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Abstract 

Mirroring is often used to enhance the reliability of 
disk systems, but it is usually considered expensive 
because it duplicates storage cost and increases the 
cost of writes. Transaction processing applications 
are often disk arm bound. We show that for such 
applications mirroring can be used to increase the 
efficiency of data accesses. The extra disk arms 
pay for themselves by providing extra bandwidth 
to the data, so that the cost of the overall system 
compares favorably with the cost of non-redundant 
disks. The basic idea is to have the mirrored disks 
out of phase with one handling reads and the other 
applying a batch of writes. We also present an effi- 
cient recovery procedure that allows reconstruction 
of a failed disk while guaranteeing the same level 
of read performance as during normal operation. 

1 Introduction 

Two goals have driven disk systems research in re- 
cent years: reliability and performance. Reliabil- 
ity is typically achieved through redundancy, e.g., 
mirrored disks or redundant arrays of inexpensive 
disks (RAID). Mirroring has good reliability char- 
acteristics and read performance, but it incurs a 
disk arm overhead for writes and a significant stor- 
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age overhead for replicating the data. Compared 
with RAID, mirroring has simpler and more effi- 
cient recovery from disk failure. RAID architec- 
tures [15] try to ameliorate the space overhead of 
mirroring at the expense of increasing disk arm 
overhead under normal operation and complicat- 
ing recovery. 

The selection among reliable disk architectures 
depends on the application characteristics. An ap- 
plication may be: 

1. 

2. 

3. 

Disk capacity bound: For example, storage 
of historical data requires only disk space; nei- 
ther performance nor reliability is critical. For 
such applications the goal is minimal $/CR, so 
that large, cheap disks with inexpensive con- 
trollers can be used. Redundancy is not im- 
portant, since backups can be kept on tapes. 

Sequential bandwidth bound: A iog- 
ging process is typically sequential bandwidth 
bound. For such applications file striping im- 
proves bandwidth; striping data on a RAID- 
5 array [15] can provide both high sequential 
bandwidth and reliability at a low cost. 

Random access bound: On-line trans- 
action processing applications usually make 
many small random accesses. As indicated 
in Reference (91, installations often leave as 
much as 55% of their disk space empty, to en- 
sure that the performance for access to the ac- 
tual data is satisfactory. Thus, the number of 
disks required is often determined by the num- 
ber of arms necessary to support the workload 
(disk arm bound), not by the space occupied 
by the data. More efficient utilization of the 
disk arms can increase space utilization and 
actually reduce the number of disks required. 

Our focus in this paper is on case (3) above, 
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i.e., random access bound applications. In Refer- 
ence [4] it is shown that mirroring is better than 
RAID-5 in such cases. We show that the perfor- 
mance of mirroring can be enhanced substantially. 
We exploit the redundancy inherent in mirroring to 
gain performance by taking advantage of technol- 
ogy trends: large memories and efficient sequential 
disk I/O. 

Disk access times have not improved signifi- 
cantly in the past decade, so research efforts have 
recently focused on delaying writes and applying 
them to the disk in batches, in order to benefit from 
the higher performance of sequential vs. random 
access. Such efforts include [l, 8,16,17,18,19]. As 
large memories become available, it is possible to 
delay writes and apply them in a batch; therefore, 
we expect this technique to gain significance. A po- 
tential drawback is the response time for read oper- 
ations: reads must be suspended during the appli- 
cation of a batch, which may in turn affect transac- 
tion response time. Our scheme exploits the avail- 
ability of two mirrored arms, which ensures good 
read response time by alternating batch updates 
between the two mirrors. We address batch up- 
dates on a single disk in Section 5. 

Our goal is to provide both availability and per- 
formance. Since redundant data must be stored 
to ensure availability, this data might as well be 
used to enhance performance. We start from the 
observation that mirroring and batch updates are 
complementary, in the sense that the weak point 
of batch updates (read response time) is the strong 
point of mirroring [2,3]. Careful scheduling of disk 
accesses in the presence of mirroring can lead to 
increased disk arm utilization, and thus to lower 
cost. 

Our technique also gives rise to an efficient 
scheme for recovery from disk failure. In contrast 
to previous schemes, our method does not hurt 
read access to data that had a copy on the failed 
disk. 

Section 2 describes our technique during normal 
operation. Section 3 evaluates the fault-free per- 
formance of the proposed technique using a simple 
analytical model (Section 3.1) and simulation (Sec- 
tion 3.2). Section 4 presents our procedure for re- 
covering from single disk failure and estimates the 
recovery time. Finally, the region of applicability 
of the proposed scheme is examined in Section 5. 

IhkB K 
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Figure 1: Read/write alternation. 

2 Normal Operation 

We assume that the system has a large buffer pool. 
Transaction processing systems typically employ a 
write-ahead log, so that data pages can be writ- 
ten to their home location on disk asynchronously. 
For random access bound applications that do not 
use a write-ahead log, non-volatile, reliable mem- 
ory may be required. We return to this issue in 
Section 5. The buffer can be located either in main 
memory or at the disk controller; our technique is 
applicable in both cases. 

During normal operation, updates are not ap- 
plied to disks immediately. Periodically, when a 
certain number of updates have accumulated in the 
buffer, they are sorted in physical layout order and 
applied to the disks as a batch. Algorithms for 
applying updates in batches efficiently have been 
discussed and analyzed in [l?]. The improvement 
in bandwidth with respect to random accesses can 
be significant. 

While a disk is not applying updates, it services 
read requests. Thus, each disk alternates between 
time spans of write-only and read-only activity. 
Let the period during which the updates accumu- 
late be T, and consider a pair of mirrored disks A 
and B. Both disks apply the updates in batches. 
However, they do not apply the batches simultane- 
ously. Instead, they operate at a phase difference 
of 180°. For example, assume that disk A starts 
applying updates at time 0. Disk B will start ap- 
plying updates at time T/2. Disk A applies the 
second batch at time T, then disk B applies the 
second batch at time 3T/2, and so on. Figure 1 
illustrates this alternation with a timing diagram, 
where the high value represents write activity and 
the low value represents read activity for the cor- 
responding disk. 

If each disk can apply the batch in time less 
than T/2, then the write-only time spans of the 
two disks do not overlap, so that there is always 
at least one disk available to service read requests; 
there may even be some time when both disks are 
servicing reads. This case is shown in Figure 1. 
Read requests are routed to the disk operating 
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Figure 2: Overlapping write periods. 

in read-only mode and are serviced immediately. 
Thus, batches can be made large to gain efficiency, 
without affecting read response time. The limit- 
ing factor for batch size is the amount of memory 
available. 

In cases of extremely write-intensive loads, it 
may take each disk longer than T/2 to install a 
batch, so that the write time spans of the two 
disks will overlap. This situation is shown in Fig- 
ure 2. Read requests that arrive during the overlap 
period are deferred until one of the disks finishes 
its write batch, which hurts read response time. 
Alternatively, such reads can be serviced immedi- 
ately, thus disrupting the efficient installation of 
updates. If the second option is adopted, the reads 
can be routed to the disk whose head is closest to 
the cylinder where the read must be performed. 

The response time for reads and the throughput 
for each individual disk in the proposed scheme 
are at least as good as in the non-redundant case. 
However, the writes are performed twice, so the 
total throughput of a mirrored pair is less than 
twice the throughput of an individual disk. In or- 
der to evaluate the efficiency of the overall system, 
we estimate the number of arms required to sup- 
port a certain workload and compare this number 
with the number of arms that would be necessary 
if no replication was used. We assume a trans- 
action processing type of workload, which is disk 
arm bound rather than space bound [lo]. In such 
cases, it is common for disks to be used well below 
their nominal space capacity so that the arms can 
sustain the I/O bandwidth directed to the stored 
data. The Fujitsu Eagle disk drive [7] has been 
used frequently in disk performance studies in the 
literature [17], so we use the parameters for that 
disk drive, which are shown in Table 1. In our 
analysis we focus on non-overlapping write peri- 
ods; we return to the issue of overlapping write 
periods in Section 5. 

Parameter -- 
No of Cylinders 
No of Surfaces 

Block Size 
Blocks per Track 
Rotation Time 

Half Rotation Time 
Average Seek 

Block transfer Time 
Avg. Random Access 

Single Track Seek 
End to End Seek 
Memory Fraction 

Write Ratio 

-- 

Symbol- 
cyls 
surfs 
blksiz 

blkstrk 
t rot 

throl 

t avrerk 

t e/w 

t tan 

t trkreek 

t endrrck 

f 
W 

..-----..=e 
-..-“- 

Value 
840 
20 
4K 

8t 

16.6 msec 
8.3 msec 
18 msec 
2 msec 

28.4 msec 
5.47 mscc 
35 msec 

l%t 
0.5t -.-- ------ 

Table 1: System Parameters (tdefault values) 

3 Evaluation of Fault-Free Per- 
formance 

3.1 Simple Analytical Model 

The analytical model we develop is conservative, 
i.e., we make pessimistic assumptions to simplify 
the analysis. The model is actually a hybrid 
analytic-simulation model, because we use a Monte 
Carlo simulation as a subroutine to the analytical 
model. 

We assume that the entire system receives I/O 
requests at a rate X. A fraction w of these requests 
are writes. The requests are distributed uniformly 
across aJl disks and over all blocks in a given disk. 
In database systems, transactions tend to be short 
and usually make requests for small amounts of 
data (records); records are usually stored in a se- 
quence determined by their contents rather than 
their frequency of access. Thus, hot (i.e., fre- 
quently accessed) data will be scattered across all 
disks and all blocks. Our assumption may not be 
true for file systems, which often cluster hot files 
in the middle of the disk to reduce seek times. 

D boI, denotes the number of disk arms that are 
required to sustain the workload in the base case 
(without replication) and Doll denotes the cor- 
responding number in our alternating mirroring 
scheme. The average time t,, to serve a random 
I/O request in the base case involves an average 
seek time, one half rotation throt on the average 
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tu potlition the heada over the block and the block 
transfer time 2,,,, : 

t ran = tovgrcck t thtot + &far 

The utilization of a disk arm in the base case is: 

u bore = %n f Dbcre 

In our mirroring scheme, reads require the same 
amount of time as in the base case. Writes, how- 
ever, take less time, since they can take advantage 
of the batching effect. Let t,,,,, denote the amor- 
tized time for a block write (we estimate t,,, be- 
low). Then, the utilization in the alternating mir- 
roring case is: 

u 
alt 

= X(1 - +an t 2~wmu 
D azt 

The factor of two comes from the fact that writes 
must be performed twice (once for each disk). 

For the comparison to be fair, we require that 
the disks be operated at the same load in both 
cases, so by equating Ub,,#r and U,,lr we obtain the 
efficiency mtio of the two schemes, i.e., the ratio 
of the disk arms required in each case: 

D bar* 1 - 

D alt 1+ 742* - 1) 

Intuitively, the lower the efficiency ratio, the more 
the arms required by the alternating scheme to 
replace a single base case arm. Note that if 
Ln, /Lx < l/2 (which we show is actually the 
case), then the efficiency ratio is higher than 1. 

We now estimate t,,, . Assuming that a fraction 
f of the disk space can be accommodated in main 
memory, the batch size is: 

batchsize = f * blksttk * surfs * cyls 

Assuming a uniform access pattern, the average 
number of cylinders for which there will be at least 
one updated block in the batch is: 

cylindershit = cyls * (1 - (1 - l/~yZs)~~~~~~~~‘) 

In Reference [17], it is shown that with seek 
times improving, rotational delays should be taken 
into account when scheduling a batch of writes. 
However, for simplicity, we assume that a SCAN 
policy is used for installing updates, i.e., all up- 
dates are applied to a particular cylinder before 
the heads move to the next cylinder. This is 

a conservative assumption, since a more efficient 
batch installation scheme would benefit our mir- 
roring scheme even further. The average num- 
ber of block updates for each of the cylinders&t 
is blocks-amortized = batchizelcylindershit. 
The seek time for the Fujitsu disk can be approxi- 
mated [17] by the function 4.6+.87dseek-distance. 
Since the seek time is a concave function of the seek 
distance, we get a conservative (pessimistic) esti- 
mate if we approximate the average seek time with 
the seek time for the average distance. Thus, in 
the average case, the seek time for moving to the 
next cylinder where updates must be installed is: 

t rscknsr~ N 4.6 + .87 yls/cylinders-hit 

The time to write the blocks in a particular cylin- 
der is the time to seek to that cylinder plus the 
time to rotate enough times to apply all modified 
blocks on the cylinder. For example, if only one 
block needs to be written, half a rotation is nec- 
essary on the average to get to the beginning of 
the block, plus the time necessary to transfer the 
data. If multiple blocks must be written in one 
cylinder, then there is the possibility of collisions, 
i.e., two or more blocks may have to be written on 
different tracks, but on sectors that are vertically 
aligned, so that they cannot be written during the 
same rotation. Let us call all vertically aligned 
blocks a collision group. If one assumes zero head 
switch time, during each rotation one block from 
each collision group can be written, so the number 
of rotations required is determined by the maxi- 
mum cardinality of any collision group. However, 
zero head switch times are unrealistic, so we im- 
pose the con&mint P, that if a block is written on 
one track, the heads are unable to write a block on 
a different track at the next vertical position dur- 
ing the same rotation. In Section 3.2 we compare 
the results without constraint P (optimistic case) 
with the results under constraint P (pessimistic 
case). 

Given the above constraint, it is hard to deter- 
mine the optimal policy for installing updates in 
a cylinder. Thus, we use a greedy heuristic that 
keeps installing consecutive blocks on the same 
track as long as it can; when the run of consecutive 
blocks is exhausted, it switches to a different track. 
The number-of -rotations required by this heuris- 
tic is difficult to estimate analytically, so we use a 
Monte Carlo simulator as a subroutine in our ana- 
lytical computations. The simulator takes as input 
the number of blocks to be written in a cylinder. 
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% Memory fraction 

Figure 3: Efficiency vs. memory fraction Figure 4: Efficiency vs. fraction of write requests 

In each step, the simulator generates a random as- 
signment of blocks to locations on the cylinder and 
calculates the number of rotations that would be 
required for that assignment. This step is repeated 
and the result is averaged over all iterations. 

Then, we can calculate t,,, 

t 
t 

scrknczt + numbersf -rotations * tTot 
a?nw = blocksamortized 

and from that, the efficiency ratio. In order to 
be able to compare our analytical results with the 
simulation results reported in the following section, 
the efficiency ratio must be multiplied by the cor- 
rective factor & to account for the fact that since 
memory contains a fraction f of the data, an equal 
fraction of access requests will get a hit in memory 
and will not cause disk I/O. (Again, this is conser- 
vative, since it assumes uniform access.) Thus, the 
formula for the efficiency ratio becomes: 

D base 1 1 
-=1+w(2e-1)X1-f D alt 

In Figure 3 we show the efficiency ratio for the 
alternating mirroring scheme (solid), the base non- 
redundant scheme (dashed) and the plain mirror- 
ing scheme (dotted) as the memory expressed as 
a fraction f of the disk space varies from 1% to 
10% (the write fraction is kept at the default value 
of 0.5). In plain mirroring, reads are serviced by 
one disk, while modified blocks cause a random 
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write at each disk of a mirrored pair. We observe 
that alternating mirroring is more efficient and re- 
quires fewer arms than the base scheme in the en- 
tire range presented. This is because the increased 
efficiency gained from all writes more than com- 
pensates for the extra writes introduced. As the 
memory fraction increases, batches become larger, 
amortized seek times are reduced, but the proba- 
bility of collisions increases, so that the expected 
number of rotations increases. As shown in Fig- 
ure 3, the seek time reduction dominates, writes 
become more efficient for larger batches and the 
performance difference becomes increasingly favor- 
able for mirroring. Thus, our technique will bencfi t 
from the advent of large main memories. 

As memory sizes increase, buffer pools become 
larger and can capture a significant fraction of the 
read traffic. Thus, in the future we expect to see 
the I/O traffic directed to disks consisting mainly 
of writes. Figure 4 plots the efficiency ratio of the 
alternating mirroring scheme (solid), the base non- 
redundant scheme (dashed) and the plain mirror- 
ing scheme (dotted) against the fraction of write 
requests in the system. The memory size is held 
constant at 1% of the disk size. As the write ratio 
increases, the performance of alternating mirroring 
improves, since an increasing fraction of requests 
can be performed in batch mode. This is a novel 
result, which contrasts with the widely held belief 
that mirroring is arm costly for loads with inten- 
sive write traffic. This belief is true only for the 

. 
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plain mirroring scheme, as shown in Figure 4. 
In Figure 4 we show two more curves. The 

curve labelled “opt” corresponds to the alternat- 
ing mirroring scheme under the optimistic assump- 
tion that head switch is infinitely fast. In practice, 
this may be achieved by formatting the disk with 
a slight offset between tracks, which leads to a spi- 
ral arrangement. Thus, there may be enough time 
to switch heads without missing the next vertical 
position. In this case, the number-of-rotations 
equals the maximum number of block writes hit- 
ting a vertical position. As shown in Figure 4, this 
assumption leads to even higher efficiency ratio for 
the alternating scheme. 

For comparison purposes, the curve labelled 
“raid” in Figure 4 shows the efficiency ratio for 
the RAID-5 scheme. The efficiency ratio of RAID- 
5 is below that of the other schemes in the entire 
range. The RAID-6 curve is for a best-case sce- 
nario, where the old copy of a modified data block 
is available in memory, so that a logical write in- 
volves a write to the data block and a read-modify- 
write to the checksum. In practice, the old value 
of the data block may also have to be read, caus- 
ing a read-modify-write for both the data and the 
checksum and resulting in even lower efficiency for 
RAID-5 

Finally, we study the effect of disk parameters. 
Although seek times and rotational delays have not 
improved significantly, disk densities (and capaci- 
ties) increase continuously, so it is interesting to 
investigate the impact of this trend. Figure 5 plots 
the efficiency ratio of the three schemes as the num- 
ber of blocks per track varies from 8 to 16. The 
write fraction is held constant at 0.5, while mem- 
ory is 1% of the corresponding disk size at each 
data point. The increase in density affects the ra- 
tio for alternating mirroring favorably, because the 
performance difference between sequential and ran- 
dom I/O increases. 

If one assumes that memory is free, i.e., our 
scheme can take advantage of an already existing 
buffer pool, then the efficiency ratio becomes also 
a measure of cost-efficiency. Under the assump- 
tion of free memory, the efficiency of the other 
schemes would improve due to buffer cache hits, 
but it would still be below that of alternating mir- 
rors, so that alternating mirrors offer reliability as 
well as the best price-performance, even compared 
with non-redundant schemes. 

Let us now examine the case when memory is in- 
troduced for exclusive use by the alternating mir- 
rors, so that the alternating mirrors get charged 
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Figure 5: Efficiency vs. number of blocks per track 

‘1 

Parameter Value 
Price/disk $3000 

Memory Price/MB $250 
Disk Size 1200MB 

Disk Controller Price $1000 
Random I/OS / set / disk 35 

Table 2: Price Parameters 

with its cost. Using the price parameters shown in 
Table 2, Figure 6 plots the cost per I/O operation 
in the alternating scheme as the memory fraction 
of disk space increases. In this range of parame- 
ters, the cost increases monotonically with mem- 
ory, since the cost of memory dominates the disk 
cost. As mentioned above, increased memory size 
implies increased performance for the alternating 
mirroring scheme, which tends to decrease the cost 
per I/O operation. On the other hand, the addition 
of memory increases the cost of the system, so we 
expect to see a minimum in the price per I/O per 
set in our scheme. Figure 7 plots the cost per I/O 
per set varying the memory fraction f in the range 
off = 0.01% to f = 1%. The minimum appears at 
f = 0.06% and is $107 per I/O per sec. For com- 
parison purposes, the cost of the base scheme is $94 
per I/O per set and that of plain mirroring $141 
per I/O per sec. The reason the minimum appears 
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Figure 6: Cost per I/O vs. memory fraction 
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Figure 7: Cost per I/O vs. memory fraction 
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a-- 5% Memory 
l --- 10% Memory 

20 30 40 SO 60 70 
Arrival rate (requestskc) 

Figure 8: Read response time vs. throughput for 
different memory sizes 

at such low memory size is that we have assumed 
a relatively high price for memory ($250/MB). As 
the cost of memory comes down, the minimum will 
move to the right and the cost of the alternating 
scheme will drop significantly in the entire range. 
It is for this reason that in the analysis we focused 
our attention on larger memories. 

Note that the performance of alternating mirror- 
ing may actually be better than what the analysis 
above indicates. In our analysis we assumed that 
disk utilization is the same in all schemes. How- 
ever, alternating mirroring has a better response 
time for reads than the base scheme, which makes 
it possible to operate alternating mirrors at higher 
utilization and still perceive the same performance 
as the base case. Higher utilization implies that 
the number of arms can be further reduced, yield- 
ing higher efficiency ratio, lower cost per I/O per 
set, etc. 

3.2 Simulation Results 
To verify the analytical results of the previous sec- 
tion, we built an event driven simulator for the 
proposed mirroring scheme with deferred updates. 
In Figure 8 we plot the response time for read oper- 
ations as the arrival rate increases. The workload 
is 50% reads and 50% writes. The three curves 
correspond to three different sizes of main mem- 
ory: 1% of disk space (solid line), 5% of disk space 
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Figure 9: Read response time vs. throughput for 
different write ratios 

Figure 10: Read response time vs. throughput for 
different disk densities 

(dashed line) and 10% of disk space (dotted line). 
As memory increases, so does the maximum load 
that can be sustained by the system. Dividing the 
maximum throughput measured for a pair of disks 
employing the proposed scheme by twice the maxi- 
mum throughput of a disk serving random requests 
we get a simulation estimate for the efficiency ratio 
of the proposed scheme. (Alternatively, the disk 
arm utilizations can be compared.) The simula- 
tion values for the efficiency ratio are 1.11 (for 1% 
memory), 1.35 (for 5% memory) and 1.5 (for 10% 
memory). Comparing these values with the values 
in Figure 3 we observe a very good match between 
analysis and simulation across the entire range. 

Note that, for stability reasons, real systems 
are typically configured to operate at an average 
throughput weIl below the saturation point (some- 
times as low as 3 standard deviations below the 
average arrival rate that would yield acceptable re- 
sponse time Ill]). However, the arrival rate that 
saturates the system is a good means of compar- 
ison, since the operating point is derived from it. 
As the saturation point increases, so does the point 
of normal operation. 

In Figure 9 we plot the read response time 
against throughput for different mixes of read and 
write operations. The three curves correspond to 
75% reads - 25% writes (dashed line), 50% reads - 
50% writes (solid line) and 25% reads - 75% writes 
(dotted line). As the write ratio increases, so does 

the maximum throughput sustainable by the pro- 
posed scheme. This is because two batched writes 
are cheaper than a random read. The efficiency 
ratios measured by the simulation were 1.05 (25% 
writes), 1.11 (50% writes) and 1.18 (75% writes), 
which match very weIl with the values computed 
analytically and shown in Figure 4. 

In Figure 10 we plot the read response time 
against throughput for different numbers of blocks 
per track on the disk. Memory is 1% of disk 
size and write fraction is 0.5. The three curves 
correspond to 8 blocks/track (solid line), 12 
blocks/track (dashed line) and 16 blocks/track 
(dotted line). Again, as the disk density in- 
creases, so does the maximum throughput sus- 
tainable by the proposed scheme, since the effi- 
ciency of batched writes increases. The efficiency 
ratios measured by the simulation were 1.11 (8 
blocks/track), 1.20 (12 blocks/track) and 1.27 (16 
blocks/track), which match very weII with the val- 
ues computed anaIytica.Uy and shown in Figure 5. 

4 Recovery 

We consider recovery from disk failures. We as- 
sume that other kinds of failures (e.g., proces- 
sor failures) are handled with conventional recov- 
ery techniques (e.g., replay of redo logs, processor 
takeover), and are not the thrust of this paper. 
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Suppose that a disk fails. A recovery procedure 
must ensure continuous access to the data that was 
stored on the failed disk, so that transaction pro- 
cessing will not be interrupted. Furthermore, the 
lost data must be restored on a replacement disk. 
If we define as failure of the disk system the case 
when some data is lost and cannot be retrieved 
even by the redundancy mechanism, it has been 
shown [5] that the mean time to failure of a disk 
system is inversely proportional to the restoration 
time of a single failed disk. Thus, the failed disk 
must be restored as quickly as possible. 

In RAID systems, recovery is a complicated 
process: in order to reconstruct a block that was 
on the failed disk, one block must be read from 
each of the remaining disks of the group. In the 
worst case, all requests are reads and each of the 
surviving disks must serve twice as many requests 
as during normal processing, which hurts response 
time and limits throughput. Even if the trans- 
action load is not entirely reads, the background 
process that reconstructs cold blocks still imposes 
a significant overhead on the system. For the 
restoration process to finish within a reasonable 
time and avoid hurting the system’s MTTF, de- 
graded performance must be tolerated, as is indi- 
cated by studies that have dealt with RAID per- 
formance under failure [12, 13, 141. 

The performance of mirroring under failure has 
been studied in Reference [5], which emphasizes 
the effect of data placement on recovery time. The 
surviving disk serves interactive traffic and also 
helps restore the data on the replacement disk. It is 
assumed that the system will operate in degraded 
mode during recovery. 

There are already installations with over a thou- 
sand disks, and it is predicted [lo] that if current 
trends in disk technology continue, we will soon see 
installations with thousands of disks. With such 
numbers of disks, failures will be so frequent, that 
performance degradation during failures may no 
longer be tolerable. We can extend our ideas for 
normal processing to the failure scenario and ob- 
tain an efficient recovery mechanism that can guar- 
antee good performance for the entire duration of 
recovery. 

During normal operation in our scheme there is 
always at least one disk arm dedicated to serving 
read requests in any mirrored pair. There may be 
periods when both arms serve reads, but the guar- 
anteed capacity dedicated to reads is one arm, since 
the other arm may be installing a write batch. Our 
recovery technique guarantees that at least one 

survivor Failed 

8 8 . . .b $j . . 

. ’ 
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Figure 11: Configuration during recovery. 
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disk arm’s capacity is constantly available to serve 
random read requests to the data stored on the sur- 
viving disk throughout the recovery period. Previ- 
ous recovery techniques cannot guarantee that one 
disk arm’s capacity is dedicated to random reads 
during recovery. In our scheme the same level of 
service guarantee holds during normal operation 
and recovery. 

As is typical for installations with many disks, 
we assume that there are a few spare disks avail- 
able, so that recovery can start immediately upon 
detection of failure. Since recovery is arm bound, 
our recovery procedure uses two spare disks, des- 
ignated as the replacement disks RI and Ra. At 
the end of the recovery phase, each of the replace- 
ment disks holds a complete, up-to-date copy of 
the data. The two replacement disks form the new 
mirrored pair, while the survivor is returned to the 
system as a spare disk. 

The recovery process is not instantaneous, so 
blocks will be updated during the recovery phase. 
Since the survivor disk has a high read load (ran- 
dom reads plus restoration reads), we relieve it of 
any write effort by redirecting all updates to the 
replacement disks only. The survivor disk is kept 
in read-only mode until the end of recovery, which 
implies that the survivor will become out-of-date, 
but this is not a problem, since the disk will be 
returned to the system, anyway. 

To achieve write efficiency, the replacement disks 
alternate between read-only and write-only modes 
to install updates and cold data scanned by the sur- 
vivor. The configuration during recovery is shown 
in Figure 11. 

The replacement disks both install all modified 
blocks. This ensures that there is always a com- 
plete, up-to-date copy of the data to service ran- 
dom read requests: when replacement disk RI is in 
write-only mode, the up-to-date copy consists of 
the survivor and replacement R2, with blocks on 
replacement R2 superseding older versions on the 
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sul,vivor. Whcu replacement R1 is in write-only 
mo&, the up-to-date copy consists of the survivor 
and replacement R 1, with blocks on replacement 
H1 superseding older versions on the survivor. 

The two replacement disks are initially blank. 
They write the blocks that are available in the 
memory buffer. For the duration of recovery, they 
alternate between periods of read-only and write- 
only activity, but are kept out of phase. During 
periods of read-only activity, they provide access 
to data they have written. When a read request 
arrives in the system, if the data is available on 
the replacement disk which is in read-only mode 
at that moment, the request is routed to that disk, 
otherwise to the survivor disk. A block directory 
is used to determine if a block is available on a 
replacement disk. The directory gets updated as 
blocks are written on the replacement disks. As the 
replacement disks take on an increasing part of the 
read traffic, the survivor disk has spare capacity to 
perform\ a scan of the cold data. 

The survivor can also use an opportunistic strat- 
egy to scan data. For example, blocks that pass 
under the head during the rotational delay of a 
random read can be read at zero cost. Many disk 
drives already use track buffers to provide this ca- 
pability. 

Data accuJjnulates in the main memory buffer as 
a result of random reads to unscanned data, up- 
dates and scanning. Periodically, when there is 
enough data for a batch, one replacement disk en- 
ters a write-only mode to write the available data. 
During this time, the other replacement provides 
access to data that has been modified since the be- 
ginning of the recovery (and has been missed by 
the survivor) as well as to unmodified data that 
has already been scanned. When one replacement 
disk finishes writing the batch, the roles of the re- 
placements are reversed and the other replacement 
writes the batch. 

We use a simple model to evaluate recovery per- 
formance under this scheme. We assume that when 
the failure occurs, transaction processing is not 
suspended and the survivor disk receives a contin- 
uous stream of random read requests at the max- 
imum rate sustainable during normal processing, 
i.e., 1 /t,,,. This random access rate, expressed as 
a disk fraction, is 

Tr = 1/(t,,n * cyls * blkst,6 * surfs) 

As the replacement disks start taking on some 
read activity, some of the random read slots be- 
come available for scanning data. This involves 

(possibly) seeking to a nearby cylinder that has 
unscanned data and then reading as many blocks 
as possible in the slot, say g blocks. 

In the beginning of the process, all cylinders have 
unscanned data, so. the scan does not require a 
seek. If the access pattern is uniform, all cylin- 
ders will be scanned at the same rate and no seeks 
will be necessary approximately until the time that 
cylinders are left with one unscanned track. For 
our parameters (20 tracks per cylinder), this means 
that no seeks are necessary for 95% of the scan. As 
we go beyond that point, the seeks get longer, but 
their number gets smaller. We amortize the cost of 
the long seeks by estimating the expected seek dis- 
tance seek,,,,(u) when a fraction u of the data is 
unscanned and then integrating seekb,,,(u) (con- 
tinuous approximation) in the interval [0, 11. 

Let u be the fraction of unscanned data at some 
point in time. Then, the average number of cylin- 
ders that contain unscanned ‘tracks is approxi- 
mately 

non-empty-cyl N cyls*(l-(l-l/cyZs)U*tot4zfrcrcks) 

where total-tracks is the total number of tracks in 
the disk ‘1 

total_tracks = cyh * suf f s 

The average distance between two successive cylin- 
ders with unscanned data is approximately 

k 
cyls 

21 
non-empty-cyl 

N (1 _ (1 - l/Cy~S)u*totc~ftackr)-l 

We assume that the head always lies between two 
cylinders with unscanned data and seeks to the 
closest of the two cylinders. We ignore the end ef- 
fect, where the head can only seek in one direction, 
because there is no unscanned data in the other di- 
rection. If we assume that the head is positioned 
with equal probability at any position between the 
two cylinders with unscanned data, the expected 
seek distance to the closest cylinder is approxi- 
mately seek,,,, N (1+2+. . .+k/2)/(k/2) N 0.25k. 
Thus, 

seek,,,,(u) N 0.25(1- (1- l/cyls) u+totolArackr -1 
1 

We estimate the amortized seek distance for each 
scan step with the definite integral 

J 
1 

seek,,,,(u) du = 
0 

u - 

ln(l _ (1 _ -.L)u*tot-ock~) ’ 

totab’acks h(l - &) o 
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Since the integral of seek,,,, is not defined for 
u = 0, we actually use l/total-tracks as the lower 
limit. For our parameters, the result of the integra- 
tion is 0.33 cylinders. Given this result and the fact 
that the random read takes 28.4 msec on the av- 
erage, we get a conservative estimate if we assume 
that the head always seeks a distance of one before 
scanning. This seek takes 5.47 msec, which leaves 
23 msec for rotation. In a single rotation (16.66 
msec) 8 blocks can be read, and head switching 
takes roughly 1 msec, so assuming that the num- 
ber of blocks read in a scan slot (corresponding to 
the random read) is g = 8 to 10 seems a conser- 
vative choice (g is higher at the beginning of the 
scan and lower towards the end). The access rate 
of scanning expressed as a disk fraction is T, = gr+. 

Assume that at some point in time a fraction z of 
the data is available on the replacement disk. If we 
assume a uniform access pattern, a fraction z of the 
read requests is directed to the replacement disk. 
This means that on the survivor disk a fraction 
x of the slots is available to the scanning process, 
while the remaining (1 - z) fraction of the slots 
are random read slots. The random read slots are 
not useless to the restoration process, since they 
are read requests for uncopied data (otherwise the 
request would have been routed to the replacement 
disk operating in read-only mode). Thus, during a 
fraction z of the time uncopied data is encountered 
at rate T, and during a fraction 1 - z of the time at 
rate T,, so the effective rate is XT, + (1 - CC)~, . Since 
there are a large number of blocks, we approximate 
the problem with its continuous case and solve the 
equation 

dx 
- = XT, + (1 - X)T, 
dt 

with initial condition x(0) = f, since the data in 
the buffer pool is available immediately to the re- 
placement disk. The above equation has the solu- 
tion: 

x(t) = (f+ - e gll) - 
(9 l)t,t l - - 

g-1 

To find the time it takes to scan the entire survivor 
disk we solve for z = 1 and get: 

t = Md - Wfg - f + 1) 
(9 - lb? 

Figure 12 plots the recovery time in minutes 
against g, for f = 0.01 (solid), f = 0.05 (dashed) 
and f = 0.10 (dotted). For g = 8 and f = 0.01, 

7 8 9 10 11 12 
g (in blocks) 

Figure 12: Recovery time vs. scan rate for different 
memory sizes 

t = 18 min, while for g = 10 and f = 0.05, t. I I3 
min. 

If mttf, is the mean time to failure for a single 
disk drive and t,,, is the recovery time, the meau 
time to failure mttf,,, (i.e., loss of both copies of 
some data) for a system with N disks (N/2 pairs) 
is [5]: _ _ 

mttfa 
mttf,,, = T+- 

1” hec 

If we take mttf, = 30,000 hrs and t,,, = .25 hrs, 
for a system with 1,000 disks mttf,,, = 410 yrs. 

Our estimates for recovery time are fairly con- 
servative. The number of blocks that can be read 
in a scan slot is underestimated. The free reads 
that can be obtained while waiting for the rota- 
tion of the random reads have not been taken into 
account. A uniform access pattern has been as- 
sumed. If the actual access pattern is skewed, a 
small amount of hot data receives a disproportion- 
ately high amount of traffic. The hot data will be 
“filtered” out of the survivor disk quickly and the 
replacement disks wilI take on a substantial frnc- 
tion of the read traffic quickly, so that more scan- 
ning capacity will become available on the survivor 
sooner and recovery time will be shorter. 

In a variation of the proposed recovery scheme, 
replacement disk RI can write scan blocks as well 
as modified blocks, while replacement disk R2 
writes only the modified blocks (not the scanned 

614 



blocks). The two replacement disks alternate be- 
tween -write-only and read-only periods and the 
survivor is in read-only mode. When a complete, 
up-to-date version of the data is created on RI, the 
modified blocks that have accumulated on Ra are 
copied to the survivor, so that the survivor and R1 
become the new mirrored pair, while Rs is returned 
to the system. This option would allow Ra to be of 
smaller capacity, since it would have to store only 
modified blocks. However, while RI is in write-only 
mode, only reads to modified blocks are rerouted 
to Rg reads to already scanned data must be ser- 
viced by the survivor, which would lower the scan 
rate at the survivor. In case of a skewed access pat- 
tern, most of the accesses may go to modified data, 
so the scan degradation may not be significant. 

5 Discussion 

We have t>resented a simple scheme for schedul- 
ing I/O requests in a mirrored disks environment, 
which achieves high disk bandwidth during nor- 
mal operation. We have also presented an efficient 
scheme for recovering from single disk failures. The 
main observation is that, in contrast to current be- 
lief, mirroring is not expensive, since it can operate 
at better arm efficiency than even non-redundant 
schemes. The bandwidth saved can be used to 
support more data under the disk arm. For ex- 
ample, higher space utilization can be obtained in 
disk arm bound systems. Alternatively, higher I/O 
bandwidth can be provided to hot data in appli- 
cations for which the bandwidth of non-redundant 
schemes is inadequate. 

In previous sections we only considered the case 
of non-overlapping write-only periods for the two 
disks of a mirrored pair. We now determine the 
parameter range in which no overlapping occurs. 
The first condition is that there should be enough 
time to service the read operations. If each disk 
spends half its time in write-only mode, the total 
disk time available to’service random reads during 
a period T is T. The number of read requests re- 
ceived during a period T is A( 1 - w)T and the time 
required to service them is X(1 - w)T&. Thus, 
A( 1 - w)T&,, < T, or w > 1 - l/(Xt,,). The sec- 
ond condition G that each disk should be able to 
write a batch of size XwT (which is the number of 
writes accumulating during a period) in time less 
than T/2, or XwTt,,, 5 T/2, or w < 1/(2X&,,). 
Recall from Section 3.1 that the value of t,,, de- 
pends on the memory size. In Figure 13 we plot the 
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Figure 13: Write fraction range for non-overlap vs. 
arrival rate 

two curves corresponding to the above constraints 
for w as a function of the arrival rate A, with mem- 
ory held constant at 1% of disk size. The response 
time curves of Section 3.2 show that the through- 
put must generally be kept below 40 requests per 
second to obtain good response time. In Figure 13 
we observe that essentially no overlapping occurs 
for such arrival rates, which justifies our focus on 
non-overlapping write-only periods in the previous 
sections. Furthermore, as the size of the mem- 
ory increases, the batching effect becomes stronger, 
writes become more efficient, and the feasible re- 
gion expands. 

For sequential write intensive operations (e.g., 
load, copy), both disks will spend all of their time 
applying writes in batches. Throughput will be as 
good as in the case of plain mirrors applying writes 
in synchrony. However, since in alternating mir- 
roring one of the disks lags half a cycle behind the 
other, the memory necessary to buffer the writes is 
wasted (plain mirroring would not need this mem- 
ory). 

The batching of write requests used in our alter- 
nating scheduling policy cannot be directly applied 
to non-redundant disk systems because it would 
hurt the response time for random reads. In Fig- 
ure 14 we plot the read response time against the 
request arrival rate for a single disk. The workload 
is 50% reads - 50% writes. Write requests accu- 
mulate in memory (1% of disk size). When the 
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Figure 14: Read response time vs. arrival rate for 
single disk batching 

memory fills up, the writes are applied in batch 
mode. As shown in Figure 14, the average response 
time deteriorates significantly, even for low arrival 
rates. The variance of the read response time is 
enormous, since some requests are serviced imme- 
diately, while other requests must wait for an on- 
going batch write to complete. For example, for 
the lowest arrival rate shown in Figure 14 (6.66 re- 
quests per second), the average response time for 
reads is 352 msec, while the standard deviation is 
1780 msec. By comparison, Figure 8 shows that 
the read response time for alternate mirroring stays 
below 30 msec, even for arrival rates as high as 25 
requests per second. 

The alternating technique is not applicable to 
other redundancy schemes (e.g., RAID) either, be- 
cause the redundant data is not usable by applica- 
tions. However, Reference [l] shows that the batch- 
ing effect can be exploited to increase the efficiency 
of writing checksum data. 

In our discussion, we focused on transaction pro- 
cessing systems that employ a write-ahead log. 
For other random access bound applications, non- 
volatile, reliable memory can be used. For exam- 
ple, the buffer pool can be stored on the safe RAM 
described in Reference [6]. 

Another issue related to memory is that our 
scheme can use a general purpose buffer. pool to 
accumulate batches. This is in contrast to schemes 
that may need memory for data not otherwise us- 

able [l]. 
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