
Object-Oriented Database Systems:
Promises, Reality, and Future

Won Kim

UniSQL, Inc.
9390 Research Blvd.
Austin, Texas 78759

Abstract

During the past decade, object-oriented technology has
found its way into programming languages, user interfaces,
databases, operating systems, expert systems, etc. Products
labeled as object-oriented database systems have been in the
market for several years, and vendors of relational database
systems are now declaring that they will extend their products
with object-oriented capabilities. A few vendors are now
offering database systems that combine relational and
object-oriented capabilities in one database system. Despite
these activities, there are still many myths and much
confusion about object-oriented database systems, relational
systems extended with object-oriented capabilities, and even
the necessities of such systems among users, trade journals,
and even vendors. The objective of lhis paper is to review the
promises of object-oriented database systems, examine the
reality, and how their promises may be fulfilled through
unification with the relational technology.

1. Definitions

Object-oriented tcchnologics in use today include
object-oriented programming languages (e.g., C++ and
Smalltalk), object-oriented database systems,
object-oriented user interfaces (e.g., Macintosh and
Microsoft window systems, Frame and Interleaf desktop
publishing systems), etc. An object-oriented technology is a
technology that makes available to the users facilities that are
based on “object-oriented concepts”. To define
“object-oriented concepts”, we must first understand what an
“object” is.

The term “object” means a combination of “data” and
“program” that represent some real-world entity. For
example, consider an employee named Tom; Tom is 25 years
old, and his salary is $25,000. Then Tom may be represented
in a computer program as an object. The “data” part of this

Permisrion to copy without fee all or part of thir materio/ ir
granted provided that the copier are not made ot distributed JOT
direct coynmercial advantage, the VLDB copyright notice and the
title of the publication and itr date appear, and notice ir given
that copying ia by permiskon of the Very Large Data Bare En-
dowment. To copy oiherwiee, or to republish, rcqminr a Jee
and/or special pemiwion from the Endowment.

Proceedinga of the 19th VLDB Conbrence
Dublin, Ireland 1993

object would be (name: Tom, age: 25, salary: $25,000). l’hc
“program” part of the object may be a collc4Xion of programs
(hire, retrieve the data, change age, change salary, fire). ‘I’hc
data part consists of data of any type. For the “Tom” object,
string is used for the name, intcgcr for age, and monetary for
salary; but in general, cvcn any uscr-dcfincd type. such ;LV
Employee, may be used. In the “Tom” object, the name, age,
and salary arc called attributes of the object.

Often, an object is said to“cncapsulatc”data and program.
This means that the users cannot SIX the inside of the ohjcct
“capsule”. but can use the object by calling the program part
of the object. This is not much diffcrcnt from proccdurc UIIS
in conventional programming; the users call a prwcthm hy
supplying values for input paramctcrs and rcccivc rcsulL\; in
output pwamctcfs.

The term “object-oricntcd” roughly m&s a wu~hiaation
of object encapsulation and inhcritancc. ‘I’hc l~‘rll1
“inhcritancc” is sometimes called “rcusc”. Inhcri~~~ncc III~WU

roughly that a new object may bc crcalctl by cxlcndiug an

existing object. Now Ict us understand the term “inhcritnncc”
more precisely. An object has a data part and a program part.
All objects that have the same attributes for the data l~rrt and
samcprogrampartarecollcctivclycalIcdaclass(or lyl~).‘l’l~c
classes arc arranged such that some class may inherit the
attributes and program part from some other classes.

Tom, Dick, and Harry arc each an Employee objrct. ‘I’hc
data m of each of thcsc objects consists of the atlributcs
Name, Age. and Salary. Each of thcsc Employee objccls Ilas
the .samc program part (hire, rctricvc the dalir, change age,
change salary, lirc). Each program in the program part is
calleda”mcthod”. The term “class” rcfcrs to the collection 01
all objects that have the same attributes and n~cth~x~s. In our
example, the Tom, Dick, and Harry objects belong IO UIC chss

Employee, since they all have the s3111c attributes and
methods. This class may bc used as the tylx of an attribute 01
any object. At this time, thcrc is only one class in the S~SICIII.
namely, the class Employee; and three objects that belong to
the class, namely, Tom, Dick, and Harry objects.

NOW suppose that a user wishes to crcatc two sales
cmployccs, John and Paul. But salts cmployccs have XI
additional attribute, namely, Commission. ‘I’hc salts
employc42cannot belong to thcclass Employee. Howcvcr, the
user can crcatc a new class, Salts-Employee, such that all
atuibutcs and methods associated with the class Employee.
may be reused and the attribulc Commission may bc added IO
Sales-Employee. The user does this by declaring the class
Sa1es~Employe.e tobca”subclass”of thcclassEml)loycc. ‘11~
user can now proceed to crc;Ite the two salts c~~~ployccs as
objects belonging to the cla~ss SalcsEmploycc. The users can

676

CrCillC rl0W claS~~1IsSIIIN:IiI!~SCso~CxistinlJc~R~S. lngeneral,
II cl:rss wuy inkit I’ron~ WN: or mm exisliny bless, and tic
inhcritancc slruclurc of classes bccomcs a directed acyclic
graph (DAG): but for simplicity, the inheritance structure is
called an “inhcritancc hierarchy” or “class hierarchy”.

The power of object l ricntcd concepts is delivered when
encapsulation and inhcritancc work together.

- Since inheritance makes it possible for different classes
to share the same set of attributes and methods, the same
program can be run against objects that belong to different
classes. This is the basis of the object-oriented user interface
that desktop publishing systems and windows management
systems provide today. The same set of programs (e.g., open,
close, drop, create, move, etc.) apply to different types of data
(image, text file, audio, directory, etc.).

- If the users delinc many classes, and each class has many
attributes and methods. the benefit of sharing not only the
attributes but also the programs can be dramatic. The
atlributcs and programs ncal not be defined and written from
scratch. New classes can bc crcatcd by adding attributes and
methods to existing classes, rather than by modifying the
attributes and methods of existing classes, thereby reducing
the opportunity to introduce new errors to existing classes.

2. Promises of OODBs

An object-&Wed programming language (OOPL)
provides facilities to crcatc classes for organizing objects, to
create objects, to structure an inheritance hrerarchy to
organize classes so that subclasses may inherit attributes and
methods from superclasses, and to call methods to access
specific objects. Similarly, an object+riented database
system (OODB) should provide facilities to create classes for
organizing objects, to crcatc objects, to structure an
inhcritancc hierarchy to organize classes so that subclasses
may inherit attributes and methods from superclasses, and to
call methods to access specific objects. Beyond these, an
OCDB, because it isadatabascsystem,mustprovidestandard
database facilities found in today’s relational database
systems (RDBs), including nonprocedural query facility for
rctricving objccu, automatic query optimrzation and
processing, dynamic schema changes (changing the class
definitions and inheritance structure), automatic management
of access methods (e.g., B+-tree index, extensible hashing,
sorting, etc.) to improve query processing performance,
automatic transaction management, concurrency control,
rccovcry from system crashes, security and authorization.
Programming languages, including OOPLs, are designed
with one user and a relatively small database in mind.
Database systems are designed with many users and very huge
databa.scs in mind; hence performance, security and
authorization, concurrency control, dynamic schema changes
become important issues. Further, database systems are used
to maintain critical data accurately; hence, transaction
managcmcnt, concurrency control, and recovery are
important facilities.

Insofar as a database system is a system software whose
functions are called from application programs written in
some host programming languages, WC may distinguish two
diffcrcnt approaches to designing an OODB. One is to Store
and manage objects created by programs written in an OOPL.
Some of the current OODBs are designed to store and manage
objccls generated in C++ or Smalltalk programs. Of course,

an RDB can be used lo slorc and manage such objects.
Ilowcver, RDBs do not understand objects, in particular,
methods and inheritance. Therefore, what may be called an
“object manager*’ or an “object-oriented layer” software
needs to be written to manage methods and inheritance, and
to translate objects to tuples (rows) of a relation (table). But,
the object manager and RDB combined are in effect an OODB
(with poor performance of course)!

Another approach is to make object-oriented facilities
available to users of non-OOPLs. The users may create
classes, objects, inheritance hierarchy, etc.; and the database
system will store and manage those objects and classes. This
approach in effect turns non-OOPLs (e.g., C, FORTRAN,
COBOL, etc.) into object-oriented languages. In fact, C++
has turned C into an OOPL. and CLOS has added
object4ented programming facilities to CommonLISP An
OODB designed using this approach can of course be used to
store and manage objects created by programs written in an
OOPL. Although a translation layer would need to be written
to map the OOPL objects lo objects of the database system, the
layer should be much less complicated than the object
manager layer that an RDB would require.

lnviewofthefactthatC++,despiteitsgrowingpopularity,
is not the only programming language that database
application programmers are using or will ever use, and there
is a significant gulf between a programming language and a
database system, the second approach is a more practical basis
of a database system that will deliver the power of
object-oriented concepts to database application
programmers. Regardless of the approach, OODBs, if done
right, can bring about a quantum jump in the productivity of
database application programmers, and even in the
performance of the application programs.

One source of the technological quantum jump is the reuse
of a database design and program that objectariented
concepts make possible for the first time in the evolving
history of database technologies. Object-oriented concepts
are fundamentally designed to reduce the difficulty of
developing and evolving complex software systems or
designs. Encapsulation and inheritance allow attributes (i.e.,
database design) and programs to be reused as the basis for
building complex databases and programs. This is precisely
the goal that has driven the data management technology from
file systems to relational database systems during the past
three decades. An OODB has the potential to satisfy the
objective of reducing the difficulty of designing and evolving
very large and complex databases.

Another source of the technological jump is the powerful
data type facilities implicit in the object-oriented concepts of
encapsulation and inheritance. The data type facilities in fact
are the keys to eliminating three of the important deficiencies
of RDBs. These are summarized below. I will discuss these
points in greater detail later.

- RDBs force the users to represent hierarchical data (or
complex nested data, or compound data) such as bill of
materials in terms of tuples in multiple relations. This is
awkward to start with. Further, to retrieve data thus spread out
in multiple relations, RDBs must resort to joins, a generally
expensive operation. The data type of an attribute of an object
in OOPLs may be a primitive type or an arbitrary user-defined
type (class). The fact that an object may have an attribute
whose value may be another object naturally leads to nested

677

object representation, which in turn allows hierarchical data
to be naturally (i.e., hierarchically) represented.

-RDBs offer a set of primitive, built-in data types for use
asdomainsofcolumnsofrelations, butdonotofferany means
of adding user-defined data types. The built-in data types are
basically all numbers and short symbols. RDBs are not
designed to allow new data types to be added, and therefore
often require a major surgery to the system architecture and
code to add any new data type. Adding a new data type to a
database system means allowing its use as the data type of an
attribute, that is, storage of data of that type, querying and
updating of such data. Object encapsulation in OOPLs does
not impose any restriction on the types of data that the data part
of an object may hold, that is, the types of data may be
primitive types or user-defined types. Further, new data types
may be created as new classes, possibly even as subclasses of
existing classes, inheriting their attributes and methods.

- Object encapsulation is the basis for the storage and
management of programs as well as data in the database.
RDBs now support “stored procedures”, that is, they allow
programs to be written in some procedural language and
stored in the database for later loading and execution.
However, the stored procedures in RDBs are not encapsulated
with data; that is, they are not associated with any relation or
any tuple of a relation. Further, since RDBs do not have the
inheritance mechanism, the stored procedures cannot
automatically be reused.

3. Reality of OODBs

There are a number of commercial OODBs. These include
Gemstone from Servio Corporation, ONTOS from ONTO&
ObjectStore from Object Design, Inc., Objectivity/DB from
Objectivity, Inc., Versant from Vcrsant Object Technology,
Inc., Matisse from Intellitic International (France), Itasca
(commercial version of MCC’s ORION prototype) from
Itasca Systems, Inc.,02 from 02 Technology (France). These
products all support an object-oriented data model.
Specifically, they allow the user to create a new class with
attributes and methods, have the class inherit attributes and
methods from superclasses, create instances of the class each
with a unique object identifier, retrieve the instances either
individually or collectively, and load and run methods.

These products have been in the market since as early as
1987. However, most of them have been in evaluation, and
preliminary prototype application development; that is, they
have not been seriously used for many missionnitical
applications. Further, a fairly large number of copies of the
products have been given away for free trial, artificially
boosting the totaI count of product installations. The
worldwide market size for all of the cutrent OODBs combined
is estimated to be $20-30 million - a tiny fraction of the $3
billion worldwide market size for all database products. To be
sure, the past several years have been a gestation period for
object-oriented technology in general. and object-oriented
database technology in particular. Further, the technical
market and OOPL market which the current QQDBs have
targeted are new markets that have not been previously relied
on database systems. However, the lack of maturity of the
initial (and to a good extent, the current) OODB offerings has
also contributed significantly to their slow acceptance in
mission-critical applications.

3.1 Limitations

limitations as persistent storage systems

One key objective and therefore, selling point, of IWSI of
the current OODBs is the support of a unifi4 programming
and database language, that is, one language (eg., C++ or
Smalltalk) in which todo both general-purpose programming
and databasemanagement. Thisobjectivc was the result ofthc
current situation where ap
combination of a P

lication programs arc written in a
genera -purpose programming language

(mostly. COBOL, FORTRAN, PL/I. or C), and database
management functions are embedded within the application
programs in a database language (c.g., the SQL relational
database language). A gcncral-purpose programming
language and a database language arc very different in synmx
and data model (data structures and data types), and the
necessity of having to learn and use two very dill&em
languages to write database application pro *rams has been
frequently regarded as a major nuisance. b incc C++ and
Smalltalk aIready include facilities for defining clas.ses and a
class hierarchy (i.e., for data definition), in cffcct, these
languages are a good basis for a unilied programming and
database language. The first step that most of the vendors ol
the early OODBs took was to make the classes and instances
of the classes persistent, that is, to store them on secondary
storage and make them acccssiblc cvcn after the programs
which defined and crcatcd them have terminated.

Current OODBs that arcdcsigncd to support (XWLs place
various restrictions on the dclinition and use of objects. III
particular, most systems treat persistent data diffcrcntly from
nonpersistent data (e.g., they make it illegal for a pcrsistcnt
object to contain the OID of a nonpersistent ObjW). and
therefore require the users to explicitly dcclarc whcthcr an
object is persistent or not. Further, they cannot make ccrtaiu
types of data persistent, and therefore prohibit their USC.
limitations as database systems

The second, much more severe, source of immaturity of
most of the current OODBs products is the lack of basic
features that users of database systems have become
accustomed to and therefore have come to expect. The
features include a full nonprocedural query language (along
with automatic query optimization and processing), views,
authorization, dynamic schema changes, and paramclerizcd
performance tuning. Besides these basic fcaturcs, RDBs offer
support for triggers, mcta data managemcnl, constraints such
as UNIQUE and NULL - features that mosl OODBs do not
support.

- Most of the OODBs suffer from the lack of query
facilities; and those few systems that do provide significant
query facilities, the query language is not ANSI
SQL-compatible. Typically, the query facilities do not
include nested subqueries, set queries (union, inlcrscction,
difference), aggregation functions and group by, and cvcn
joins of multiple classes, etc. - facilities fully supported in
RDBs. In other words, these products allow the users tocreale
a flexible database schema and populate the database with
many instances, but they do not provide a powerful enough
means of retrieving objects from the database.

-RDBs support views as dynamic windows into the stored
database. The view definition includes a query statement IO
specify the data that will be fctched to constitute the view. A

view is used as a unit of authorization. No OODB today
supports views.

- RDBs support authorization - that is, they allow the
users lo grant and rcvokc privileges to read or change the
tuples in the tables or views they created to other users, or to
change the definition of the relations they created to other
users. Most OODBs do not support authorization.

- RDBs allow the users to dynamically change tbe
databa.sc schema using the ALTER command, a new column
may bc added to a relation, a relation may be dropped, and a
column can somctimcs be dropped from a relation. However,
most of the current OODBs do not allow dynamic changes to
the database schema, such as adding a new attribute or method
to a class, adding a new superclass to a class, dropping a
superclass from a class, adding a new class, and dropping a
class.

- RDBs automatically set and release locks in processing
query and update statcmcnts the users issue. However, some
of the current OODDs rcquirc the users to explicitly set and
rclea.se loch.

- RDBs allow the installation to tune system performance
by providing a large number of paramctcrs that can be set by
the system administrator. The parameters include the number
of memory buffers, the amount of free spacereservedper data
page for future insertions of data, and so forth. Most of the
OODBs offer a limited capability for parameter&d
performance tuning.

Because of the dcficicncics outlined above, most of these
products will require majorcnhanccmcnts. It is safe toassume
that the vendors of these products will make the required
changw to their current software4 rather than rewriting the
products from scratch. The extent of the changes that wd.l be
required to bring these products to full-fledged database
systems that can at lcast match the level of database
functionality expected of today’s database systems is so great
that it is not expected that the enhanced products will attain the
robustness and performance required for mission-critical
applications within the next three or four years.

Upgrading most of the current OODBs to true database
systems poses not only major technical difficulties as outlined
above, but also a serious philosophical difficult . As we have
seen already, most of the curn?nt OODBs are c r oser Lo being
mcrcly persistent storage systems for some OOPL than
tlatabasc systems. The term OODB was not deliberately
dcsigncd to be misleading and confusing, since the OODBs
were designed to manage a database of objects generated by
programs written in OOPLs. However, the database users
have been trained during the past two decades to think of a
database system as a software that allows a large database to
bc qucricd to retrieve a small portion of it, that doesnotrequire
any hint from the user about how to process any given query,
that allows a large number of users to simultaneously read and
update the same database, that automatically enforces
database integrity in the presence of multipleconcurrent users
and system failures, that allows the creator of a portion of a
database to grant and rcvokc access privileges to his data to
other users, that allows the installation to tune the
pcrformanceof a database system by adjusting various system
parameters, and so forth. For this reason, the term OODB has
become a misnomer for most of the current OODBs.

Mosl of the current OODI3s have essentially extended the
OOPLs with a run-time library of database functions. These
functions must be called from the application programs, with
appropriate specifications of the input and output parameters.
The syntax of thecalling functions is madeconsistent with the
application programming language. As the current OODBs
arc upgraded to true database systems, a major extension to the
current library of database functions will be necessitated to
support query facilities. Today’s programming languages,
including object-oriented languages, simply are not designed
with database queries in mind. A database query may return
an indeterminate number of records or objects that satisfy
user-specified search conditions. Therefore, the application
program must be designed to step through the entire set of
records or objects that are turned until there is no more left.
This is what led to the introduction of the cursor mechanism
in database systems. The result of a database query must
therefore be assigned to some data structure and
accompanying algorithm that can store and step through an
indefinite number of objects. Further, there will arise the need
to provide facilities to specify nested subqueries,
postprocessing on the result of a query (corresponding to
GROUP BY, aggregation functions, correlation queries, etc.),
and set queries (union, intersection, difference). In the name
of a unified programming and database language, presumably,
all these facilities will bc made available to the programmers
in a syntax that is consistent with the programming languages.
In other words, the unified language approach does not
eliminate the need for any of the database facilities; rather, it
merely makes the facilities available to the users in a different
syntax. Further, the syntax, to be consistent with the host
programming languages, is at a low, procedural level. A
procedural syntax is always more difficult for non-technical
users to learn and use. Therefore, it is not clear if ultimately
the unified language approach offers any advantages over that
of embedding a database language in host programming
languages.

3.2 Myths

There are many myths about OODBs. Many of these
myths arc totally without merit, and are the result of the
unfortunate label “database system” that has been attached to
most of the current OODBs that are not full-fledged database
systems comparable to the current RDBs. Some of the myths
are the result of the evolving nature of the technology. Yet
others represent concerns from purists that in my view are not
practically useful.

OODBs are 10 to 100 times faster than RDBs

Vendors of OODBs often make the claim that OODBs are
between 10 to 100 times faster than RDBs, and back up the
claim with performance numbers. This claim can be
misleadin unless it is carefully qualified. OODBs have two
sources o f performance gain over RDBs. In an OODB the
value of an attribute of an object X whose domain is another
object Y is the object identifier (OID) of the object Y.
Therefore,ifanapplicationhasalreadyretrievedobjectX,and
now would like to retrieve object Y, the database system may
retrieve object Y by looking up its OID. Figure 1 .a illustrates
two instances of the class Person, and two instances of the
class Company, such that the class Company is the domain of
the attribute Worksfor in the class Person. The value stored in
the Worksfor attribute is the OID of an object of the class

679

Company. If the OID is a physical address of an object, the
object may be directly fetched from the database; if the OID
is a logical address, the object may be fetched by looking up
a hash table entry (assuming that the system maintains a hash
table that maps an OID to its physical address).

The current RDBs allow only a primitive data type as the
domain of an attribute of a relation. As such, the value of an
attribute of a tuple can only be primitive data (such as a
number or string), and never be another tuple. If a tuple Y of
a relation R2 is logically the value of an attribute A of a tuple
X of a relation Rl, the actual value stored in attribute A of
tuple X is a value of attribute B of tuple Y of relation R2. If
an application has retrieved tuple X, and would now like to
retrieve tuple Y, the system must in effect execute aquery that
scans the relation R2 using the value of attribute A of tuple X.
Figure 1.b is an equivalent represe&ation in an RDB of the
object-oriented database in Figure 1.a. The domain of the
attribute Worksfor in the relation Person iS the primitive data
type String. If an application has retrieved tbe Person tuple for
“John”, and would like to retrieve the Company tuple for
“UniSQL”, it needs to issue a query that will scan the
Company relation. Imagine that the Company relation has
thousands or tens of thousands of tuples. If no index is
maintained on attribute B (Name) of relation R2 (Company),
the entire relation R2 must be sequentially searched to find
tuple Y (for “UniSQL”). If an index is maintained on attribute
B, tuple Y may be retrieved about as fast as in OODBs that
resort to a hash table lookup, but less efficiently than in
OODBs that implement OlDs as physical addresses (and
therefore do not require any hash table lookup).

A second source of performance gain in OODBs over
RDBs is that most OODBs convert the OlDs stored in an
object to memory pointers when the object is loaded into
memory. Suppose that both objects X and Y have been loaded
into memory, and the OID stored as the value of attribute A of
object X is converted to virtual memory pointer that points to
object Y in memory. Then navigating from ob’
Y, that is, accessing object Y as the.valpe o I=

t X to object
attribute A of

object X, becomes essentially a memory pointer lookup.

Figure 2.a illustrates the database nzpnzsentation of the objects
of the classes Person and Company. Figure 2.b illustrates the
memory reptcsentation of the same objects. The OlDs stored
in the Worksfor attribute of the Person objects have been
converted to memory addresses. lmaginc that hundreds or
thousands of objects have been loaded into memory, and that
each object contains memory pointers to one or more olher
objects in memory. Further, imagine that navigation from one
object to other objects is to be performed rcpeatcdly. Since
RDBs do not store OlDs, they cannot store in one tuplc
memory pointers to other tuplcs. The facility to navigate
through memory-resident ob’cc& is a fundamentally ahscnt
feature in RDBs. and the pe l-i ormance drawback that rcsuhs
from it cannot be neutralized by simply having a large buffer
space in memory. Therefore, for applications that rcquirc
repeated navigation through linked objects loaded in memory,
OODBs can dramatically outperform RDBs.

lfalldatabaseapplicationsrcquireonly OID lookups with
databaseobjcctsormcmory-poinlcrchasingamongobjectsin
memory, tbe 2 to 3 orders of magnitude pcrformancc
advantage for OODBs over RDBs is very much valid.
However, most applications that require OID lookups also
have database access and update requirements which RDBs
have been designed to meel. These requirements include bulk
database loading; creation, update, and dclctc of individual
objects (one at a time); retrieval of one or more objects from
a class that satisfy certain search conditions; joins of more
than one classes (as WC will see shordy); transaction commit;
and so forth. For such applications, OODBs do not have any
perfotmance advantage to offer. In fact, even for the cxamplc
database of Figure 1, if the objcctivc of the application is to
fetch Person objects, along with therclated Company objects.
that satisfy certain conditions (e.g., all Persons whose Age is
greater than 25 and whose Salary is less than 40000 - i.e., a
gcneralquery).ratherthanfetchingaspcciticCompanyohject
for a given Person object (i.e., a simple navigation), OODBs
may not enjoy any performance advantage at all, dcpcnding
on how the OIDs are implemented and whcthcr the query

Person Company
oid name age salary workslor

115 Jfh 25 m-m no2
267 Chen 30 25000 001

Oid name age president location

001 u 15 Cohen NY _
002 UniSQL 3 Kim Austin

Figure 1.a Object representation in an OODB

Person Company
name

Chen

age
25
30

salary worksfor name we president location

25oon 15 Cnhen NY
25000 Acme UniSQL 3 Kim Austin

Figure 1.b ‘I‘uple representation in an RDB

680

optimizer is dcsigncd to exploit the OIDs in processing
queries.

OODBs eliminate the need for joins

QODBs significantly rcducc the riced for joins of clas.ses
(comparable to joins of relations in RDBs); however, they do
not eliminate the needaltogether. In OODBs the domain of an
attribute of a class C may be another class D. However, in
RDBs the domain of an attribute of a rehttion Rl cannot be
another relation R2. Therefore, to correlate a tuple of one
relation with a tuple of some other relation, RDBs always
require the users to explicitly join the two relations. OQDBs
replace this explicit join with an implicit join, namely the
fetching of the OIDs of objects in a class that are stored as the
values of an attribute in another class. The examples in Figure
1 illuslrated this point. The specification of a class D as the
domain of an attribute of another class C in an OODB is in
csscncc a static specification of a join between the classes C
itnd D.

when the user does not know the OIDs of the objects). It is
more convenient for the user to bc able lo fetch one or more
objects using user-defined keys. For example, in the example
database of Figure 1, if the Name attribute is a primary key, the
user may fetch one Person object by issuing a query that
searches for a specific Name.

OODBs eliminate the need for a (non-procedural)
database language

The relational join is a
two relations on the basis o f:

cncral mechanism that correlates
the values of a corresponding pair

of attributes in the relations. Since two classes m an OODB
may in general have corresponding pairs of attributes, the
relational join is still useful and, therefore, necessary in
OODBs. For example, in Figure 1, the classes Person and
Company both have attributes Name and Age. Although the
Name and Age attributes of the class Company are not the
domains of the Name and Age attributes of the class Person,
and vice versa, the user may wish to correlate the two classes
on the basis of the values of these attributes (e.g., find all
Person objects whose Age is less than the Ageof thecompany
the Person Worksfor).

ThismythcameaboutbecausemostofthecurrentOODBs
offer only limited query capabilities. Vendors of the OODBs
elected to focus their development efforts on the performance
of database navigation, and making objects persistent. The
commands necessary to invoke the limited database facilities
havebeenpresentedtotheusersascaRstoalibraryofdatabase
functions, that is, a procedural language. Upgrading most of
the current OODBs to true database systems, in particular
adding full query facilities comparable to those supported in
RDBs, will necessitate a nonprocedural query language,
which will be very difficult to hide. OODB vendors arc now
attempting to provide non rocedural
generally labeled as Object S 8

query languages,
L.

query processing will violate encapsulation

object identity eliminates the need for keys

Object identity has received more attention that it merits.
Object identity is merely a means of representing an object,
and also guaranteeing uniqueness of each individual object.
An OID does not carry any additional semantics. Even if the
OID lends uniqueness to each object, the OID is generated
automatically by the system and usually not even made visible
to the users. Therefore, it does not offer a convenient means
of fetching specific desired objects from a large database (i.e.,

One objective of encapsulating data and program into an
object in QOPLs is to force the programmers to access objects
only by invoking the program part of the objects, and keep the
programmers from making use of knowledge of the data
structures used to store the objects or the implementation of
the program part. In the course of processing a query, the
database system must read the contents of objects, extract
OIDs that may be stored in some attributes of the objects, and
retrieve objects that correspond to those OIDs. Object purists
regard this as violating object encapsulation, since the
database system examines the contents of objects. This view
is not practical or useful. Fit, it is the database system that
examines the contents of objects, not any ordinary user.
Second, the act of examining the values stored in attributes of
objects may be regarded as invoking the “get (or read)”
method implicit1

r
associated with every attribute of every

class. If purity o objects must be preserved at all cost, then
every single numeric and string constant used must be

Person Company
president location

p67 Chen 30 25ooo 001 002 UniSQL 3 Kim Austin

Figure 2.a Object representation in database

Person Company
addr name age salary worksfor addr name age president location

040 Llnhn 3.5 t-m 004Acme 15 f nhen NY

080 IChen 30 25000 004 020 UniSQL 3 Kim Austin

Figure 2.b Object representation in memory

681

explicitly assigned an OID! But no known OOPL or 00
application system does it.

OODBs can support versioning and long-duration

transactions

There is a general misunderstanding that somehow
OODBs can support versioning and long-duration
transactions, and, by implication, versioning and
long-duration transactions cannot be supported in RDBs.
Although the paradigm shift from relations to objects does
eliminate key deficiencies in RDBs, it does not address the
issues of versioning and long-duration transactions. The
object-oriented paradigm does not include versioning and
long-duration transactions, just as the relational model of data
does not include them. Simply put, C++ or Smalltalk does not
include any versioning facilities or long-duration transaction
facilities.

The reason versioning and long-duration transactions
have become associated with OODBs is simply that they are
database facilities that have been missing in RDBs and that
have been identified as requirements for those applications
that OODBs, with their more powerful data modcling
facilities and object navigation facilities, can satisfy much
better than RDBs (e.g., computer-aided engineering system,
computer-aidedauthoring system,etc.). In fact, mostOODBs
do not even support versioning and long-duration
transactions. The few OODBs that do offer what are labeled
as versioning and long-duration transactions provide only
primitive facilities.

Versioning and long-duration transactions can be
supported in both OODBs and RDBs with equal ease or
difficulty. Let us consider a few aspects of versioning. If an
object is to be versioned, often a timestamp and/or version
identity may need to be maintained. This can be implemented
by creating system-defined attributes for the timestamp
and/or version identity. Clearly, this can be done both for each
versioned object in a class in OODBs and each versioned tuple
in a relation in RDBs. Similarly, version-derivation history
may be maintained in the database. Further, such versioning
facilities as version derivation, version deletion, version
retrieval, etc., may be expressed by extending the database
language of OODBs and RDBs.

Next, let us consider long-duration transactions. A
transaction is simply a collection of database reads and
updates that are treated as a single unit. RDBs have
implemented transactions with the assumption that they will
interact with the database only for a few seconds or less. This
assumption becomes invalid and long-duration transactions
become necessary in environments where human users
interactively access the database over much longer durations
(hours or days). Regardless of the duration of a transaction, a
transaction is merely a mechanism for ensuring database
consistency in the presence of simultaneous accesses to the
database by multiple users and in the

b
esence of system

crashes. What differentiates an OODB manRDBisthe
data model, that is, how data is represented (i.e., attributesand
methods, and classes and class hierarchy in an OODB vs.
attributes and relations in an RDB). It should be clear that the
paradigm difference between RDBs and OODBs does not
solve the problems that transactions are designed to solve.

OODBs can support multimedia data

OODBs are a much more natural basis, than RDBs, for
implementing functions necessary for managing multimedia
data. Multimedia data is broadly dcfincd as data of arbitrary
type (number, short string, Employee, Company, image
audio, text, graphics, movie, a document that contains images
and text, etc.) and arbitrary size (one byte, 10K bytes, 1
gigabyte, etc.). The reason is that OODBs allow arbitrary data
types to be created and used, the first requirements for
managing multimedia data.

However, object-oriented paradigm (i.c.. encapsulation,
inheritance. methods, arbitrary data types - collcctivcly or
individually) does not solve the problems of storing,
retrieving, and updating very large multimedia objects (c.g.,
an image.anaudiopassage,a textual documcnt,a movic,ctc.).
OODBs must solve exactly the same cnginecring problems
that RDBs have had to solve to allow me BLOB (binary large
object) as the domain of a column in a relation, including
incremental retrieval of a very large object from the database
(the page buffer in gcncral cannot hold the cntirc object),
incremental update (a small change in an object should not
result in a copying of the cntirc object), concurrency control
(more than one user should be able to access the same Iargc
object simultaneously), and recovery (logging should not lcad
to copying of an entire object).

4. Fulfilling the Promises of OODlls

Today, both the deficiencies of RDBs and the prom&s of
OODBs are fairly well-understood. Howcvcr, OODBs have
not had significant impact in the database market. l’wo of the
reasons arc that most of the current OODBs lack maturity as
database systems (i.e., they lack many of the key dituihasc
facilities found in RDBs) and that they arc not sufficiently
compatible with RDBs (i.e., they do not support a supersct of
ANSI SQL).

The emerging industry and market consensus is that
object-oriented technology can indeed bring about a quantum
jump in database technology, but there arc at least three major
conditions that must be met before it can dclivcr on its
promises.

First, new database systems that incorporate an
object-oriented data model must be full-fledged database
systems that arc compatible with RDBs (i.c., whose database
language must be a supersct of SQL).

Second, application dcvclopment tools and database
access tools must be provided for such database systems, just
as they arc critical for the use of RDBs. The tools include
graphical application (form) generator, graphical
browser/editor/designer of the database graphical report
generator, database administration tool, and possibly others.

Third, a migration path (a bridge) is needed to allow
co-existence of such systems with currently installed RDBs,
so that the installations may USC RDBs and new systems for
different purposes and also to gradually migrate from their
current products to the new products.

In this section, I will provide an outline of how an
object-oriented database system may be built that is fully
compatible with RDBs. and how a migration path may be
provided from RDBs to such a new database system. UniSQL,
Inc. has a commercial database system, UniSQL/X, that
supports a superset of ANSI SQL with full objcct-oricntcd

682

cxlcnsions. UniSQL, Inc. also olTcrs grdphical database
access ux)ls and application generation tool for USC with
UniSQWX. Further, UniSQL, Inc. offers a commercial
fctlcratul (multi) database system, UniSQL/M, that allows
co cxistcnccof UniSQL/X with RDBs, whilegivingthcusers
a singl&-<latahase illusion. I will use UniSQW and
UniSQLJM to illustrate key concepts in this section.

Unilication of the relational and objeet+ricnted
tcchnologics is most dcfinitcly the underpinning for
post-rckuional database technology. ORACLE Corporation
rcccntly announced plans to develop an object-otiented
cxtcnsion to SQL. The ANSI SQL3 standards committee is
currently designing object-oriented extensions to SQL2. The
oh.jcctivc of SQL3 is exactly the same as that guided the
devclopmcnt of the UniSQL/X databaw language. SQL3 is
about 3-4 years away. Further, HP’s OpenODB supports a
databatsc programming language called OSQL that is ba.sed on
a combination of SQL and functional data model (rather than
relational data modcl).Therc is also a proposal and initial
implcmcntation from Texas Instruments for a database
programming language called ZQL[C++] that extends C++
with SQL-like query facility. The vendors of some OODBs
an: also preparing to dcvclop “SQL-like” languages.
gcncmlly labeled as Object SQL, that include facilities for
&fining and querying object-oriented databases, as an
add-on to their existing OODBs. This represents a major
dircctionchangc in thcirproductstrategy. Justafewyearsago.
thcsc vendors mcrcly aucmpted to provide gateways betwczn
their OODBs and some RDBs.

4.1 Unifying RDBs and OODBs

Unification Architectures

Broadly, there arc three possible approaches to bringing
togcthcr OODBs and RDBs: gateway, 00-layer on RDB
cnginc, and a single cnginc. In the gateway approach, an
(X)DB request is simply translated and routed toasingleRDB
for processing, and the result rctumed from tbe RDB is sent
to the user issuing the original request. The gateway appears
IO the RDB as an ordinary user of the RDB. The current
irnplcmcntations of gateways impose various restrictions on
the (X)I)B rcqucsu; they citbcr accept only read requests,
only one request (rather than a sequence of requests as a single
Lriln.~clion), or only simple requests (i.e., not alI types of
qucricscomparablc to those RDBsarccapableofprocessing).
Although tbc gateway approach makes it possible for an
application program to USC data retrieved from both an OODB
and an RDB, it is not a serious altcmative for unifying
r&.ional and object--orient4 technologies. Its performance
is unacccptablc bccausc of the cost of translating requests and
rctumcd data, and the communication overhead with the
RDR. Further, its usability is unacceptable because the
application programmers or users have to be aware of tbc
cxistcncc of two dilfcrcnt databa.ses.

In tbc (Xl-layer approach (cxemplilied by HP’s
OpcnODB), the user interacts with the system usinganOODB
database language (in the cast of OpenODB, an ObjectSQL).
and the 00 layer performs all translations of the
objcct-oricntcd aspects of the database language to their
rclationnl equivalents for interdction wilh the underlying
RDB. The translation ovcrhcad can be significant, and Lhis
architccturc inhcrcntly compromises performance. For

cxarnplc, the 00 layer would map objects to tuplcs of
relations. and gencralc the OIDs of objects and pass them to
the RDB as an attribute of the tuple, using the interface the
RDB makes available; it would also map an OID found in an
object to its corresponding object stored in the RDB, again
using the RDB interface; and so forth. An RDB consists of two
layers: data manager layer and storage manager layer. The
data manager layer processes the SQL statements, and the
storage manager layer maps the data to the database. The 00
layer may be interfaced with either the data manager layer
(i.e., talk to the RDB via SQL statements) or the storage
manager layer (i.e., talk to the RDB via low-level procedure
calls). The data manager interface is much slower than the
storage level interface. (OpenODB uses the data manager
interface between its 00 layer and the underlying RDB).
Since this approach assumes that the underlying RDB will not
bc modified to better accommodate the needs of the 00 layer,
it can incur serious performance and operational problems
when sophisticated database facilities need to be supported.
For example, if a large number of classes in a class hierarchy
must be locked (e.g., to support dynamic schema changes), the
00 layer must either acquire locks one at a time (incurring a
performance penalty and risking deadlocks), since an RDB
has no provision for locking a class hierarchy atomically
(roughly, in one command); or lock the entire database with
one call to the underlying RDB (potentially preventing any
other user from accessing any part of the database). Ncitbcr
option is desirable. Further. if the 00 layer is to support
updates toobjects in memory and automatically flush updated
objects to the database when the application’s transaction
commits (finishes), the individual objects must be inserted
back into the database one at a time, using the RDB interface.

The rdtionale for the 00-layer approach is to be able to
port the 00 layer on top of a variety of existing RDBs; this
flexibility is obtained at the expense of performance. The
00-layer approach is the basis of a database system that
makes a variety of databases appear to be a single database to
application programs. Such a database system is known as a
“multidatabase system”. The 00-layer approach can be used
as a basis of a multidatabase system that makes it possible for
application programs to work with data retrieved from
OODBs and RDBs. 1 note that OpenODB currently is not a
multidatabase system. Its 00 layer can connect to only one
RDB. I will discuss multidatabase systems in greater detail
later.

The unified approach melds the 00 layer and the RDB
into a single layer, while making all necessary changes in both
the storage manager layer and the data manager layer of the
RDB. The database system must fully support al1 the facilities
the database language allows, including dynamic schema
changes, automatic query optimization, automatic query
processing, access methods (including B+-tree index,
extensible hashing, external sorting), concurrency control,
recovery from both soft and hard crashes, transaction
management, and granting and revoking of authorizations.
The richness of the unified data model added to
implementation difficulties.

Unifying the Data Models

A relational database consists of a set of relations (tables),
and a relation in turn consists of rows (tuples) and columns.
A row/column entry in a relation may have a single value, and

the value may belong to a set of system4efined data types
(e.g., integer, suing, float, date, time, money). The user may
impose further restrictions, called integrity constraints, on
these values (e.g., the integer value of an employee age may
be restricted to between 18 and 65). The user may then issue
a nonprocedural query against a relation to retrieve only those
tuples of the relation the values of whose columns satisfy
user-specifiedconditions. Further, the user may correlate two
or more relations by issuing a query that joins the relations on
the basis of a comparison of the values in user-specified
columns of the relations.

UniSQLJXgeneralizesandextendsthissimpledatamodel
in three ways, each reflecting a key object-oriented concept.
A basic tenet of an object-oriented system or programming
language is that the value of an object is also an object. The
first UniSQL/X extension reflects this by allowing the value
of a column of a relation to be a tuple of any arbitrary
user-defined relation, rather than just an element of a
system-defined data type (number, string, etc.). This means
that the user may specify an arbitrary user-defined relation as
the domain of a column of a relation. The first CREATE
TABLE statement in Figure 3 shows the specification of an
Employee relation under the relational model. The values of
the Hobby and Manager columns are restricted to character
strings. The second CREATE TABLE in Figure 3 reflects
data-type extension for the columns of a relation. The value
for the Hobby column no longer needs to be restricted to a
character string; it may now be a tuple of a user-defined
relation Activity. Similarly, the data type for the Manager
attribute of the table Employee can even be the Employee
relation itself.

Allowing a column of a relation to hold a tuple of another
relation (i.e., data of arbitrary type) directly leads to nested
relations; that is, the value of a row/column entry of a relation
cannowbeatupleofanotherrelation,andthevaluecanintum
be a tuple of another relation, and so forth, recursively. In
Figure 1 we have seen how this conceptually simple extension
may result in significant performance gain when retrieving

data. This also gives adatabase system the potential to support
such applications as multimedia systems (which manage
image, audio, graphic, text data, and compound documents
that comprise of such data), scientific data processing systems
(which manipulate vectors, mat&s, etc.), cnginccring and
design systems (which deal with complex nested objects),;md
so forth. This is the basis for bridging the large gulf in data
types supported in today’s programming languages and
database systems.

The second UniSQIJX extension is the object-oricntcd
concept of encapsulation, that is, combining of data and
program (proccdurc) to operate on the data. This is
incorporated by allowing the users to attach procedures to a
relation and have the procedures opcratcon the column values
in each tuplc. The third CREATE TABLE statcmcnt in Figure
3 shows the PROCEDURE clause for specifying a procedure.
RetirementBcncfits, which computes the rctircmcnt benefit
for any given employee and returns a floating-point rwmcric
value. Procedures for reading and updating the value of each
column are impliciitly available in each relation.

A relation now encapsulates the state and behavior of its
tuplcs; the state is the set of column values. and the behavior
is the set of procedures that operate on tbccolumn values. The
user may write any procedure and attach it to a relation to
opentc on the values of any tuplc or tuplcs of the relation.
Thcrc is virtually unlimited application of proccdurcs.

The third UniSQL/X extension is the objectoricntcd
concept of inhcritancc hierarchy. UniSQL/X allows the users
to organize all relations in the database into a hierarchy. such
that between a pair of relations P and C, P is made the parent
of C, if C is LO lake (inherif) all columns and proccdurcs
dcfincd in P. bcsidcs those dcfincd in C. Further, it allows a
table to have more than one parent relation from which it may
take columns and proccdurcs. The child relation is said to
inherit columns and procedures from the parent relations (this
is called multiple inheritance). The hierarchy of relations is a
directed acyclic graph (rather than a tree) with a single

I. CREATE TABLE Employee
(Name CHAR(20), Job CHAR(20), Salary FLOAK /lobby C11AR(20), Manager C/IM!(20));

2. CREATE TABLE Employee
(Name CHAR(20), Job CHAR(20), Salury FLOA7: IIOBBY Activity, Manager Employee);

CREATE TABLE Activity
(Name CHAR(ZO), NumPlayers INTEGER, Origin CIMR(20));

3. CREATE TABLE Employee
(Name CHAR(20), Job CHAR(20), Salary FLOAT, IIOBBY Activity, Manager Employee)
PROCEDURE RetirementBenefits FLOAT ;

4. CREATE TABLE Employee
(Job CHAR(20), Salary FLOAT, HOBBY Activity, Manager Employee)
PROCEDURE RetirementBencfts FLOAT
AS CHILD OF Person ;

CREATE TABLE Person
(Name CHAR(20), SSN CHAR(9). Age INTEGER);

Figure 3. Successive Extensions lo the Relational Model

systcm-delincd root. Further, an IS-A (generalization and
spccializttion) relationship holds between a child relation and
its parent relation. In the fourth CREATE TABLE in Figure 3,
the Employee relation is dclincd as a CHILD OF another
uscr-dcfincd mlation Person. The Emplo ee relation
automatically inherits the three columns 0 r the Person
relation; that is, the Employee relation will have the Name,
SSN, and Age columns, even if they are not specified in its
definition.

The relation hierarchy offers two advantages over the
conventional relational model of a simplccoll~uonoflargely
indcpcndcnt (unrclatcd) relations. First, it makes it possible
for a user lo crcatc a new relation as a child relation of one or
more existing relations; the new relation inherits (mu,scs) all
columns and proccdurcs specified in the existing relations and
their ancestor relations. Further, it makes it possible for the
system lo enforce the IS-A relationship between a pair of
relations. RDBs rquirc the users to manage and enforce this
relationship.

Now, Ict us change the relational terms as follows.Change
“relation” to “class”, “tuplc of a relation” to “instance of a
class”, “‘column” to “attribute”, “pmcedure” to “method”,
“relation hierarchy” to “class hierarchy”, “child relation” to
“subclass”, and “parent class” to “superclass”. The
UniSQL/X data model described above is an object-oriented
data model ! An objcct-orientcddata model can be obtained by
cxtcnding the relational model. The terms “Object-oriented
data model”, “cxtcnded relational data model”, and “unilied
relational and objcct-orientcd data model (unified, for
brcvity)“becomcsynonymousifthedatamodclisobtainedby
augmcnling the conventional relational data model with the
first three cxtcnsions described above. However, an extended
relational m&l (system) is not an object-oriented model
(system). if it dots not include all three extensions. Further, it
is important to note that a database system based on such a
model, because of its relational foundation, ma be built by
adapting all the theoretical underpinnings of x e relational
database technology that have been developed during the past
two decades.

Although each of the three extensions individually may
appear to bc minor, the consequences of the extensions,
individually and collectively, with respect to ease Of
application data modeling and/or subsequent increase in
query performance can be significant. The nested relation
cxtcnsion eliminates the need for cumbersome workarounds
that users of RDBs have had to resort to. The procedure and
relation hierarchy extensions open up significant new
possibilities in application data modeling and application
programming. Further, the nested relation and relation
hierarchy extensions reflect the powerful data type facilities
of OOPLS.

Query and Data Manipulation

Of course, it is not enough just to define a data model that
allows the users to rc esent corn lex data r uiremcnts. Once
thedatabase schemaEs been de&d using% data definition
facilities, the database may be populated with a large number
of user-defined objects. The power of a database system
comes into play when the users can retrieve and update tiny
fractions of the database efficiently. To allow this, a database
system rovides query and data manipulation (insert, update,
dclcte) acilities. P

The UniSQIJX query language, unlike mere “SQL-like”
object

B such, .
uery languages, is a superset of ANSI SQL, and as
the extensions are removed horn the syntax, it

degcncrates to ANSI SQL. By a”SQL-like” language I man
a database language that is either a subset of SQL or that does
not support the same semantics of SQL. A SQL-like language
that is a subset of SQL is one, for example, that does not
support nested subqueries in the WHERE clause or
aggregationfunctionsmtheSELECTclause,etc.Itisalsoone
that does not include facilities for defining and using views,
or facilities for dynamically making changes to the database
schema, or facilities for specifying the UNIQUE and NULL
constraints on attributes of a class, or facilities for granting
and revoking authorizations, and so forth. A SQL-like
database language that does not support the same semantics of
SQL is one, for example, that treats NULL values differently
from SQL, or that refuses to commit a transaction after
accepting all read and update requests horn the user without
any complaints, or that introduces a restriction that does not
exist in SQL (e.g., the DROP CLASS command does not
allow a class to be dropped if any objects still belong to a class,
while the DROP TABLE command in SQL results in the
dropping of a table and all its tuples, whether or not there are
tuples), and so forth.

If a set of classes are defined just as relations in
conventional relational databases, the users of the UniSQL/X
query language may issue all queries in ANSI SQL syntax,
including joins and nested subqueries, queries that group and
order the results, and queries against views. Let us consider
two simple examples using Figure 4. In the figure, the class
Employee is defined as a subclass of the class Person, and the
class Activity is the domain of the attribute Hobby of the class
Emplo ec. The first query finds all employees who earn more
than 5 iooo and am over 30 years of age, and outputs the
average salary of all such employees by job category. The
second query is a join query, which finds the names of all
employees who earn more than their managers.

SELECT Job, Avg (Salary)
FROM Employee
WHERE Salary < 50000 AND

Age > 30
GROUP BY Job ;

SELECT EmployeeName
FROM Employee
WHERE Employee.Sa1ar-y > Employee.Manager.Salary;

The UniSQL/X query language also allows the
formulation of a number of additional types of queries that
become necessary under the unified data model (i.e., queries
that are not applicable under the relational model). The unified
data model is richer, and thus it gives rise to query expressions
that do not arise in RDBs. In particular, it allowspath queries,
that is, queries against nested classes; queries that include
m&& as part of search conditions; queries that return
nested objects; and queries against a set of classes in the class
hierarchy.

An example of a query on a class hierarchy is to retrieve
instances from a class and all its subclasses. In the following
query, the keyword ALL. causes the query to be evaluated
against the class Person and its subclass Employee.

685

Person 1 ;ieT-! 1

I

Employee

legend:
nested attribute
inheritance path

!!!N
e

J

mantiger I Figure 4. An Example Database Schema

SELECT Name, SSN
FROM ALL Person
WHERE age > 50;
An example of a path query that retrieves nested objects,

using Figure 4, is “Find the names of all employees and their
employers for those employees who earn more than $50,000
and who.se hobby is tennis”. This query is evaluated against
the nested objects defined by the classes Employee and
Activity. The query is formulated by associating the predicate
(Name = ‘tennis’) with the class Activity, and the predicate
‘Salary > 50000’ with the class Employee. The query returns
all attributes of Employee from the nested Employee objects
that satisfy the query conditions.

SELECT *
FROM Employee
WHERE Salary > 50000 AND

HobbyName = “Tennis”;
The dot notation in the predicate (Hobby.Name =

“Tennis”) extends the standard predicate expression lo
account for the nesting of attributes through the use of
arbitrary data types.

Support for Object Navigation

Like some OODBs that are designed to make OOPL
objects persistent, UniSQL/X provides workspace
management facilities to automatically manage a large
number of objects in memory (called a workspace or an object
buffer pool). In particular, UniSQUx automatically converts
the storage format of objects between the database format and
the memory format, automatically converts the OIDs stored
in objects to memory pointers when objects are loaded from
the database into memory, and automatically flushes (writes)
objects updated in memory to the database when a the
transaction that updated them finish.

These workspace management facilities in UniSQL/X
make it possible for database application programs to navigate
memory-resident objects via memory-pointer chasing, and to
propagate changes to individual objects collectively to the
database. RDB applications must resort to explicit queries that
either join two relations or at least search a single relation to
emulate the simple navigation from one object to another
related object. Further, RDB applications must also propagate
updated tuples one at a time to the database, via the RDB
interface (either the data manager level or storage manager
level). When a transaction finishes, UniSQL/X automatically

se& all objects created or updated by the transaction LO the
database to make them persistent. UniSQL/X application
programs do not need to do anything to propagate the changes
to the database.

I note that, unlike most OODBs that also provide
workspace management facilities, UniSQL/X supports full
query facilities and full dynamic schema evolution. Since at
any point in time, an object may exist both in the database and
in the workspace, and the “copy” in the workspace may have
been updated, a query must be evaluated against the “copies”
in the workspace for those objects that have been loaded into
the workspace, and against the database objects for those
objects that have not been loaded into the workspace. Further,
if the user makes a schema change (c.g., drop an attribute 01
a class, or add an attribute to a class), the “topics” of objecti
in the workspace become invalid. UniSQL/X takes full
account of these considerations in its support of automatic
query processing and dynamic schema evolution.

Further, workspace managcmcnt facilities ~ccs.senti;~I for
making objects persistent and for supporting the performance
requirements in object navigation for application programs
written in OOPLs. Although UniSQlJX is not wedded to any
particular OOPL, the sophisticated workspace managcmcnt
facilities provided in UniSQL/X mean that a rather simple
translation layer may be implemented on top of UniSQL/X to
support any particular OOPL (c.g.. C++ or Smalltalk).
5. Interoperating with RDBs

The gateway approach that I discussed as an
(unsatisfactory) altemativc for unifying an OODB with RDBs
serves one useful purpose. Jt allows an OODB and RDBs to
coexist, and can potentially make it possible for one
application program to work with data reuievcd from both an
OODB and one or more RDBs. As 1 rcmarkcd already,
however, the current OODB-RDB galcways typically pass
requcststoonlyoneRDB(c.g.,toSybaseortoORACLE),nnd
do not treat the separate requests 10 an OODB and to RDB as
a single transaction (i.e., collection 0r requests that is trcalcd
as a single unit).

A multidatabase system (MDBS) is logically a full
generalization of a gateway. An MDBS is actually a database
system that controls multiple gateways. It does not have iLs
own database: it merely manages rcmolc databases through
the gateways, one galeway for each remote database. An
MDBS presents the multiple remote databases as a single
“virtual” database to iti users. Since an MDBS does not have

its own “real” database, certain database Facilities, such as
those for managing access methods (creatin
Bt-tree index, cxtcndible hash table. etc.) an d

and dropping

performance tuning, bccomc mcaninglcss.
parameterizd

However, an MDBS is a nearly Full-fledged database
system. An MDBS must provide data definition facilities so
that the virtual database may bc dcfincd on the basis of the
rcmotedatabase.s.ThcdatadcFinition facilitiesnccdtoincludc
means to harmonize (homogenize) the different
rcprcscntations of the semantically equivalent data in
different remote databases. An MDBS user may query the
definition of the virtual database, query and update the virtual
database (requiring query optimization and query processing
mechanisms). Multiple MDBS users may simultaneously
query, update, and even populate the “virtual” database
(requiring concurrency control mechanisms); the users may
submit a collection of queries and updates as a single
transaction against the virtual database (requiring transaction
m,anagcment mechanisms); the users would grant and revoke
authorizations on parts of the database to other users
(requiring authorization mechanisms).

To translate MDBS qucrics and updates to equivalent
qucrics and updates that can be proccsscd by remote database
systems, an MDBS requires gateways For remote database
systems. The gateways in an MDBS are often called ‘drivers”
and rcmotc database systems are called “local” database
systems, and the single virtual database that an MDBS
prcscnts to its users is called a “global” database. Further, an
MDBS is said to “integrate” multiple local databases into a
single global database.

UniSQL/M is a multidatabase system From UniSQL, Inc.
that integrates multiple UniSQI.,/X databases and multiple
relational databases. UniSQL/M is UniSQL/X augmented to
access external relational databases and UniSQL/X
databases; as such, it is a full-fledged database system and
UniSQWM users can query and update the global database in
the SQL,iX database language. UniSQI&l maintains the
global database as a collection of views dcfincdover relations
in local RDBs and classes in local UniSQL/X databases.
IJniSQlJM also maintains a directory of the local database
relations and classes, their attributes and data types, and
methods, that have been intcgratcd into the global database.
Using the information in the directory, UniSQL/M translates
the queries and updates to cquivalcnt queries and updates For
processing by local database systems that manage the data that
the queries and updates need to access. The local database
drivers pass the translated queries and updates to local
database systems, and pass the results to UniSQuM for
format translation, merging, and any necessary

postprocessing (e.g., sorting, grouping, and joining). Further,
UniSQL.IM supports “distributed transaction management”
over local databases, which means that all updates issued
within one UniSQL/M transaction, even when they rcsuit in
updates to multiple local databases, arc simultaneously
committed or aborted.

RDB vendors today offer gateways of different lcvcls of
sophistication. Some gateways allows SQL queries to bc
passed to a hierarchical database system (namely. IMS) or file
systems such as DEC’s RMS. Some gateway is currently
being upgraded to accept both queries and updates, and even
support distributed transaction management over local
databases. However, none of these gateways are designed to
pass SQL queries to OODBs; there has been little need to
develop such gateways.

UniSQL&4 differs From the gateways currently offered by
RDB vendors and OODB vendors in three major ways.

- UniSQL/M is a full-Fledged database system, rather
than a mere gateway, supporting queries, updates,
authorization, and transaction management over the global
database (the specifications of views defined over local
database tables and classes, and directory of information
about local database tables and classes). Most current
gateways do not accept updates.

- UniSQL/M connects to and coordinates queries and
updates to multiple local databases For a single UniSQL/M
transaction; in particular, it supports distributed transaction
management over local databases. Most current gateways
pass requests to only one local database, or do not allow
simultaneous updates to multiple local databases within a
single transaction, when they do, support multiple local
databases.

There is one more powerful advantage that UniSQL/M
offers over any of the current gateways. UniSQL/M extends,
although not fully (due to theoretical limitations), local RDBs
to UniSQL/X; that is, UniSQL/Mconverts the tuples retrieved
From relational local databases into objects by augmenting
them with object identifiers and allowing the users to attach
methods to them. In this way, UniSQuM makes key
object-oriented Facilities provided in UniSQUX indirectly
available to local RDBs; in particular, SQL/X path queries,
mctbods, and workspace management for objects in
UniSQI&vl memory.

UniSQL/M may be used in at least three different contexts.
First, it maybe used to allow co-existence of UniSQL/X with
RDBs. Second, it may be used to turn a collection of RDBs (or
a collection of UniSQL/X’s) into a distributed database
system. Third, when interfaced to a single RDB, it acts as the
object management layer for the RDB engine, turning the
RDB into UniSQL/X.

687

