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Loncar constraint databascs (LCDBs) extend relational
databases to include linear arithietic constraints in
both relations and queries. A LCDB can also be
viewed as a powerful extension of lincar programming
(L) where the system of constraints is generalized
to adatabase comtaining constraints and the objective
function is generalized to a relational query contain-
ing constraints. OQur major concern is query optimiza-
twon in LCDBs. Traditional database approaches are
not adequate for combination with LP technology. In-
stead, we propose a new query optimization approach,
based on statistical estimations and iterated trials of
potentially better evaluation plans. The resulting al-
gorithis are not. only effective on LCDBs, but also on
existing query languages.

1 Introduction

Linear progeamming/linear constraints is a technology
widely used in applications of ccononics and business,
e allocation of scarce resources, scheduling produc-
tion and inventory, cutting stock and many others.
This paper proposes a merger of linear programming
(L1) and relational database technologies in the frame-
work of lincar constrainls databascs (LCDBs), that ex-
tend relational databases to include linear arithmetic
constraints in both relations and queries. 'The motiva-
tion comes from the fact that classical LP applications
do not stand alone, but rather operate over a large
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amouni of stored data and usually require not just to
optimize one objective function, but to answer more
complex queries involving manipulation of both regu-
lar data and constraints. A second application realm is
that of engineering design systemns, which may operate
over large catalogs of compounents, devices etc., and en-
able queries about design patterns that are described
using constraints. LCDB technology, in particular, is
important because it can enhance many existing soft-
ware platformns such as relational DBMS, object ori-
ented DBMS, operation research packages, constraint
logic programming (CLP) systems etc.

Traditionally, there have been two major approaches
to query optimization. QOne is based on compile time
algebraic simplification of a query using heuristics as
in [12, 30, 33, 38, 32, 43, 6, 44, 2]. The other is
hased on cost estimation of different strategies as in
(1, 10, 7, 8, 29, 42]. The heuristics of the algebraic
sunplification approach, such as performing selections
as carly as possible, assume that the selection condi-
tions are readily available. In fact, extracting such
conditions froni the constraints of a query involves lin-
car programming techniques which are, in general, ex-
pensive because there may be, for example, thousands
of variables. The cost estimation approach, on the
other hand, has the similar problem of extracting ex-
plicit constraints on attributes which are needed for
the estimation. Even if these constraints were readily
available, there is a second problem: it is typically nec-
essary to make assumptions about the distribution of
data (like uniformity within, and independence of, at-
tributes), and these appear unlikely to hold in LCDBs.
1n short, traditional optimization approaches are inad-
equate for LCDBs.

In this paper, we propose a new generic approach
to query optimization, that is not only effective on
LCDB, but also on existing query languages. The un-
derlying philosophy is that expenditure of computa-
tional cost is necessary in order to obtain information



required to estimate which is the best evaluation plan.
We use statistical sampling for the cost estimation of
specific plans, which has the advantage of avoiding de-
pendence on data distribution. Since it is impractical
to consider all possible plans in the search for the best
one (because cost estimation of each plan might be
expensive), trials of evaluation plans are performed,
one at a time, “gambling” some work required for the
cost estimation of the plan in an attempt to discover
a better plan. We bound the amount we can gamble,
based on the best estimated cost so far. The gambling
algorithm is then used for optimization of generalized
select-project-join queries involving up to two general-
ized relations. This requires to develop algorithms for
estimating costs of possible evaluation plans, based on
statistical methods. The problem of how to perform
reasonably accurate and computationally cheap cost
estimations for a more general class of queries requires
more study. As additional contribution, adapting the
algorithin of [9, 37] for n-dimcnsional rectangle inter-
section, we show Liow to perforim an analog of the sort-
join.

There has been work on specific uses of constraints
in databases, the earlier of which includes [17, 13, 5, 35,
4]. The work [18] proposed a framework for integrating
abstract constraints into database query languages by
providing a number of design principles. They proved
important properties on specific instances of the frame-
work, but did not focus on optimization. The work
[13] considered optimiziting in the context arithmetic
equations. However, constraint solving was limited
to local propagation and hence not suitable for LP
problems. More recent work on deductive databases
[31, 41, 19, 20, 26] concentrate on optimizing by repo-
sitioning constraints and assume the implementation
of selection, projection and join and optimization of
expressions involving these operators.

The remainder of the paper is organized as follows.
Motivaling examples and discussion are next, in Sec-
tion 2, and the definitions of our data model and query
language appear in Section 3. An important aspect of
our work, which pertains to practical use, is the use
of the notion of constraiut canonical forms. Section 4
covers relevant computational issues in constraint ina-
nipulation, which are fundamental to constraint query
evaluation. Section 5 discusses why traditional opti-
mization methods are inadequate, elaborating on the
discussion above. Section 6 and beyond form the core
technical presentation: we deal first with the selec-
tion/projection queries in Section 6, which motivates
our generic “gambling™ algorithm presented in Section
7. Section 8 gives an algorithm for sort join on con-
straint. attributes and Section 9 presents the applica-
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tion of the gambling algorithm to optimizing select-
project-join queries.

2 Introductory Examples

Suppose a company matnfactures two products using
two resources. s database has the relations orderst
and orders? for orders of its first and second prod-
ucts respectively. Bach relation has the attributes Or-
der#, Customer and Produci.quantily. Another rela-
tion producl_resource( P1, P2, R1, R2) specifies a rela
tionship between quantities of resources and products:
Pl and P2 represent quantities of the first and see-
ond products respectively to be produced, while 121
and K2 represent amounts of the first and second re-
sources available. A possible manufacturing process
can be specified by (a conjunction of) the following
constraints:

PI+100P2 < R
1W0WoPrP1L+Pr2 < R2
PL,P2,RI,R2 > 0

This says that the amount of the first, resource needed
to produce PPl and P2 units of the first and the see-
ond products must not exceed the amount 121 of this
resource available. Similarly about the second re
source. Suppose that there is another manulacturing
processes:

17PI+13.1P2 < RI
WIPL+ILEP2 < R
PLP2LRLEZ > 0

Now, the relation product_resource is a disjunc-
tion of two conjunctions of (three) constraints, a
finite description of the infinite number of tuples
(P1, P2, R1, R2) of values satisfying the disjunction.
Similarly to [18] we define a constraint tuple to be a
(pussibly existentially quantificd*) conjunction of con-
straints and constraint relation to be disjunction of
constraint. tuples.

In addition to regular relational querics, one may
have queries like: “given that profit for one unit of the
first product is $15 and of the second is $4, and that
there are 100 and 10000 units of the first and second
resources respectively, and 10000 units of the second at
stock, what is the maximum profit the company can
make with each manufacturing pattern?” or “given
certain quantities of resources, what are the ranges of
and the connection between the quantities of the two

*[n [18], existential quantifiers are not allowed,



Orderg | Customer | 1ty Ry
i [ Swiith’ | i, > 262.31 A ity > 4366.69

] Smith' | By > 154.3A Ry > 15430.0
2 ‘Stone’ Ry > 49.708 A Ry > 486.76
2 *Stone’ Ry 2 17.2A Ry > 1720.0

Figure 1: Relation ordersi_resources

products that can be produced with each manufactur-
g process?”,

Typically the evaluation of queries involves both
“regular” information and constraints, for example:

CONSTRUCT  ordersl_resources(0,C, R1, R2)
FROM ordersl(0, (', Pl),

products_rcsources(P1, P2, R1, R2)
WHERE P2=0

Note that in our notation the arguments O, C, Rl,
2, Pl and P2 in the query are variables, not at-
tribute names, but we sometimes use the same name
for a variable and an attribute when the distinc-
tion is not important. Suppose the relation or-
ders/ consists of the two tuples (1,/ Smith’, 154.3) and
(2, Stone’, 17.2), and two constraint tuples of the re-
lation products.resources correspond to the manufac-
turing processes above. The answer to the query can
be computed by considering all four pairs of tuples ob-
tained from orders! and from products_resources. In
cach pair, set. Pl to the value given by orders, set P2
to 0, and finally, simiplify the coustraints for Bl and
12, Figure 1 depicts the results. Note that we produce
here a relation that is only partly constraint. Order#
and Customerare regular aud Ry and R; are constraint
attributes.

Clearly, regular relational database queries cannot
produce this sort of relation as an answer. Although
CLP can, in principle, implement this sort of query, it
is not efficient. Clonsider another example query:

CONSTRUCT  both_products(O1#, 02#)

FROM ordersl(01,C, Pl),
orders2(02,C, P2)

WHERE P14+ 100 P2< Rl,

100 P14+ P2 < R2,
P1,P2,RI,R2>0,
R1 = 100,

R2 = 10000

Note that the first three lines in the WHERE clause
correspond to the first manufacturing pattern given
above.

Note also that attributes (such as Rl and R2) do
not have to appear in a relation.
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look | simple | proj. on | satisf.
-at | checks of [ single tests
constr. var.
Naive 10"? 107 - -
CLP(R) | 10° 10* - 10°
SQL 107 107 - -
Possible | 10° 10* 2 -

Figure 2: Both_products: evaluation costs

In order to estimate the size of the answer to the
query and its evaluation time, let orders denote ei-
ther ordersl or orders2, and make the following 3
assumptions. (1) The relation orders has 10% tu-
ples. (2) The image size (that is, the number of dif-
ferent values) of Customer in orders is 10%. (3) The
range of P in orders is [0, 10°] and then, assuming val-
ues are uniformly distributed, there are approximately
size(orders) * (b — a)/10° of tuples having a P value
in the range [a, b].

The table in Figure 2 depicts the costs of naive evalu-
ation, CLP(R), SQL and the ideal possible evaluation.
The naive evaluation simply considers all pairs of tu-
ples. In CLP(R) the only tuples of orderl that are con-
sistet with the constraints are checked against order2.
SQL takes advantage of using index on Customer in
orders?2 for join operation.

The ideal evaluation does much better, as shown in
Figure 2, as follows. First observe that we can deduce
that P1 is in the range [0.0,100.0] and P2 is in the
range [0.0,1.0]. By the assumptions, there are about
10 relevant tuples in orders2 and 1000 relevant tu-
ples in ordersl. If we can estimate this comparison,
we will perform a selection on orders2. Assuming an
index on P2 is maintained in orders2, the selection
of 10 tuples will take about 10 look-at operations, in
addition to some overhead of one indexed access. In-
stead of selecting about 1000 tuples from ordersl, find
a natural join on C of the tuples selected from orders2
and the relation ordersl. By assumption 2, the result
has approximately 100 tuples and, assuming an index
is maintained on C'ustomer in ordersl, this join will
take about 100 look-at operations. Finally, check every
tuple in the join to see that it satisfies the constraints.

We can see, in this example, the advantages of de-
ducing ranges on attributes and of estimating costs
before making a decision. Our approach attempts to
balance these advantages with the costs of range de-
duction and estimation.



3 Data Model
Language

and Query

3.1 Data Model

A constramt luplc has the fori (11,...,(,,) WHERE ¢ 1
which the ¢;’s are cither variables or constants and ¢ is
an existentially quantified conjunction of constraints,
with free variables from ¢;,...,4,,. By using equality
coustraints we can write the tuple into the standard
s T ) WHERE ) in which the »;
dblo.s. Whvn it is convenient, we will identify the con-
straint tuple with the constraint ¢'. A constraint rela-
tion (or stmply relation) is a collection of constraint tu-
ples. It can be understood as a finite representation for
a possibly infinite regular relation; every assigninent of
values to variables which satisfies the constraint in a
constraint tuple corresponds to a regular tuple.

A constraint rclation scheme associates a type Lo
cach attribute of the relation, and specifies a canoni-
cal form for constraints. The type specifies the kind
of values (integer, real, string, ctc.) that the attribute
may take and whether the value must appear explicitly
i each constraint tuple, (as is usual for databascs), or
may be represented inplicitly by constraints. In this
paper, only one type allows constraints, constrained
reals. All other types (reals, iutegers, etc.) are regu-
lar database types. The constraints in each constraint
tuple in the relation are required to be presented in
the canonical form. We discuss eanonical forms in the
hext section.

Thus our data model is almost an instance of the
framework of [18]. The difference is that we consider
explicitly the form in which constraints are presented
and allow existentially quantified coustraints to appear
in constraint tuples.

s are vari-

3.2 Query Language
In general, a query will take the form

CONSTRUCT  a(Xy,....\},)
FROM by (args), ...,

WHERE cons;(arys)

bi(args)

OR
FROM ¢ {args),...,ci{args)
WHERE consa(arygs)

OR

where each occurrence of args denotes a sequence of
variables from the set {\y,..., \,,..., X, }. For con-
venicnce we assuine that in each FROM clause no equal-
ity between two distinet variables is explicitly implied
by cons in the WHERE clause. (If this happen it is
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junction of linear equations and inequalities.

always possible to replace one variable by the othier))
The query defines a relation a which contains the tu-
le (v, ..., 1) iff the R IR
which occur in the rolatlons by,...., b and satisfy
consy, or oceur in the relations ¢, ..., ¢; and satisfy
Since a 18 written with variable argu-
ments, we sometimes abuse terminology and call an
attribute a variable, or vice versa. This query incorpo
rates selection, projection, join and union operations.

A lincar arithmelic constranl has the form ry Xy -+

YA U

Fii e STk

S0 are \:u‘nnu N

aitl Vasuts vi, .. R LT

COnusn, Or ...

relopr, where vory L. 1y are real number
constants and 1(lop s one of =, <, <, 5>, >. An arith.
melic constrainl is pscudo-lincar with respecl Lo a set
of variables § il, whenever the variables g are replaced
by real number constants, the resulting constraint is
linear. We require that every constraint appearing in
a WIERE clause be pseudo-linear with respect to those
variables in the corresponding FROM clause which have
regular types,

A straightforward extension ol this fanguage can in-
corporale views, cascades of views, complex types, and
function symbols. These additional features do not
significantly affect the issucs we address in this paper.
Other additional capabilities, such as recursion and the
use of aggregation operators, introduce further compl-
cations, and we will not address them here.

Instead we direct our attention to a subset of this
query language in which all constratnts appearing in
a query are linear. We consider selections and projec
tions of relations, and the join of two relations, but we
do uot explicitly discuss the union operation.

4 Canonical Forms and

Constraint Manipulation

In this paper, the constraint ¢ associated with o con-
straint tuple is a (possibly existentially quantified) con-
In this
section, we briefly discuss some computational issues
on the manipulation of such constraints.

A canoneeal form for constraints is a uscful stan
dard form of the constraints, and is gencrally con
puted by simplification aud the removal of redundancy.
In addition to the advantages of a standard presenta
tion of constraints, canonical foris can provide savings
of space and time. In the class of lincar arithmetic
constraints there are many plausible canonical forms.
However, they can be costly to compute.

Corresponding to a constraint relation is a disjunc-
tion of the constraints in each tuple. Some of these
tuples might be redundant in the sense that omitting
theni does not alter the regular relation represented by



the constraint relation. Clearly a canonical forni that
climninates such tuples would be desirable. However,
the problem of detecting such Luples is co-NP-cotplete
(40}, and so we will perforim only two siimplifications of
disjunctions: the deletion of each tuple with an incon-
sistent. constraint, and the deletion of duplicates when
all values are regular,

Sunilarly, while it is theoretically possible to elimi-
nate all existential quantitiers from our constraints (as
required in the framework of [18]), the cost of this
climination and the size of the resulting constraint
can grow exponentially in the size of the original con-
straint. Since we expect applications with large con-
straints, it is unrealistic to expect that all quantifiers
can be eliminated. We suggest a method of only per-
forming simplifying quantifier climinations, similar to
what is done in CLP(R) [16].

'The conjunctive constraints offer the greatest scope
in choosing a canonical form. One choice is to write
all equations in the form {2; =4; | i =1,...,n} where
the #;'s are distinet and appear nowhere clse in the
constraint.. A sccond choice is whether all equations
which are implicit in the inequality constraints should
be represented explicitly. (As a simple example of this,
consider the constraints r+ y < 2,24y > 2.) A third
15 the extent to which redundancy within the inequali-
ties should be removed. [23] presents a classification of
redundancy that suggests simple forms of redundancy
rernovil. A fourth choice is whether to keep the in-
equalities in a different. foru, such as simplex tableau
form.

A fifth option is the addition of redundant infor-
mation Lo the coustraints. In particular, since range
constraints will play an important role in our opti-
mization and implementation methods, we consider a
canonical form that requires explicit. ranges for some
variables. (A range constrainl is a constraint on a sin-
gle variable using inequalitics or equations. A range
constraint is trrmal if o has the form —o0 < X or
N < x.) More specifically, we require the “tightest”
such range, which can be obtained for each variable
by projecting the conjunctive constraint onto the vari-
able. Placing coustraints in canonical form and, in
particular, testing the satisfiability (or consistency) of
constraints requires, in general, linear programming
techniques,

For the purposes of this paper we consider just one
class of canonical forms. We assume that there are
no implicit equations, that equations are presented in
the form suggested by the first choice, some simple
redundancy in the inequalities is removed, and there
are explicit range constraints for some variables.

In addition to choosing canonical forms for con-
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straint relations, we must also consider the manipu-
lations of constraints necessary in the evaluaiion of
queries. The most important computation with query
constraints is the extraction of a range on a variable.
The extraction of a lower bound (for example) on x
is exactly the linear programming problem of mini-
mizing ¢ subject to the constraints. The detection of
implicit equalities in the query constraint is also a lin-
ear programming problemn [22] as is, of course, testing
for counsistency.

5 Optimization: Differences in
Approach

In this section we highlight differences between con-
straint databases and regular databases, which make
the straightforward application of usual database tech-
niques difficult or impossible. Consider, first, a simple
problem of selection, that is, the query of the forin

CONSTRUCT  a(Ny,...,Xp)
FROM WXy, 0 Xiy ooy X)
WHERE cons(Xi,...,Xn,....Xm)

Each constraint tuple of ¢ can be constructed by taking
a conjunction of a constraint tuple from b and cons,
testing whether it is satisfiable, and if it is, finding a
required canonical form for it. Note that depending
on the canonical form for existential quantifiers, this
may involve quantifier elimination (some) the variables
Xntty---» Xm. Thus, in general, processing a tuple in
a constraint selection is significantly more expensive
than in a regular selection.

To avoid unnecessary computation, we want to use
the idea of fillering, similar to one used in spatial
databases, that is, the discarding of irrelevant tuples
of b by computationally cheap test. Suppose we have
arange ¢ < X < d for X; in cons, where ¢ might be
—o0 and d might be 0o. If X is also a regular variable
in b, we can discard all tuples in b whose X} value does
not lie in the range, since clearly those tuples are in-
consistent with cons. Similarly, if X is a constrained
variable and a range for X} is stored for each tuple of
b, then we can discard all tuples for which the ranges
for X are disjoint.

(There is a larger class of constraints of usc in filter-
ing. A constraint is simply checkable wrt a relation r, if
every variable in the constraint also occurs in the rela-
tion in an attribute that either is regular or has a range
constraint in the canonical form for tuples of r. While
testing such a constraint is a little more expensive, in
general, than testing ranges, the cost still compares
very favorably with the use of linear programming.)



We can do filtering more efficiently using indices.
Indexing on regular attributes is the same as usual,
whereas indexing on a constraint atiribute X of »
works as follows. For each inserted constraint tuple
! the range of .Y is extracted using linear program-
ming techniques. This interval is inserted into an in-
dex structure maintaining intervals and has a reference
to the corresponding tuple. Selection of all tuples ¢ in
r cousistent with a given set of constraints ¢ is done
as follows. First the range I of X' is extracted from
¢. Second, using the interval index all tuples whose
corresponding ranges of X intersect [ are retrieved.
Third, the retrieved tuples are checked for consistency
with ¢ using lincar programming methods. Of course,
many different indices can be maintained and used for
selection. Morcover, in order to improve filtering addi-
tional attributes can be defined as linear combinations
of constraint attributes, as proposed in [3].

In general we need to have index structures sup-
porting storage of values and intervals, and value and
range queries. Two efficient access structures for in-
tervals are the interval tree [9] and the priority search
trees [28]). In one dimension, finding all intervals in-
tersecting a given interval or containing a given point,
takes at most O(n log n+ k) time, where n is the size of
the relation and k is the size of the output. Morcover,
it requires only linear space in the size of a relation,
and thus seems to be ideal as an indexing structure.
The work in [21] proposes an efficient data structure
for secondary storage, having the same space and time
complexity and full clustering. There are different data
structures to support access to multidimensional in-
tervals, in particular based on combination of interval,
scgment and range trees [9, 37]. For 2-dimensional
intervals (rectangles) R, Rt R*trees [11, 36, 39] are
widely used in spatial databases.

In order to perform indexing and filtering, it is neces-
sary to extract ranges of variables from cons. This ex-
traction involves techniques of linear programming and
can be very expensive, especially in applications com-
ing from operational research in which cons might in-
volve over a thousand constraints and variables. Thus,
there is a trade-off to be made between an improve-
ment gained by filtering and indexing and the cost paid
for extracting ranges from cons.

Consider now projections, that is, the queries of the
form

CONSTRUCT
FROM

a(X1,..., Xn)
B(X1s..os Xnyeoor Xm)

Computing a projection may involve, depending on
the required canonical form, quantifier elimination of
(some of) the variables Xy,41,..., X;n. In contrast to
the usual database case, in which projection is a triv-
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ial operation, when constraints are involved it can be
computationally expensive.

Consider now a “constraint” join, where the query
is of the form

CONSTRUCT  a(Xy,..., Xiy.. .. Xj,. .., Nn)
FROM (N1, X)),
e(Xi,.. ., Xp)

In principle, each tuple in the answer to this query
can be computed by taking a conjunction of a tuple
from b and a tuple from c, testing its satisfiability and,
if satisfiable, presenting it in the required canonical
forin. As with the constraint selection, we can use fil-
tering to reduce the cost of satisfiability tests. T'he
filtering step discards those pairs of tuples that have
disjoint ranges on a common attribute. A refinement
step then perforins a full test for satisfiability for the
remaining pairs. Note that the regular join does not
involve constraiuts and hence does not require the re-
finement step. In this paper, we associate the notion
of join only with the filtering step, and treat the full
test for satisfiability as a separate operation.

We would like to use the ideas developed for regu-
lar joins for the fillering in the constraint jotn. The
indexed join (i.e. for each tuple of one relation finding
all corresponding tuples of the second using an index)
for constraint relations differs from the indexed join
for regular rclations only in the different index struc-
tures that can be used. However, an analogy for the
sort join (sorting both relatious ou coninion attributes
and then finding all matching tuples in one merge) is
not clear, since there is no appropriate total ordering
on multidimensional intervals. In Scction 8 we adapt
work in computational geometry to give an analog to
the sort join.

Finally, consider the two major approaches to query
optimization for regular databases. One is based on
algebraic simplification of a query and compile time
heuristics. The other is based on cost estimation of
different strategies. Neither of these is adequate for
constraint database systems. The heuristics of the
algebraic approach, such as performing selections as
early as possible, are based on the assumption that
selection counditions are readily available. In contrast,
extracting such conditions from the constraints of a
query involves linear prograimming techniques which
are in general expensive. For the cost estimation ap-
proach, we have a similar problem of extracting ex-
plicit constraints which are needed for the estimation.
Even if these constraints were readily available, there
is a second problem: it is typically necessary to make
assumptions about distribution of the data (like uni-
formity within, and independence of, columns) in the



database, and these appear unlikely to hold in con-
straint databases,

6 Algorithm for Constraint
Selection and Projection

Here the considered queries are of the form

consTruer  a(Y)
FROM b(Z)
WHERE cons(W)

We proceed by presenting an evaluation scheme
which represents many evaluation plans. Evaluation
schemes and plans are not intended to represent the
decision-making process, but only to represent the de-
cisions that need to be imade, and the work that needs
to be done. We then discuss the trial evaluation, which
is necessary for estimating costs, and some heuristics
which can be used 1o order evaluation plans. The
generie gambling algorithin, described in the next sec-
tion, uses this information to choose which plans re-
ceive a trial evaluation and, ultimately, to choose an
evaluation plan.

We propose the following evaluation scheine for this
query.

1. Choose a subset T' of the common attributes Z N
W. For cach X € T, extract from cons a range
on X. Let S be the set of all attributes for which
there are non-trivial range constraints (including
those attributes from 7').

2. Pick an index maintained on & whose selection
coudition can be explicitly checked by the range
constraints on altributes in 5. Using this index,
select all tuples from b satisfying the constraints.

3. From these tuples, filter out those which do not
salisfy simply checkable constraints from cons and
the extracted range constraints.

4. Project out all regular attributes of b that do not
appear elsewhere, climinating duplicates.

. For each remaining tuple ¢, check the satisfiability
of the conjunction of t and cons. If it is satisfiable,
put it in canonical form. If it is not, discard it.

B |

'This scheme leaves open the specific choice of a subset
T" of variables, and an index. Fixing a choice gives rise
to a particular evaluation plan.

The cost of an evaluation plan depends strongly on
the ranges extracted in Step 1. ‘T'herefore, the ests-
malion of such cost requires, in addition to statistical
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sampling, some amount of actual evaluation. Call this
process of sampling/evaluation a trial cvaluation of the
plan. Now, even trial evaluation can be expensive and
therefore it is unrealistic to estimate the cost of all
evaluation plans. In fact the cost of estimation may
exceed the cost of a naive evaluation.

In the next section, we provide our gambling al-
gorithm that balances these two costs by considering
evaluations plans one at a time and limiting the cost of
the estimation of a plan to a portion of the cost of the
best plan according to the estimation so far. For the
remainder of this section, we detail the trial evaluation
and provide heuristics on the order in which the plans
are to be considered for estimation.

The trial evaluation for a given plan is described by
steps (a) - (€) below. These steps comprise the subpro-
cedure DO-TRIAL-EVAL-OF of the gambling algorithm
for the case of selection-projection queries. (We pro-
vide different steps for other kinds of queries later.)

(a) Perform Step 1 above.

(b) Take a random sample of b. The number of tuples,
say n, in the sample is a compile time paraineter.

(c¢) Select the tuples in the sample satisfying the selec-
tion condition of the index chosen in Step 2. Let
ny denote the number of tuples selected in Step 2.
(d) Perform filtering (Step 3) and projection (Step 4)
on these n; selected tuples. Measure the average
cost per tuple, say a;. Let ns denote the number
of tuples selected in Step 3.
(e) Perform the satisfiability test (Step 4) on these
ny selected tuples. Measure the average cost per
tuple, say a;.

Note the that Step (b) of the trial evaluation is done
only once for all plans. The cost of the entire evalua-
tion of the plan, except Step 1, can now be estimated as
follows. (It is referred to as FIND Estimated-cost in
the gambling algorithm.) First we estimate the num-
ber Nj of the tuples selected from b using the chosen
index in Step 2 by (N/n) * n; where N is the num-
ber of tuples in b. Then, we estimnate the number N,
of the tuples selected in Step 3 by (N/n) * ny. The
cost of Step 2 is estimated by f(N, Ny), where f is a
given cost function! for the index chosen. The costs of
Step 3 and Step 4 are estimated by Ny *a; and Na*a;
respectively. Finally, in addition to the estimations of
the costs above, we also compute the confidence inter-
vals for the cost using standard statistical methods.

1Typically, f(m,k) = O(logm + k).



sel €peqy Lo the first evaluation plan lo he considered,
sel Best-eval-plans 10 {cy.s};
DO-TRIAL-EVAL-OF ¢peq; and FIND
Estimated--cost.cy, s and the pair Bounds-of-estimated-cost.cp. )
scl Total-spent-cost and Incremental-spent-cost lo the work done so far:
set Best-total-cost {v Estimated-cost.r;,,; + Total-spent-cost,
sel the pair Bounds-of-best-total-cost o lhe suin of
Total-spent-cost and lhe pair Bounds-of-estimated-cost. cp...
COMPUTE Max-trials-cost «s a funclion
of Best-total-cost and Bounds-of-best-total-cost;

lel € be the next plan to be considered:

there is an cvaluation plan ¢ lo consider
. and .
while . o o . . do begin
ESTIMATED-COST-0OF-DO-TRIAL-KVAL-OF ¢ S

Max-trials-cost — Incremental-spent-cost

DO-TRIAL-EVAL-OF ¢ and FIND
" Estimated-cost.c and Bounds-of-estimated-cost.c;
update Incremental-spent-cost and Total-spent-cost to include the work above;
if size of Best~eval-plans < MAX-EVAL-PLANS then
add ¢ to Best-eval-plans
else if Estimated-cost.r < Estimated-cost.cy ors:
for the worst plan ¢yorsy in Best-eval-plans then
discard ¢y orsy from Best-eval-plans and add ¢ lo il;
if ¢ has bcen added 1o Best-eval-plans then begin
if Estimated-cost.c < Estimated-cost.c,,, then begin
sel €pegy Lo ¢
sel 0ld-best-total-cost (o Best-total-cost,
scl Best-total-cost [0 Estimated-cost.r,.,  + Total-spent-cost;
sel the pair Bounds-of-best-total-cost fo the sum of
Total-spent-cost and the pair Bounds-of-estimated-cost. ey,
end;
if Best-total-cost < Old-best-total-cost then bhegin
COMPUTE Max-trials-cost as a function
of Best-total-cost and Bounds-of-best-total-cost;
sel Incremental-spent-cost lo (),
end
let € be the next plan to consider (if there s one)
end
end
return Best-eval-plans

Figure 3: Procedure CHOOSE-SMALL-SET-OF-BEST-PLANS
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We conclude this section with a suggested heuristic
on how to order the evaluation plans for the gambling
algorithing, which can be used in conjunction with other
heuristics. We propose to consider plans earlier when
they:

I. require fewer additional range extractions in
Step 1, and thus have potentially cheaper trial
evaluation. In particular, we start with a plan
that requires no extraction.

2. have a “stronger” index in Step 2. Indices on val-
ues are considered stronger than indices on inter-
vals. Indices with an equality selection condition
are stronger that those with range condition; the
latter are stronger than those with one inequality
condition. In particular, those plans having any
mdex are stronger than the others.

7 The Gambling Optimization
Algorithm

The input is {e),...,e,,), the list of evaluation plans
to be considered in this order, induced by heuristics for
a specifie class of queries. The output is an evaluation
plan ¢ that is “reconmunended as the best”. The basic
idea of the algorithm is to perform trials of evaluation
plans, one at a time, “gambling” some work required
for estimation of the plan in an attempt to discover a
better plan. The bound for the gambling cost depends
on the best estimated cost 8o far. The algorithm con-
sists of application of two major parts:

l. CHOOSE-SMALL-SET-OF-BEST-PLANS
2. CHOOSE-BEST-PLAN

The idea behind this split into two parts is as follows.
When we are considering each of the plans in turn, we
need to use statistical sampling in order to estimate
the costs. In general, this estimation is expensive, es-
pecially for the more complex types of queries. If we
take large samiples for greater accuracy of the estima-
tion, we might spend most of the gambling cost just
on sampling, giving up consideration of many potential
plans. On the other hand, taking small samples may
fead, because the lack of accuracy, to recommend a
plan that is significantly worse that the real best plan.
Our two phase algorithm provides a balance. In the
first. phase, we use samples that are relatively small,
so that we can speud the gambling time on consider-
ing many potential plans. However, instead of keeping
Just the best estimated plan we keep a small set of the
hest plans. Then, in the second phase we concentrate
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on a more accurate sampling, spending the remaining
amount of the gambling time to try to find the best
plan.

The CHOOSE-SMALL-SET-OF-BEST-PLANS procedure
appears in Figure 3. 1t is in general self-explanatory?:
here we just clarify important points. The pair of
lower and upper Bounds-of-estimated-cost of an
evaluation plan is derived from the statistical confi-
dence intervals. Incremental-spent—cost is the cost
spent by the algorithm after the last improvement
of the Best-total-cost is made. Max-Trials-Cost
Is used to bound the gambling time. To CcoMPUTE
Max-trials-cost, which is redone after each improve-
ment of Best-total-cost, we suggest the use of

min{a * Best — total — cost,
B * (lower bound of Best — total — cost)}

where a denotes some fraction of the entire evalua-
tion cost we are ready to gamble. The paramecter
/3 should be a higher fraction than « and serves as
a “watch dog”, that is, if we overestimate the best
Best-total-cost, then, in the worst case we are go-
ing to spend at most fraction 3 of the real cost. Finally,
MAX-EVAL-PLANS is a compile-time parameter specify-
ing the maximal number of best plans to be kept for
the output.

The input
to CHOOSE-BEST-PLAN is Best-eval-plans which is
provided by CHOOSE-SMALL-SET-OF-BEST-PLANS; the
output is the recommended plan. In each iteration
of the algorithm some computational cost is paid for
additional sampling to estimate more accurately the
costs of the current best plan ej.,; and the plan e
which is more likely than other plans to replace the
current best. Also, we discard all plans for which it
can be statistically verified that they are either more
expensive than ep.,; or close to it up to a certain small
percentage €. This € denotes a marginal percentage of
cost, and used to avoid useless sampling for comnpar-
ing plans that have practically indistinguishable costs.
The iterations end when either only one plan is left, or
when we have exhausted Max-sampling-cost.

The procedure CHOOSE-BEST-PLAN appears in Fig-
ure 4. Max-trials-cost is computed as in the pro-
cedure CHOOSE-SMALL-SET-OF-BEST-PLANS, but with
different coefficients, reflecting the fraction of the en-
tire cost we are ready to gamble. One-trial-cost
is the cost spend in one iteration; it depends on a
compile time parameter MAX-ITERATIONS. It is im-
portant that MAX-ITERATIONS be sufficiently large, so
that Max-trials-cost will be spent fairly and many

{Subprocedures requiring additional explanation appear in
the algorithm in SMALL CAPITALS.



let €351 € Bast-eval-plans be the plan that has the least estimated cost;

sel Spent-cost fo 0;
while size of Best-eval-plans > 1 do begin

Jor cach plan €', except eyesr, COMPUTE stalistical confidence Cpr with which the cost of e
exceeds the cost of eyest plus £ percent; suppose C, is the lowest;
discard all plans ¢’ in Best-eval-plans with C,, > SIGNIFICANT.CONFIDENCE;

COMPUTE Max-trials-cost as ¢ function of

Estimated-cost.ry.,; and Bounds-of-estimated-cost.cy.,s;
set One-trial-cost lo Max-trials-cost / MAX~ITERATIONS,
if One-trial-cost > Max-trials-cost — Spent-cost then

discard all plans but ¢pc,¢ from Best-eval-plans

else begin
tncrcment Spent-cost by One-trial-cost;

EVALUATE-OPTIMAL-PARTITION-OF One-trial-cost giving costs Cost1 and Cost2
of work to be spent on estimating costs of €ye5: and e respectively;

TAKE additional samplcs for estimating costs of epess and e spending
Costl and Cost2 respectively and re-estimale the cosls of epeyy and e;

if Estimated-cost.cs.,; > Estimated-cost.c then

sel €pesy 10 €]
end
end
return €y,

Figure 4: Procedure CHOOSE-BEST-PLAN

plans will have chance to compete for the first place.
Note that, intuitively, there is a trend in the itera-
tions to eventually discard ¢ as the confidence intervals
of costs for €pesy and e get smaller, since it becomes
more likely that the confidence C. will exceed the con-
fidence Cer of some other plan ¢’. On the other hand,
MAX-ITERATIONS should not be too large, because of
the overhead this can create. Finally, EVALUATE-
OPTIMAL-PARTITION-OF One-trial-cost means, in-
tuitively, maximizing the confidence of the decision
which plan, cpes; or e, is the best. This is done
by minimizing the variance of the random variable
Estimated-cost.c — Estimated-cost.cp.,¢, Whichisa
function of the sizes of the samples for e,; and e, sub-
Ject to the constraint that the total cost on sampling
is One-trial-cost. This problem usually translates
to minimizing a quadratic function in one variable and
can be easily done.

8 A Constraint Sort Join Algo-
rithm
We adapt the algorithm of [9, 37] for n-dimensional

rectangle intersection to perform an analog of the
sorted equijoin. It is not possible to sort directly on a
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coustrained attribute, since each tuple allows a range
of values for that attribute and tuples may overlap. In-
stead we sort the endpoints of the ranges in the tuples,
using not, only the value of the endpoint, but also the
type of the boundary: whether it is a point or a lower
or upper boundary, and whether the boundary was
caused by a strict or nonstrict inequality. (We must
assume here that, for each common atiribute X" of type
constrained real in the relations, there is a range for
X in the canonical form of each relation.)

The value value(e) of an endpoint ¢ may be any
real number, —oo or 0o. For each endpoint ¢, there
is a boundary type bdry(e), and these are ordered
as follows: upper-sirict < lower-nonsirict < poinl <
upper-nonsirict < lower-strict. We write ¢, < ¢y if
value(e;) < value(ez), or value(e;) = value(ry) and
bdry(er) < bdry(es).

To simplify the exposition, we assunie initially that
there is only one common attribute which is not reg-
ular in both relations. For each relation P, let p be
the relation on the common attributes which is the
projection of P except that therc are, in gencral, two
elements of p corresponding Lo each tuple, one for each
endpoint?. (In practice it is not necessary to construct

§1f a range is, in fact, a point then p contains only one element
for that tuple.



conslruct p and ¢ from tupul relations I’ and Q;
<-sorl p and ¢;
metializc Qutput fo @)
tmilialize Active-set-for-p lo §);
intlialize Active-set-for-q lo §);
wlialeze § and j 1o 1;
repeat
if p, < ¢, then begin
if pi s a poini then
add tuple(p;) X Active-set-for—-q o Output;
if p; s a lower boundary then begin
add Luple(p;) to Active~-set-for-p;
add tuple(p;) M Active~-set-for-q lo Output
end;
if pi is an uppcr boundary then begin
remove tuple(p;) from Active-set-for-p;
imerement i,
end
else
We pcrform the same steps as in the then clause,
with the roles of p and ¢, and i and j swapped;
until p or ¢ has been exhausted;
return Qutput

Figure 5: A sort join algorithm

p explicitly.) We say that p is <-sorted if it is sorted ac-
cording to the lexicographic combination of the order
on the regular attributes and <. We write tuple(p;) to
denote the tuple of P that produced the 'th element
of p. We say p; < q; if p; and g; agree on values for the
regular attributes and the value of p; on the remaining
attribute < the value of ¢; on that attribute.

The algorithm (Figure 5) first <-sorts p and ¢ cor-
responding Lo the inpui relations P and Q. It then
applies the planc-sweep technique [9], traversing the
endpoints in order from least to greatest. At each stage
of the sweep, Active-set-for-p(Active-set-for-q)
liolds the set of tuples of I (Q) which contain the cur-
rent endpoint. If the current endpoint e comes from p
then fuple(e) M Active~set-for-q must be contained
in > M@, and similarly if ¢ comes from ¢. We record
this information at lower endpoints only, since upper
endpoints only duplicate the information. The remain-
der of the algorithm updates Active-set-for-p and
Active-set-for-q.

When we have only one dimension (that is, only
one constrained attribute) then Active-set-for-p
and Active-set-for-q can be simple set data struc-
tures.  For two dimensions, we want to filter out
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from Active-set-for-q those tuples which fail to in-
terseet. the current tuple due to the ranges on the
second constrained attribute, The appropriate data
structure is the iuterval tree {9] which allows us to
do this filtering efficiently. In general, for d dimen-
sions we use a combination of range and interval trees
[9, 37]. This gives the algorithm for a d-dimensional
sorted join a worst-case time of O(NlogN + MlogM +
log**N +1og%"?M + k'), and a worst-case space cost
of O(Mlog? ' M + Nlog?=' N), where P has M tuples,
Q has N tuples and the output relation has A tuples.
We refer to the regular attributes and the first con-
strained attribute as scanned attributes and the re-
maining attributes, those for which filtering is done
inside the active scts, are called active attributes.

9 Optimization for Constraint
Select-Project-Join Queries

In this section we show how to use the gambling algo-
rithni to evaluate constraint join-select-project queries.
We consider queries having up to two relations, that
is, of the form

CONSTRUCT  a(X)
FrRoM  b(Y),
e(Z)
WHERE  cons(W)

where b and ¢ are constraint relations and cons(.\')
a set of linear constraints. We propose the following
evaluation scheme:

1. Decide on whether to use a regular join, or a con-
straint sort join or constraint indexed join algo-
rithm.

2. For a constraint sort join choose scanned at-
tributes that should include all regular (in both
relations) common attributes, in addition to one
selected constrained common attribute. Choose
also a set of active common attributes. If the set
of scanned attributes is already ordered, decide on
whether selections are to be done on this relation
(in the process probably destroying the ordering).

3. For an index join, decide which of the relations is
to be scanned, and choose an index on common
attribute(s) for the other relation. The selections
before the join will be done only on the scanned
relation.

4. Choose a subset T of attributes from cons(W)
and for each attribute V € T extract from cons



the range on V. Only useful attributes should he
chosen mn T’ that 1s. those that appear in at least
one of the relations on which selection is to be
done. Let S denote the set of all attributes for
which there are non-trivial range constraimt..

5. For each relation » on which sclection is to be

done,

(a) Pick an index whose selection condition can
be explicitly checked by the range constraints
on attributes in 5.

(b)

Using this index, select all tuples from »
which satisfy the range constraints.

(¢) From these tuples filter out those which
do not satisfy simply checkable constraints
w.r.t 7 in cons and the extracted range con-
straints.

() Project out adl regular attributes in e that do
not appear clsewhere in the query, eliminat.-

ing duplicates. ¥

6. Perform the chosen join algorithn on the resulting
relations.

-1

Filter out all tuples in the new relation that do not
satisly constraints in cons that are simply chieck-
able w.r.t. the new relation, or do not satisfy the
extracted range constraints.

8. Project out all regular attributes in the new rela-
tion that do not appear in cons nor in the answer
relation a, eliminating duplicates.

9. For cach remaining tuple £, filter out those for
which the conjunction of £ and cons 1s unsatisfi-
able.

10. From the remaining tuples project. out regular at-
tributes that do not appear in a, elimminate dupli-
cates and put the resulting tuples into the required

for « canonical form;

Each series of choices in the evaluation scheme
gives rise to a possible evaluation plan. We dis-
cuss only briefly the trial evaluation of a particular
plan ¢, and estimating its cost, referred in the gam-
bling algorithm as “DO-TRIAL-EVAL-OF ¢ and “FIND
Estimated-cost.c.” First we extract ranges from cons
for variables in T in Step 4. Then, we take a saple
of tuples from the relations on which selection is to be
done. Exactly as in the case of select-project query in
Section 6 we estimate the number of tuples satisfying

¥ Two tuples are duplicate if they are identical including the
canonical form of the constraints.

the selecting condition of the index, and the number
of tuples after the additional filtering and projection
in Step H(be) and using this information the cost of
the index and the filtering,.

tstimation of the cost of the join in Step 6 depends
on the join method. For indexed join, we use thie sam
ple from the scanned relation. This sanple s hikely
to have been taken aleeady for estimation ol sclection
cost. Then we actually join each tuple in the sample
with the sccond relation using the chosen index. 1
done in order to measure the average cost per tuple and
to estimate the number of tuples in the result of the

Join in Step 6. For sort-join, we take siunple of pairs of

tuples from the relations b and e. Note that m order
to get suflicient. accuracy of the estimation the size of
the sample should be significantly larger than that of
indexed join. We use this sample to estimate the the
average mumber of tuples in b that. can be joined with
one tuple m e in the sort join and viee versa and then
to substitute these numbers in the formnla for the sort.

Join cost, ‘The cost estimation of the remaining steps

578

is done by actually performing this steps on the re
sult of the “simulated cost” and then normalizing the
costs, analogically to what is done in the estimation
for sclect-projeet queries. Here too we use statisti
cal tests Lo compute Bounds-of-best-total-cost of
e with significant statistical confidenee.

The only non-trivial part of the estimation of trial
evaluation cost, referred in the gambling algorithin as
“ESTIMATED-COST-0F-DO-TRIAL-EVAL-OF ¢
mating range extraction costs, 'This is done exactly
as in the case for select-project. querics,

Finally we provide some heuristics on the order
which evaluation plans are to be considered in the gam

s esi

bling algorithm. We propose to consider plans carhier
when they:

1. require fewer additioval range extractions.

the
“stronger”
for select-project. queries. For the plans with sort
join consider as follows. If there is at least one
attribute to be active, consider first the plans
with smaller numiber of active attributes. Among
those, consider first those wilth active attribide
that is regular in one relationll.

plans  with ndexed  join,
index, where “stronger™ is delined as

2. among use i

3. have stronger indices for selection.

4. use an indexed join when picking a plan to be the
first.

lRecall that since we always put regular common attributes
to be scanned, an active attribute cannot be regular in both
relations.
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