demand workload 

the previous two, as these queries spend a larger portion of 
their execution time writing tuples out to intamediatc files 
(writing is much more expensive that madin because of the 
ineffectiveness of the disk cache). In order to f ower disk queue 
lengths, M&M requested a disk utilization teduction from the 
transactions, but this was not successful because the real culprit 
was the query class. This failed attempt at disk queue length 
reduction is the reason for the dip in transactjon response times 
in Figure 9 that occurs from 5,000 to 7500 seconds. Qnce this 
attempt failed, M&M ignored the disk queue length limiting 
heuristic and proce&d to increase the query class MEL. At 
about 25,000 seconds into the simulation, the query class MEL 
was raised high enough (to an MEL of five) to eliminate most 
MEL waiting; at this point the only available action was to 
increase the query class pool sixe and let one of the five queries 
execute in between min and max. The query class’s pool 
size knob was then increased until the unreserved pool was 
exhausted at about 60@0 seconds into the simulation. At this 
point, the query goals appear to be finally achieved, since the 
average response time measurements start at 35.000 seconds, 
this *‘success” is not reflected in that measure, however. 

Our next experiment tests how well M&M can satisfy goals 
for a more complex workload consisting of two working stor- 
age classes, two disk buffer classes, and a no-goal class. The 
60 terminals of the query class used in the base case exper- 
iments are split into two query classes of 30 terminals each, 
and the 100 terminals of the transaction class are split into two 
transaction classes of 50 terminals each. The transaction class 
files are replicated so that each transaction class accesses its 
own files. The same set of files are used by both query classes, 
and they result in an average memory demand of 20% ofcon- 
figuration memory (with individual query demands ranging 
from 10-3096). 

Table 8 shows various combinations of goals for the more 
complex workload, arranged in order from loose to tight as 
determined by the no-goal class response times. There is 
one case where goals are violated by more than 5%: in goal 
set ##4, transaction class #I’s 250 msec goal is violated by 

13%. This goal is violated because disk response times are too 
high to achieve such a tight goal with five classes executing 
concurrently. However, M&M does achieve the goals for the 
other thme classes in this case. Transaction class goals am 
exceeded to a greater extent for this workload (by up to 30%) 
than for previous workloads. As explained previously, looser 
transaction goals are more likely to exceed than tighter ones, 
and thee are more instances of loose transaction goals in this 
workload than there were in previous workloads. 

While transaction classes may exceed their goals in order to 
reduce disk response times for other classes, there is no mason 
why query class goals should be w(cdcdtd by a large amount. 
However, them are two cases in ‘Ibble 8 where qtilvgFoan& 
exaxded by more than 10%: the perfotmance 
in goal sets #I and #3. While space limitations prevent us from 
showingthetransientresponsetimesforthesecases,thereason 
thatthesegoalswemexceededisduetothephenomenonthat 
was shown in Figure 4. Both of the exceeding classes am 
operating very close to the MEL reduction trigger (exccMpL 
< MPLLimit -1); this operating region is unstable because 
their MELs tend to “wobble” up and down. Every time a new 
MEL is chosen, the delay mechanism is shut off and the same 
sharp drop in response times that was displayed in Figure 4 
occur here. (Clearly, the MEL reduction mechanism should be 
tuned further to reduce the probability of “MEL wobbling.“) 

Our final experiment verities that our favorable results for 
M&M can scale up to larger manory and query file sixes. For 
this experiment, we increased both the configuration memory 
and query file sixes by a factor of eight (increasing memory to 
64 MB). We then reran the base case workload with queries 
that demand 20% of the configuration memory on average. 
While space limitations prevent us from explaining the results 
in detail, M&M achieved the goals for this workload and con- 
figuration as well as it did for the smaller configuration. While 
additional experimentation is needed, these initial studies show 
that M&M appears to be quite robust in the presence of differ- 
ing workloads, configurations, and query manoty demands. 

7 Summary and Future Work 
In this paper, we have defined and exploted the problem of sat- 
isfying per-class response time goals for complex multiclass 
da&base workloads. We then described M&M, a feedback- 
based algorithm for determining the MEL and memory set- 
tings for each class independently. M&M builds on the frag- 
ment fencing algorithm [Brown 93a] for managing disk buffer 
classes, adding new mechanisms for controlling working stor- 
age classes; these include a heuristic-based controller for deter- 
mining MEL and memory allocations and an admission delay 
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Query 1 Query2 --lhin 1 man2 Query 1 Query 2 man1 -2 N0-W 
aet# gualstcs goaIaa3l gdllulecs goaImseca perfiax pdidx perfidx pufidx nspsea 

1 150 200 400 400 092 * 087 - 070 068 64 

2 10, 200 400 0’91 0:78 3 
I% 

100 zz 
ii! 

E 
4 175 250 1:os 

lEz 
1:03 

0’99 
1:13 

0.83 z 
0.74 122 

5 50 75 275 300 0.95 0.91 1.01 0.99 128 

Table 8: More complex workload (IO-3096 memory demand) 

mechanism that allows M&M to set non-integral MPL lim- 
its. M&M’s per-class orientation has significant advantages 
in simplicity and responsiveness, while its “%xcecd mode” 
mechanism for disk buffer classes allows it to deal with the 
intetdependence between classes that results from their inter- 
actions at shared disks. Usin a detailed simulation model, we 
explored the steady state an % transient performance of M&M 
and showed that it can achieve goals for a variety of different 
workloads, configurations, memory demands, and degrees of 
variance within each goal class. 

For future work, we plan to experiment further with differ- 
ent workloads and configurations. In addition, we would like 
to make several enhancements to M&M, such as fine-tuning 
its MPL reduction trigger to behave in a more stable manner, 
developing a less ad hoc heuristic for limiting the number of 
queries that execute at min (heuristic # 4), and allowing no-goal 
class MPLs to rise above one. Beyond these enhancements, 
our future work will integrate M&M with goal-oriented pruces- 
sor and disk scheduling mechanisms and will exploit memory 
adaptive query processing techniques (such as the preemptible 
hash join and sorting methods of mg 931). Finally, we would 
like to explore other appro&es to specifying goals for low 
throughput classes. Response time goals for low throughput 
classes result in long search times for the appropriate solution, 
as they require a certain number of completions to achieve 
statistical significance; other, progress-oriented measures of 
performance am necdai to address these types of classes. 
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