Object-Oriented Database Systems:
Promises, Reality, and Future

Won Kim

UniSQL, Inc.
9390 Research Blvd.
Austin, Texas 78759

Abstract

During the past decade, object—oriented technology has
found its way into programming languages, user interfaces,
databases, operating systems, expert systems, etc. Products
labeled as object-oriented database systems have been in the
market for several years, and vendors of relational database
systems are now declaring that they will extend their products
with object-oriented capabilitics. A few vendors are now
offering database systems that combine relational and
object—oriented capabilities in one database system. Despite
these activities, there are still many myths and much
confusion about object—oriented database systems, relational
systems extended with object~oriented capabilities, and even
the necessities of such systems among users, trade journals,
and even vendors. The objective of this paper is to review the
promises of object-oriented database systems, examine the
reality, and how their promises may be fulfilled through
unification with the relational technology.

1. Definitions

Object-oriented technologics in use today include
object-oriented programming languages (e.g., C++ and
Smalitalk), object-oriented database systems,
object-oriented user interfaces (e.g., Macintosh and
Microsoft window systems, Frame and Interleaf deskiop
publishing systems), etc. An object-oriented technology is a
technology that makes available to the users facilitics that are
based on “object-oricnted concepts”. To definc
“object-oriented concepts”, we must first understand what an
“object” is.

The term “object” means a combination of “data” and
“program” that represent some rcal-world entity. For
example, consider an employee named Tom; Tom is 25 ycars
old, and his salary is $25,000. Then Tom may be represented
in a computer program as an object. The “data” part of this

Permission to copy without fee all or part of this material is
granied provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and nolice is given
that copying is by permission of the Very Large Data Base En-
dowment, To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 18th VLDB Conference
Dublin, Ireland 1993

676

object would be (name: Tom, age: 25, salary: $25,000). The
“program” pari of the object may be a collection of programs
(hire, retrieve the data, change age, change salary, fire). The
data part consists of data of any type. For the “Tom™ object,
string is uscd for the name, integer for age, and monctary for
salary; but in general, cven any uscr—defined type, such as
Employee, may be uscd. In the “Tom” object, the name, age,
and salary are called attributes of the object.

Often, an object is said o “cncapsulaie” data and program,
This means that the uscrs cannot see the inside of the object
“capsule”, but can use the object by calling the program part
of the object. This is not much different from procedure calls
in conventional programming; the uscrs call a procedure by
supplying valucs for input parameters and receive results in
output paramelers. .

The term “object-oriented” roughly means a combination
of object encapsulation and inheritance. The term
“inhcritance” is sometimes called “reuse”. Inheritance means
roughly that a new object may be crcated by extending an
existing object. Now let us understand the tcrm “inheritance”
morc preciscly. An object has a data part and a program part.
All objects that have the same attributes for the data part and
same program partare collectively called aclass (or type). The
classes arc arranged such that some class may inherit the
attributes and program part from some other classcs.

Tom, Dick, and Harry arc each an Employce object. The
data part of cach of these objects consists of the atiributes
Name, Age, and Salary. Each of these Employee objects has
the same program part (hire, retricve the dala, change age,
change salary, firc). Each program in the program part is
called a“mcthod”. The term “class” refers to the collection of
all objects that have the same attributes and methods. In our
cxample, the Tom, Dick, and Harry objccts belong to the class
Employec, since thcy all have the samce attributes and
methods. This class may be uscd as the type of an attribute of
any objcct. At this time, there is only one class in the system,
namcly, the class Employce; and three objects that belong to
the class, namely, Tom, Dick, and Harry objccts.

Now suppose that a user wishes o creale two sales
cmployecs, John and Paul. But salcs employees have an
additional attributc, namcly, Commission. The sales
employecscannot belong to the class Employee. However, the
user can crcate a new class, Sales_Employee, such that all
attributes and methods associaled with the class Employee
may be rcused and the attribute Commission may be added to
Sales_Employce. The user doces this by declaring the class
Sales_Employeetobea*“subcelass” of the class Employcee. The
user can now proceed to create the two sales employces as
objects belonging to the class SalcsEmployee. The users can

create new classes as subelasses of existing classes. In general,
aclass may inherit from one or inore existing classes, and the
inheritance structure of classes becomes a directed acyclic
graph (DAG): but for simplicity, the inheritance structure is
called an “inhceritance hicrarchy” or “class hierarchy”.

‘The power of object -oricnted concepts is delivered when
encapsulation and inheritance work together.

- Since inheritance makes it possible for different classes
10 share the same set of attributes and methods, the same
program can be run against objects that belong to different
classcs. This is the basis of the object-oricnted user interface
that desktop publishing systems and windows management
systems provide today. The same set of programs (e.g., open,
close, drop, create, move, etc.) apply to different types of data
(imagc, text file, audio, dircctory, ctc.).

- If the users definc many classcs, and cach class has many
attributes and methods, the benefit of sharing not only the
attributcs but also the programs can be dramatic. The
attributes and programs nced not be defined and written from
scraich. New classes can be created by adding attributes and
mcthods to existing classes, rather than by modifying the
attributes and methods of cxisting classes, thereby reducing
the opportunity to introduce ncw crrors to cxisting classes.

2. Promises of OODBs

An object-oricnted programming language (OOPL)
provides facilities to create classes for organizing objects, to
crcate objects, to structure an inheritance hierarchy to
organizc classes so that subclasses may inherit attributes and
mcthods from superclasses, and to call methods to access
specific objects. Similarly, an object-oriented database
system (OODB) should provide facilities to create classes for
organizing objects, to crcatc objects, to structure an
inheritance hierarchy o organize classes so that subclasses
may inhcrit attributes and methods from superclasses, and to
call methods to access specific objects. Beyond these, an
OOQDB, because itis a database system, must provide standard
databasc facilitics found in today’s relational database
systems (RDBs), including nonprocedural query facility for
retricving objects, automatic query optimization and
processing, dynamic schema changes (changing the class
definitions and inhcritance structure), automatic management
of access methods (e.g., B+-tree index, extensible hashing,
sorting, ctc.) to improve query processing performance,
automatic transaction management, concurrency control,
recovery from system crashes, security and authorization.
Programming languages, including OOPLs, are designed
with onc user and a rclatively small database in mind.
Databasc systems are designed with many users and very large
databases in mind; hence performance, security and
authorization, concurrency control, dynamic schema changes
become important issucs. Further, database systems are used
to maintain critical data accurately; hence, transaction
management, concurrency control, and recovery are
imponant facilitics.

Insofar as a database systcm is a system software whose
functions are called from application programs written in
some host programming languages, we may distinguish two
diffcrent approaches to designing an OODB. One is to store
and manage objects created by programs written in an OOPL.
Some of the current OODBs are designed to store and manage
objects generated in C++ or Smalltalk programs. Of course,

677

an RDB can be used to store and manage such objects.
However, RDBs do not understand objects, in particular,
mcthods and inheritance. Therefore, what may be called an
“object manager” or an “object-oriented layer” softwarc
needs to be written to manage methods and inheritance, and
to translate objects to tuples (rows) of a relation (table). But,
the object manager and RDB combincd are in effect an OODB
(with poor performance of course)!

Another approach is to make object-oriented facilities
available to users of non-OOPLs. The users may create
classes, objects, inheritance hierarchy, etc.; and the database
system will store and manage those objects and classes. This
approach in effect turns non—-OOPLs (e.g., C, FORTRAN,
COBOL, etc.) into object—oriented languages. In fact, C++
has turned C into an OOPL, and CLOS has added
object—oriented programming facilities to CommonLISP. An
OODB designed using this approach can of course be used to
store and manage objects created by programs written in an
OOPL. Although a translation layer would need to be wrilten
1o map the OOPL objects to objects of the database system, the
layer should be much less complicated than the object
manager layer that an RDB would require.

In view of the fact that C++, despite its growing popularity,
is not the only programming language that databasec
application programmers are using or will ever use, and there
is a significant gulf between a programming language and a
database system, the second approach is a more practical basis
of a database system that will deliver the power of
object-oriented concepts to database application
programmers. Regardless of the approach, OODBs, if done
right, can bring about a quantum jump in the productivity of
database application programmers, and even in the
performance of the application programs,

One source of the technological quantum jump is the reuse
of a database design and program that object—oriented
concepts make possible for the first time in the cvolving
history of database technologies. Object—oriented concepts
are fundamentally designed to reduce the difficulty of
developing and evolving complex software systems or
designs. Encapsulation and inheritance allow attributes (i.e.,
database design) and programs to be rcused as the basis for
building complex databases and programs. This is precisely
the goal that has driven the data management technology from
file systems to relational database systems during the past
three decades. An OODB has the potential to satisfy the
objective of reducing the difficulty of designing and evolving
very large and complex databases.

Another source of the technological jump is the powerful
data type facilities implicit in the object—oriented concepts of
encapsulation and inheritance. The data type facilities in fact
are the keys to eliminating three of the important deficiencies
of RDBs. These are summarized below. I will discuss these
points in greater detail later.

—RDBs force the users to represent hierarchical data (or
complex nested data, or compound data) such as bill of
materials in terms of tuples in multiple relations. This is
awkward to start with. Further, to retrieve data thus spread out
in multiple relations, RDBs must resort to joins, a generally
expensive operation. The data type of an attribute of an object
in OOPLs may be a primitive type oran arbitrary user—defined
type (class). The fact that an object may have an attribute
whose value may be another object naturally leads to nested

object representation, which in turn allows hierarchical data
to be naturally (i.e., hicrarchically) represented.

- RDBs offer a set of primitive, built-in data types for usc
as domains of columns of relations, but do not offer any means
of adding user—defined data types. The built—in data types are
basically all numbers and short symbols. RDBs are not
designed to allow new data types to be added, and therefore
often require a major surgery to the system architecture and
code to add any new data type. Adding a new data type to a
database system means allowing its use as the data type of an
attribute, that is, storage of data of that type, querying and
updating of such data. Object encapsulation in OOPLs docs
notimpose any restriction on the types of data that the data part
of an object may hold, that is, the types of data may be
primitive types or user—dcfined types. Further, new data types
may be created as new classes, possibly even as subclasses of
existing classes, inheriting their attributes and methods.

— Object encapsulation is the basis for the storage and
management of programs as well as data in the database.
RDBs now support “stored procedures”, that is, they allow
programs to be written in some procedural language and
stored in the database for later loading and execution.
However, the stored procedures in RDBs are notencapsulated
with data; that is, they are not associated with any relation or
any tuple of a relation. Further, since RDBs do not have the
inheritance mechanism, the stored procedures cannot
automatically be reuscd. :

3. Reality of OODBs

There are anumber of commercial OODBs. These include
GemStone from Servio Corporation, ONTOS from ONTOS,
ObjectStore from Object Design, Inc., Objectivity/DB from
Objectivity, Inc., Versant from Versant Object Technology,
Inc., Matisse from Intellitic International (France), Itasca
(commercial version of MCC’s ORION prototype) from
Itasca Systems, Inc., 02 from O2 Technology (France). These
products all support an object—oriented data model.
Specifically, they allow the user to create a new class with
attributes and methods, have the class inherit attributes and
methods from superclasses, create instances of the class each
with a unique object identifier, retrieve the instances either
individually or collectively, and load and run methods.

These products have been in the market since as early as
1987. However, most of them have been in evaluation, and
preliminary prototype application development; that is, they
have not been seriously used for many mission—critical
applications. Further, a fairly largc number of copies of the
products have been given away for free trial, artificially
boosting the total count of product installations. The
worldwide market size for all of the current OODBs combined
is estimated to be $20-30 million — a tiny fraction of the $3
billion worldwide market size for all database products. To be
sure, the past several years have been a gestation period for
object-oriented technology in general, and object-oriented
database technology in particular, Further, the technical
market and OOPL market which the current OODBs have
targeted are new markets that have not been previously relied
on database systems. However, the lack of maturity of the
initial (and to a good extent, the current) OODB offerings has
also contributed significantly to their slow acceptance in
mission-critical applications.

678

3.1 Limitations

limitations as persistent storage systems

Onc key objective, and thercfore, selling point, of most of
the current OODBs is the support of a unified programming
and database language, that is, onc language (c.g., C++ or
Smalltalk) in which to do both general-purposc programming
and database management. This objective was the result of the
current situation where application programs arc writicn in a
combination of a general-purpose programming languagc
(mostly, COBOL, FORTRAN, PL/1, or C), and database
management functions ar¢ embedded within the application
programs in a database language (c.g., the SQL rclational
database language). A gencral-purposc programming
language and a databasc languagc arc very different in syntax
and data modcl (data structures and data types), and the
necessity of having to lcarn and use two very diffcrent
languages to write database application programs has been
frequently regarded as a major nuisance. Since C++ and
Smallialk already include facilitics for defining classcs and a
class hierarchy (i.c., for data definition), in effect, these
languages arc a good basis for a unified programming and
database language. The first step that most of the vendors of
the early OODBs took was to make the classes and instances
of the classes persistent, that is, to store them on sccondary
storage and make them accessible cven after the programs
which defined and created them have terminated.

Current OODBs that arc designed to support QOPLs place
various restrictions on the definition and use of objects. In
particular, most systems trcat persistent data diffcrently from
nonpoersistent data (e.g., they make it illegal for a persisient
object 1o contain the OID of a nonpersistent object), and
therefore require the users to explicily declarc whether an
objcct is persistent or not. Further, they cannot make certain
types of data persistent, and therclore prohibit their use.

limitations as database systems

The second, much more severe, source of immaturity of
most of the current QODBs products is the lack of basic
features that users of databasc sysicms have become
accustomed to and therefore have come to expect. The
features include a full nonprocedural query language (along
with automatic query optimization and proccssing), vicws,
authorization, dynamic schema changes, and parameterized
performance tuning, Besides these basic features, RDBs offer
support for triggers, mcta data management, constraints such
as UNIQUE and NULL — features that most OQODBs do not
support.

— Most of the QODBs suffer from the lack of query
facilities; and those few systems that do provide significant
query facilities, the query language is not ANSI
SQL—-compatible. Typically, the query facilitics do not
include nested subqueries, set querics (union, interscction,
difference), aggregation functions and group by, and cven
joins of multiple classes, ctc. — facilitics fully supported in
RDBs. In other words, these products allow the users tocreate
a flexible database schcma and populate the database with
many instances, but they do not provide a powerful cnough
means of retricving objects from the databasc.

--RDBs support views as dynamic windows into the stored
database. The view dcfinition includes a query stutement to
specify the data that will be fetched 1o constitute the view. A

view is used as a unit of authorization. No OODB today
supports vicws.

— RDBs support authorization — that is, they allow the
uscrs to grant and revoke privileges to read or change the
tuples in the tables or views they crcated to other users, or to
change the definition of the relations they created to other
users. Most OODBs do not support authorization,

- RDBs allow the users to dynamically change the
databasc schema using the ALTER command; a new column
may be added to a rclation, a relation may be dropped, and a
column can sometimes be dropped from arelation. However,
most of the current OODBs do not allow dynamic changes to
thc database schema, such as adding anew attribute or method
10 a class, adding a new superclass 1o a class, dropping a
superclass from a class, adding a new class, and dropping a
class.

- RDBs automatically set and relcase locks in processing
qucry and updatc statements the users issue. However, some
of the current OODBs require the users to explicitly set and
rclease locks.

—RDBs allow the installation to tune system performance
by providing a large numbcer of parameters that can be set by
the system administrator. The parameters include the number
of memory buffers, the amount of free space reserved per data
page for futurc inscrtions of data, and so forth. Most of the
OODBs offer a limitcd capability for parameterized
performance tuning,

Because of the deficiencics outlined above, most of these
products will require major cnhancements. It is safe to assume
that the vendors of these products will make the required
changes to their current software, rather than rewriting the
products from scratch. The extent of the changes that will be
required to bring these products to full-fledged database
systems that can at lcast maich the level of database
functionality expected of today’s database systems is so great
that it is not cxpected that the enhanced products will attain the
robustness and performance required for mission—critical
applications within the next three or four years.

Upgrading most of the current OODBs to true database
systems poses not only major technical difficulties as outlined
above, but also a scrious philosophical difﬁcultiy. As we have
scen atrcady, most of the current OODBSs are closer o being
mercly persistent storage systems for some OOPL than
databasc systems. The term OODB was not deliberately
designed to be misleading and confusing, since the OODBs
were designed 10 manage a database of objects generated by
programs written in QOPLs. Howcver, the database users
have been trained during the past two decades to think of a
databasc system as a software that allows a large database to
be queried to retricve a smatl portion of it, that does not require
any hint from the uscr about how to process any given query,
that allows a large number of uscrs to simultancously read and
updatc the samec databasc, that automatically enforces
database integrity in the prescnce of multiple concurrent users
and systcm failurcs, that allows the creator of a portion of a
database 1o grant and revoke access privileges to his data to
other users, that allows the installation to wne the
performance of adatabase system by adjusting various system
parametcrs, and so forth. For this reason, the term OODB has
become a misnomer for most of the current OODBs.

679

Most of the current OODBs have essentially extended the
OOPLs with a run-time library of database functions. These
functions must be called from the application programs, with
appropriate specifications of the input and output parameters.
The syntax of the calling functions is made consistent with the
application programming language. As the current OODBs
arc upgraded to true database systems, a major extension to the
current library of database functions will be necessitated to
support query facilities. Today’s programming languages,
including object—oriented languages, simply are not designed
with database queries in mind. A database query may return
an indeterminate number of records or objects that satisfy
user—specified search conditions. Therefore, the application
program must be designed to step through the entire set of
records or objects that are tumed until there is no more left.
This is what led to the introduction of the cursor mechanism
in database systems. The result of a database query must
therefore be assigned to some data structure and
accompanying algorithm that can store and step through an
indefinite number of objects. Further, there will arise the need
to provide facilities to specify nested subqueries,
postprocessing on the result of a query (corresponding to
GROUP BY, aggregation functions, correlation queries, cic.),
and set querics (union, intersection, difference). In the name
of aunified programming and database language, presumably,
all these facilities will be made available to the programmers
ina syntax that is consistent with the programming languages.
In other words, the unified language approach does not
eliminate the need for any of the database facilities; rather, it
mercly makes the facilities available to the users in a diffcrent
syntax. Further, the syntax, to be consistent with the host
programming languages, is at a low, procedural level. A
procedural syntax is always more difficult for non-technical
users to learn and use. Therefore, it is not clear if ultimately
the unified language approach offers any advantages over that
of embedding a database language in host programming
languages.

3.2 Myths

There are many myths about OODBs. Many of these
myths are totally without merit, and are the result of the
unfortunate label “database system” that has been attached to
most of the current OODBs that are not full-fledged database
systems comparable to the current RDBs. Some of the myths
are the result of the evolving nature of the technology. Yet
others represent concerns from purists thatin my view are not
practically useful.

QODBs are 10 to 100 times faster than RDBs

Vendors of OODBs often make the claim that OODBs are
between 10 to 100 times faster than RDBs, and back up the
claim with performance numbers. This claim can be
misleading unless it is carefully qualified. OODBs have two
sources of performance gain over RDBs. In an OODB. the
value of an attribute of an object X whose domain is another
object Y is the object identifier (OID) of the object Y.
Therefore, if an application hasalready retrieved object X, and
now would like to retrieve object Y, the database system may
retrieve object Y by looking up its OID. Figure 1.a illustrates
two instances of the class Person, and two instances of the
class Company, such that the class Company is the domain of
the attribute Worksfor in the class Person. The value stored in
the Worksfor attribute is the OID of an object of the class

Company. If the OID is a physical address of an object, the
object may be directly fetched from the database; if the OID
is a logical address, the object may be fetched by looking up
a hash table entry (assuming that the system maintains a hash
1able that maps an OID to its physical address).

The current RDBs allow only a primitive data type as the
domain of an attribute of arelation. As such, the value of an
attribute of a tuple can only be primitive data (such as a
number or string), and never be another tuple. If a tuple Y of
arelation R2 is logically the value of an attribute A of a tuple
X of a relation R1, the actual value stored in attribute A of
tuple X is a value of attribute B of tuple Y of relation R2. If
an application has retrieved tuple X, and would now like to
retrieve tuple Y, the system must in effcct execute aquery that
scans the relation R2 using the value of attribute A of tuple X.
Figure 1.b is an equivalent representation in an RDB of the
object—oriented database in Figure 1.a. The domain of the
attribute Worksfor in the relation Person is the primitive data
type String. If an application has retricved the Person tuple for
“John”, and would like to retrieve the Company tuple for
“UniSQL”, it needs to issue a query that will scan the
Company relation. Imagine that the Company relation has
thousands or tens of thousands of tuples. If no index is
maintained on attribute B (Name) of relation R2 (Company),
the entire relation R2 must be sequentially searched to find
tuple Y (for “UniSQL”). If an index is maintained on attribute
B, tple Y may be retrieved about as fast as in OODBs that
resort to a hash table lookup, but less efficiently than in
OODBs that implement OIDs as physical addresses (and
therefore do not require any hash table lookup).

A second source of performance gain in OODBs over
RDBs is that most OODBs convert the OIDs stored in an
object to memory pointers when the object is loaded into
memory. Suppose that both objects X and Y have been loaded
into memory, and the OID stored as the value of attribute A of
object X is converted to virtual memory pointer that points to
object Y in memory. Then navigating from object X to object
Y, that is, accessing object Y as the value of attribute A of
object X, becomes essentially a memory pointer lookup.

Figure 2.aillustrates the databasc represcntation of the objects
of the classes Person and Company. Figurc 2.b illustrates the
memory representation of the same objects. The OIDs stored
in the Worksfor attribute of the Person objects have been
converted to memory addresses. Imagine that hundreds or
thousands of objccts have been loaded into memory, and that
each object contains memory pointers to one or more other
objects in memory. Further, imagine that navigation from onc
object to other objects is to be performed rcpeatedly. Since
RDBs do not store OIDs, they cannot store in onc tuple
memory pointers to other tuples. The facility to navigate
through memory-resident objects is a fundamentally abscnt
feature in RDBs, and the performance drawback that results
from it cannot be neutralized by simply having a large buffer
space in memory. Therefore, for applications that rcquire
repeated navigation through linked objects loaded in memory,
OODBs can dramatically outperform RDBs.

If all database applications requirc only OID lookups with
database objects or memory-pointer chasing among objecisin
memory, the 2 o 3 orders of magnitude performance
advantage for OODBs over RDBs is very much valid.
However, most applications that requirc OID lookups also
have databasc access and updatc requirements which RDBs
have been designed to meet. These requirements include bulk
database loading; creation, update, and delete of individual
objects (one at a time); retrieval of onc or more objects from
a class that satisfy certain search conditions; joins of more
than one classcs (as we will sce shortly); transaction commit;
and so forth. For such applications, OODBs do not have any
performance advantage to offer. In fact, even for the cxample
database of Figure 1, if the objcctive of the application is to
fetch Person objects, along with the related Company objects,
that satisfy certain conditions (c.g., all Persons whose Age is
greater than 25 and whose Salary is less than 40000 -—i.c., a
general query), rather than fetching a specific Company object
for a given Person object (i.e., a simple navigation), OODBs
may not enjoy any performance advantage at all, depending
on how the OIDs are implemented and whether the query

Person Company
oid name age salary worksfor oid name age president location
115 John 25 25000 o2 | lo0l Acme 15 Cohen NY |
B67 Chen 30 25000 001] [002 UniSQL 3 Kim Austin |
Figure L.a Object representation in an OODB
Person Company
name age salary worksfor name age president location
{ lohn 25 25000 1niSQILJ lAcme 15 Cohen NY |
| Chen 30 25000 Acme | [UniSQL 3 Kim Austin |
Figure 1.b Tuple representation in an RDB

680

optimizer is designed to exploit the QIDs in processing
queries.

OODBs eliminate the need for joins

OODBs significantly reducc the nced for joins of classes
(comparable to joins of relations in RDBs); however, they do
not climinate the need altogether. In OODBs the domain of an
auribute of a class C may be another class D. However, in
RDBs the domain of an attribute of a relation R1 cannot be
another relation R2. Therefore, to correlate a tuple of one
relation with a wple of some other relation, RDBs always
require the users to explicitly join the two relations. OODBs
replace this explicit join with an implicit join, namely the
fetching of the OIDs of objects in a class that are stored as the
values of an attribute in another class. The examples in Figure
1 illustrated this point. The specification of a class D as the
domain of an attribute of another class C in an OODB is in
cssence a static specification of a join between the classes C
and D.

The relational join is a gencral mechanism that correlates
two rclations on the basis of the values of a corresponding pair
of attributes in the relations. Since two classes in an OODB
may in general have corresponding pairs of attributes, the
relational join is still useful and, therefore, necessary in
OODBs. For example, in Figure 1, the classes Person and
Company both have attributes Name and Age. Although the
Name and Age attributes of the class Company are not the
domains of the Name and Age attributes of the class Person,
and vice versa, the user may wish to correlate the two classes
on the basis of the values of these attributes (e.g., find all
Person objects whose Age is less than the Age of the Company
the Person Worksfor).

object identity eliminates the need for keys

Objcct identity has received more attention that it merits.
Object identity is merely a means of representing an object,
and also guarantecing uniqueness of each individual object.
An OID does not carry any additional semantics. Even if the
OID lends uniqueness (0 each object, the OID is generated
automatically by the system and usually not evenmade visible
to the users. Therefore, it does not offcr a convenient means
of fetching specific desired objects from a large database (i.e.,

when the user does not know the OIDs of the objects). It is
more convenient for the uscr to be able to fetch one or more
objects using user—defincd keys. For cxample, in the example
database of Figure 1, if the Namc aitribute isa primary key, the
uscr may fetch one Person object by issuing a query that
scarches for a specific Name.

OODBs eliminate the need for a (non-procedural)
database language

Thismyth came about because most of the current OODBs
offer only limited query capabilities. Vendors of the OODBs
elected to focus their development efforts on the performance
of database navigation, and making objects persistent. The
commands necessary to invoke the limited database facilities
have beenpresented to the usersascalls to a library of database
functions, that is, a procedural language. Upgrading most of
the current OODBs to true database systems, in particular
adding full query facilities comparable to those supported in
RDBs, will necessitate a nonprocedural query language,
which will be very difficult to hide. OODB vendors ar¢c now
atiempting to provide nonprocedural query languages,
generally labeled as Object SQL.

query processing will violate encapsulation

One objective of encapsulating data and program into an
object in OOPLs is to force the programmers to access objects
only by invoking the program part of the objects, and keep the
programmers from making use of knowledge of the data
structures used to store the objects or the implementation of
the program part. In the course of processing a query, the
database system must read the contents of objects, extract
OIDs that may be stored in some attributes of the objects, and
retrieve objects that correspond to those OIDs. Object purists
regard this as violating object encapsulation, since the
database system examines the contents of objects. This view
is not practical or useful. First, it is the database system that
examines the contents of objects, not any ordinary user.
Second, the act of examining the values stored in attributes of
objects may be regarded as invoking the “get (or read)”
method implicitly associated with every attribute of every
class. If purity o(y objects must be preserved at all cost, then
every single numeric and string constant used must be

Person Company
oid name age salary worksfor oid name age president location
1S Jom 25 25000 Om, | Loor Acme 15 Cohen NY |
P67 Chen 30 25000 001] [002 UniSQL 3 Kim Austin |
Figure 2.a Object representation in database
Person Company
addr name age salary worksfor addr name age president location
040 Llohn 25 25000 00 1 004 LAcme 15 Cohen NY |
080 [Chen 30 25000 004] 020[UniSQL 3 Kim Austin |
Figure 2.b Object representation in memory

681

explicitly assigned an OID! But no known OOPL or OO
application system does it.

OODBs can support versioning and long-duration
transactions

There is a general misunderstanding that somchow
QOODBs can support versioning and long-duration
transactions, and, by implication, versioning and
long—duration transactions cannot be supported in RDBs.
Although the paradigm shift from relations to objects does
eliminate key deficiencies in RDBs, it does not address the
issues of versioning and long—duration transactions. The
object—-oriented paradigm does not include versioning and
long—duration transactions, justas the relational model of data
does not include them. Simply put, C++ or Smalltalk docs not
include any versioning facilities or long—duration transaction
facilities.

The reason versioning and long—duration transactions
have become associated with OODBs is simply that they are
dawabase facilities that have been missing in RDBs and that
have been identified as requirements for those applications
that OODBs, with their more powerful data modcling
facilities and object navigation facilitics, can satisfy much
better than RDBs (e.g., computer—aided engineering system,
computer—aided authoring system, etc.). In fact, most OODBs
do not even support versioning and long-duration
transactions. The few OODBs that do offer what are labeled
as versioning and long-duration transactions provide only
primitive facilities.

Versioning and long-duration transactions can be
supported in both OODBs and RDBs with equal ease or
difficulty. Let us consider a few aspects of versioning. If an
object is to be versioned, often a timestamp and/or version
identity may need to be maintained. This can be implemented
by creating system—defined attributes for the timestamp
and/or version identity. Clearly, this can be done both for each
versioned object in aclass in OODBs and each versioned tuple
in a relation in RDBs. Similarly, version-derivation history
may be maintained in the database. Further, such versioning
facilities as version derivation, version deletion, version
retrieval, etc., may be expressed by extending the databasc
language of OODBs and RDBs.

Next, let us consider long-duration transactions. A
transaction is simply a collection of database reads and
updates that are treated as a single unit. RDBs have
implemented transactions with the assumption that they will
interact with the database only for a few seconds or less. This
assumption becomes invalid and long—duration transactions
become necessary in environments where human users
interactively access the database over much longer durations
(hours or days). Regardless of the duration of a transaction, a
transaction is merely a mechanism for ensuring database
consistency in the presence of simultaneous accesses to the
database by multiple users and in the tgl(')esem:e of system
crashes. What differentiates an OODB from an RDB is the
datamodel, that is, how datais represented (i.e., attributes and
methods, and classes and class hierarchy in an OODB vs.
attributes and relations in an RDB). It should be clear that the
paradigm difference between RDBs and OODBs does not
solve the problems that transactions are designed to solve.

682

OODBs can support multimedia data

~ OODBs are a much morc natural basis, than RDBs, for
implementing functions necessary for managing multimedia
data. Multimedia data is broadly dcfincd as data of arbitrary
type (number, short string, Employee, Company, imagc,
audio, text, graphics, movie, adocument that contains images
and text, etc.) and arbitrary sizc (onc byte, 10K bytcs, 1
gigabyte, eic.). The reason is that QODBs allow arbitrary data
types to be created and used, the first requirements for
managing multimedia data.

However, object—oriented paradigm (i.c., encapsulation,
inheritance, methods, arbitrary data types — coliectively or
individually) does not solvc thc problems of storing,
retricving, and updating very large multimedia objects (c.g.,
an image, anaudio passage, a icxtual document, a movic, elc.).
OODBs must solve exactly the same cnginecring problems
that RDBs have had to solve to allow the BLOB (binary large
objcct) as the domain of a column in a relation, including,
incremental retricval of a very large objcct from the databasc
(the page buffer in gencral cannot hold the entire object),
incrcmental update (a small change in an objcct should not
result in a copying of the entire object), concurrency control
(more than onc user should be ablc to access the same large
objcct simultancously), and recovery (logging should not lead
to copying of an entire objcct).

4. Fulfilling the Promises of OODBs

Today, both the deficiencies of RDBs and the promiscs of
OODBs are fairly well-understood. However, OODBs have
not had significant impact in the database market. Two of the
reasons arc that most of the current OODBs lack maturity as
database systems (i.e., they lack many of the key databasc
facilities found in RDBs) and that thcy are not sufficicntly
compatible with RDBs (i.e., they do nol support a supersct of
ANSI SQL).

The cmerging industry and market conscnsus is that
object-oriented technology can indeed bring about a quantum
jump in database technology, but there arc at least three major
conditions that must bec met before it can deliver on its
promises.

First, new database systems that incorporatc an
objcct—oriented data model must be full-fledged database
sysicms that arc compatible with RDBs (i.c., whosc databasc
language must be a supersct of SQL).

Second, application development tools and database
access tools must be provided for such databasc systcms, just
as they are critical for the use of RDBs. The tools include
graphical application (form) gencrator, graphical
browser/editor/designer of the databasc, graphical report
generator, database administration tool, and possibly others.

Third, a migration path (a bridge) is nceded to allow
co—cxistence of such systcms with currently installed RDBs,
so that the installations may us¢ RDBs and new systems for
different purposes and also to gradually migrate from their
current products to the new products.

In this section, [will provide an outinc of how an
object-oricnted database sysicm may be built that is fully
compatible with RDBs, and how a migration path may be
provided from RDBs tosuch anew databasc system. UniSQL,
Inc. has a commercial database system, UniSQL/X, that
supports a supersct of ANSI SQL with full object-oricnted

cxtensions. UniSQL, Inc. also offers graphical database
access tools and application gencration tool for usc with
UniSQL/X. Further, UniSQL, Inc. offers a commercial
federated (multi) daabasce system, UniSQL/M, that allows
co-cxistenceof UniSQL/X with RDBs, while giving the uscrs
a single--database illusion. 1 will use UniSQL/X and
UmSQL/M w illustrate key concepts in this section.

Unification of the relational and object-oriented
technologics is most definitcly the underpinning for
post-relational database technology. ORACLE Corporation
rccently announced plans to develop an object-oriented
extension 10 SQL. The ANSI SQL3 standards committee is
currently designing object—oricnted extensions to SQL2. The
objcctive of SQL3 is cxactly the same as that guided the
devclopment of the UniSQL/X databasc language. SQL3 is
about 3-4 ycars away. Further, HP’s OpcnODB supports a
databasc programming language called OSQL that isbased on
a combination of SQL and functional data model (rather than
rclational data modcl).There is also a proposal and initial
implementation from Texas Instruments for a databasc
programming language called ZQL[C++]} that extends C++
with SQL-like query facility. The vendors of some QODBs
arc also preparing to develop “SQL-like” languages,
generally labeled as Object SQL, that include facilitics for
defining and querying object-oriented databases, as an
add—on to their existing OODBs. This represents a major
dircctionchange in their product strategy. Just afew years ago,
these vendors merely attempied to provide gateways between
their OODBs and some RDBs.

4.1 Unifying RDBs and OODBs

Unification Architectures

Broadly, therc arc three possible approaches to bringing
together OODBs and RDBs: gateway, OO-layer on RDB
cngine, and a single cngine. In the gatcway approach, an
OODB request is simply translated and routed to a single RDB
for processing, and the result returned from the RDB is sent
to the user issuing the original request. The gateway appears
to the RDB as an ordinary uscr of thc RDB. The current
implcmentatons of galcways impose various restrictions on
the OODB requests; they cither accept only read requests,
only one request (rather than a sequence of requests asa single
transaction), or only simple requests (i.c., not all types of
queries comparable to thosc RDBs arc capable of processing).
Although the gateway approach makes it possible for an
application program to usc data retricved from both an OODB
and an RDB, it is not a scrious altcrnative for unifying
relational and object--oriented technologics. Its performance
is unacceptable because of the cost of translating requests and
returned data, and the communication overhead with the
RDB. Further, its usability is unacceptable because the
application programmers or uscrs have to be aware of the
existence of two different databases.

In the OO-layer approach (cxemplified by HP’s
OpenQDBY), the user interacts with the system using an OODB
databasc language (in the casc of OpenODB, an ObjectSQL),
and the OO layer performs all translations of the
object—oricnted aspects of the database language to their
rclatonal cquivalents for interaction with the underlying
RDB. The translation overhead can be significant, and this
architecture inherently compromises performance. For

683

cxample, the OO layer would map objects 0 tuples of
rclations, and gencrate the OIDs of objects and pass them to
thc RDB as an attribute of the tuple, using the interface the
RDB makes available; it would also map an OID found in an
object to its corresponding object stored in the RDB, again
using the RDB interface; and so forth. An RDB consists of two
laycrs: data manager layer and storage manager layer. The
data manager layer processes the SQL statements, and the
storage manager layer maps the data to the database. The OO
layer may be interfaced with either the data manager layer
(i.e., talk to the RDB via SQL statements) or the storage
manager layer (i.c., talk to the RDB via low-level procedure
calls). The data manager interface is much slower than the
storage level interface. (OpenODB uses the data manager
interface between its OO layer and the underlying RDB).
Since this approach assumes that the underlying RDB will not
be modified to better accommodate the needs of the OO layer,
it can incur serious performance and operational problems
when sophisticated database facilities need to be supported.
For cxample, if a large number of classes in a class hierarchy
must be locked (e.g., to support dynamic schemachanges), the
0O laycr must either acquire locks one at a time (incurring a
performance penalty and risking deadlocks), since an RDB
has no provision for locking a class hierarchy atomically
(roughly, in one command); or lock the entirc database with
onc call to the underlying RDB (potentially preventing any
other user from accessing any part of the database). Ncither
option is desirable. Further, if the QO layer is to support
updates to objects in memory and automatically flush updated
objects to the database when the application’s transaction
commits (finishes), the individual objects must be inserted
back into the database one at a time, using the RDB interface.

The rationale for the OO-layer approach is to be able to
port the QO layer on top of a variety of existing RDBs; this
flexibility is obtained at the expense of performance. The
OO-layer approach is the basis of a database system that
makes a varicty of databases appear to be a single database to
application programs. Such a database system is known as a
“multidatabase system”. The OO-layer approach can be used
as a basis of a multidatabase system that makes it possible for
application programs to work with data retrieved from
0OODBs and RDBs. 1 note that OpenODB currently is not a
multidatabase system. Its OO layer can connect to only one
RDB. I will discuss multidatabase systems in greater detail
later.

The unified approach melds the OO layer and the RDB
into a single layer, while making all necessary changes in both
the storage manager layer and the data manager layer of the
RDB. The database sysiem must fully support all the facilities
the databasc language allows, including dynamic schema
changes, automatic query optimization, automatic query
processing, access methods (including B+-tree index,
extensible hashing, external sorting), concurrency control,
recovery from both soft and hard crashes, transaction
management, and granting and revoking of authorizations.
The richness of the unified data model added to
implementation difficulties.

Unifying the Data Models

A relational database consists of a set of relations (tables),
and a relation in turn consists of rows (tuples) and columns.
A row/column entry in a relation may have a single value, and

the value may belong to a set of system-defined data types
(e.g., integer, string, float, date, time, money). The user may
impose further restrictions, called integrity constraints, on
these values (e.g., the integer value of an employee agc may
be restricted to between 18 and 65). The uscr may then issuc
anonprocedural query against a relation to retrieve only those
tuples of the relation the values of whose columns satisfy
user—specified conditions. Further, the user may correlate two
or more relations by issuing a query that joins the relations on
the basis of a comparison of the values in user-specified
columns of the relations.

UniSQL/X generalizes and extends this simple datamodel
in three ways, each reflecting a key object—oriented concept.
A basic tenet of an object-oriented system or programming
language is that the value of an object is also an object. The
first UniSQL/X extension reflects this by allowing the value
of a column of a relation to be a tuple of any arbitrary
user-defined relation, rather than just an element of a
system—defined data type (number, string, etc.). This means
that the user may specify an arbitrary user—defined relation as
the domain of a column of a relation. The first CREATE
TABLE statement in Figure 3 shows the specification of an
Employee relation under the relational model. The valucs of
the Hobby and Manager columns are restricted to character
strings. The second CREATE TABLE in Figure 3 reflccts
data-type extension for the columns of a relation. The value
for the Hobby column no longcer needs to be restricted o a
character string; it may now be a tuple of a user—defined
relation Activity. Similarly, the data type for the Manager
attribute of the table Employee can even be the Employce
relation itself.

Allowing a column of a relation to hold a tuple of another
relation (i.e., data of arbitrary type) directly leads to nested
relations; that is, the value of a row/column entry of a relation
can now be atuple of another relation, and the value can in tumn
be a tuplc of another relation, and so forth, recursively. In
Figure 1 we have scen how this conceptually simple extension
may result in significant performance gain when retrieving

data. This also gives adatabase system the potential to support
such applications as multimedia systems (which manage
image, audio, graphic, text data, and compound documents
that comprise of such data), scientific data processing systems
(which manipulate vectors, matrices, ctc.), engincering and
design systems (which deal with complex nested objects), and
so forth. This is the basis for bridging the large gulf in data
types supported in today’s programming languages and
databasc systcms.

The second UniSQLY/X extension is the object-oriented
concept of encapsulation, that is, combining of data and
program (procedurc) to operatc on the data. This is
incorporated by allowing the uscrs 10 attach procedurces 10 a
relation and have the procedures operate on the column valucs
in each tuplc. The third CREATE TABLE statement in Figure
3 shows the PROCEDURE clausc for specifying a procedure,
RetirementBencfits, which computes the retircment benefit
for any given employec and returns a (loating—point nunicric
value. Procedures for reading and updating the valuc of cach
column are impliciitly available in cach rclation.

A relation now encapsulates the state and behavior of its
tuples; the state is the set of column values, and the behavior
is the sct of procedures that operate on the column valucs. The
uscr may write any procedure and attach it to a relation to
operate on the values of any tuple or tuplcs of the relation,
There is virtually unlimited application of procedurcs.

The third UniSQL/X extension is the object--oricnted
conceptof inheritance hicrarchy, UniSQL/X allows the users
to organize all relations in the databasc into a hicrarchy, such
that between a pair of relations P and C, P is made the parent
of C, if C is 10 take (inherit) all columns and proccdurcs
defined in P, besides those defined in C. Further, it allows a
tablc to have more than onc parent relation from which itmay
take columns and procedures. The child relation is said o
inherit columns and procedures from the parent relations (this
is called multiple inheritance). The hicrarchy of relations is a
directed acyclic graph (rather than a wree) with a single

1. CREATE TABLE Employee

2. CREATE TABLE Employee

CREATE TABLE Activity

3. CREATE TABLE Employee

PROCEDURE RetirementBenefits FLOAT ;
4. CREATE TABLE Employee

PROCEDURE . RetirementBenefits FLOAT
AS CHILD OF Person ;

CREATE TABLE Person

(Name CHAR(20), Job CHAR(20), Salary FLOAT, HHobby CIIAR(20), Manager CIIAR(20));

(Name CHAR(20), Job CHAR(20), Salary FLOAT, IOBBY Activity, Manager Employee);
(Name CHAR(20), NumPlayers INTEGER, Origin CHAR(20));

(Name CHAR(20), Job CHAR(20), Salary FLOAT, HHOBBY Activity, Manager Employee)

(Job CHAR(20), Salary FLOAT, HOBBY Activity, Manager Employee)

(Name CHAR(20),SSN CHAR(9), Age INTEGER);

Figure 3. Successive Extensions to the Relational Model

684

system—defined root. Further, an IS-A (generalization and
specialization) relationship holds between a child relation and
its parent relation. In the fourth CREATE TABLE in Figure 3,
the Employce relation is defined as a CHILD OF another
uscr-defined relation Person. The Employee relation
automatically inhcrits the three columns of the Person
relation; that is, the Employce relation will have the Name,
gStle,'a.nd Age columns, even if they are not specified in its
efinition.

The relation hierarchy offcrs two advantages over the
conventional rclational model of a simple collection of largely
indcpendent (unrclated) relatons. First, it makes it possiblc
for a user to create a new relation as a child relation of onc or
morc cexisting relations; the new relation inherits (reuscs) all
columns and procedures specified in the existing relations and
their ancestor relations. Further, it makes it possible for the
system to enforce the IS-A rclationship between a pair of
relations. RDBs requirc the users to manage and enforce this
rclationship.

Now, let us change the relational terms as follows. Change
“relation” to “class™, “tuple of a relation” to “instance of a
class”, “column” to “attribute”, “procedure” to “method”,
“relation hicrarchy” to “class hierarchy”, “child relation” to
"subclass”, and “parent class” to “superclass”. The
UniSQL/X data model described above is an object—oriented
datamodel! An object-oriented data model can be obtained by
extending the relational model. The terms “object—oriented
data modc!”, “cxiended relational data model”, and “unified
rclational and object-oriented data model (unified, for
brevity)” become synonymous if the data model is obtained by
augmenting the conventional relational data model with the
first three extensions described above. However, an extended
rclational model (system) is not an object-oriented modcl
(system), if it docs not include all threc extensions. Further, it
is important to note that a database system based on such a
model, because of its relational foundation, may be built by
adapting all the theoretical underpinnings of the relational
database tcchnology that have been developed during the past
two decadcs.

Although each of the three extensions individually may
appear to bc minor, the consequences of the extensions,
individually and collectively, with respect to ease of
application data modeling and/or subsequent increase in
query performance can be significant. The nested relation
cxtension eliminates the need for cumbersome workarounds
that uscrs of RDBs have had to resort to. The procedure and
relation hierarchy extensions open up significant new
possibilities in application data modeling and application
programming. Further, the nested relation and relation
hicrarchy extensions reflect the powerful data type facilities
of OOPLs.

Query and Data Manipulation

Of coursc, it is not enough just to define a data model that
allows the users torepresent complex datarequirements. Once
thedatabase schema has been defined using the data definition
facilitics, the databasc may be populated with a large number
of uscr—defined objects. The power of a database system
comcs into play when the users can retrieve and update tiny
fractions of the database efficiently. To allow this, a database
system provides query and data manipulation (insert, update,
dclete) facilities.

685

The UniSQL/X query language, unlike mere “SQL~like”
object l(}uery languages, is a superset of ANSI SQL, and as
such, if the extensions are removed from the syntax, it
degenerates to ANSI SQL. By a “SQL-like” language I mean
a databasc language that is either a subset of SQL or that does
not support the same scmantics of SQL. A SQL-like language
that is a subset of SQL is one, for example, that does not
support nested subqueries in the WHERE clause or
aggregation functions in the SELECT clause, etc. It isalsoone
that does not include facilities for defining and using views,
or facilities for dynamically making changes to the database
schema, or facilities for specifying the UNIQUE and NULL
constraints on attributes of a class, or facilities for granting
and revoking authorizations, and so forth. A SQL-like
database language that does not support the same semantics of
SQL is one, for example, that treats NULL values differently
from SQL, or that refuscs to commit a transaction after
accepting all read and update requests from the user without
any complaints, or that introduces a restriction that does not
exist in SQL (e.g., the DROP CLASS command does not
allow aclass to be dropped if any objects still belong toa class,
while the DROP TABLE command in SQL results in the
dropping of a table and all its tuples, whether or not there are
tuples), and so forth.

If a set of classes are defined just as relations in
conventional relational dalabascs, the users of the UniSQL/X
query language may issue all queries in ANSI SQL syntax,
including joins and nested subqueries, queries that group and
order the results, and queries against views. Let us consider
two simple examples using Figure 4. In the figure, the class
Employee is defined as a subclass of the class Person, and the
class Activity is the domain of the attribute Hobby of the class
Employee. The first query finds all employees who earn more
than § and arc over 30 years of age, and outputs the
average salary of all such employees by job category. The
second query is a join query, which finds the names of all
employces who earn more than their managers.

SELECT Job, Avg (Salary)

FROM Employee

WHERE Salary < 50000 AND
Age > 30

GROUPBY Job;

SELECT Employee Name
FROM Employee
WHERE Employee.Salary > Employee.Manager.Salary;

The UniSQL/X query language also allows the
formulation of a number of additional types of queries that
become necessary under the unified data model (1.e., queries
thatare not applicable under the relational model). The unified
data model is richer, and thus it gives rise to query expressions
that do not arise in RDBs. In particular, it allows path queries,
that is, queries against nested classes; queries that include
methods as part of search conditions; queries that return
nested objects; and queries against a set of classes in the class
hierarchy.

An example of a query on a class hierarchy is to retrieve
instances from a class and all its subclasses. In the following
query, the keyword ALL causes the query to be evaluated
against the class Person and its subclass Employee.

name
SSN
age

Bae

age

Person

Employee

manager

legend:

nested attribute
inheritance path

Activity

name

num. players
origin

Figure 4. An Example Database Schema

SELECT Name, SSN
FROM ALL Person
WHERE age > 50;

An example of a path query that retrieves nested objects,
using Figure 4, is “Find the names of all employees and their
employers for those employees who earn more than $50,000
and whose hobby is tennis”. This query is evaluated against
the nested objects defined by the classes Employee and
Activity. The query is formulated by associating the predicate
(Name = "tennis’) with the class Activity, and the predicate
‘Salary > 50000’ with the class Employee. The query returns
all attributes of Employee from the nested Employee objects
that satisfy the query conditions.

SELECT *

FROM Employee

WHERE Salary > 50000 AND
Hobby.Name = “Tennis”;

The dot notation in the predicate (Hobby.Name =
“Tennis”) extends the standard predicate expression to
account for the nesting of attributes through the use of
arbitrary data types.

Support for Object Navigation

Like some QODBs that are designed to make OOPL
objects persistent, UniSQL/X provides workspace
management facilities to automatically manage a large
number of objects in memory (called a workspace or an object
buffer pool). In particular, UniSQL/X automatically converts
the storage format of objects between the database format and
the memory format, automatically converts the OIDs stored
in objects to memory pointers when objects are loaded from
the database into memory, and automatically flushes (writes)
objects updated in memory to the database when a the
transaction that updated them finish.

These workspace management facilities in UniSQL/X
make it possible for database application programs tonavigate
memory-resident objects viamemory-pointer chasing, and to
propagate changes to individual objects collectively to the
database. RDB applications mustresort to explicit querics that
either join two relations or at least search a single relation to
emulate the simple navigation from one object to another
related object. Further, RDB applications must also propagate
updated tuples one at a time to the database, via the RDB
interface (either the data manager level or storage manager
level). When a transaction finishes, UniSQL/X automatically

sends all objects created or updated by the transaction to the
databasc t0 make them persistent. UniSQL/X application
programs do not need to do anything 10 propagate the changes
to the database.

I note that, unlike most OOQDBs that also provide
workspace management facilities, UniSQL/X supports full
query facilities and full dynamic schema cvolution. Since at
any point in time, an objcct may exist both in the database and
in the workspace, and the “‘copy” in the workspace may have
been updated, a query must be cvaluated against the “copics”
in the workspace for those objects that have been loaded into
the workspace, and against the databasc objects for those
objccts that have not been loaded into the workspace. Further,
if the user makes a schema change (c.g., drop an auribute of
a class, or add an attribute to a class), the “copics” of objccls
in the workspace become invalid. UniSQL/X takes full
account of these considerations in its support of automatic
query processing and dynamic schema evolution.

Further, workspace management facilitics arc essential for
making objects persistent and for supporting the performance
requirements in object navigation for application programs
written in QOPLs. Although UniSQL/X is not wedded o any
particular QOPL, the sophisticated workspace management
facilities provided in UniSQL/X mcan that a rather simple
translation layer may be implemented on top of UniSQL/X to
support any particular OOPL (¢.g., C++ or Smallialk).

5. Interoperating with RDBs

The gateway approach that I discussed as an
(unsatisfactory) altcrnative for unifying an OODB withRDBs
serves one uscful purpose. It allows an QODB and RDBs 0
coexist, and can potentially makc it possible for onc
application program 1o work with data rctricved from both an
OODB and one or more RDBs. As 1 remarked already,
however, the current OODB-RDB gatcways typically pass
requcststoonly one RDB (e.g., 10 Sybase or toORACLE), and
do not treat the separate requests to an OODB and to RDB as
a single transaction (i.c., collection of requests that is reated
as a single unit).

A multidatabase system (MDRBS) is logically a lull
generalization of a gateway. An MDBS is actlually a databasc
system that controls multiplc gateways. It docs not have its
own database; it mercly manages remotc databascs through
the gateways, one galeway for each rcmote databasc. An
MDBS presents the multiple remote databascs as a single
“virtual” database to its uscrs. Since an MDBS does not have

686

its own “rcal” database, ccrtain databasc facilities, such as

thosc for managing access mcthods (creating and dropping

B+--tree index, extendible hash table, ctc.) and parameterized
performance tuning, become meaningless.

However, an MDBS is a ncarly full-fledged database
systcm. An MDBS must provide data definition facilities so
that the virtual database may be dcfined on the basis of the
remote databases. The data definition facilities need toinclude
means to harmonize (homogenize) the different
representations of the semantically equivalent data in
different remote databases. An MDBS uscr may query the
dcfinition of the virtual database, query and update the virtual
databasc (rcquiring query optimization and query processing
mechanisms). Multiple MDBS users may simultancously
query, update, and even populate the “virtual” database
(requiring concurrency control mechanisms); the users may
submit a collection of querics and updates as a single
transaction against the virtual database (requiring transaction
management mechanisms); the users would grant and revoke
authorizations on parts of the database to other users
(requiring authorization mechanisms).

To translatc MDBS querics and updates o equivalent
queries and updatcs that can be processed by remote database
systcms, an MDBS requircs gateways for remotc database
systems. The gateways in an MDBS are often called “drivers”
and rcmotc database systems are called “local” database
systems, and the single virtual database that an MDBS
presents to its users is called a “global” database. Further, an
MDBS is said to “integrate” multiple local databases into a
single global database.

UniSQL/M is a multidatabase system from UniSQL, Inc.
that integrates multiple UniSQL/X databases and multiple
relational databases. UniSQL/M is UniSQL/X augmented to
access external rclational databases and UniSQL/X
databascs; as such, it is a full-fledged database system and
UniSQL/M users can query and update the global database in
the SQL/X database language. UniSQL/M maintains the
global database as a collection of views defined over relations
in local RDBs and classcs in local UniSQL/X databases.
UniSQ1./M also maintains a directory of the local database
rclations and classes, their attributes and data types, and
mcthods, that have becn intcgrated into the global database.
Using the information in the directory, UniSQL/M translates
the queries and updates to cquivalent queries and updates for
processing by local database systems that manage the data that
the querics and updates need to access. The local database
drivers pass the translated queries and updates to local
database systems, and pass the results to UniSQL/M for
format translation, merging, and any necessary

687

postprocessing (e.g., sorting, grouping, and joining). Further,
UniSQL/M supports “distributed transaction management”
over local databases, which means that all updates issucd
within onc UniSQL/M transaction, even when they result in
updates 10 multiple local databascs, arc simultancously

committed or aborted.

RDB vendors today offer gateways of different levels of
sophistication. Some gateways allows SQL queries to be

nocond tna hinenenhinn TAatahkaoa cuctnns £

passcd to a hierarchical database sysiem (namely, IMS) or file
systems such as DEC’s RMS. Some gateway is currently
being upgraded to accept both queries and updates, and even
support distributed transaction management over local
databases. However, none of these gateways are designed to
pass SQL queries to OODBSs; there has been little need to
develop such gateways.

X .
UniSQL/M differs from the gateways currently offered by

RDB vendors and OODB vendors in three major ways.

— UniSQL/M is a full-fledged database system, rather
than a mere gateway, supporting queries, updates,
authorization, and transaction management over the global
database (the specifications of views defined over local
database tables and classes, and directory of information
about local database tablcs and classes). Most current
gateways do not accept updates.

— UniSQL/M connects to and coordinates queries and
updates to multiple local databases for a single UniSQL/M
transaction; in particular, it supports distributed transaction
management over local databases. Most current gateways
pass requests to only one local database, or do not atlow
simultaneous updates to multiple local databases within a
single transaction, when they do support multiple local
databases.

There is one more powerful advantage that UniSQL/M
offers over any of the current gateways. UniSQL/M extends,
although not fully (due to theoretical limitations), local RDBs
to UniSQL/X; that is, UniSQL/M converts the tuples retrieved
from relational local databases into objects by augmenting
them with object identifiers and allowing the users to attach
methods to them. In this way, UniSQL/M makes key
object-oriented facilities provided in UniSQL/X indirectly
available to local RDBs; in particular, SQL/X path querics,
methods, and workspace management for objects in
UniSQL/M memory.

UniSQL/M may be used in at least three different contexts.
First, it may be used to allow co-existence of UniSQL/X with
RDBs. Second, it may be used to turn a collection of RDBs (or
a collection of UniSQL/X’s) into a distributed database
system. Third, when interfaced to a single RDB, it acts as the
object management layer for the RDB engine, turning the
RDB into UniSQL/X.

