
Predictions and Challenges for Database Systems in the Year 2000

Patricia G. Selinger

Dala Oasc Technology Institute, IBM Almaden Research Center, San Jose, CA 95120,
pat(iialmaden.tbm.com

nbstracl We have passed the two decade mark for the
relational model, and it has been more than 15 years
since the first relational prototypes and products. I would
like to share wilh you my views on where I believe DB
technology is, and make some personal predictions about
where, technically, DB systems will be in the year 2000.

What we know today is that many factors work together
to shape database products. These include:

Application requirements
Platform capability and cost
Demands of our customers’ businesses
I10 device capability and cost
Standards and architectures such as X/OPEN and IS0
SOL

I. lnt reduction

With those factors shaping how database systems evolve,
you might have the impression that databases will be-
come the center of the universe! Not true!

Let’s face facls -- you and I are focussed on database
so that our database customers and the people who
build applications on top of our database systems don’t
have to be. They shouldn’t need to know what’s inside
the engine and they shouldn’t have to look under the
hood.

In fact, people should think about database systems very
much like the way they think about telephones. So why
is a database like a telephone? Or more precisely, why
ate database systems going to be like telephones?

1. First, thoy are going to be increasingly intuitive and
easy to use. Ideally, no manual is required in order
to use one.

2. Next they will connect to anything anywhere across
the world.

3. They will connect to one another using recognized
standards, as telephone systems do.

4. They wilt be ubiquitous, in homes, stores, ware-
houses, doctor’s offices, airplanes, . . . in almost every
country on earlh.

Pcrmirsion to copy without fee ail or part of ihir material ir
granted provided that ibe copier are not made or diritibuted jot
direct commercial advantage, tbe VLDB copyright notiee and tbe
title oj the publication and ilr data appear, and noiice ir given
tbot copying ir by permirrion of ihe Very Lar/c Data Baee En-
dowment. To copy oibcrwiee, or to npublirh, reqrirer a jet
and/or rpccial permirrion jrom the Endowment.

Proceeding of the 19th VLDB Conference
Dublin, Ireland 1993

5. And, they will have industrial strength -- almost
never break, will be reliable, consistent.

6. Finally they will have growing functionality in dra-
matically different marketplaces than in the past --
just as phone systems add call-waiting, phone mail,
interactive television viewing, and so on.

Let’s go through each of these areas individually, dis-
cussing my views of where the database industry is in
general and where I see it going.

2. Ease of use

Ease of use has many aspects, from convenient, intuitive
user interfaces to use of standards for portability and
ease of vendor selection. Performance is also an ease
of use issue -- if it allows you to ask more powerful
questions then ever before and get the answer in what
the customer thinks is a reasonable amount of time.

And finally and also very important, no system can be
easy to use if it is full of errors, loses your data, and it
takes forever for service people to help you with the
problem. So quality and service are important to ease
of use as welt.

What does ease of use mean in the year 2000? Ease of
use involves user interfaces that are intuitive and easy
to learn for novices as well as efficient for advanced
users. Every successful database system must have a
rich set of tools and applications. And these applications
will be what sells database engines. Furthermore, tools
will make using that database engine efficient.

It’s unlikely that “one size iits all” for user interfaces to
databases so we should expect that many end users will
access database systems not through SOL directly but
through query applications with menus and point-
and-click selection mechanisms and through specialized,
vertically integrated applications.

This leads to my first prediction:

Prediction 1: By the year 2000, databases will feature a
layer of middleware on top of what we think of today as
the database engine, providing the look and feel of a
single advanced function database across many data
sources.

This prediction has its basis in history. In the past, each
decade has added a higher layer on top of previous
database layers, and we should expect by the year 2000
that yet another layer will be added.

In the 1960’s applications stored data in file systems
whose main purpose was to store data for specific ap-
plications. In the 1970’s, applications began to share
their data files using an integrating layer, thus making

the first. true databases such as IMS [IMSJ. These da-
tabases were navigational in nature and applications
explicitly followed the data layout of records using com-
mands such as “get next under parent”. These databases
provided not only centralized storage management, but
also transaction management, recovery facilities in the
event of failure and system-maintained access paths.

In the 1980’s another layer on top of this navigational
functionality was added in commercial systems using
the relational data model [Codd71]. The advantages
brought by this layer were data independence and pro-
ductivity through use of a non-procedural language such
as SQL [ASTR75]. Generally speaking, the relational
language layer was established on top of a more navi-
gational layer similar in function to those af the 1970’s
navigational database systems. The mapping from a
non-procedural language such as SQL to the lower level
navigational interface is provided by a relational compiler
or interpreter which performs parsing, semantic checking,
access path selection, and maintains a catalog of the
database contents. This added relational layer then
drives the underlying navigational layer to execute the
user request.

As we move through the decade of the 1990’s, we can
expect to see a layer of middleware on top of these
1980’s databases engines. What problem is this layer
solving? What kind of performance and functionality will
it have?

In my opinion, this added middleware layer is a natural
evolution of the relational database compiler technology
invented during the decade of the 1980’s. As this com-
piler technology matures, it can expand to play several
new roles:

l It will provide relational extensions to satisfy more
diverse application needs. This will open up opportu-
nities to use databases for applications that tradition-
ally have not exploited databases. Image. medical,
document management, engineering design, and multi-
media are examples of such applications. Both per-
formance and functionality will play key roles in de-
termining how useful these relational extensions will
be in these non-traditional areas. The functionality
provided at the user interface from this new layer can
be signftcantly extended above what the underlying
data sources can provide. For example, such a layer
is capable of supporting recursion or it can apply user-
supplied aggregation functions such as standard de-
viation that might not be understood at lower levels.

l Just as the 1970’s databases provided an integrated
view of data for many applications, this 1990’s layer
can provide yet a further degree of integration -- this
time what we might call data source transparency. By
data source transparency, I mean that the request can
be independent of the data-providing source in terms
of the language syntax and semantics of that data.
This middieware layer will have knowledge of the se-
mantics and interfaces of a variety of data sources,
e g. 082, Oracle, IMS, and will provide the semantic
and syntactic mapping of the portion of the original
request that refers to data at a particular data source.
So a single original user request will be accepted by

this new layer and divided into possibly multiple indi-
vidual requests to many heterogeneous data sources
using intelligence about the capabilities and data
stored at those sources. After the individual dat;\
source requests execute, the new layer will also “re-
integrate” the results from all the contributing sources
back to the user. In other words, the layer provides
the look and feel of a single virtual database across
all these data sources.

l This layer will also provide high performance for the
execution of user requests. Sophisticated optimization
will be used to separate the original query inlo pieces
targeted for individual data sources whose content
and order of execution are optimal. Furthermore. nc-
cording to customized profiles of users and workloads,
the layer will determine if it is valuable to execute the
request in parallel. If so, it will apply smart semantic
processing in order to determine if parallel processing
is feasible for that request.

l This layer can provide translations among platform
data representations and natlonal language character
sets. For example, a German client might request
data from a French document database to be joined
with Swiss document catalogs in a separate databaso,
wilh the answer to be returned to the client so that
the client can display the results in its native (German)
character set. The new layer will minimize number of
data representation convursions in order to achieve?
this.

Finally the new layer will provide the linkage and
toolkit interfaces to allow for cross-platform, cross-
product system management. No1 only will it be ncc-
essary in the year 2000 to provide multi-dala source
system management (two phase commit [Gray781 and
global deadlock detection for example) but also man-
agement across a variety of operating systems, trans-
action monitors, and applications. One example is
workload balancing that will require information and
participation not only from the database engines run-
ning on a platform, and the transaction monilors driv-
ing the workload, but also the applications and oper-
ating system(s) running on those platforms. Any work-
load balancing that does not include information and
participation from all these sources will be inferior to
one that does.

I predict thal in the year 2000, such capabilities will be
found in this kind of mlddleware layer above the database
engine. This layer will shelter users from the functional
capabilities of data sources and from the language dia-
lects of the interfaces to such data sources. Applications
using such a middleware layer can be portable and rel-
atively independent of the functionality of the dala
sources, since the middleware can supply any
functionality that is missing in the lower levels (possibly
with less performance). The challenge, of course, is lo
provide such a middleware layer with extremely low
overhead for requests that can be mapped directly to
lower levels with no added semantics or translation.

3. Stimdarrls

What will not change by the year 2000 is that all these
software layers will continue lo transform these ever
fancier and more complex user requests into standard
interfaces supported by data sources.

By use ol standard inlerlaces bolh at the database in-
Ierfaco, (Ihat is SQL89, and the various levels of SQL92)
and also bctwcen clients and servers (such as CLI), it
will be possible to achieve a rational freedom of choice
of components. Think about it -- we’re going to have
millions of applications, tens of databases using tens of
communication protocols running on tens of hardware
and software plalforms. No one wants to have to buy
these all from one vendor because multi-vendor solutions
won’t work with one another. No customer wants to
have only a limited choice of applications, and no appli-
cation vendor wants to limit his marketplace to only a
single database or single hardware platform. Being able
to mix and match through standard interfaces will provide
lremendous freedom of choice and market opportunity.

As these tools and applications become the principal
means for end users to access the database, I predict
that several things will happen:

1. Predlctlon 2: SQL will remaln the “Esperanto” for
relational database systems.

That is, regardless of how rich the user interface of
the application is, it will still map down to a version
of an SQL database programming interface. Further,
to allow for freedom of choice to mix and match
applications and database systems, customers will
demand that those database system vendors who
also offer applications such as query managers de-
couple those applications from their databases. This
can most easily be done not by proprietary gateways
bul by mapping the applications to Standard SOL.

2. Prediction 3: the SQL Interface Itself must grow
richer over tlme to accommodate increasingly com-
plex database requests, database structures, and
database operations.

3. Processing these complex high function requests ef-
ficiently will demand highly intelligent cost-based
SOL compilers. This in turn leads to the following
prediction:

Predlction 4: Database vendors will compete with
one another on the quality of their SQL optimizers
and compilers.

4. Performance

As database systems provide more function and perfor-
mance, it simply entices people to use a database for
moro applications, which in turn increases their appetite
for MIPS. We’ve all seen the numbers -- uni-processor
MIPS are growing at 40% per year, and hardware pack-
aging with SMPs multiplies this effect. At the same time,
DASD access times (which are the only parameter that
is relovanl from a database system performance view)
are only improving at 6% per year. So, while databases

are slill primarily CPU-bound, with the exception of ar-
tificially small transactions of the TPC-B class, this may
soon no longer be Irue.

HOW are database vendors going to address this growing
gap?

Prediction 5: Database systems in the year 2000 will
have a strong repertoire of techniques to defer or avoid
I10 In favor of significantly more in-memory processing.

To achieve this, first we need to exploit higher capacity
memory chips that bring us very large main memories.
IBM’S ES9000 expanded store is one example; they can
be exploited by database techniques such as IMS Fast
Path. The more data you hold in memory, the better.

Next you can expect to see database systems adding
many more in-memory processing techniques
[KolWe93]. One such example is the addition in 1989
of a third join technique to DB2 on MVS. This new hybrid
join [CHHIMSl] exploits in-memory sorting, large mem-
ories, sequential prefetch I10 into large buffer pools and
defers I/OS. Another example of new processing tech-
niques is parallel asynchronous I/O.

Besides providing new processing techniques, database
systems will also have to defer l/O’s or avoid them
altogether. One example is in IBM’s DB2 on MVS, where
a technique called index ANDing [MHWCSO] is used. If
a single table has 5 predicates matching 5 indexes, all
the record-ids can be retrieved from the 5 indexes and
only the records appearing in all 5 lists need to be
retrieved. So no I/O’s to data pages are done until the
record has been qualified through all 5 indexes. Fur-
thermore. such a record list can be sorted into an order
that makes the eventual I/O’s to data pages as efficient
as possible. Of course, this requires special locking tech-
niques to ensure that records don’t change values be-
tween when the index is checked and when the data is
fetched. These are the kind of techniques that must
become more common in order to bridge the increasing
MIPS to l/O gap.

We can also expect to have improved buffer management
techniques to defer or avoid I/OS [TeGu84]. Besides
having larger buffer pools, I expect to see much more
sophisticated buffer manager intelligence --e.g. detection
of sequential processing which in turn triggers
prefetching, tuning of prefetching amounts according to
system behavior, extra-wide merge streams using par-
allel l/O for sorting, dynamic partitioning of tables to
narrow the range for table scans [CrHTSO], hints from
the optimizer to the buffer pool manager to predict
whether a given page in the buffer pool is likely to be
used again.

What about architectural solutions to the MIPS to I10
gap? One obvious example is parallel architectures. In
addition, we might see substantial use of non-volatile
memory -- perhaps for main memory databases, also
increasingly larger disk controller caches to reduce read
and write latency for disk 110’s. Another alternative is
offloading function to the disk controller -- doing predicate
processing and index searching outboard of the main
processor -- these are really special forms of parallelism.

669

5. Parallelism

Parallelism typically comes in two forms -- shared disk
or shared nothing. With shared disk, every processor
can directly access data on every disk. This architecture
has many advantages in terms of workload balancing
and system availability. Shared disk is somewhat com-
plex in that locking must be global, and a naive imple-
mentation of global locking can have considerable over-
head. Furthermore since pages can be in the buffer
pools of many different processors at the same time.
coherency protocols [MoNaSl] (rather like MP cache
coherency) must be used to make sure that every ap-
plication always sees the newest consistent data. Fast
inter-processor communication and specialized hardware
can help achieve efficienl implementalions for these re-
quirements.

A fourth advantage of parallel architcclures is availabil-
ity. If one processor fails in a shared disk complex lhen
all processing can continue, with slightly longer response
times. If one processor fails in a shared nothing archi-
tecture, then only the data attached to the failed pro-
cessor is inaccessible, and there are a number of toch-
niques such as multi-ported disks and declustering that
can make this data available at the cosl of some system
complexity.

6. Parallel Challenges for the Year 2000

A second popular architecture for parallelism is shared
nothing -- where every processor has a portion of the
entire database, and operations on that data must be
executed on that processor. This architecture is very
scalable, but needs hard work to do a good job of ca-
pacity planning, database design, and system manage-
ment.

Prediction 6: By the year 2000. success in parallel da-
tabases will require solutions to the following problems:

1. Workload balancing, both static and during execution

2. Optimization that is query-formulstlon independent

3. Coexistence of batch, complex query, and OLTP

4. “Just in time” execution plan scheduling

5. Single system image for system management and
service

Different customers see different advantages to parallel Let’s discuss what I believe is needed for success in
architectures. each of these areas.

Some see price/performance as an advantage, by ex-
ploiting microprocessor MIPS. IBM has already indicated
that they expect to be building 390 processors using
CMOS, which will put them on the same technology and
cost curve as workstations. Because of this, we can
expect that in the future, price/performance will not be
a significant advantage of parallel systems.

But there will still be many other reasons to be interested
in parallel architectures. One of these is capacity or
throughput, apptying more MIPS to the same data than
can be found in a single box. This kind of parallelism
is inter-query -- allowing you to cash millions of checks
simultaneously. In this usage of a parallel architecture,
an application runs on one box, and if the parallel data-
base architecture is shared disk, then the database op-
erations all run on that same box as well. This is the
architecture of choice for heavy duty OLTP applications,
such as banking, insurance, inventory management, re-
tail sales....

If, however, the workload is complex query or decision
support, or monthly summary reports, or database min-
ing, . . then response time for a given request is more
important than throughput. In this case parallel database
systems can break up (through intelligent optimization)
a user request into many pieces and each piece can be
sent to a processor to be executed in parallel. The
response time is then the time for the slowest piece plus
the time to put the answer back together for the user.
The database optimizer must be very sophisticated in
order to be able to break up requests into approximately
equal pieces. This htra-query parallelism is also very
useful for batch processing, particularly if the time avail-
able for batch processing (the so-called batch window)
is shrinking.

One particularly difficult area is that of load balancing
To do a good job, you need not only cost-based oplimi-
zation, but also sophisticated data slatislics collection
and semantic processing to know all the alternative? ways
of processing the data. Further, with complex quorias.
there are so many parallel alternatives, you will need
efficient ways to prune the unreasonable choices quickly.
Techniques like simulated annealing, the AB technique
[Swly93], and iterative improvement will be essential.
All of these lechniques musl, lo be successful, must
outperform exhaustive search optimiJalion above 10 01
15 way joins in selecting access paths while Hill being
within a few percent of the optimal plan. Extremely
sophisticated techniques will be needed to estimate
evenly sized pieces of work for N parallel processors.

Having done the best job you can in chopping up the
work into equal pieces, you will not always succeed. So
during execution, the database system needs to detect
when things are imbalanced, and institute fixos (like
combining small pieces of work and further chopping up
pieces that were too big). And doing this on the fly by
redistributing data and re-routing messages. Also, if 3
query runs for an hour, many of system parameters
change during that lime, so the workload imbalance de-
tector needs to know how to adapt to those changes
from both lhe database and system environment viow-
point. I see the beginnings of some of these lechniques
today but it is likely to take 5-10 years of improvement
to get them right.

Another challenge is to have a query compiler lhat
chooses the besl plan independent of how Ihe query
was expressed. I have seen examples where Ihe same
query expressed two different ways resulted in more
than an order of magnitude difference in execulion time.
This is not just an issue for parallelism but is true for

670

ally type of complnx query which has many possible
clxocution plus. P;lrallelism just brings addItiona/ and
moi-e v/s/Me ol1p01 lunitins for error.

Another very hard problem for parallelism is making
complex query and batch p~ocossing coexist on the same
data wilh OLTP, which has vory clifforent ideal system
operating poinls and diffsrcnt demands on system tuning.
Again, this challenge is not unique to the parallel envi-
ronment, but the demands of parallelism will exaggerate
Ihe problem. Solulions include invention of new concur-
rency techniques such as unlocked reads and versioning.

Sophisticated optimization technique5 will be needed to
cl\op up a user’s request into an execution tree of par-
allel operalions. Think of tilting this execution tree on
its side, wilh the leaves indicating the first operations
and Ihe root of the lree being the “return to user” op-
eration. Naively you would start all the leaves at the
sn~m time, and at each operation wait until all the input
operations are done. Instead. you can be very clever
and do what “just in time’ manufacturing operations do
-- know enough about the work being done at each step
of lho plan to do “just in time’ operation scheduling.
With this scheduling, all the start times for the inputs to
an operation are staggered so that they all complete at
exactly the same time, which is just the right start time
for Ihc next operation.

Simply coupling together a number of processors is not
enough to make A parallel database system. Such a
system should ideally be as easy to install, run, backup,
restore, diagnose problems, add applications, do data-
bnsc design, perform service and maintenance, and so
on as a single system. This requires automation -- so
parallel systems will be challenged to offer a single point
of control. Processor dropout and rejoining and adding
new processors are just one example of required parallel
syslcm management.

Providing solutions to these challenges will be required
for success in parallel database systems.

7. Changing Database Environments

Lnl’s return for a moment to our telephone analogy.
Telephones are found everywhere. They offer world-wide
connectivity regardless of national language or the indi-
vidual archilecture or brand name of the phone on the
other end. They also offer increasingly rich functionality.
Telephones also take advantage of standards to be able
lo interoperate with any other telephone in the world.

Similarly, databases will be exploited in many environ-
ments in the year 2000 and will offer many new functions
and features. The combination of new environments and
new application areas will pressure database technology
lo invent new functionalily. Some examples are massive
data support, heterogeneousconnectivity, and high avail-
ability. At the same lime, the natural evolution of data-
base technology will provide the technology push to
make databases usable for a much broader range of
applications.

Prediction 7: Application “pull” and technology “push”
together will shape database environments in the year

2000 on systems ranging in size from palmtops to
teraflops.

I expect that within the next five years or so, we will
see the frequent use of personal mobile databases that
work disconnected -- in delivery vans, used by business
people on airplanes, for example. These will ‘catchup’
to the mother database when reconnected --e.g. updating
calendars, exchanging email, reconciling inventories, and
SO on. Sophisticated merging techniques and reconcili-
ation policies will be needed when versions conflict.

Standalone databases, will likely continue, but many of
them will eventually be connected in workgroups and
become clients to LAN and WAN-based servers.

If we make databases sufficiently cheap, easy to use,
reliable, and high performance, we will find them every-
where. They will increasingly replace file systems in
enterprise use across a variety of networks, machines,
and communication protocols. We should also expect
increasing use of inter-enterprise database processing
-- even today manufacturers can monitor levels of parts
and automatically invoke transactions at suppliers to
trigger deliveries of parts that are running low. I don’t
expect this to go beyond triggering transactions at other
databases. It is my opinion that we will not see multi-
enterprise joins or interactive query between companies.
I don’t imagine that Sears is going to allow Bank of
America to browse its customer and billing databases.
It wi// however, allow the bank to invoke the PAY THE
BILL transaction across a wide area multi-enterprise
network.

Multi-enterprise distributed databases will need more
sophisticated transaction models -- both nested transac-
tions, federated databases come into play as part of
what some people call workflow management. This
workffow is a linked series of separate transactions to
several enterprises, with logic to drive their invocation
and compensation transactions (such as “cancel order”)
to achieve an overall meta-transaction (“have enough
umbrellas to sell on rainy days”).

The technologies needed are multi-enterprise transaction
models, common protocols, authorization, authentication,
application control distributed among independent en-
terprises, mechanisms for coordinating activities across
this scope of work that spans many of today’s short
transactions. Compensation transactions will be required
to cancel the effects of previous short transactions under
workflow manager control. Mechanisms for verification,
problem diagnosis, and recovery of these workflow trans-
actions will also be essential. It should also be possible
to track the the status of these meta-transactions. For
example, an inventory clerk should be able to ask ‘what
is the status of today’s umbrella order?”

8. Connectivity

What kind of connectivity do database customers need?

The answer is access to whatever data the customer’s
business needs in order to compete and make a profit.

Generally, this means that the database needs to
interoperate with all other databases and platfornis and

671

applications the customer’s business needs, And it GMT in order to allow Ihe old facilities to be upgraded
needs to do this in a timely way. to communication with the new ones.

Timeliness is key to success. A classic example is wom-
en’s fashions. They are seasonal (3 months), the goods
have a short shelf-life, a high turn-over and are very
profitable. It makes a big difference to catch on to trends
quickly. So if you could predict exactly what clothing
people will buy during a certain week at a certain store,
then you can reduce unwanted store inventory and lower
capital outlay for the same profit. Analyzing store sales
data by product on a daily basis can make a 2-3X dif-
ference in margin -- and in a business where the margin
is typically 4%. this is a significant business success
factor.

. And finally to use a telephone, you don’l need lo know
what kind of complicated technology is being used.
The complex system design and engineering arc hid-
den from end users.

IO. Industrial Strength Challruges in the
Year 2000

Prediction 9: The challenges database systems in the
year 2000 will have to meet to be successful are:

What technology is needed to achieve timely
interoperability as described above? Real-time access
to production point of sale information, database mining
for analysis to detect trends immediately, high perfor-
mance, and multi-vendor database connectivity, cooper-
ation among heterogeneous clients and servers. This
kind of interoperability is best done using standard in-
terfaces such as ANSI SQL, and standard transaction
management, such as XA, communications and distrib-
uted data access protocols.

l Reliability -- getting the right answer all Ihe lime, al-
ways achieving lotal integrity -- indexes malching data,
catalogs accurate, data pages recovered properly after
media failures. This also includes getting predictable,
consistent results, and preserving transaction consis-
tency regardless of system and network architecture.

Another example illustrates interoperability. Mechanical
CAD design automation in certain heavy machinery in-
dustries is done with world-wide teams wherever the
experts with certain skills reside. So world-wide
groupware is needed, with realtime changes of parts --
not three month integration intervals. Concurrent re-
engineering with one-day turnaround for updating parts
is what’s required. What technologies are needed? They
include realtime remote data access, high bandwidth
interactions to remote databases, lots of MIPS to do the
engineering analysis, and support of a variety of cooper-
ating heterogeneous databases.

To achieve this what is needed? -- defect-free database
systems, and beyond that no error-prone operator or
command interfaces. New consistency techniques --
yet to be invented -- are needed. Syslems of the
future will need self-checking and self-repairing toch-
niques -- e.g. the AS1400 [AnCo88] knows when it’s
not feeling well and it automalically captures symploms
of its problem and phones up the service center to
transmit the problem description, and often can receive
the fix electronically. We database folks have to do
similar things -- not just for database problem diagnosis
but for vertically integrated solulions. Some facilities
exist now; more are going to be expected. That is a
challenge for us -- automatic faull detection and cor-
rection.

Prediction 8: In the year 2000, what we database vendors
need to do is deliver value with information -- the right
information to the right place from any source at the
right time.

9. industrial Strength

It’s very clear what value customers receive from con-
nectivity, but what about industrial strength? In the
telephone system, industrial strength means that

l Continuous operations -- never having any planned
shutdowns for anything -- not to re-organize the data,
not for installing new versions of database software.
not for catastrophic disk media failures -- nothing.
What customers are challenging us to do is lo support
their mission critical applications. My children and

yours are riding in cars and airplanes that are designed
with databases I helped write; we database vendors
need to make our database systems as bullet-proof
as possible. And if some pieces break, Ihe system
needs to degrade gracefully.

l Whenever you want to use it, it’s there. 24 hours a
day, 7 days a week. No one ever takes the phone
system down for maintenance between 2 AM and 5 AM.

. It almost always works even if pieces of it are broken.
When the Loma Prieta earthquake hit, the phone sys-
tem still worked.

l You can install a new telephone without major disrup-
tion.

l Automated system management. System managotnent
needs to be on-line, and non-disruptive. On-line in-
cremental backup facilities are an example. But again
more is needed. For example, feedback systems to
allow databases to be self-tuning -- I gave the example
earlier of how DB2’s buffer pool decides prefetching
quantities by looking at recent buffer behavior. On-line
automatic checking and repair of data and index pages
are other examples. What about self-reorganizing da-
tabases at fine levels of granularity?

l When someone else adds new facilities and new sys-
tems, yours still work. There is no world-wide upgrade
that everyone needs to install on Dec. 31 at midnight

l High concurrency mechanisms that allow query and
OLTP on the same data (not prior versions) al the
same time without interference.

.

672

(;anorally nl)oilkitr(l mninlratne fiynlems are ahead of
work!;lalio1) c;yslcrmn in provldil,g industrial slrenylh,
c:loarly every p~01luc:l 11nec1s to focus on those issuos.

I I. I ligll Availability

Cuslomers who have mission critical data and applica-
lions, whose business depends on their database working
correctly and continuously, focus resources on disaster
recovery. Banks, insurance companies, the US Federal
Reserve, and anyone who has spent time waiting in line
because “the computer is down” all want to have con-
tinuous service and no loss of data. Ideally, if it were
free, all companies would want to have immediate re-
covery after an outage, with no loss of data, and no loss
of service. Ideally, the person at the ATM machine never
notices that Ihe bank’s data center just blew up. This
is on customers minds a lot after the Loma Prieta earth-
quake, Hurricane Andrew, the World Trade Center, and
similar disasters [Gray861 [BuTrSO]. In reality, this
doesn’t come for free. In fact, there is a range of re-
quirements -- you would like to specify that for example,
ii is OK to lose the $10 check but not the one million
dollar check -- even in the same database on the same
day. I’m told that if the Fed can’t complete the recon-
ciliation in the US banking system that happens between
4 and 5 pm, it actually affects the US GNP.

Prediction 10: Databases in the year 2000 will have to
provide the following capabilities for high availability:

l Support for long distance fiber communications, far
enough away to reach a different power grid.

l Remote backup site to receive another database’s log
data and do one of several things:
- Low budget: catalog and store the log -- hours to

days lo recover
- Moderate: apply the log to a copy of the production

database as it arrives in real time (30-60 min. to
get back in production)

- Deluxe: above plus keoping backup communicalion
links to clients so that production can resume in a
few minutes

l Worst case fallure recovery -- being able lo handle
media failures at remote site, link failure between pro-
duction and remote sites (lots of old log data being
transmitted once link back in service), and then a
failure of production site

l Fast catchup -- processing (probably parallel) of arriv-
ing log data at the remote site to ‘catch up” quickly,
especially after a link outage. -- to keep the remote
site primed and ready.
Broad range of hardware architecture support at both
lhe production and remote site(s) -- parallel,
dalasharing, hot standby, -- with possibly many logs
for the database, not just one.
Knobs to adjust data loss and rervice loss parameters
-- the ability to establish rules like if $ amount Z lOK,
then immediately send the log off-site; If $ amount
< = lOK, then let the log buffer fill up before sending
it to the remote site.

I 2. hncti0nalit.y

Over Ihe last 3 decades, databases have moved from
the back office doing payroll and inventory to the front
office -- hotel reservations, retail point of sales, pharmacy
prescription records, and so on. Front office data looks
a lot like back office data -- short character strings for
names and addresses, credit card numbers, account
numbers, item numbers, and creeping in every once in
a while was text and image data with very simple
functionality -- store it away as bunch of bits, give the
bits back to me.

More recently, we see customers using databases in
previously non-traditional ways -- long-running design
applications like mechanical CAD, storing multi-megabyte
document files, and demanding greater functionality on
not only this new kind of data, but on all data. In fact
we will be seeing dramatically new types of data and
applications -- medical imaging, video services, docu-
ment libraries, archaeology, petrochemical exploration . . .

Today database vendors offer this functionality in a very
layered approach -- applications of many varieties issuing
requests to databases which run on file systems in some
cases and use services of the operating system. We
have database language standards like SQL 92 [MELT931
that are very rich in expressive power on the near-term
horizon and SQL3 standards being defined to add more
object-oriented features to SQL. It’s my guess that da-
tabase vendors will be offering object-oriented exten-
sions even before they have implemented all the
functionality of all levels of SQL92.

Today, added functionality is being defined in product-
specific ways -- customer experts are defining the con-
tents of event monitors, triggers, alerts, stored proce-
dures for each of their databases. The languages for
these are not necessarily standardized and there is no
easy mechanism for sharing definitions between appli-
cations on different database instances, particularly if
those instances come from different vendors. The SQL3
standards work on object-oriented extensions is a very
active area now for many vendors, including IBM, Oracle,
and DEC.

Prediction 11: By the year 2000, I expect that today’s ad
hoc situation will have evolved in much the same way
that programming languages have done. In the year
2000 databases will have standardized general mecha-
nisms for providing higher level data abstractions, and
more complex operations or methods -- all of these giv-
ing the database increased power to model real-world
entities and events.

Furthermore, it will be possible to define these real world
objects and operations and use them to construct other
objects in a type hierarchy with inheritance and subtyping
_- and to do in a way that allows sharing between data-
base instances and even between database vendors.
For a model of how this might possibly work, look at
class libraries sold for C+ + systems or Fortran sub-
routine library packages for matrix manipulation.

We need to be able to do this for extended relational
systems in a way that does not limit functionality like
set-oriented query and sophisticated access path opti-

673

mization that bring customers so much value and pro-
ductivity. And this added capability cannot make our
systems slower either.

Expect to see complex structured objects -- made up of
value-based relationships between multiple other ob-
jects. For example, parts and sub-parts that can be
queried separately or as complex assemblies, Queries
can be recursive, even on cyclic objects, and can involve
aggregation -- e.g. all assemblies from the wing that use
more than 5 bolts and no rivets. Queries might also
involve reachability on these complex structures -- e.g.
all people who are descendants of France’s Louis the XIV.

This kind of capability will provide building blocks for
user-definable types and operations that can be sold
independently of the basic database system and tailored
along with constraints and policies for specific application
areas like office and engineering.

To keep this added functionality from slowing down sys-
tems, I expect to see functions move lower down in
today’s layered database system environment. The pol-
icies and abstractions that today are in individual cus-
tomer applications will move down into the database
system itself. Database systems will increasingly take
over functionality previously done only by file systems
--directly manipulating data on disks. Database systems
will also take over functionality typical of operating sys-
tems -- direct device control, doing its own paging and
threads support.

Prediction 12: We are heading towards a year 2000 en-
vironment where at every level of the system functionality
is being pushed down to achieve higher performance --
resulting in a blurring of the boundaries and a higher
performance, higher function, more complex to manage
system.

13. Massive Data

Prediction 13: Databases in the year 2000 will need to
provide support for massive amounts of data, upwards
of 100 terabytes.

As databases support larger and larger amounts of data,
not all data will necessarily be on magnetic disks. But
customers still want that data managed by the database
system and they want it “near-line” if not on-line
[StFGM93]. The data and applications fall inlo three
categories:

Traditional data -- e.g. a single table of retail sales
where the most recent 14 months are on-line on mag-
netic and the older sales data is on an optical library.
Most requests and all OLTP work are done on the
recent data on magnetic disk. Auditing, billing disputes,
and database mining applications to determine buying
trends may access data in both magnetic and optical.
Every month another chunk of the magnetic data spills
over to be stored in the optical library. What does it
take to do this well? An extremely clever access path
selector that takes into account what data is stored
on what media (in fact, which platter) and makes its
plans accordingly. Also. database design tools that
recommend how much should be on magnetic and
how much on optical for a given workload -- e.g. should

indexes be on magnetic and data on optical? Sl~-~t~ld
optical libraries use non-volatile caches?

Multi-media. A typical example is a record which log-
ically consists of some number of coded dala fields,
e.g. for a hospital patient and then some non-coded
data such as the patient’s MRI scan. Should the non-
coded data be stored in the database -_ maybe yes,
maybe no, depending on the kind of processing that
might be done on it. Today, the answer is typically
no -- just slore a pointer to the file containing the
data. In the year 2000, with spatial dala representation
and processing techniques such thoso found in Ihc
OBISM project [ACFRT93-j, the answer is probably yes.

Statistical data collections. Another kind of massive
data is today typically not stored in a dalabaso at all
-- this is data that is almost exclusively used for mar-
keting or statistical analysis. A very good example is
census data or customer history files. Here’s how an
application WI this data works today -- suppose you
are offering a new product -- a ski parka and want to
send out advertisements to the ‘besl 10 thousand
prospects” -- you have the customer Illstory files ~OI
10 million people. You sit down with an expert markcl
analysis person and make a profile of besl prospects
(between 22 and 40, lives in Colorado, bought sweaters
from us last year, always pays thoir hills). You save
up similar queries, possibly for different products and
run Ihem, perhaps once a week against the tctabytes
of tapes containing all the customer buying histories.
Every record is evaluated for “best fit’ against each
query. If you had a bad profile -- too many prospccls
or too few, wait until next week and try again.

If we database people want to do this job instead of
custom applications doing file 110. we need to support
the following:

- Massive amounts of data -- tera- and petabytos
- Simultaneous multi-statement optimization in a way

that is better than the brute force tape method. This
kind of optimization would include finding common
sub-expressions to evaluate once and generalizing
several queries into a common suporset query
whose results can be further fillorcd lo get answct s
to the original queries.

14. Sllmmary

The decade of the 90’s will be a very exciting one for
databases. Emphasis on performance and ease of use
will continue, and lhere will be growing competition be-
tween database vendors on the level of industrial
strength and system management they can provide mrd
on the quality of their SQL oplimizers and compilers.

There will be a dramatic increase in conneclivily and
functionality as well, fostered by the evolution of reln-
tional database compilers into a layer of middleware
that supplies a universal set of functionality across many
data sources This middleware will also provide appli-
cations with independence from language and platform
dependencies on the individual data sources.

07-l

ASTR76

ACt-RT93

AllCORA

CHHIMQI

DuT,?Xl

co&Jr 1

CrHTQQ

Gray78

A-.tt.th,m, M. M. and Chamber Im. D. D.
lmplrmrr~lal ion of a Structured Fngl ish Query
I~rl~grr~rqe. Commu&alions of the ACM, Vol. 18, No.
IO, O~~tober 1915.
Arya, M., Cody, W., Faluutsos, C., Richardson, J.
and Toga, A. ORISM: A Proiotype 3-O Medical Image
Ootabasr System. Bullelin of the IEEE Computer So-
ciety Technical Committee on Data Engineerins
Match, 199.7.
Anderson, M., Cole, R. An Integrated Data Base, In
IBM Application Sys~em/400 Technology, Document
Number SAZI-9510, IBM, June 1988.
cllr?tq. .I., I-laderle, D., Hedges. R., lyer, B.,
Messt~~yer, T., Mnhan, C., Wang, Y. An Efjicfent
Ilybrid Join Algorithm: a 082 Prototype, Proc. 7th
lnlernrtlonnl Conference on Data Engineering, Kobe,
April 1991.
Rutkes, D. and Trelber, R.K. Design approaches for
real -time tronsoction processing ret&e recovery,
Proc. of IEEE Compcon, IEEE, 1990.
Corld, E. F. A database sublanguage jotrnded on the
rsZotionn1 caZcu~us, Proc. of the ACM SIGFIDET
Workshop on Data Description, Access and Control,
ACM, New York, 1971.
C~IE, R., Haderla, D.. Teng, J. Method for Minimizing
l.orking nnd Reading in o Segmented Storage Space,
U.S. Patent 4,QB1,134, IBM, October 1990.
Gray, J. Notes on Oata Base Operating Systems, In
Operating Systems - An Advanced Course, R. Bayer,
R. Graham and G. Seegmuller (Eds.), Lecture Notes
in Computer Science. Vol 60, Springer-Verlag, 1978.

Gray86

IMS

Kol We93

MELT93

MHWCQO

MoNaQl

StFGMQ3

TeGu&l

Gray, J. N. Why do computers stop and what can be
done obout it, Proceedings, 5th Symposium on Re-
liability in Distributed Software and Database Sys-
tems, January, 1986.
IMSlESA V4 General Information Manual, IBM Corp.,
GC26-30%00.
Kolodner, E. and Welhl, W. Atomic Incremental Gar-
bage Co1 Sect ion and Recover for a large Stnble Heap,
Proc. SIGMOD 93, Washington, DC, 1993.
Melton, J. Understandlng lhe New SQL: A Complete
Guide, Morgan Kaufmann Publishers, 1993.
Mohan, C., Haderle, D., Wang, Y., Cheng, J. Single
Table Access Using Multiple Indexes: Optimization,
Execution, and Con Control Techniques, Proc. Inter-
national Conference on Extending Data Base Tech-
nology, Venice,
Mohan, C., Narang, I. Recovery and Coherency-Control
Protocols for Fast Intersystem Page Transfer and
Fine-Granularity locking in a Shared Oisks
Transact ion Environment, Proc. 17th International
Conference on Very Large Data Bases, Barcelona,
September 1991.
Stonebraker, M., Frew, J., Gardels, K. and Meredith,
J. The Sequoia 2000 Storage Benchmark, Proceedings,
SIGMOD lQQ3, Washington, D.C., 1993.
Swami, A., lyer, 0. A Polynomial Time Algorithm for
Optimizing Join queries Proceedings, Data Engi-
neering Conferece, IEEE Computer Society, April,
1993.
Teng, J., Gumaer, R.Managing IBMDatabase 2 Buffers
to Maximize Performonce, IBM Systems Journal, Vol.
23, No. 2, 1984.

67.5

