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Abstract 

Two phase commit (ZPC) ia used to coordinate the 
commitment of trunsactiom in distributed systems. 
The standard 2PC optimization is the presumed abort 
variant, which wea fewer messages when trannsactions 
are aborted and allows the coordinator to forget about 
aborted transactions. The presumed commit variant 
of 2PC wea even fewer messages, but its coordina- 
tor must do additional logging. We describe a new 
form of presumed commit that reduces the number 
of log writes while preserving the reduction in me.+ 
saged, bringing both these costs below those of pre- 
sumed abort. The penalty for this is the need to retain 
a small amount of crash related information forever. 

1 Introduction 

1.1 Coordinating Distributed Commit 

Distributed systems rely on the two phase commit 
(2PC) protocol to coordinate the commitment of 
transactions 11, 41. 2PC guarantees the atomicity of 
distributed transactions, that is, that all cohorts of a 
transaction either commit or abort the transaction. 
The cost of 2PC is an important factor in the perfor- 
mance of distributed transactions. 

l It requires multiple messages in multiple phases. 
These messages have both substantial computa- 
tional cost, which affects system throughput, and 
substantial delay, which affects response time. 
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l It requires that information about transactions 
be recorded stably to ensure that transactions 
remain atomic even if there is a failure during 
the commit protocol. This is usually done by 
writing information to a log. When information 
must be stable at some point in the protocol, 
the log must be “forced”, that is, the write must 
be completed before proceeding to the next step. 
Forced writes cost more than simple writes be- 
cause they require actual I/O, whether a block 
of the log is filled or not. 

1.2 This Paper 

In this paper we describe a new variant of 2PC whose 
message cost is as low as the best alternative and 
whose coordinator logging cost is substantially less. 
The paper is organized as followe. In section 2 we 
describe the basic form of 2PC, with particular em- 
phasis on message cost and the coordinator’s need to 
be able to recover its “database” of protocol related 
information. In section 3 we present the traditional 
ways of optimizing 2PC, by presuming the outcome of 
transactions that do not have entries in the coordin& 
tar’s database. Section 4 explains what information 
is essential for recovering the protocol database after 
a coordinator crash, and how it can be provided us- 
ing fewer log writes. The protocol that results from 
exploiting this new approach to recovery of the pro- 
tocol databaze is described in section 5. Finally, we 
discuss the virtues and limitations of this approach 
to 2PC optimization in section 6. 

2 Two Phase Commit 

Commit coordination and its optimization5 are die- 
cussed thoroughly in [3, 8, 91. We recap this diecus- 
sion here, beginning with a description of the basic 
veraion of two phase commit. In this version the co- 
ordinator requires very explicit information, which is 
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why it is often called the “presumed nothing” proto- 
col or PrN. This is in contrast to optimised versions 
that do make presumptions about missing informe- 
tion. (Note, however, that in fact, PrN makes pre- 
sumptions in some cases [lo].) 

2.1 The Protocol Messages 

To commit a distributed transaction, PrN requires 
two messages from coordinator to cohort and two 
messages from cohort to coordinator, or four mes- 
sages in all. The protocol has the following steps: 

1. The coordinator sends PREPARE messages to 
all cohorts to notify them that the transaction is 
to be terminated. 

2. Each cohort then sends a vote message (either a 
COMMIT-VOTE or an ABORT-VOTE) on the 
outcome of the transaction. A cohort responding 
with a COMMIT-VOTE is now prepared. 

3. The coordinator commits the transaction if all 
cohorts send COMMIT-VOTES. If any c* 
hort sends an ABORT-VOTE or the coordina- 
tor times out waiting for a vote, the coordinator 
aborts the transaction. The coordinator sends 
outcome messages (i.e. COMMIT or ABORT) 
to all cohorts. 

4. The cohort terminates the transaction according 
to its outcome, either committed or aborted, and 
then ACKs the outcome message. 

2.2 Cohort Activity 

A cohort must log enough information stably so that 
it can tolerate failures both before the commit pro- 
tocol begins and during the commit protocol. If a 
cohort fails, it’s necessary to abort every transaction 
that has had any activity there and is not yet pro 
pared there. Otherwise updates might be lost, or seri- 
alizability might be compromised because read locks 
are released prematurely as a result of the failure. 
Hence the cohort must vote to abort a transaction if 
the cohort has failed since the first time it saw any 
activity for the transaction. Two ways to ensure this 
which do not require any logging are given below. 

l The client marks the first action of a transaction 
that it sends to each cohort. The cohort records 
a transaction as active when it sees an action 
marked as first, and votes to abort a transaction 
unless it’s recorded as active. 

l The cohort counts the number of actions it has 
seen for each transaction, and the client counts 
the number of actions it has sent to each cohort. 
The client passes all the counts to the coordineG 
tor with the commit request and the coordinator 
passes each count on to the proper cohort. The 
cohort votes to abort if its count is different. 

Before responding with a COMMIT-VOTE, a co- 
hort must stably record that it is prepared. This 
makes it possible for it to commit the transaction 
even if it is later interrupted by a crash. If a pre- 
pared cohort does not receive a transaction outcome 
message promptly, or crashes without remembering 
the outcome, the cohort asks the coordinator for the 
outcome. It keeps on asking until it gets an answer. 
(This is the blocking aspect of 2PC.) 

Before ACKing a COMMIT or ABORT outcome 
message, a cohort writes the transaction outcome to 
its log. The ACK .meseage tells the coordinator that 
the cohort will not ask again about this transaction’s 
outcome. If the cohort crashes, its recovery will re- 
trieve the outcome from the log without asking the 
coordinator. The coordinator can therefore discard 
the outcome for this transaction once all the cohorts 
have ACKed. The cohort must complete the outcome 
log write before sending the ACK message. There is 
no urgency about sending the ACK, however, because 
its function is only a bookkeeping one, i.e., to per- 
mit the garbage collection of the protocol database 
(described in the next subsection). Hence the cohort 
can group both the log writes and the ACK messages, 
amortising their costs over several transactions. 

2.3 The Protocol Database 

The coordinator maintains a main memory protocol 
database that contains, at a minimum, the states of 
all transactions currently involved in 2PC. The proto- 
col database enables the coordinator both to execute 
the 2PC protocol and also to answer inquiries from 
cohorts about transaction outcome. As we saw in 
the previous subsection, cohorts make such inquiries 
when they recover from a crash or when messages are 
lost; these failures can occur at any time. Because 
the coordinator can also fail, it keeps a log of proto- 
col related activity so that it can recover the protocol 
database. 

The protocol database for PrN contains entries 
for all transactions, committed, aborted, or still ac- 
tive, that have registered with the coordinator but 
have not completed the protocol. A PrN coordina- 
tor enters a transaction into its protocol database 
when that transaction is initiated. A transaction’s 
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[ Tid 1 Stable 1 State [ {Cid 1 Vote 1 A& } 1 

I I Yea I Initiated I I None I Yes 1 
No Preparing Abort No 

Aborted FL0 
Committed commit 

Figure 1: The format of a transaction entry in the 
protocol database. Each transaction is identified by 
a Tid. “Stable” indicates whether the existence of 
the transaction is stably recorded on the log. The 
%tatea” of a transaction are (i) ?nitiated” indicating 
that it ie known to the system; (ii)“Preparing” indi- 
cating that a PREPARE message haa been sent, etc. 
A transaction may have several cohorts, each identi- 
fied by a cohort id or Cid. The UVote” indicates how 
the cohort voted in response to the PREPARE mea- 
sage, ‘Ack” whether the outcome message has been 
ACKed. 

entry includes ita set of cohorts and the coordin& 
tar’s knowledge of their protocol state: hae a cohort 
responded to the PREPARE message with a vote, 
was it a COMMIT-VOTE or an ABORT-VOTE, 
has it ACKed the transaction outcome message, etc. 
The format for a transaction entry in the protocol 
database is given in Figure 1. 

The ACK message helps the coordinator manage 
the protocol database. As each cohort ACKs, the 
coordinator can drop the cohort from the traneac- 
tion’s entry. When all cohorts have so responded, 
the coordinator deletes the transaction entry from ite 
database. 

2.4 Coordinator Recovery 

2.4.1 Logging for Recovery 

We assume that a transaction manager (TM) servea 
as the coordinator. The TM logs protocol activity to 
ensure that it can recover the protocol database. It 
does not log for transaction durability (directly). For 
example, fully ACKed transactions are not pretrent 
in the protocol database and do not require recov- 
ery. How much is logged affects how precisely the 
protocol database can be reconstructed after a coor- 
dinator crash. For PrN, logging uaually involves two 
log records. 

Before sending the outcome message, the PrN co- 
ordinator forces the transaction outcome on its log. 
This act either commits or aborts the transaction and 
permits recovery of the transaction’s entry from this 
point on. Thus, transactions .that have an outcome 
have a stable log record documenting it. 

After receiving ACKe of the outcome message from 
all cohorts, the PrN coordinator writes a non-forced 
END record to make this information durable. The 
END record tells the coordinator’s recovery not to re- 
store the traneaction’e entry in the protocol database 
after a crash, and hence it will not again ask the co- 
horts for ACKe. 

2.4.2 Less Than Full Recovery 

If we take the PrN “presumed nothing” character- 
isation literally, we need to write many additional 
log records, usually forced, in order to reconstruct 
the protocol database precisely, including information 
about all aborted transactions. This requires that be- 
fore sending a PREPARE message we force to the log 
the content8 of a transection’s protocol database en- 
try. If the coordinator crashes before the outcome is 
decided, we then have a stable record which allowa us 
to explicitly abort the transaction. 

As PrN ie usually described, however, the ability to 
recover information about undecided transactions is 
sacrificed to reduce logging coat. Traditionally, noth- 
ing about the transaction is logged until ite outcome 
ie logged, and hence the transaction entry ia lost if the 
coordinator crashes earlier than thb. Cohorts that in- 
quire about a transaction not in the protocol database 
are directed to abort the transaction. That is, these 
transactions are UpnBumed” to have aborted. 

There are several ways to nave log writee and cope 
with the less than complete information that exists 
after recovery. For example, the number of cohorts 
that need to be contacted to re-ACK outcome mes- 
sages depends on whether each ACK is logged, only 
completion of all ACKing is logged, or there is no 
logging related to ACKa. These choices do not affect 
the correctness of 2PC, but they do affect the cost of 
recovering from coordinator crashes. 

2.5 Summary for the PrN Protocol 

To commit a transaction, a PrN coordinator does 
two log writes, the commit record (forced) and the 
transaction end record (not forced). In addition, it 
aends two m-gee to each of ittr cohorts, PREPARE 
and COMMIT. In response, each cohort does two log 
writes, a prepare record and a commit record (both 
forced), and trends two messages, a COMMIT-VOTE 
and a final ACK. These are tabulated in Table 1, 
which ie similar to the table in [9]. 
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I ..-_ ----.IL.m,~P m, n )m, n, q m,n,q 
2,2,2 - 
2, 2, 2 0, 0, 1 
2, 1, 1 0, 0, 1 
2, 1, 1 0, 0, 1 1 

Table 1: The message and log write costs to commit 
a transaction for 2PC and its optimizations: m log 
records, n forced log records, p messages to update 
cohorts, and q messages from the cohort. All protocol 
variants send only one message to read-only (R-O) 
cohorts. A read-only cohort sends no messages when 
the coordinator knows that the cohort is read-only. 

3 Presumed Optimization 

As we have seen, after a failure a PrN coordinator 
sometimes presumes that a transaction is aborted 
when it gets an inquiry about a transaction that is not 
in its protocol database. This works because there 
are only two possible outcomes of a transaction, and 
PrN always remembers which transactions have com- 
mitted. Thus, it is safe to presume that all other 
transactions have aborted, whether the coordinator 
is aware of them or not. 

We can exploit this property more extensively than 
PrN does by systematically purging entries from the 
protocol database for either the aborted or the com- 
mitted transactions. We then simply presume the 
purged outcome for any transaction that lacks a 
database entry. We do not have to recover purged 
entries, so we do not have to log their protocol activ- 
ity. Some messages as well as some log writes now 
become unnecessary. Below, we briefly describe two 
published 2PC optimizations, one presuming abort 
and the other presuming commit. 

3.1 Presumed Abort 

In the absence of information about a transaction in 
its protocol database, a presumed abort (PrA) coor- 
dinator presumes the transaction has aborted. This 
abort presumption was already made occasionally by 
PrN. PrA makes it systematically to further reduce 
the costs of messages and logging. Once a transaction 
has aborted, its entry is deleted since a missing entry 
denotes the same outcome. No information need be 
logged about such transactions because their protocol 
database entries need not be recovered. 

We must guarantee that the protocol database 
always contains entries for committed transactions 

which have not yet completed all phases of 2PC. 
These entries must be recoverable across coordina- 
tor crashes. This means that as in PrN, the coor- 
dinator must make transaction commit stable before 
sending a COMMIT message, by forcing this outcome 
to its log. PrA deletes the protocol database entries 
for committed transactions when 2PC completes in 
order to limit the size of the database, just as PrN 
does. And the same garbage collection strategies are 
also possible. 

A coordinator need not make a transaction’s en- 
try stable before its commit because an earlier crash 
aborts the transaction, and that is the presumed out- 
come in the absence of information. Only a commit 
outcome needs to be logged (with a forced write). 
Since there is no entry in the protocol database for an 
aborted transaction, there is no entry in need of dele- 
tion, and hence no need for an ACK of the ABORT 
outcome message. 

In summary, PrA aborts a transaction more 
cheaply than PrN, and it commits one in exactly the 
same way. The costs of commit are tabulated in Ta- 
ble 1. 

3.2 Presumed Commit 

For presumed commit (PrC), the coordinator ex- 
plicitly documents which transactions have aborted. 
While this has some apparent symmetry with PrA, 
which explicitly documents committed transactions, 
in fact there is a fundamental difference. With PrA, 
we can be very lazy about making the existence of 
a transaction stable in the log. If there is a failure 
first, we presume it has aborted. But PrC needs a 
stable record of every transaction that has started to 
prepare because missing transactions are presumed to 
have committed, and a commit presumption is wrong 
for a transaction that fails early. Traditionally this 
has meant that at the time 2PC is initiated and a 
transaction is entered into the protocol database, the 
coordinator forces a transaction initiation record to 
the log to make its database entry stable. This entry 
can then be recovered after a coordinator crash, so 
that an uncommitted transaction is aborted rather 
than presumed to have committed. 

With PrC, a transaction’s entry is removed from 
the protocol database when it commits, because miss- 
ing entries are presumed to have committed. If CO- 
horts subsequently inquire, they are told the transac- 
tion committed (by presumption). Thus, PrC avoids 
ACK messages for committed transactions, which 
is the common case and hence a significant sav- 
ing (much more important than avoiding ACKs for 
aborted transactions). 
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We must ensure that a committed transaction’s 
entry is not re-inserted into the protocol database 
when the coordinator recovers from a crash. If this 
happened, we might think the transaction should be 
aborted. Hence, like PrN and PrA, PrC forces com- 
mit information to the log before sending the COM- 
MIT message. Logically, this log write erases the ini- 
tiation log record, since lack of information implies 
commit. However, given the nature of logs, it is eas- 
ier to simply document the commit by forcing a com- 
mit record to the log tail. The commit log record 
tells us not to include the transaction in the protocol 
database of aborted transactions. 

With PrC, both the protocol database entry and 
the initiation log record list all cohorts from which 
ACKs are expected if the transaction aborts. When 
all the ACKs have arrived, the entry can be garbage 
collected from the protocol database. Like PrN, PrC 
writes a non-forced end record to the log at this point 
to keep the transaction from being re-entered into 
the protocol database. No separate abort record is 
needed. 

In summary, PrC commits a transaction with two 
forced log writes, the initiation record and the com- 
mit record. In addition, it sends two messages to each 
cohort, PREPARE and COMMIT. In response, each 
cohort forces a prepare log record and writes a com- 
mit log record. The commit record need not be forced 
because a prepare record without a commit record 
causes the cohort to inquire about the outcome. The 
coordinator, not finding the transaction in its proto- 
col database, will respond with a COMMIT message. 
The cohort sends one message, its COMMIT-VOTE. 
No final ACK is required. These costs are tabulated 
in Table 1. 

3.3 Read-Only Optimizations 

When a cohort is read-only, it has done no logging and 
does not care about the transaction outcome. It only 
wants to know that the transaction is completed so it 
can release its locks. Such a cohort does not need to 
receive the transaction outcome message. Regardless 
of whether a transaction commits or aborts, whether 
it is an update transaction or a read-only transac- 
tion, and what variant of 2PC is used, the activity 
of a read-only cohort is the same. To avoid receiving 
an outcome message it sends a READ-ONLY-VOTE. 
Then it releases its locks and forgets the transaction. 

Thus a read-only cohort writes no log records and 
sends one message. This is the read-only optimira- 
tion. It only guarantees serializability if it is known 
before the commencement of the 2PC protocol that 
cohorts have completed all their normal activity. 

(Section 6 discusses the impact if normal transaction 
activity can continue after 2PC begins,) 

The coordinator removes read-only cohorts from 
the list of cohorts that should receive the transactiou 
outcome message. If every cohort sends a READ- 
ONLY-VOTE, then the coordinator sends no out- 
come message. In addition, it no longer matters 
whether the transaction is considered committed or 
aborted. Hence the coordinator can choose whichever 
outcome permits the least logging. 

PrA: Abort the transaction by deleting its entry 
from the protocol database. 

PrC: Abort the transaction by writing an unforced 
abort/end record and deleting its entry from the 
protocol database. 

3.4 Advantage of Presumed Abort 

It is the coordinator logging that makes PrA prcfer- 
able to PrC. To commit a transaction, a PrC coor- 
dinator forces two log records, while PrA forces only 
one record; its other log write is not forced. The extra 
forced write is for PrC’s transaction initiation record, 
and it is needed for every transaction. Hence, it shows 
up in both update and read-only transactions. 

4 Fewer PrC Log Writes 

The PrC protocol has a decided advantage in message 
costs. Hence, we focus on reducing its coordinator 
logging costs. In particular, we want to avoid forc- 
ing the initiation record. This forced log write doc- 
uments that the transaction has initiated the com- 
mit protocol. It permits us to explicitly notify co- 
horts when a transaction aborts because the coordi- 
nator crashes, and to garbage collect its entry in the 
protocol database once all the cohorts have ACKed 
the abort. To avoid this log write, we need to know 
how a coordinator identifies transactions that were in 
the active protocol phase at the time of a crash, and 
how it manages the protocol database when it can- 
not garbage collect transactions that are aborted by 
a crash. Our fundamental idea is to (i) give up full 
knowledge after a coordinator crash of the transac- 
tions that were active before the crash and (ii) give up 
on garbage collecting the information that we do have 
about transactions that were active before a crash. 

4.1 Potentially Initiated Transactions 

Instead of full knowledge ahut th rrclivc Lrrr~mrrc 
tions, after recovery we settle for minitmrl knowledge 



ocumented active trarusctionr 
Recent trsnractione 

~tidhs--~Laet transaction that may have executed 1 
(willbe higher than tid.ta) 1 
A trauaction lower than any undocumented 
active transaction 
Highest tid w-able log record 
Max no. of active trena. with tid > tid.to 

Table 2: The terms used in describing the NPrC 2PC 
optimization. 

about all the transactions that may have been active 
at the time of a crash. We denote this set of trans- 
actions that may have initiated but did not commit 
by IN. It must include all the transactions that were 
actually active, but it may also include transactions 
that were never initiated as well as transactions that 
aborted. Since we do not know the cohorts for trans- 
actions in IN, we cannot garbage collect their entries 
from the protocol database. 

We can reasonably bound IN without forcing ini- 
tiation records and thus eliminate the need for these 
forced writes. To do this, we assume that transac- 
tion identifiers (lids) are assigned in monotonically 
increasing order at a coordinator. Then, we find a 
high tidh and a low tide such that the tids of all such 
undocumented transactions must lie between them. 
These are the “recent” tide; we define 

REC = (tid 1 tidr < tid < tidt,) (1) 

(Table 2 defines the notation that we use in this pa- 
per-1 

Let us denote the set of tids of committed and sta- 
bly documented transactions aa COM. Then we de- 
fine IN as: 

IN = REC - COM = REC - (COM n REC) (2) 

(COMnREC) is simply the set of &da in REC which 
have committed. 

No undocumented transaction that has begun 2PC 
has a tid less than tidl. No transaction with a tid 
higher than tidy has begun 2PC. Neither tidy nor 
tit& need be a tid of an actual transaction. They are 
simply bounds on transaction identifiers associated 
with this set. 

To sum up the preceding discussion, we represent 
the set of initiated transactions IN for each system 
crash with the following data structure: 

< lidl, tidy, COM n REC > (3) 

All tide in IN have abort outcomes by presump- 
tion, whether they initiated the 2PC protocol or not. 
IN contains the set active at the time of a crash and 
hence aborted. Thus, responding to inquiries about 
these transactions with an abort is appropriate. The 
set IN may include non-existent transactions and 
those that never began the 2PC protocol. It does not 
matter whether these are deemed to have committed 
or aborted because no cohorts will ever inquire as to 
their status. We must, however, ensure that these 
tids are not re-used for this to remain true. 

Two problems persist: 

1. How do we determine IN at recovery time and 
make sure that its tic& are not roused? 

2. How do we represent the information contained 
in IN in a compact fashion, given that garbage 
collection may not be feasible, and hence that 
the value of IN after a crash may need to be 
retained permanently? 

4.2 Recovering IN After a Crash 

4.2.1 Determining tidh 

We describe two straightforward approaches to de- 
termining tidh. Both prevent transactions with tids 
greater than tidy from beginning. 

A Method: We refer to the-transaction with the 
highest tid present on the log as t&,. After 
a crash, we determine tid,t, by reading the log. 
We choose a fixed A, say of 100 tids. Then 
tidh = lid at,, + A. Having a fixed A means that 
no extra logging activity is needed to make it 
possible to recover tidh. 

Logging tidh: We determine tidh during recovery 
by reading its value explicitly from the log. This 
requires us to periodically write candidate tidh’s 
to the log. The last candidate tidh logged be- 
fore a crash becomes the tidh for the crash. To 
avoid having to force a log record when a trans- 
action begins the 2PC protocol, we set tidh to 
be a number of tids beyond the currently used 
highest tid. This approach permits us to adapt 
i!idh to system load. 

Regardless of how tidh is determined, after a crash 
the coordinator must use tids that are greater than 
tddh. This ensures that no tid of IN is re-used, and 
hence that the tids of IN have a single outcome, 
namely abort. 
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4.2.2 Determining tidl 

Recall that tid, is the lower bound for the tida of 
active and undocumented transactions. All transac- 
tions with tids less than tidl that have begun since the 
last crash and have not completed the protocol have 
either a commit or an abort record in the log. (With 
the variation for recalcitrant transactions described 
in section 6, they might also have an explicit transac- 
tion initiation log record.) Having a tight bound for 
tidi permits us to minimize the number of transac- 
tions in IN. This is important because IN must be 
stored permanently. 

We ensure that tidl is known after a crash by writ- 
ing it to the log. We can advance tidl whenever that 
transaction terminates, i.e., either commits or aborts. 
When this happens we write to the log the new value 
for tidl along with the commit or abort record that 
we are writing anyway. Thus tidl is recorded without 
extra log writes or forces. The log contains a series of 
monotonically increasing tidi’s. The last tidi written 
before a crash is the tidl used in representing IN. 

While the system is executing normally, we know 
which transaction is this oldest active undocumented 
one. (Here, an active transaction means any transac- 
tion known to the coordinator to have begun, whether 
or not it has initiated the commit protocol.) The ter- 
mination of this transaction permits tide to be ad- 
vanced. Thus, we log transaction termination as fol- 
lows: 

Not oldest active transaction: If it is commit- 
ting, we force a commit record for it and delete it 
from the protocol database. If it is aborting, then 
when all ACKs have been received, we delete it 
from the database. 

Oldest active undocumented transaction: If it 
is committing, we write the new tidr to the log 
along with the commit record. This might not be 
the tici of the completing transaction; it may be 
a higher tid if later transactions have also termi- 
nated. If the transaction is aborting, then when 
all ACKs are received we do an unforced write 
of the new tit.& to the log. 

If the coordinator fails before tidl is advanced past 
the tid of a committed transaction, the log contains 
the transaction’s commit record, which keeps it out of 
IN. If the coordinator fails after tidl advances past 
the committed transaction’s tid, then the transaction 
is committed by presumption. 

If the coordinator faila before tidl is advanced past 
the tid of an aborted transaction, then the transac- 
tion becomes part of IN and hence is remembered as 

an aborted transaction. If the coordinator fails after 
tidl is advanced past the tid of an aborted transac- 
tion, ACKs from all cohorts must have been received. 
Hence there will be no inquiries about this transac- 
tion, so it doesn’t matter that an inquiry would be 
told that the transaction committed. 

An illuminating way to think about the protocol is 
that after a crash the coordinator presumes abort for 
tids greater than tidl and presumes commit for tids 
less than tidl. Thus after a crash tidl is the boundary 
between a presumed abort regime and a presumed 
commit regime. During normal operation the regime 
is presumed commit for all transactions. This means 
that recovery must make an abort entry in the proto- 
col database for each tid greater than tidl that doesn’t 
have a commit record in the log. 

4.2.3 Determining the Set COM rI REC 

Because IN needs to be permanently recorded, it is 
important that its representation be small. The quan- 
tities tidh and tidl consume a trivial amount of stor- 
age. The only question is how compactly we can rep- 
resent COM n REC. All transactions that commit 
have commit records stored on the log. So determin- 
ing which transactions have committed can he done 
simply by searching the log for commit records. 

There are two standard ways to represent acts 
which can be effective in representing COM n HEC, 
depending on how big and how sparse the set is. 

Consecutive tids: When tids are allocated con- 
secutively, a compact representation for a set is 
a bit vector. Our tidl becomes the origin for 
the bit vector (BV). BV need only have a size 
of bid,,, kid, where COM (1 REC .- {kid 1 
BV[tid - lidr] = I} ‘I’h is is because there arc no 
committed transactions with tids greater than 
tid,t,. 

Non-Consecutive tids: When tids are sparsely al- 
located, a bit vector is not a compact representa- 
tion. Sparse allocation might arise if timestamps 
are used within tids. A common way of doing 
this is to define a tid as < timestamp, nodeid >. 
Such tids are both monotonic at a coordinator 
and unique across the system. Here we represent 
COM n REC as an explicit list of Lids, i.e. of 
transactions with tids between lid, and tid,, that 
have committed. If each tid is 16 bytes, and the 
cardinality of COMn REC is around 50, and as- 
suming that 2:l compression is possible on this 
set of tids, then the amount, of information stored 
for each crash is not more than 566 bytes. 



4.3 Persistent, 1 N and its Use 

No transactions in IN have committed. But we do 
not know whether they were aborted or whether they 
never ran. Aud if aborted, we do not know whether 
they bc*gan the 2PC protocol or not. Hence, we do 
not know whether we will receive inquiries about this 
set or not. Nor do WC know how many inquiries we 
might receive or which cohorts might make them. It 
can thus be very difficult to garbage collect the infor- 
mation concerning transactions in IN. One way to 
deal with this is to permanently retain IN. 

Permanently retaining transaction outcome was 
originally proposed in 121. There all transaction out- 
comes were retained permanently in one of the com- 
mit protocols described. Our technique immediately 
dispenses with the greater part of this information by 
the prcsunlcd commit. strategy. For aborted transac- 
tions, we normally garbage collect transaction out- 
comes by requiring explicit ACK messages. Only 
transactions that abort because of a system crash 
cannot be garbage collected. Fortunately, the cardi- 
nality of COM II RBC will typically be small. Also, 
the stably recorded information will be linear in the 
number of system crashes. 

Given the representations for IN described above, 
storing storing it forever is quite manageable. Even 
assuming that the system crashes once a day (which 
is high for a well managed system), and the system 
is in operation seven days a week, it would take 2000 
days or six years to accumulate one megabyte of crash 
related IN information. The current purchase price 
of a megabyte of disk space is two dollars. 

SO that the transaction manager can respond 
quickly to requests for transaction outcomes, informa- 
t,ion from IN should be maintained in main memory. 
While fiV may be too large to be stored entirely in 
main memory, we can easily cache information about 
t.he last several crashes. Almost all inquiries will be 
for transactions involved in these crashes, and main- 
taining this information in main memory has a trivia1 
cost. This should easily suffice for efficient system op- 
eration. 

5 A New PrC Protocol 

Ijuilding on the preceding ideas, we now describe a 
new presumed commit protocol (NPrC) that does not 
require a log force at protocol start. NPrC has a 
rncssage protocol that is identical to the PrC proto- 
col, and it manages its volatile protocol database in 
much the same way. NPrC differs from PrC in what 
its coordinator writes to the log, and hence in the in- 
formation that the coordinator recovers after a crash. 

We assume that a transaction manager coordinates 
commit and has its own log [3]. We write the de- 
scription for a flat transaction cohort structure; an 
extension to the tree mode1 is discussed in section 6. 

During normal operation, NPrC’s extra complexity 
is minimal. It needs only to delimit persistently the 
set of potentially initiated transactions. This it does 
by occasionally doing an’ unforced write of a small 
amount of extra information to the log so that tidl 
and tidh can be recovered after a crash. This is much 
less costly than the forced log writes required by PrC. 
At recovery time, an NPrC coordinator needs to do 
more work than a PrC coordinator because it knows 
less. But crashes are rare, and the extra work at 
recovery is not large in any event. 

5.1 Coordinator Begins Protocol 

The 2PC protocol begins when the coordinator re- 
ceives a commit directive from some cohort of the 
transaction or from the application. The coordina- 
tor sends out PREPARE messages to cohorts ask- 
ing them whether to commit the transaction. No log 
record is forced, or even written. The coordinator 
then waits to receive responses from all cohorts. 

We distinguish the cases where a transaction is 
aborted, where the transaction has done updating, 
and where the transaction is read-only. In particular, 
a transaction cohort sends an ABORT-VOTE mes- 
sage if it wishes to abort the transaction, a COMMIT- 
VOTE message if the cohort has updated, and a 
READ-ONLY-VOTE message if the cohort has only 
read data. This is just like PrN. 

5.2 Aborting Transactions 

If any of the cohorts sends an ABORT-VOTE, or 
if the responses do not arrive in a timely fashion, 
then the coordinator sends an ABORT outcome mes- 
sage to cohorts that have not sent an ABORT-VOTE. 
When all such cohorts have ACKed the ABORT mes- 
sage, the coordinator deletes the transaction from its 
protocol database. Now tidl can be advanced past its 
tid. 

Should the system fail before all ACKs for an 
aborted transaction are received or after ACKs are 
received but before tidr is advanced past its tid, the 
transaction will be part of IN, and on a cohort in- 
quiry the coordinator will respond that the transac- 
tion has aborted. If the system fails after tidl is ad- 
vanced past its tid, then the transaction is presumed 
to have committed. However, that cannot happen un- 
til after all ACKs are received, and hence no inquiries 
will ever be made. 



Thus for transaction abort there are four mes- 
sages per update cohort that sent COMMIT-VOTES, 
two from coordinator to cohort (PREPARE and 
ABORT), and two from cohort to coordinator 
(COMMIT-VOTE and ACK) and a log write only if 
the aborting transaction was the oldest active trans- 
action. This records the new value of tidl; it need 
not be forced. Aborting cohorts send only the one 
ABORT-VOTE message. 

5.3 Committing Update Transactions 

If all cohorts have voted, no cohort has sent an 
ABORT-VOTE, and at least one cohort has sent a 
COMMIT-VOTE, then this is an update transac- 
tion. The coordinator forces a commit log record. 
This record need not contain the names of cohorts, 
and no END record is needed later since there are 
no ACK messages expected. The transaction’s entry 
is deleted from the protocol database and the trans- 
action is presumed to have committed. When the 
committing transaction is the oldest active transac- 
tion, a new tidl record is forced to the log along with 
the commit record. 

Should the system fail before the commit record is 
forced, the transaction is in IN and will be aborted. 
If it fails after the commit record is forced, but before 
tidl advances past its tid, its tid is part of REC, but 
it is in COM and hence not in IN. If the system fails 
after tidl is advanced past its tid, the transaction is 
correctly presumed to have committed. 

Thus for transaction commit the cost of this coor- 
dinator activity is one log record forced (the commit 
record with or without tidi) and three messages per 
update cohort, PREPARE, COMMIT-VOTE, and 
COMMIT. The ACK message is avoided. 

5.4 Committing R-O Transactions 

NPrC writes no log record until after the votes for all 
cohorts have been received. If all cohorts send READ- 
ONLY-VOTES, the transaction is a read-only trans- 
action. All cohorts have terminated without writing 
to their logs, and have “forgotten” ‘this transaction. 
There is no need for the coordinator to write any log 
record or to send any additional messages. 

If the system crashes, the value of IN will imply 
different outcomes, depending on how close to the 
crash the read-only transaction finished. If the tid for 
this transaction is greater than tidl, then it will be in 
IN, and the transaction will appear to be aborted. 
If less than tidl, then it will appear to be commit- 
ted. However, no cohort will make an inquiry so the 
apparent outcome is irrelevant. 

The protocol cost in this case is no log records writ- 
ten at the coordinator, one message (PREPARE) to 
each cohort, and one message (READ-ONLY-VOTE:) 
from each (read-only) cohort. A cohort need not write 
a log record for the usual 2PC protocol. 

5.5 Summary and Comparison 

The message and log write costs for NPrC to commit 
a transaction are tabulated in Table 1. Its costs are 
never worse, and are usually better, than the costs 
of either the standard PrN protocol or the two com- 
mon optimired forms of 2PC, presumed abort (PrA) 
and presumed commit (PrC). Note in particular that 
to commit an update transaction, an NPrC coordi- 
nator needs fewer log writes than either PrA or PrC, 
and an NPrC cohort sends fewer messages than PrA. 
Furthermore, to abort a transaction usually entails 
no log write. Occasionally a tidl record might need 
to be written, but it need not be forced. 

The NPrC protocol does less logging than PrA 
by focusing on the main memory protocol database. 
In particular, it is only necessary to correctly iden- 
tify commit or abort outcomes for those transac- 
tions that are engaged in the protocol and whose 
cohorts may ask for the outcomes. Presuming an 

incorrect outcome for other transactions in no way 
compromises correctness of the protocol. In addi-- 
tion, NPrC sacrifices the ability to recover informa- 
tion used to garbage collect protocol database entries. 

This means that some information about transaction 
outcome may need to be retained forever. Bowever, 
the amount of information preserved for each crash is 
small. So long as the coordinator does not crash of- 
ten, retaining this information is only a minor burden. 
The reduction in coordinator logging is substantial. 

A cohort need not know whether the coordinator is 
executing PrC or NPrC, because the message proto- 
col is the same. It .is only within the coordinator that, 
behavior is different. We have traded the ongoing 
logging necessary to permit us to always garbage col- 
lect our protocol database entries after a coordinator 
crash for the cost of storing forever a small amount 
of information about each crash. This appears to be 
a good trade. 

6 Discussion 

Here we discuss some additional issues related to our 
NPrC commit protocol. 



6.1 Hecalcitrant Transactions 

‘l’here are a number of situations in which tidl may be 
prevented from advancing or in which we may want 
to violate its requirements. 

l A transaction has been aborted because a cohort 
has failed; it will be a long time before the failed 
cohort ACKs the abort. Given our prior ap 
preach, tidl cannot be advanced past this trans- 
action’s tid. 

l A transaction is very long-lived. While it is ac- 
tive, it prevents tidl from being advanced past 
its tid. 

l In the tree of processes model of transactions [9], 
a coordinator at one level of the transaction tree 
can be a cohort at the next higher level. Such a 
coordinator as cohort does not control the issuing 
of lids. Hence, this coordinator may receive a tid 
that is earlier than its current tidl. 

There is a common solution for each of these re- 
calcitrant transactions: write an explicit initiation 
record for it to the log. Later this record will be 
logically deleted by an (unforced) end record for an 
aborted transaction or a (forced) commit record for a 
committed transaction. We permit tidl to be greater 
than the tids of these explicitly initiated transactions. 
At recovery time, we restore to our protocol database 
all transactions with initiation records on the log that 
have not been terminated explicitly. This is the orig- 
inal PrC protocol, but we use it only for recalcitrant 
transactions. 

It is important to note that transactions become 
recalcitrant only when they prevent us from advanc- 
ing tidl as we would like. That is, we do not need to 
identify these transactions at transaction initiation. 
When they cause us trouble with tidl, we write their 
initiation log records and then log the advance of tidl. 

We can frequently piggyback the transaction ini- 
tiation record for these transactions on a commit or 
abort already in progress. Advancing tidl can also be 
done at this time. So long as the log record advancing 
tidl is written after the transaction initiation record, 
there are no additional log forces. 

When a coordinator in the tree of processes trans- 
action model receives a tid that is below its tidl it acts 
like a PrC coordinator (see [S]). That is, it forces an 
initiation record to its log before continuing with this 
transaction, and in particular before forwarding this 
tid to other cohorts. 

The important point is that the vast majority of 
transactions will not need initiation records and hence 

will save the log writes. All our optimisations oc- 
cur within the coordinator. Externally, the message 
and cohort protocols are those usually associated with 
PrC in any event. Hence one cannot externally distin- 
guish the coordinator behavior used for logging any 
given transaction. 

6.2 Transaction Timestamping 

In [5], timestamped voting was used both to optimire 
2PC and to provide each committed transaction with 
a timestamp that agrees with transaction serialisa- 
tion. This guarantees serialieability even when trans- 
action termination is not guaranteed, while permit- 
ting the read-only and other optimisations. Given 
the performance of the read-only optimisation, and 
the fact that commercial commit protocols usually 
do not require transaction termination, this is impor- 
tant. There are two cases that we need to consider. 

6.2.1 Timestamps for Versioned Data 

To support transaction-time databases in which ver- 
sions of data are timestamped with the commit time 
of the transaction [6, 71, it is no longer sufficient to 
know only that a transaction has committed. We 
must know its commit timestamp as well. This means 
that we cannot presume commit since we cannot pre- 
sume the timestamps. Obviously, we want the coordi- 
nator to garbage collect these entries once they are no 
longer needed. Hence presumed abort (PrA), which 
remembers the committed transactions, is better in 
this case because it can simply keep the timestamps 
with its committed transaction entries. No form of 
presumed commit can be used. 

6.2.2 Timestamps Only for Commit Protocol 

So long as databases are using transaction times- 
tamps not to timestamp data but solely as part of 
the commit protocol [5], it is not necessary to re- 
member the timestamp of a committed transaction. 
The coordinator will have sent its COMMIT message 
with a timestamp that is within the bounds set by the 
timestamp ranges of all cohorts. If asked, the coordi- 
nator responds that the transaction was committed, 
and the cohort then knows that the commit time was 
within the timestamp range of its COMMIT-VOTE 
message. 

The cohort uses the knowledge of whether the 
transaction committed or aborted to permit it to in- 
stall the appropriate state, before state in the case of 
abort, after state in the case of commit. It can safely 
release all locks, both read and write locks, at the 
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time denoted by the upper bound in its COMMIT- 
VOTE timestamp range. 

Because the coordinator need not remember a 
committed transaction’s timestamp, the information 
about transactions that have completed the commit 
protocol is again binary: commit or abort. Presumed 
commit protocols can be used in these instances, and 
our NPrC protocol is not only applicable but desir- 
able. 

6.3 Garbage Collecting 18 

If we knew all cohorts of the transactions active at 
the time of a crash, we would not need to retain IN 
forever. We could simply broadcast the news of the 
crash, including IN, to all such cohorts, wait for them 
to ACK this CRASH message, and then discard IN. 
If another crash occurs during this process, we simply 
repeat the message. 

Knowing precisely which cohorts are involved in ac- 
tive transactions at the time of a crash is, of course, 
one of the reasons that PrC needs the extra forced 
log write. However, just as we do not need precise 
information about which transactions are active at 
the time of a crash, we also do not need precise in- 
formation about the cohorts of these transactions. In 
both cases, a superset that bounds the siee of the ac- 
tual set is sufficient. The wasted CRASH messages 
sent to cohorts in the superset that are not actually 
involved in active transactions are a modest cost be- 
cause crashes don’t happen often. This can be an 
asynchronous background activity that is performed 
lasily. 

Our problem thus reduces to knowing the superset 
of potential cohorts af transactions active at the time 
of a crash. This can be done by maintaining a cohort 
database. Each time a cohort that we have not seen 
before becomes involved in a transaction, we update 
this database. This requires a log record to make 
the update stable, and the affected part of the cohort 
database should eventually be written to disk as well. 
Such a cohort database should be small enough to 
stay in main memory, and its update activity should 
be very low. It might be initialized a priori with the 
set of expected or permitted cohorts. If the sire of this 
database becomes a problem, we could occasionally 
delete entries that have not recently participated in 
transactions. 
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