
Disk Mirroring with Alternating Deferred Updates

Christos A. Polyzois Anupam Bhide Daniel M. Dias

IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

{christos, dias}Qwatson.ibm.com

Abstract

Mirroring is often used to enhance the reliability of
disk systems, but it is usually considered expensive
because it duplicates storage cost and increases the
cost of writes. Transaction processing applications
are often disk arm bound. We show that for such
applications mirroring can be used to increase the
efficiency of data accesses. The extra disk arms
pay for themselves by providing extra bandwidth
to the data, so that the cost of the overall system
compares favorably with the cost of non-redundant
disks. The basic idea is to have the mirrored disks
out of phase with one handling reads and the other
applying a batch of writes. We also present an effi-
cient recovery procedure that allows reconstruction
of a failed disk while guaranteeing the same level
of read performance as during normal operation.

1 Introduction

Two goals have driven disk systems research in re-
cent years: reliability and performance. Reliabil-
ity is typically achieved through redundancy, e.g.,
mirrored disks or redundant arrays of inexpensive
disks (RAID). Mirroring has good reliability char-
acteristics and read performance, but it incurs a
disk arm overhead for writes and a significant stor-

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the VLDB copyright
notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to re-
publish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

age overhead for replicating the data. Compared
with RAID, mirroring has simpler and more effi-
cient recovery from disk failure. RAID architec-
tures [15] try to ameliorate the space overhead of
mirroring at the expense of increasing disk arm
overhead under normal operation and complicat-
ing recovery.

The selection among reliable disk architectures
depends on the application characteristics. An ap-
plication may be:

1.

2.

3.

Disk capacity bound: For example, storage
of historical data requires only disk space; nei-
ther performance nor reliability is critical. For
such applications the goal is minimal $/CR, so
that large, cheap disks with inexpensive con-
trollers can be used. Redundancy is not im-
portant, since backups can be kept on tapes.

Sequential bandwidth bound: A iog-
ging process is typically sequential bandwidth
bound. For such applications file striping im-
proves bandwidth; striping data on a RAID-
5 array [15] can provide both high sequential
bandwidth and reliability at a low cost.

Random access bound: On-line trans-
action processing applications usually make
many small random accesses. As indicated
in Reference (91, installations often leave as
much as 55% of their disk space empty, to en-
sure that the performance for access to the ac-
tual data is satisfactory. Thus, the number of
disks required is often determined by the num-
ber of arms necessary to support the workload
(disk arm bound), not by the space occupied
by the data. More efficient utilization of the
disk arms can increase space utilization and
actually reduce the number of disks required.

Our focus in this paper is on case (3) above,

604

i.e., random access bound applications. In Refer-
ence [4] it is shown that mirroring is better than
RAID-5 in such cases. We show that the perfor-
mance of mirroring can be enhanced substantially.
We exploit the redundancy inherent in mirroring to
gain performance by taking advantage of technol-
ogy trends: large memories and efficient sequential
disk I/O.

Disk access times have not improved signifi-
cantly in the past decade, so research efforts have
recently focused on delaying writes and applying
them to the disk in batches, in order to benefit from
the higher performance of sequential vs. random
access. Such efforts include [l, 8,16,17,18,19]. As
large memories become available, it is possible to
delay writes and apply them in a batch; therefore,
we expect this technique to gain significance. A po-
tential drawback is the response time for read oper-
ations: reads must be suspended during the appli-
cation of a batch, which may in turn affect transac-
tion response time. Our scheme exploits the avail-
ability of two mirrored arms, which ensures good
read response time by alternating batch updates
between the two mirrors. We address batch up-
dates on a single disk in Section 5.

Our goal is to provide both availability and per-
formance. Since redundant data must be stored
to ensure availability, this data might as well be
used to enhance performance. We start from the
observation that mirroring and batch updates are
complementary, in the sense that the weak point
of batch updates (read response time) is the strong
point of mirroring [2,3]. Careful scheduling of disk
accesses in the presence of mirroring can lead to
increased disk arm utilization, and thus to lower
cost.

Our technique also gives rise to an efficient
scheme for recovery from disk failure. In contrast
to previous schemes, our method does not hurt
read access to data that had a copy on the failed
disk.

Section 2 describes our technique during normal
operation. Section 3 evaluates the fault-free per-
formance of the proposed technique using a simple
analytical model (Section 3.1) and simulation (Sec-
tion 3.2). Section 4 presents our procedure for re-
covering from single disk failure and estimates the
recovery time. Finally, the region of applicability
of the proposed scheme is examined in Section 5.

IhkB K

0 TR T 3TR 2T

Figure 1: Read/write alternation.

2 Normal Operation

We assume that the system has a large buffer pool.
Transaction processing systems typically employ a
write-ahead log, so that data pages can be writ-
ten to their home location on disk asynchronously.
For random access bound applications that do not
use a write-ahead log, non-volatile, reliable mem-
ory may be required. We return to this issue in
Section 5. The buffer can be located either in main
memory or at the disk controller; our technique is
applicable in both cases.

During normal operation, updates are not ap-
plied to disks immediately. Periodically, when a
certain number of updates have accumulated in the
buffer, they are sorted in physical layout order and
applied to the disks as a batch. Algorithms for
applying updates in batches efficiently have been
discussed and analyzed in [l?]. The improvement
in bandwidth with respect to random accesses can
be significant.

While a disk is not applying updates, it services
read requests. Thus, each disk alternates between
time spans of write-only and read-only activity.
Let the period during which the updates accumu-
late be T, and consider a pair of mirrored disks A
and B. Both disks apply the updates in batches.
However, they do not apply the batches simultane-
ously. Instead, they operate at a phase difference
of 180°. For example, assume that disk A starts
applying updates at time 0. Disk B will start ap-
plying updates at time T/2. Disk A applies the
second batch at time T, then disk B applies the
second batch at time 3T/2, and so on. Figure 1
illustrates this alternation with a timing diagram,
where the high value represents write activity and
the low value represents read activity for the cor-
responding disk.

If each disk can apply the batch in time less
than T/2, then the write-only time spans of the
two disks do not overlap, so that there is always
at least one disk available to service read requests;
there may even be some time when both disks are
servicing reads. This case is shown in Figure 1.
Read requests are routed to the disk operating

605

oz+-l H H H H t-l
Disk A W W W

W W W

0 TR T 3Tf2 2T

Figure 2: Overlapping write periods.

in read-only mode and are serviced immediately.
Thus, batches can be made large to gain efficiency,
without affecting read response time. The limit-
ing factor for batch size is the amount of memory
available.

In cases of extremely write-intensive loads, it
may take each disk longer than T/2 to install a
batch, so that the write time spans of the two
disks will overlap. This situation is shown in Fig-
ure 2. Read requests that arrive during the overlap
period are deferred until one of the disks finishes
its write batch, which hurts read response time.
Alternatively, such reads can be serviced immedi-
ately, thus disrupting the efficient installation of
updates. If the second option is adopted, the reads
can be routed to the disk whose head is closest to
the cylinder where the read must be performed.

The response time for reads and the throughput
for each individual disk in the proposed scheme
are at least as good as in the non-redundant case.
However, the writes are performed twice, so the
total throughput of a mirrored pair is less than
twice the throughput of an individual disk. In or-
der to evaluate the efficiency of the overall system,
we estimate the number of arms required to sup-
port a certain workload and compare this number
with the number of arms that would be necessary
if no replication was used. We assume a trans-
action processing type of workload, which is disk
arm bound rather than space bound [lo]. In such
cases, it is common for disks to be used well below
their nominal space capacity so that the arms can
sustain the I/O bandwidth directed to the stored
data. The Fujitsu Eagle disk drive [7] has been
used frequently in disk performance studies in the
literature [17], so we use the parameters for that
disk drive, which are shown in Table 1. In our
analysis we focus on non-overlapping write peri-
ods; we return to the issue of overlapping write
periods in Section 5.

Parameter --
No of Cylinders
No of Surfaces

Block Size
Blocks per Track
Rotation Time

Half Rotation Time
Average Seek

Block transfer Time
Avg. Random Access

Single Track Seek
End to End Seek
Memory Fraction

Write Ratio

--

Symbol-
cyls
surfs
blksiz

blkstrk
t rot

throl

t avrerk

t e/w

t tan

t trkreek

t endrrck

f
W

..-----..=e
-..-“-

Value
840
20
4K

8t

16.6 msec
8.3 msec
18 msec
2 msec

28.4 msec
5.47 mscc
35 msec

l%t
0.5t -.-- ------

Table 1: System Parameters (tdefault values)

3 Evaluation of Fault-Free Per-
formance

3.1 Simple Analytical Model

The analytical model we develop is conservative,
i.e., we make pessimistic assumptions to simplify
the analysis. The model is actually a hybrid
analytic-simulation model, because we use a Monte
Carlo simulation as a subroutine to the analytical
model.

We assume that the entire system receives I/O
requests at a rate X. A fraction w of these requests
are writes. The requests are distributed uniformly
across aJl disks and over all blocks in a given disk.
In database systems, transactions tend to be short
and usually make requests for small amounts of
data (records); records are usually stored in a se-
quence determined by their contents rather than
their frequency of access. Thus, hot (i.e., fre-
quently accessed) data will be scattered across all
disks and all blocks. Our assumption may not be
true for file systems, which often cluster hot files
in the middle of the disk to reduce seek times.

D boI, denotes the number of disk arms that are
required to sustain the workload in the base case
(without replication) and Doll denotes the cor-
responding number in our alternating mirroring
scheme. The average time t,, to serve a random
I/O request in the base case involves an average
seek time, one half rotation throt on the average

606

tu potlition the heada over the block and the block
transfer time 2,,,, :

t ran = tovgrcck t thtot + &far

The utilization of a disk arm in the base case is:

u bore = %n f Dbcre

In our mirroring scheme, reads require the same
amount of time as in the base case. Writes, how-
ever, take less time, since they can take advantage
of the batching effect. Let t,,,,, denote the amor-
tized time for a block write (we estimate t,,, be-
low). Then, the utilization in the alternating mir-
roring case is:

u
alt

= X(1 - +an t 2~wmu
D azt

The factor of two comes from the fact that writes
must be performed twice (once for each disk).

For the comparison to be fair, we require that
the disks be operated at the same load in both
cases, so by equating Ub,,#r and U,,lr we obtain the
efficiency mtio of the two schemes, i.e., the ratio
of the disk arms required in each case:

D bar* 1 -

D alt 1+ 742* - 1)

Intuitively, the lower the efficiency ratio, the more
the arms required by the alternating scheme to
replace a single base case arm. Note that if
Ln, /Lx < l/2 (which we show is actually the
case), then the efficiency ratio is higher than 1.

We now estimate t,,, . Assuming that a fraction
f of the disk space can be accommodated in main
memory, the batch size is:

batchsize = f * blksttk * surfs * cyls

Assuming a uniform access pattern, the average
number of cylinders for which there will be at least
one updated block in the batch is:

cylindershit = cyls * (1 - (1 - l/~yZs)~~~~~~~~‘)

In Reference [17], it is shown that with seek
times improving, rotational delays should be taken
into account when scheduling a batch of writes.
However, for simplicity, we assume that a SCAN
policy is used for installing updates, i.e., all up-
dates are applied to a particular cylinder before
the heads move to the next cylinder. This is

a conservative assumption, since a more efficient
batch installation scheme would benefit our mir-
roring scheme even further. The average num-
ber of block updates for each of the cylinders&t
is blocks-amortized = batchizelcylindershit.
The seek time for the Fujitsu disk can be approxi-
mated [17] by the function 4.6+.87dseek-distance.
Since the seek time is a concave function of the seek
distance, we get a conservative (pessimistic) esti-
mate if we approximate the average seek time with
the seek time for the average distance. Thus, in
the average case, the seek time for moving to the
next cylinder where updates must be installed is:

t rscknsr~ N 4.6 + .87 yls/cylinders-hit

The time to write the blocks in a particular cylin-
der is the time to seek to that cylinder plus the
time to rotate enough times to apply all modified
blocks on the cylinder. For example, if only one
block needs to be written, half a rotation is nec-
essary on the average to get to the beginning of
the block, plus the time necessary to transfer the
data. If multiple blocks must be written in one
cylinder, then there is the possibility of collisions,
i.e., two or more blocks may have to be written on
different tracks, but on sectors that are vertically
aligned, so that they cannot be written during the
same rotation. Let us call all vertically aligned
blocks a collision group. If one assumes zero head
switch time, during each rotation one block from
each collision group can be written, so the number
of rotations required is determined by the maxi-
mum cardinality of any collision group. However,
zero head switch times are unrealistic, so we im-
pose the con&mint P, that if a block is written on
one track, the heads are unable to write a block on
a different track at the next vertical position dur-
ing the same rotation. In Section 3.2 we compare
the results without constraint P (optimistic case)
with the results under constraint P (pessimistic
case).

Given the above constraint, it is hard to deter-
mine the optimal policy for installing updates in
a cylinder. Thus, we use a greedy heuristic that
keeps installing consecutive blocks on the same
track as long as it can; when the run of consecutive
blocks is exhausted, it switches to a different track.
The number-of -rotations required by this heuris-
tic is difficult to estimate analytically, so we use a
Monte Carlo simulator as a subroutine in our ana-
lytical computations. The simulator takes as input
the number of blocks to be written in a cylinder.

607

% Memory fraction

Figure 3: Efficiency vs. memory fraction Figure 4: Efficiency vs. fraction of write requests

In each step, the simulator generates a random as-
signment of blocks to locations on the cylinder and
calculates the number of rotations that would be
required for that assignment. This step is repeated
and the result is averaged over all iterations.

Then, we can calculate t,,,

t
t

scrknczt + numbersf -rotations * tTot
a?nw = blocksamortized

and from that, the efficiency ratio. In order to
be able to compare our analytical results with the
simulation results reported in the following section,
the efficiency ratio must be multiplied by the cor-
rective factor & to account for the fact that since
memory contains a fraction f of the data, an equal
fraction of access requests will get a hit in memory
and will not cause disk I/O. (Again, this is conser-
vative, since it assumes uniform access.) Thus, the
formula for the efficiency ratio becomes:

D base 1 1
-=1+w(2e-1)X1-f D alt

In Figure 3 we show the efficiency ratio for the
alternating mirroring scheme (solid), the base non-
redundant scheme (dashed) and the plain mirror-
ing scheme (dotted) as the memory expressed as
a fraction f of the disk space varies from 1% to
10% (the write fraction is kept at the default value
of 0.5). In plain mirroring, reads are serviced by
one disk, while modified blocks cause a random

J

0 .-

E

5
l.O-

8

I

0.5 -

0.
K”..

- - c - - ha&$(!
‘.\ 4..

‘K “V..
. . . .-4.. . . . ,njr

. .
“xx a-.

-..
‘Y...

----L-e- opt

x ‘a..
-m-y .-.. r&

‘XK ‘V...

“-%.,
‘h..

‘K
“+...*

-- Y.
--K..*

0.N
% Fraction of writes

write at each disk of a mirrored pair. We observe
that alternating mirroring is more efficient and re-
quires fewer arms than the base scheme in the en-
tire range presented. This is because the increased
efficiency gained from all writes more than com-
pensates for the extra writes introduced. As the
memory fraction increases, batches become larger,
amortized seek times are reduced, but the proba-
bility of collisions increases, so that the expected
number of rotations increases. As shown in Fig-
ure 3, the seek time reduction dominates, writes
become more efficient for larger batches and the
performance difference becomes increasingly favor-
able for mirroring. Thus, our technique will bencfi t
from the advent of large main memories.

As memory sizes increase, buffer pools become
larger and can capture a significant fraction of the
read traffic. Thus, in the future we expect to see
the I/O traffic directed to disks consisting mainly
of writes. Figure 4 plots the efficiency ratio of the
alternating mirroring scheme (solid), the base non-
redundant scheme (dashed) and the plain mirror-
ing scheme (dotted) against the fraction of write
requests in the system. The memory size is held
constant at 1% of the disk size. As the write ratio
increases, the performance of alternating mirroring
improves, since an increasing fraction of requests
can be performed in batch mode. This is a novel
result, which contrasts with the widely held belief
that mirroring is arm costly for loads with inten-
sive write traffic. This belief is true only for the

.

608

plain mirroring scheme, as shown in Figure 4.
In Figure 4 we show two more curves. The

curve labelled “opt” corresponds to the alternat-
ing mirroring scheme under the optimistic assump-
tion that head switch is infinitely fast. In practice,
this may be achieved by formatting the disk with
a slight offset between tracks, which leads to a spi-
ral arrangement. Thus, there may be enough time
to switch heads without missing the next vertical
position. In this case, the number-of-rotations
equals the maximum number of block writes hit-
ting a vertical position. As shown in Figure 4, this
assumption leads to even higher efficiency ratio for
the alternating scheme.

For comparison purposes, the curve labelled
“raid” in Figure 4 shows the efficiency ratio for
the RAID-5 scheme. The efficiency ratio of RAID-
5 is below that of the other schemes in the entire
range. The RAID-6 curve is for a best-case sce-
nario, where the old copy of a modified data block
is available in memory, so that a logical write in-
volves a write to the data block and a read-modify-
write to the checksum. In practice, the old value
of the data block may also have to be read, caus-
ing a read-modify-write for both the data and the
checksum and resulting in even lower efficiency for
RAID-5

Finally, we study the effect of disk parameters.
Although seek times and rotational delays have not
improved significantly, disk densities (and capaci-
ties) increase continuously, so it is interesting to
investigate the impact of this trend. Figure 5 plots
the efficiency ratio of the three schemes as the num-
ber of blocks per track varies from 8 to 16. The
write fraction is held constant at 0.5, while mem-
ory is 1% of the corresponding disk size at each
data point. The increase in density affects the ra-
tio for alternating mirroring favorably, because the
performance difference between sequential and ran-
dom I/O increases.

If one assumes that memory is free, i.e., our
scheme can take advantage of an already existing
buffer pool, then the efficiency ratio becomes also
a measure of cost-efficiency. Under the assump-
tion of free memory, the efficiency of the other
schemes would improve due to buffer cache hits,
but it would still be below that of alternating mir-
rors, so that alternating mirrors offer reliability as
well as the best price-performance, even compared
with non-redundant schemes.

Let us now examine the case when memory is in-
troduced for exclusive use by the alternating mir-
rors, so that the alternating mirrors get charged

1.4-

g 1.2-
E
3 g la-

8 o*- .

0.6-

* e--m. ---- *-w-m. ---- *

- alt

--t--base

._.__ *- &

1 . I - I . 1 . I .
6

,
8 10 12 14 16

Blocks per track

Figure 5: Efficiency vs. number of blocks per track

‘1

Parameter Value
Price/disk $3000

Memory Price/MB $250
Disk Size 1200MB

Disk Controller Price $1000
Random I/OS / set / disk 35

Table 2: Price Parameters

with its cost. Using the price parameters shown in
Table 2, Figure 6 plots the cost per I/O operation
in the alternating scheme as the memory fraction
of disk space increases. In this range of parame-
ters, the cost increases monotonically with mem-
ory, since the cost of memory dominates the disk
cost. As mentioned above, increased memory size
implies increased performance for the alternating
mirroring scheme, which tends to decrease the cost
per I/O operation. On the other hand, the addition
of memory increases the cost of the system, so we
expect to see a minimum in the price per I/O per
set in our scheme. Figure 7 plots the cost per I/O
per set varying the memory fraction f in the range
off = 0.01% to f = 1%. The minimum appears at
f = 0.06% and is $107 per I/O per sec. For com-
parison purposes, the cost of the base scheme is $94
per I/O per set and that of plain mirroring $141
per I/O per sec. The reason the minimum appears

609

600-

1 . ‘ - , . I * 1. I

0 2 4 6 8 10
% Memory fraction

Figure 6: Cost per I/O vs. memory fraction

160- - alt
------base
. . _. _ _. _ _ _ _ &

lOO-

80 I - I. I ' I. 1

0.0 0.2 0.4 0.6 0.8 1.0
% Memory fraction

Figure 7: Cost per I/O vs. memory fraction

- 1% Memory
a-- 5% Memory
l --- 10% Memory

20 30 40 SO 60 70
Arrival rate (requestskc)

Figure 8: Read response time vs. throughput for
different memory sizes

at such low memory size is that we have assumed
a relatively high price for memory ($250/MB). As
the cost of memory comes down, the minimum will
move to the right and the cost of the alternating
scheme will drop significantly in the entire range.
It is for this reason that in the analysis we focused
our attention on larger memories.

Note that the performance of alternating mirror-
ing may actually be better than what the analysis
above indicates. In our analysis we assumed that
disk utilization is the same in all schemes. How-
ever, alternating mirroring has a better response
time for reads than the base scheme, which makes
it possible to operate alternating mirrors at higher
utilization and still perceive the same performance
as the base case. Higher utilization implies that
the number of arms can be further reduced, yield-
ing higher efficiency ratio, lower cost per I/O per
set, etc.

3.2 Simulation Results
To verify the analytical results of the previous sec-
tion, we built an event driven simulator for the
proposed mirroring scheme with deferred updates.
In Figure 8 we plot the response time for read oper-
ations as the arrival rate increases. The workload
is 50% reads and 50% writes. The three curves
correspond to three different sizes of main mem-
ory: 1% of disk space (solid line), 5% of disk space

610

9 L””
f” - R:W = 50:50 /

l ; 150 -a-- R:W = 7!i:25 :
-.-+-- R:W = 253 !’

- 8 blocks/track
+ - - 12 blocks/track
+-- 16 blocks/track

Arrival rate (requests/see) Arrival rate (request&x)

Figure 9: Read response time vs. throughput for
different write ratios

Figure 10: Read response time vs. throughput for
different disk densities

(dashed line) and 10% of disk space (dotted line).
As memory increases, so does the maximum load
that can be sustained by the system. Dividing the
maximum throughput measured for a pair of disks
employing the proposed scheme by twice the maxi-
mum throughput of a disk serving random requests
we get a simulation estimate for the efficiency ratio
of the proposed scheme. (Alternatively, the disk
arm utilizations can be compared.) The simula-
tion values for the efficiency ratio are 1.11 (for 1%
memory), 1.35 (for 5% memory) and 1.5 (for 10%
memory). Comparing these values with the values
in Figure 3 we observe a very good match between
analysis and simulation across the entire range.

Note that, for stability reasons, real systems
are typically configured to operate at an average
throughput weIl below the saturation point (some-
times as low as 3 standard deviations below the
average arrival rate that would yield acceptable re-
sponse time Ill]). However, the arrival rate that
saturates the system is a good means of compar-
ison, since the operating point is derived from it.
As the saturation point increases, so does the point
of normal operation.

In Figure 9 we plot the read response time
against throughput for different mixes of read and
write operations. The three curves correspond to
75% reads - 25% writes (dashed line), 50% reads -
50% writes (solid line) and 25% reads - 75% writes
(dotted line). As the write ratio increases, so does

the maximum throughput sustainable by the pro-
posed scheme. This is because two batched writes
are cheaper than a random read. The efficiency
ratios measured by the simulation were 1.05 (25%
writes), 1.11 (50% writes) and 1.18 (75% writes),
which match very weIl with the values computed
analytically and shown in Figure 4.

In Figure 10 we plot the read response time
against throughput for different numbers of blocks
per track on the disk. Memory is 1% of disk
size and write fraction is 0.5. The three curves
correspond to 8 blocks/track (solid line), 12
blocks/track (dashed line) and 16 blocks/track
(dotted line). Again, as the disk density in-
creases, so does the maximum throughput sus-
tainable by the proposed scheme, since the effi-
ciency of batched writes increases. The efficiency
ratios measured by the simulation were 1.11 (8
blocks/track), 1.20 (12 blocks/track) and 1.27 (16
blocks/track), which match very weII with the val-
ues computed anaIytica.Uy and shown in Figure 5.

4 Recovery

We consider recovery from disk failures. We as-
sume that other kinds of failures (e.g., proces-
sor failures) are handled with conventional recov-
ery techniques (e.g., replay of redo logs, processor
takeover), and are not the thrust of this paper.

611

Suppose that a disk fails. A recovery procedure
must ensure continuous access to the data that was
stored on the failed disk, so that transaction pro-
cessing will not be interrupted. Furthermore, the
lost data must be restored on a replacement disk.
If we define as failure of the disk system the case
when some data is lost and cannot be retrieved
even by the redundancy mechanism, it has been
shown [5] that the mean time to failure of a disk
system is inversely proportional to the restoration
time of a single failed disk. Thus, the failed disk
must be restored as quickly as possible.

In RAID systems, recovery is a complicated
process: in order to reconstruct a block that was
on the failed disk, one block must be read from
each of the remaining disks of the group. In the
worst case, all requests are reads and each of the
surviving disks must serve twice as many requests
as during normal processing, which hurts response
time and limits throughput. Even if the trans-
action load is not entirely reads, the background
process that reconstructs cold blocks still imposes
a significant overhead on the system. For the
restoration process to finish within a reasonable
time and avoid hurting the system’s MTTF, de-
graded performance must be tolerated, as is indi-
cated by studies that have dealt with RAID per-
formance under failure [12, 13, 141.

The performance of mirroring under failure has
been studied in Reference [5], which emphasizes
the effect of data placement on recovery time. The
surviving disk serves interactive traffic and also
helps restore the data on the replacement disk. It is
assumed that the system will operate in degraded
mode during recovery.

There are already installations with over a thou-
sand disks, and it is predicted [lo] that if current
trends in disk technology continue, we will soon see
installations with thousands of disks. With such
numbers of disks, failures will be so frequent, that
performance degradation during failures may no
longer be tolerable. We can extend our ideas for
normal processing to the failure scenario and ob-
tain an efficient recovery mechanism that can guar-
antee good performance for the entire duration of
recovery.

During normal operation in our scheme there is
always at least one disk arm dedicated to serving
read requests in any mirrored pair. There may be
periods when both arms serve reads, but the guar-
anteed capacity dedicated to reads is one arm, since
the other arm may be installing a write batch. Our
recovery technique guarantees that at least one

survivor Failed

8 8 . . .b $j . .

. ’

I Old & scan
Imds

Figure 11: Configuration during recovery.

Replacements
RI R2

disk arm’s capacity is constantly available to serve
random read requests to the data stored on the sur-
viving disk throughout the recovery period. Previ-
ous recovery techniques cannot guarantee that one
disk arm’s capacity is dedicated to random reads
during recovery. In our scheme the same level of
service guarantee holds during normal operation
and recovery.

As is typical for installations with many disks,
we assume that there are a few spare disks avail-
able, so that recovery can start immediately upon
detection of failure. Since recovery is arm bound,
our recovery procedure uses two spare disks, des-
ignated as the replacement disks RI and Ra. At
the end of the recovery phase, each of the replace-
ment disks holds a complete, up-to-date copy of
the data. The two replacement disks form the new
mirrored pair, while the survivor is returned to the
system as a spare disk.

The recovery process is not instantaneous, so
blocks will be updated during the recovery phase.
Since the survivor disk has a high read load (ran-
dom reads plus restoration reads), we relieve it of
any write effort by redirecting all updates to the
replacement disks only. The survivor disk is kept
in read-only mode until the end of recovery, which
implies that the survivor will become out-of-date,
but this is not a problem, since the disk will be
returned to the system, anyway.

To achieve write efficiency, the replacement disks
alternate between read-only and write-only modes
to install updates and cold data scanned by the sur-
vivor. The configuration during recovery is shown
in Figure 11.

The replacement disks both install all modified
blocks. This ensures that there is always a com-
plete, up-to-date copy of the data to service ran-
dom read requests: when replacement disk RI is in
write-only mode, the up-to-date copy consists of
the survivor and replacement R2, with blocks on
replacement R2 superseding older versions on the

612

sul,vivor. Whcu replacement R1 is in write-only
mo&, the up-to-date copy consists of the survivor
and replacement R 1, with blocks on replacement
H1 superseding older versions on the survivor.

The two replacement disks are initially blank.
They write the blocks that are available in the
memory buffer. For the duration of recovery, they
alternate between periods of read-only and write-
only activity, but are kept out of phase. During
periods of read-only activity, they provide access
to data they have written. When a read request
arrives in the system, if the data is available on
the replacement disk which is in read-only mode
at that moment, the request is routed to that disk,
otherwise to the survivor disk. A block directory
is used to determine if a block is available on a
replacement disk. The directory gets updated as
blocks are written on the replacement disks. As the
replacement disks take on an increasing part of the
read traffic, the survivor disk has spare capacity to
perform\ a scan of the cold data.

The survivor can also use an opportunistic strat-
egy to scan data. For example, blocks that pass
under the head during the rotational delay of a
random read can be read at zero cost. Many disk
drives already use track buffers to provide this ca-
pability.

Data accuJjnulates in the main memory buffer as
a result of random reads to unscanned data, up-
dates and scanning. Periodically, when there is
enough data for a batch, one replacement disk en-
ters a write-only mode to write the available data.
During this time, the other replacement provides
access to data that has been modified since the be-
ginning of the recovery (and has been missed by
the survivor) as well as to unmodified data that
has already been scanned. When one replacement
disk finishes writing the batch, the roles of the re-
placements are reversed and the other replacement
writes the batch.

We use a simple model to evaluate recovery per-
formance under this scheme. We assume that when
the failure occurs, transaction processing is not
suspended and the survivor disk receives a contin-
uous stream of random read requests at the max-
imum rate sustainable during normal processing,
i.e., 1 /t,,,. This random access rate, expressed as
a disk fraction, is

Tr = 1/(t,,n * cyls * blkst,6 * surfs)

As the replacement disks start taking on some
read activity, some of the random read slots be-
come available for scanning data. This involves

(possibly) seeking to a nearby cylinder that has
unscanned data and then reading as many blocks
as possible in the slot, say g blocks.

In the beginning of the process, all cylinders have
unscanned data, so. the scan does not require a
seek. If the access pattern is uniform, all cylin-
ders will be scanned at the same rate and no seeks
will be necessary approximately until the time that
cylinders are left with one unscanned track. For
our parameters (20 tracks per cylinder), this means
that no seeks are necessary for 95% of the scan. As
we go beyond that point, the seeks get longer, but
their number gets smaller. We amortize the cost of
the long seeks by estimating the expected seek dis-
tance seek,,,,(u) when a fraction u of the data is
unscanned and then integrating seekb,,,(u) (con-
tinuous approximation) in the interval [0, 11.

Let u be the fraction of unscanned data at some
point in time. Then, the average number of cylin-
ders that contain unscanned ‘tracks is approxi-
mately

non-empty-cyl N cyls*(l-(l-l/cyZs)U*tot4zfrcrcks)

where total-tracks is the total number of tracks in
the disk ‘1

total_tracks = cyh * suf f s

The average distance between two successive cylin-
ders with unscanned data is approximately

k
cyls

21
non-empty-cyl

N (1 _ (1 - l/Cy~S)u*totc~ftackr)-l

We assume that the head always lies between two
cylinders with unscanned data and seeks to the
closest of the two cylinders. We ignore the end ef-
fect, where the head can only seek in one direction,
because there is no unscanned data in the other di-
rection. If we assume that the head is positioned
with equal probability at any position between the
two cylinders with unscanned data, the expected
seek distance to the closest cylinder is approxi-
mately seek,,,, N (1+2+. . .+k/2)/(k/2) N 0.25k.
Thus,

seek,,,,(u) N 0.25(1- (1- l/cyls) u+totolArackr -1
1

We estimate the amortized seek distance for each
scan step with the definite integral

J
1

seek,,,,(u) du =
0

u -

ln(l _ (1 _ -.L)u*tot-ock~) ’

totab’acks h(l - &) o

613

Since the integral of seek,,,, is not defined for
u = 0, we actually use l/total-tracks as the lower
limit. For our parameters, the result of the integra-
tion is 0.33 cylinders. Given this result and the fact
that the random read takes 28.4 msec on the av-
erage, we get a conservative estimate if we assume
that the head always seeks a distance of one before
scanning. This seek takes 5.47 msec, which leaves
23 msec for rotation. In a single rotation (16.66
msec) 8 blocks can be read, and head switching
takes roughly 1 msec, so assuming that the num-
ber of blocks read in a scan slot (corresponding to
the random read) is g = 8 to 10 seems a conser-
vative choice (g is higher at the beginning of the
scan and lower towards the end). The access rate
of scanning expressed as a disk fraction is T, = gr+.

Assume that at some point in time a fraction z of
the data is available on the replacement disk. If we
assume a uniform access pattern, a fraction z of the
read requests is directed to the replacement disk.
This means that on the survivor disk a fraction
x of the slots is available to the scanning process,
while the remaining (1 - z) fraction of the slots
are random read slots. The random read slots are
not useless to the restoration process, since they
are read requests for uncopied data (otherwise the
request would have been routed to the replacement
disk operating in read-only mode). Thus, during a
fraction z of the time uncopied data is encountered
at rate T, and during a fraction 1 - z of the time at
rate T,, so the effective rate is XT, + (1 - CC)~, . Since
there are a large number of blocks, we approximate
the problem with its continuous case and solve the
equation

dx
- = XT, + (1 - X)T,
dt

with initial condition x(0) = f, since the data in
the buffer pool is available immediately to the re-
placement disk. The above equation has the solu-
tion:

x(t) = (f+ - e gll) -
(9 l)t,t l - -

g-1

To find the time it takes to scan the entire survivor
disk we solve for z = 1 and get:

t = Md - Wfg - f + 1)
(9 - lb?

Figure 12 plots the recovery time in minutes
against g, for f = 0.01 (solid), f = 0.05 (dashed)
and f = 0.10 (dotted). For g = 8 and f = 0.01,

7 8 9 10 11 12
g (in blocks)

Figure 12: Recovery time vs. scan rate for different
memory sizes

t = 18 min, while for g = 10 and f = 0.05, t. I I3
min.

If mttf, is the mean time to failure for a single
disk drive and t,,, is the recovery time, the meau
time to failure mttf,,, (i.e., loss of both copies of
some data) for a system with N disks (N/2 pairs)
is [5]: _ _

mttfa
mttf,,, = T+-

1” hec

If we take mttf, = 30,000 hrs and t,,, = .25 hrs,
for a system with 1,000 disks mttf,,, = 410 yrs.

Our estimates for recovery time are fairly con-
servative. The number of blocks that can be read
in a scan slot is underestimated. The free reads
that can be obtained while waiting for the rota-
tion of the random reads have not been taken into
account. A uniform access pattern has been as-
sumed. If the actual access pattern is skewed, a
small amount of hot data receives a disproportion-
ately high amount of traffic. The hot data will be
“filtered” out of the survivor disk quickly and the
replacement disks wilI take on a substantial frnc-
tion of the read traffic quickly, so that more scan-
ning capacity will become available on the survivor
sooner and recovery time will be shorter.

In a variation of the proposed recovery scheme,
replacement disk RI can write scan blocks as well
as modified blocks, while replacement disk R2
writes only the modified blocks (not the scanned

614

blocks). The two replacement disks alternate be-
tween -write-only and read-only periods and the
survivor is in read-only mode. When a complete,
up-to-date version of the data is created on RI, the
modified blocks that have accumulated on Ra are
copied to the survivor, so that the survivor and R1
become the new mirrored pair, while Rs is returned
to the system. This option would allow Ra to be of
smaller capacity, since it would have to store only
modified blocks. However, while RI is in write-only
mode, only reads to modified blocks are rerouted
to Rg reads to already scanned data must be ser-
viced by the survivor, which would lower the scan
rate at the survivor. In case of a skewed access pat-
tern, most of the accesses may go to modified data,
so the scan degradation may not be significant.

5 Discussion

We have t>resented a simple scheme for schedul-
ing I/O requests in a mirrored disks environment,
which achieves high disk bandwidth during nor-
mal operation. We have also presented an efficient
scheme for recovering from single disk failures. The
main observation is that, in contrast to current be-
lief, mirroring is not expensive, since it can operate
at better arm efficiency than even non-redundant
schemes. The bandwidth saved can be used to
support more data under the disk arm. For ex-
ample, higher space utilization can be obtained in
disk arm bound systems. Alternatively, higher I/O
bandwidth can be provided to hot data in appli-
cations for which the bandwidth of non-redundant
schemes is inadequate.

In previous sections we only considered the case
of non-overlapping write-only periods for the two
disks of a mirrored pair. We now determine the
parameter range in which no overlapping occurs.
The first condition is that there should be enough
time to service the read operations. If each disk
spends half its time in write-only mode, the total
disk time available to’service random reads during
a period T is T. The number of read requests re-
ceived during a period T is A(1 - w)T and the time
required to service them is X(1 - w)T&. Thus,
A(1 - w)T&,, < T, or w > 1 - l/(Xt,,). The sec-
ond condition G that each disk should be able to
write a batch of size XwT (which is the number of
writes accumulating during a period) in time less
than T/2, or XwTt,,, 5 T/2, or w < 1/(2X&,,).
Recall from Section 3.1 that the value of t,,, de-
pends on the memory size. In Figure 13 we plot the

g
‘5 0.6-
ii

Feasible region
. for non-overlapping

3 0.4- write-only periods

B
0.2-

I”
10 20 30 40 50

Arrival rate (requestshec)

Figure 13: Write fraction range for non-overlap vs.
arrival rate

two curves corresponding to the above constraints
for w as a function of the arrival rate A, with mem-
ory held constant at 1% of disk size. The response
time curves of Section 3.2 show that the through-
put must generally be kept below 40 requests per
second to obtain good response time. In Figure 13
we observe that essentially no overlapping occurs
for such arrival rates, which justifies our focus on
non-overlapping write-only periods in the previous
sections. Furthermore, as the size of the mem-
ory increases, the batching effect becomes stronger,
writes become more efficient, and the feasible re-
gion expands.

For sequential write intensive operations (e.g.,
load, copy), both disks will spend all of their time
applying writes in batches. Throughput will be as
good as in the case of plain mirrors applying writes
in synchrony. However, since in alternating mir-
roring one of the disks lags half a cycle behind the
other, the memory necessary to buffer the writes is
wasted (plain mirroring would not need this mem-
ory).

The batching of write requests used in our alter-
nating scheduling policy cannot be directly applied
to non-redundant disk systems because it would
hurt the response time for random reads. In Fig-
ure 14 we plot the read response time against the
request arrival rate for a single disk. The workload
is 50% reads - 50% writes. Write requests accu-
mulate in memory (1% of disk size). When the

615

Arrival rate (request&c)

Figure 14: Read response time vs. arrival rate for
single disk batching

memory fills up, the writes are applied in batch
mode. As shown in Figure 14, the average response
time deteriorates significantly, even for low arrival
rates. The variance of the read response time is
enormous, since some requests are serviced imme-
diately, while other requests must wait for an on-
going batch write to complete. For example, for
the lowest arrival rate shown in Figure 14 (6.66 re-
quests per second), the average response time for
reads is 352 msec, while the standard deviation is
1780 msec. By comparison, Figure 8 shows that
the read response time for alternate mirroring stays
below 30 msec, even for arrival rates as high as 25
requests per second.

The alternating technique is not applicable to
other redundancy schemes (e.g., RAID) either, be-
cause the redundant data is not usable by applica-
tions. However, Reference [l] shows that the batch-
ing effect can be exploited to increase the efficiency
of writing checksum data.

In our discussion, we focused on transaction pro-
cessing systems that employ a write-ahead log.
For other random access bound applications, non-
volatile, reliable memory can be used. For exam-
ple, the buffer pool can be stored on the safe RAM
described in Reference [6].

Another issue related to memory is that our
scheme can use a general purpose buffer. pool to
accumulate batches. This is in contrast to schemes
that may need memory for data not otherwise us-

able [l].

Acknowledgement

We thank Jim Gray and the anonymous referees
for many insightful suggestions that improved the
paper significantly.

References

PI

PI

PI

141

PI

PI

VI

PI

PI

A. K. Bhide, D. M. Diaz, and C. A. Polyzois.
Reliable disk array architectures for transac-
tion processing. Submitted for publication.

D. Bitton. Arm scheduling in shadowed disks.
In IEEE Compcon, pages 132-136, San Fran-
cisco, California, February 1989.

D. Bitton and J. Gray. Disk shadowing. In
14th Int ‘1 Conf. on Ve y Large Data Bases,
pages 331-338, Los Angeles, California, Au-
gust 1988.

P. M. Chen, G. A. Gibson, R. H. Katz, and
D. A. Patterson. An evaluation of redundant
arrays of disks using an Amdahl5890. In SIG-
METRICS Conference on Measurement and
Modeling of Computer Systems, pages 74-85,
Boulder, Colorado, May 1990.

G. Copeland and T. Keller. A comparison
of high-availability media recovery techniques.
In ACM SIGMOD Int ‘1 Conf. on Manage-
ment of Data, pages 98-109, Portland, Ore-
gon, June 1989.

G. Copeland, T. Keller, R. Krishnamurthy,
and M. Smith. The case for safe RAM. In
15th Int ‘1 Conf. on Very Large Data Bases,
pages 327-335, Amsterdam, August 1989.

Fujitsu Limited. M2361A Minidisk Drive En-
gineering Specifications, 1984.

H. Garcia-Molina and C. A. Polyzois. Process-
ing of read-only queries at a remote backup.
Technical Report CS-TR-354-91, Department
of Computer Science, Princeton University,
December 1991.

J. P. Gelb. System-managed storage. IBM
Systems Journal, 28(1):77-103,1989.

[lo] J. Gray, B. Horst, and M. Walker. Parity
etriping of disc arrays: Low-coat reliable etor-
age with acceptable throughput. In 16th Int’l
conf. on Very Lage Data Bases, pages 148-
161, Brisbane, Australia, August 1990.

[ll] B. McNutt. DASD configuration planning:
Three simple checks. In Int’Z Confmnce for
the Management and Performance Evaluation
of Computer Systems, pages 990-997, Or-
lando, Florida, December 1990.

[12] J. Menon and D. Mattson. Comparison of
sparing alternatives for disk arrays. In 19th
Int ‘I Symposium on Computer Anzhitecture,
pages 318-329, Gold Coast, Auetralia, May
1992.

[13] J. Menon and D. Mattson. Distributed spar-
ing in diek arrays. In IEEE Compcon, pages
410-421, San Fran&co, California, February
1992.

[14] R. R. Muntz and J. C. S. Lui. Performance
analysis of disk arrays under failure. In 16th
Int ‘1 Conf. on Very Large Data Bases, pages
162-173, Brisbane, AustraIia, August 1990.

[15] D. A. Patterson, G. Gibson, and R. II. Katz.
A case for redundant arrays of inexpensive
disks. In ACM SIGMOD Intl Conf. on Man-
agement of Data, pages 109-116, Chicago, IL,
June 1988.

[16] M. Rosenblum and J. K. Ousterhout. The
design and implementation of a log-structured
file ayatem. ACM tinsactions on Computer
Systems, lO(1):26-62, February 1992.

[17] M. Seltzer, P. Chen, and J. Ousterhout.
Disk scheduling revisited. In Winter 1990
USENIX, pages 313-323, Washington, D.C.,
January 1990.

[18] J. A. Solworth and C. U. Orji. Write-only
diek caches. In ACMSIGMOD Int’l Conf. on
Management of Data, pages 123-132, Atlantic
City, New Jersey, June 1990.

[19] J. A. Solworth and C. U. Orji. Distorted
mirrors. In First Int’l Conf. on Pa&e1 and
Distributed Information Systems, pagea lo-
17, Miami Beach, Florida, December 1991.

617

