Toward Practical Constraint Databases

Alexander Brodsky Joxan Jaffar Michael J. Maher
I.B.A. Thomas J. Watson Research Center
P.O. Bor 704
Yorktown Heights, NY 10598

Abstract

Limear romstrainl databuses (L.SD)Bs) externd relational dababases to include limear arilhmedie constraints in loolh refations aud queries. A L(SDB can also be viewed as a powerful extemsion of linear programming (II') where the system of constraints is generalized I. a a database comaming constraints and the objective funchion is gemeralized to a relational query containing constraints. Our major concern is query optimizalion in I, (:D)Bs. 'Tradilioual datahase approaches are not adequate for combination with LI' technology. Insta ad, we propose a new query optimization approach, based on statistical estimations and iterated trials of potentially better evaluation plans. The resulting algorithons are not only offective on ICD)l3s, but also on existing query languages.

1 Introduction

Linear programming/linear constraints is a technology willely nsed in applications of economics and business, r.g. allocation of scarce resources, scheduling produclion and inventory, culting stock and many otbers. 'Ihis paper proposes a merger of linear programming (II) and relational databise techologies in the framework of lincar constrainls databascs (LCDBs), that extond rolational datahases to include linear arithmetic comstraints in both relations and queries. The motivation cones from the fact that classical LP applications do not stand alone, but rather operate over a large

[^0]amount of stored data and usually require not just to optimize one objective function, but to answer more complex queries involving manipulation of both regular data and constraints. A second application realm is that of engineering design systems, which may operate over large catalogs of components, devices etc., and enable queries about design patterus that are described using constraints. LCDB technology, in particular, is important because it can enhance many existing software platforms such as relational DBMS, object oriented DBMS, operation research packages, constraint logic programming (CLP) systems etc.

Traditionally, there have been two major approaches t.o query optimization. One is based on compile time algebraic simplification of a query using heuristics as in $[12,30,33,38,32,43,6,44,2]$. The other is based on cost estimation of different strategies as in $[1,10,7,8,29,42]$. The heuristics of the algebraic simplification approach, such as performing selections as carly as possible, assume that the selection condilions are readily available. In fact, extracting such conditions from the constraints of a query involves lincar programming techniques which are, in general, expensive because there may be, for example, thousands of variables. 'The cost estimation approach, on the other hand, has the similar problem of extracting explicit constraints on attributes which are needed for the estimation. Even if these constraints were readily available, there is a second problem: it is typically necessary to make assumptions about the distribution of data (like uniformity within, and independence of, attributes), and these appear unlikely to hold in LCDBs. In short, traditional optimization approaches are inadequate for LCDBs.

In this paper, we propose a new generic approach to query optimization, that is not only effective on LCDB, but also on existing query languages. The underlying philosophy is that expenditure of computational cost is neccssary in order to obtain information
required to estimate which is the best evaluation plan. We use statistical sampling for the cost estimation of specific plans, which has the advantage of avoiding dependence on data distribution. Since it is impractical to consider all possible plans in the search for the best. one (because cost estimation of each plan might be expensive), trials of evaluation plans are performed, one at a time, "gambling" some work required for the cost estimation of the plan in an attempt to discover a better plan. We bound the anount we can gamble, based on the best estimated cost so far. The gambling algorithm is then used for optimization of generalized select-project-join queries involving up to two generalized relations. This requires to develop algorithms for estimating costs of possible evaluation plans, based on statistical methods. The problem of how to perform reasonably accurate and computationally cheap cost estimations for a more general class of queries requires more study. As additional contribution, adapting the algorithm of $[9,37]$ for n-dimensional rectangle intersection, we show how to perform an analog of the sortjoin.
'There has been work on specific uses of constraints in databases, the earlicr of which includes [17, 13, 5, 35, 4]. The work [18] proposed a framework for integrating abstract constraints into database query languages by providing a number of design principles. They proved important properties on specific instances of the framework, but did not focus on optimization. The work [13] considered optimiziting in the context arithmetic equations. However, constraint solving was limited to local propagation and hence not suitable for LP problems. More recent work on deductive databases [31, 41, 19, 20, 26] concentrate on optimizing by repositioning constraints and assume the implementation of selection, projection and join and optimization of expressions involving these operators.

The remainder of the paper is organized as follows. Motivating examples and discussion are next, in Section 2, and the definitions of our data model and query language appear in Section 3. An important aspect of our work, which pertains to practical use, is the use of the notion of constraint canonical forms. Section 4 covers relevant computational issues in constraint manipulation, which are fundamental to constraint query evaluation. Section 5 discusses why traditional optimization methods are inadequate, elaborating on the discussion above. Section 6 and beyond form the core technical presentation: we deal first with the selection/projection queries in Section 6, which motivates our generic "gambling" algorithm presented in Section 7. Section 8 gives an algorithm for sort join on constraint altributes and Section 9 presents the applica-
tion of the gambling algorithm to optimizing select-project-join queries.

2 Introductory Examples

Suppose a company mamfactures l.wo products usimg two resources. Its datalbase has the relations orders/ and ordersis for orders of its first and second products respectively. Fach relation has the athributes order\#, Customer and Productaquantily. Another rola tion product_resource ($P 1, P_{2}, R 1, R 2$) specifiess a relationship belween quantities of resources and productis: $P 1$ and $P 2$ represent quantities of the first and second products respectively to be produced, while $l i l$ and $R 2$ represent amounts of the first and second resources available. A possible manufacluring process can be specified by (a conjunction of) the following constraints:

$$
\begin{aligned}
P 1+100 P^{\prime} 2 & \leq R 1 \\
100 P 1+P^{\prime} 2 & \leq R 2 \\
P 1, P^{\prime} 2, R 1, R 2 & \geq 0
\end{aligned}
$$

This says that the amount of the first resource meded to produce $P 1$ and $P 2$ units of the lirst and the second products must not exceed the amount $R 1$ of this resource available. Similarly about the second resource. Suppose that there is another manulacluring processes:

$$
\begin{aligned}
1.7 P 1+13.1 P^{2} & \leq R 1 \\
28.3 P 1+11.5 P^{2} & \leq R 2 \\
P 1, P 2, R 1, R 2 & \geq 0
\end{aligned}
$$

Now, the relation product resource is a disjunction of two conjunctions of (three) constraints, a finite description of the infinite number of tuples ($P 1, P 2, R 1, R 2$) of values satisfying the disjunction. Similarly to [18] we define a constraint tuple to be a (possibly existentially quantified*) conjunction of constraints and constraint relation to be disjunction of constraint tuples.

In addition to regular relational gueries, one may have queries like: "given that profit for one unit of the" first product is $\$ 15$ and of the second is $\$ 1$, and that there are 100 and 10000 units of the first and second resources respectively, and 10000 units of the second at stock, what is the maximum profit the company can make with each manufacturing pattern?" or "given certain quantities of resources, what are the ranges of and the connection between the quantities of the two

[^1]| Order\#\# | ('nstomer | $R_{1} R_{2}$ |
| :---: | :---: | :--- |
| 1 | Smith' | $R_{1} \geq 262.31 \wedge R_{2} \geq 4366.69$ |
| 1 | 'Smith' | $R_{1} \geq 154.3 \wedge R_{2} \geq 15430.0$ |
| 2 | 'Sione' | $R_{1} \geq 49.708 \wedge R_{2} \geq 486.76$ |
| 2 | 'Stone' | $R_{1} \geq 17.2 \wedge R_{2} \geq 1720.0$ |

Figure 1: Relalion orders1_resources
products that call be produced with each manufacturiug proctss?".
'lypically the evaluation of queries involves both "rrgular" information and constraints, for example:

```
construcer ordersl_resources \((O, C, R 1, R 2)\)
FROM ordersi \((O, C, P 1)\),
    products_rcsources(P1, P2, R1, R2)
WHERE \(\quad P 2=0\)
```

Note that in our notation the arguments $O, C, R l$, $182, P 1$ and $P^{\prime 2}$ in the query are variables, not attribute nanos, but we sometimes use the same name for a variable and an attribute when the distinction is not important. Suppose the relation orders 1 consists of the two tuples ($1,{ }^{\prime}$ Smith ${ }^{\prime}, 154.3$) and ($2,{ }^{\prime}$ 'stonc', 17.2), and two consiraint tuples of the relation products_resources correspond to the manufacluring processes above. The answer to the query can be computed by considering all four pairs of tuples obtained from ordersl and from products_resources. In wach pair, sel. Pl to the value given by orders, set $P 2$ to 0 , and fiually, simplify the constraints for $R 1$ and R:2. ligure 1 depicts the results. Note that we produce liere a relation that is only partly constraint. Order\# and ('ustomer are regular and R_{1} and R_{2} are constraint atiributes.
(Warly, regular relational database: queries cannot produce this sort of relation as an answer. Although (:LI' call, in principle, implement this sort of query, it is not officient. ('onsider another example query:

```
construcer bolh_products(O1\#,O2\#)
finom ordersi(O1, \(C, P 1)\),
    orders2(O2, C, P2)
WHERE \(\quad P 1+100 P 2 \leq R 1\),
    \(100 P 1+P 2 \leq R 2\),
    \(P 1, P 2, R 1, R 2 \geq 0\),
    \(R 1=100\),
    \(R 2=10000\)
```

Note that the first three lines in the where clause correspond to the first manufacturing pattern given above.

Note also that attributes (such as $R 1$ and $R 2$) do not have to appear in a relation.

	look -at	simple checks of constr.	proj. on single var.	satisf. tests
Naive	10^{12}	10^{7}	-	-
CLP (\mathcal{R})	10^{9}	10^{4}	-	10^{6}
SQL	10^{7}	10^{7}	-	-
Possible	10^{2}	10^{2}	2	-

Figure 2: Both_products: evaluation costs

In order to estimate the size of the answer to the query and its evaluation time, let orders denote either orders 1 or orders 2 , and make the following 3 assumptions. (1) The relation orders has 10^{6} tuples. (2) The image size (that is, the number of different values) of Customer in orders is 10^{5}. (3) The range of P in orders is $\left[0,10^{5}\right]$ and then, assuming values are uniformly distributed, there are approximately size(orders) $*(b-a) / 10^{5}$ of tuples having a P value in the range $[a, b]$.

The table in Figure 2 depicts the costs of naive evaluation, CLP $(\mathcal{R}), \mathrm{SQL}$ and the ideal possible evaluation. The naive evaluation simply considers all pairs of tuples. In CLP (\mathcal{R}) the only tuples of order 1 that are consistet with the constraints are checked against order 2 . SQL takes advantage of using index on Customer in orders 2 for join operation.

The ideal evaluation does much better, as shown in Figure 2, as follows. First observe that we can deduce that $P 1$ is in the range $[0.0,100.0]$ and $P 2$ is in the range $[0.0,1.0]$. By the assumptions, there are about 10 relevant tuples in orders 2 and 1000 relevant tuples in ordersl. If we can estimate this comparison, we will perform a selection on orders2. Assuming an index on $P 2$ is maintained in orders 2 , the selection of 10 tuples will take about 10 look-at operations, in addition to some overhead of one indexed access. Instead of selecting about 1000 tuples from orders 1 , find a natural join on C of the tuples selected from orders 2 and the relation orders1. By assumption 2, the result has approximately 100 tuples and, assuming an index is maintained on Customer in orders1, this join will take about 100 look-at operations. Finally, check every tuple in the join to see that it satisfies the constraints.

We can see, in this example, the advantages of deducing ranges on attributes and of estimating costs before making a decision. Our approach attempts to balance these advantages with the costs of range deduction and estimation.

3 Data Model and Query Language

3.1 Data Model

A constraint tuple has the form $\left(t_{1}, \ldots, l_{n}\right)$ Where, r in which the t_{i} 's are either variables or constants and r is an existentially quantified conjunction of constraints, with free variables from t_{1}, \ldots, t_{n}. By using equality constraints we can write the tuple into the standard form $\left(x_{1}, \ldots, x_{n}\right)$ wheres r^{\prime}, in which the x_{i} 's are variables. When it is convenient, we will identify the constraint tuple with the constraint r^{\prime}. A constraint relation (or simply relation) is a collection of constraint tuples. It can be understood as a finite representation for a possibly infinite regular relation; cevery assignment of values to variables which satisfies the constraint in a constraint tuple corresponds to a regular tuple.

A constraint relation scheme associates a type to cach attribute of the relation, and specilies a canonical form for constraints. The type specifies the kind of values (integer, real, string, etc.) that the attribute may take and whether the value must appear explicitly in each constraint tuple, (as is usual for databases), or may be represented implicitly by constraints. In this paper, only one type allows constraints, constraincd reals. All other types (reals, integers, etc.) are regular datab)ase types. The constraints in cach constraint tuple in the relation are required to be presented in the canonical form. We discuss fanonical forms in the next section.

Thus our data model is almost an instance of the framework of [18]. The difference is that we consider explicitly the form in which constraints are presented and allow existentially quantified constraints to appear in constraint tuples.

3.2 Query Language

In gencral, a query will take the form

```
cONSTRUCT }a(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{\prime}
    FROM bl(args),\ldots, b
    WHERE cons(args)
```

OR

```
FROM cl(args),\ldots,c, clargs)
WHERE cons2(args)
```

OR
where each occurrence of args denotes a sequence of variables from the set $\left\{\lambda_{1}, \ldots, X_{n}, \ldots, X_{m}\right\}$. For convenience we assume that in cach From clause no equality between two distinct variables is explicitly implied by cons in the where clause. (If ihis happen it is
always possible to replace one variable by the oflere.) The query defines a relation a which contains the tuple $\left(v_{1}, \ldots, v_{n}\right)$ iff there are values $v_{1}, \ldots, v_{n}, \ldots, v_{m}$ which occur in the relations b_{1}, \ldots, b_{k} and satisfy cons s_{1}, or occur in the relations r_{1}, \ldots, r_{l} and satisfy conse, or ... Since a is writton with variable argumonts, we sometinmes abuse bermimology abd call an altribute a variable, or vice versa. 'This query incorpe rates selection, projection, join and union operations.

A lincar arithmetic constraml has the form $r_{1} \lambda_{1}+$ $\cdots+r_{, n} \lambda_{m}$ relop r, where r, r_{1}, \ldots, r_{m} are real mumber constants and relop is one of $=,\langle, \leq\rangle,, \geq$. Mu arilli metic constraint is pseudo-lincar will respert tes a set of variables \dot{y} if, whenever the variables \dot{y} are roplared by real number constants, the resulting constraint is linear. We require that every constraint appearith in a Willere clatuse be pseudo-linear with respect to those variables in the corresponding From clause which have regular types.

A straightiforward extension of this language can in corporate views, cascades of views, complex types, and function symbols. These additional features do not signifieantly affect the issues we address in this paper. Other additional capabilities, such as recursion and the use of aggregation operators, introduce finther compli cations, and we will not address them here.

Instead we direct our attention to a subset of this query language in which all constraints appering in a query are linear. We consider selortions and projece tions of relations, and the join of two relations, lut we do not explicitly discuss the union operation.

4 Canonical Forms and Constraint Manipulation

In this paper, the constraint f associated with a constraint tuple is a (possibly existentially quanlified) conjunction of linear equations and inequalilies. In this section, we briefly discuss some computational issues on the manipulation of such constraints.

A ranonical form for constraints is a useful stant dard form of the constraints, and is gemerally com puted by simplification and the removal of redundancy. In addition to the advantages of a standard presemta tion of constraints, canonical forms can provide savings. of space and time. In the class of linear arithmetic constraints there are many plausible canonical forms. However, they can be costly to compute.

Corresponding to a constraint relation is a disjunction of the constraints in each tuple. Some of these tuples might be redumdant in the sense that omitting them does not alter the regular relation represemed by
the constraint relation. (Ilearly a canonical form that - liminates such imples would be desirable. However, the problem of detecting such luples is co-NP-complete. |fIO|, and so we will perform only two simplifications of disjumetions: the deletion of each tuple with an inconsistont constraint, and the deletion of duplicates when all vadues are regular.

Similarly, while it is theoretically possible to eliminathe all existential quantifiers from our constraints (as required in the framework of $[18]$), the cost of this elimination and the size of the resulting constraint can grow exponemially in the size of the original constraint. Since we expect applications with large constraints, it is umrealistic to expeet that all quantifiers can be climimaled. We suggest a method of only performing simplifying quantifier climinations, similar to what is done in (:IJ'(\mathcal{R}) [16].

Ther conjunctive constraints offer the greatest scope in choosing a canonical form. One choice is to write all equations in the form $\left\{x_{i}=t_{i} \mid i=1, \ldots, n\right\}$ where the x is are distinct and appear nowhere else in the constrainl. A second choice is whether all equations which are intplicil in the inequality constraints should be represembed explicitly. (As a simple example of this, consider the consiraints $x+y \leq 2, x+y \geq 2$.) A third is the extent to which redundancy within the inequalilies shonld be relloved. [2:3] presents a classification of rednutancy that suggests simple forms of redundancy removal. A fourth choice is whether to keep the incgualities in a different form, such as simplex tableau form.

A fifth option is the addition of redundant information to the coustraints. In particular, since range constraints will play an important role in our optimi\%ation and implementation methods, we consider a canonical form that requires explicit ranges for some variables. (A range constraint is a constraint on a single variable using inequalities or equations. A range consiraint is lrivial if it has the form $-\infty<X$ or $\lambda<\infty$.) More specifically, we require the "tightest" such range, which can be obtained for each variable by projecting the conjunctive constraint onto the variable. Placing constraints in canonical form and, in parlicular, testing the satisfiability (or consistency) of constraints requires, in general, linear programming lechnigues.

For the purposes of this paper we consider just one class of canonical forms. We assume that there are III inmplirit equations, that equations are presented in the form suggested by the first choice, some simple rodundancy in the inequalities is removed, and there art explicit range constraints for some variables.

In addition to choosing canonical forms for con-
straint relations, we must also consider the manipulations of constraints necessary in the evaluation of querics. The most important computation with query constraints is the extraction of a range on a variable. The extraction of a lower bound (for example) on x is exactly the linear programming problem of minimizing x subject to the constraints. The detection of implicit equalities in the query constraint is also a linear programming problem [22] as is, of course, testing for consistency.

5 Optimization: Differences in Approach

In this section we highlight differences between constraint databases and regular databases, which make the straightforward application of usual database techniques difficult or impossible. Consider, first, a simple problem of selection, that is, the query of the form

CONSTRUCT	$a\left(X_{1}, \ldots, X_{n}\right)$
FROM	$b\left(X_{1}, \ldots, X_{i}, \ldots, X_{n}\right)$
WHERE	$\operatorname{cons}\left(X_{i}, \ldots, X_{n}, \ldots, X_{m}\right)$

Each constraint tuple of a can be constructed by taking a conjunction of a constraint tuple from b and cons, lesting whether it is satisfiable, and if it is, finding a required canonical form for it. Note that depending on the canonical form for existential quantifiers, this may involve quantifier elimination (some) the variables X_{n+1}, \ldots, X_{m}. Thus, in general, processing a tuple in a constraint selection is significantly more expensive than in a regular selection.

To avoid unnecessary computation, we want to use the idea of filtering, similar to one used in spatial databases, that is, the discarding of irrelevant tuples of b by computationally cheap test. Suppose we have a range $c \leq X_{k}<d$ for X_{k} in cons, where c might be $-\infty$ and d might be ∞. If X_{k} is also a regular variable in b, we can discard all tuples in b whose X_{k} value does not lie in the range, since clearly those tuples are inconsistent. with cons. Similarly, if X_{k} is a constrained variable and a range for X_{k} is stored for each tuple of b, then we can discard all tuples for which the ranges for X_{k} are disjoint.
(There is a larger class of constraints of use in filtering. A constraint is simply checkable wrt a relation r, if every variable in the constraint also occurs in the relation in an attribute that either is regular or has a range constraint in the canonical form for tuples of r. While testing such a constraint is a little more expensive, in general, than testing ranges, the cost still compares very favorably with the use of linear programming.)

We can do filtering more efficiently using indices. Indexing on regular attributes is the same as usual, whereas indexing on a constraint attribute X of r works as follows. For each inserted constraint tuple t the range of X is extracted using linear programming techniques. This interval is inserted into an index structure maintaining intervals and has a reference to the corresponding tuple. Selection of all tuples t in r consistent with a given set of constraints c is done as follows. First the range I of X is extracted from c. Second, using the interval index all tuples whose corresponding ranges of X intersect I are retrieved. Third, the retrieved tuples are checked for consistency with c using linear programming methods. Of course, many different indices can be maintained and used for selection. Moreover, in order to improve filtering additional attributes can be defined as linear combinations of constraint attributes, as proposed in [3].
In general we need to have index structures supporting storage of values and intervals, and valuc and range queries. Two efficient access structures for intervals are the interval tree [9] and the priority search trees [28]. In one dimension, finding all intervals intersecting a given interval or containing a given point, takes at most $O(n \log n+k)$ time, where n is the size of the relation and k is the size of the output. Moreover, it requires ouly linear space in the size of a relation, and thus seems to be ideal as an indexing structure. The work in [21] proposes an efficient data structure for secondary storage, having the same space and time complexity and full clustering. There are different data structures to support access to multidimensional intervals, in particular based on combination of interval, segment and range trees $[9,37]$. For 2 -dimensional intervals (rectangles) R, R^{+}, R^{*} trees $[11,36,39]$ are widely used in spatial databases.
In order to perform indexing and filtering, it is necessary to extract ranges of variables from cons. This extraction involves techniques of linear programming and can be very expensive, especially in applications coming from operational research in which cons might involve over a thousand constraints and variables. Thus, there is a trade-off to be made between an improvement gained by filtering and indexing and the cost paid for extracting ranges from cons.
Consider now projections, that is, the queries of the form

CONSTRUCT	$a\left(X_{1}, \ldots, X_{n}\right)$
FROM	$b\left(X_{1}, \ldots, X_{n}, \ldots, X_{m}\right)$

Computing a projection may involve, depending on the required canonical form, quantifier elimination of (some of) the variables X_{n+1}, \ldots, X_{m}. In contrast to the usual database case, in which projection is a triv-
ial operation, when constraints are involved it can be computationally expensive.

Consider now a "constraint" join, where the query is of the form

$$
\begin{array}{ll}
\text { construct } & a\left(X_{1}, \ldots, X_{i}, \ldots, X_{j}, \ldots, X_{n}\right) \\
\text { From } & b\left(X_{1}, \ldots, X_{j}\right), \\
& c\left(X_{i}, \ldots, X_{n}\right)
\end{array}
$$

In principle, each tuple in the answer to this gurry can be computed ly laking a conjunction of a tuple from b and a tuple from c, testing its satisfiability and, if satisfiable, presenting it in the required canonical form. As with the constraint selection, we call use fil tering to reduce the cost of satisfiability tests. The filtering step discards those pairs of tuples that have disjoint ranges on a common attribute. A refinement step then performs a full test for satisfiability for the: remaining pairs. Note that the regular join does not involve constraints and hence does not require the refinement step. In this paper, we associate the notion of join only with the filtering step, and treat the full test for satisfiability as a separate operation.

We would like to use the ideas developed for regular joins for the filtering in the constraint join. The indexed join (i.e. for each tuple of one relation finding all corresponding tuples of the second using an index) for constraint relations differs from the indexed join for regular relations only in the different index structures that can be used. However, an analogy for the sort join (sorting both relations on common attributes and then finding all matching tuples in one merge) is not clear, since there is no appropriate total ordering on multidimensional intervals. In Section 8 we adapt. work in computational geometry to give an analog to the sort join.

Finally, consider the two major approaches to query optimization for regular databases. One is based on algebraic simplification of a query and compile time heuristics. The other is based on cost estimation of different strategies. Neither of these is adequate for constraint database systems. The heuristics of the algebraic approach, such as performing selections as early as possible, are based on the assumption that selection conditions are readily available. In contrast, extracting such conditions from the constraints of a query involves linear programming techniques which are in general expensive. For the cost estimation approach, we have a similar problem of extracting explicit constraints which are needed for the estimation. Even if these constraints were readily available, there is a second problem: it is typically necessary to make assumptions about distribution of the data (like uniformity within, and independence of, columns) in the
databise, and these appear unlikely to hold in constraind dalal)ases.

6 Algorithm for Constraint Selection and Projection

Here the considered queries are of the form

construert	$a(\bar{Y})$
HROM	$b(\bar{Z})$
WHERE:	cons (\bar{W})

We proceed by presenting an evaluation scheme which represents many evaluation plans. Evaluation schemes and plans are not intended to represent the decision-making process, but only to represent the decisions that need to be made, and the work that needs lube dence. We then discuss the trial evaluation, which is necessary for estimating costs, and some heuristics which can be used to order evaluation plans. The genoric gambling algorithm, described in the next section, uses this information to choose which plans rereive a trial evaluation and, ultimately, to choose an evaluation plan.

We propose the following evaluation scheme for this quiry.

1. (Hoose a subset T of the common attributes $\bar{Z} \cap$ \bar{W}. For eacli $X \in T$, extract from cons a range on X. Let s be the set of all attributes for which there are non-trivial range constraints (including those attributes from ' 1 ').
2. Pick all index maintained on b whose selection coudition can be explicilly checked by the range constraints on altributes in S. Using this index, select all luples from 6 satisfying the constraints.
3. From these tuples, filter out those which do not salisfy simply checkable constraints from cons and the extracted range constraints.
4. Project out all regular attributes of b that do not appear clsewhere, climinating duplicates.
5. For each remaining tuple t, check the satisfiability of the conjunction of t and cons. If it is satisfiable, put it in canonical form. If it is not, discard it.

This scheme leaves open the specific choice of a subset T of variables, and an index. Fixing a choice gives rise to a particular cnaluation plan.
'The cost of an evaluation plan depends strongly on the ranges extracted in Step 1. 'I'herefore, the estimalion of such cost requires, in addition to statistical
sampling, some amount of actual evaluation. Call this process of sampling/evaluation a trial cualuation of the plan. Now, even trial evaluation can be expensive and therofore it is unrealistic to estimate the cost of all evaluation plans. In fact the cost of estimation may exceed the cost of a naive evaluation.

In the next section, we provide our gambling algorithm that balances these two costs by considering evaluations plans one at a time and limiting the cost of the estimation of a plan to a portion of the cost of the best plan according to the estimation so far. For the remainder of this section, we detail the trial evaluation and provide heuristics on the order in which the plans are to be considered for estimation.

The trial evaluation for a given plan is described by steps (a) - (e) below. These steps comprise the subprocedure DO-TRIAL-EVAL-OF of the gambling algorithm for the case of selection-projection queries. (We provide different steps for other kinds of queries later.)
(a) Perform Step 1 above.
(b) Take a random sample of b. The number of tuples, say n, in the sample is a compile time parameter.
(c) Select the tuples in the sample satisfying the selection condition of the index chosen in Step 2. Let n_{1} denote the number of tuples selected in Step 2.
(d) Perform filtering (Step 3) and projection (Step 4) on these n_{1} selected tuples. Measure the average cost per tuple, say a_{1}. Let n_{2} denote the number of tuples selected in Step 3.
(e) Perform the satisfiability test (Step 4) on these n_{2} selected tuples. Measure the average cost per tuple, say a_{2}.

Note the that Step (b) of the trial evaluation is done only once for all plans. The cost of the entire evaluation of the plan, except Step 1, can now be estimated as follows. (It is referred to as FIND Estimated-cost in the gambling algorithim.) First we estimate the number N_{1} of the tuples selected from b using the chosen index in Step 2 by $(N / n) * n_{1}$ where N is the number of tuples in b. Then, we estimate the number N_{2} of the tuples selected in Step 3 by $(N / n) * n_{2}$. The cost of Step 2 is estimated by $f\left(N, N_{1}\right)$, where f is a given cost function ${ }^{\dagger}$ for the index chosen. The costs of Step 3 and Step 4 are estimated by $N_{1} * a_{1}$ and $N_{2} * a_{2}$ respectively. Finally, in addition to the estimations of the costs above, we also compute the confidence intervals for the cost using standard statistical methods.

[^2]set $\epsilon_{b \in s t}$ to the first evaluation plan to be considered;
set Best-eval-plans to $\left\{c_{b e}, t\right\}$;
DO-TRIAL-EVAL-OF $\epsilon_{\text {hes } l}$ and FIND
Estimated--cost.cbest and the pair Bounds-of-estimated-cost.cbest;
sel Total-spent-cost and Incremental-spent-cost to the work done so far:
sel Best-total-cost to Estimated-cost.t bist + Total-spent-cost;
set the pair Bounds-of-best-total-cost to the sum of
Total-spent-cost and the pair Bounds-of-estimated-cost.cbesi;
compute Max-trials-cost as a function
of Best-total-cost and Bounds-of-best-total-cost;
lete be the next plan to be considered:

while $\left(\begin{array}{c}\text { Uhere is an cualuation plan c to consider } \\ \text { and } \\ \text { estimated-cost-of-no-TRIAL-EVAL-of } c \leq \\ \text { Max-trials-cost-Incremental-spent-cost }\end{array}\right)$ dobegin
do-TRIAL-EVAL-OF e and FIND
Estimated-cost. c and Bounds-of-estimated-cost.c;
update Incremental-spent-cost and Total-spent-cost to include the work abone;
if size of Best-eval-plans < MAX-EVAL-PLANS then
add \subset to Best-eval-plans
else if Estimated-cost.f < Estimated-cost. $\mathrm{C}_{\text {worst }}$
for the worst plan cworst in Best-eval-plans then
discard ruors from Best-eval-plans and add it lo it;
if e has becu added to Best-eval-plans then begin
if Estimated-cost.r < Estimated-cost.rbest then begin
sel $\epsilon_{\text {best }}$ to c;
set Old-best-total-cost lo Best-total-cost;
sct Best-total-cost to Estimated-cost.rbeat + Total-spent-cost:
set the pair Bounds-of-best-total-cost to the sum of
Total-spent-cost and the pair Bounds-of-estimated-cost.fbest;
end;
if Best-total-cost < Old-best-total-cost then begin
COMPUTE Max-trials-cost as a function
of Best-total-cost and Bounds-of-best-total-cost;
set Incremental-spent-cost to 0;
end
let e be the next plan to consider (if there is one)
end
end
return Best-eval-plans

Figure 3: Procedure choose-small-set-of-best Phans

We conclude this section with a suggested heuristic on how to order the evaluation plans for the gambling algorithon, which can be nsed in conjunction with other heuristies. We propose to consider plans earlier when they:

1. require fewer additional range extractions in Siep 1, and thus have potentially cheaper trial evaluation. In particular, we start with a plan that requires no extraction.
2. have a "stronger" index in Step 2. Indieses on values are considered stronger than indices on intervals. Indices will an equality selection condition are stronger that those with range condition; the hatter are stronger than those with one inequality condition. In particular, those plans having any index are stronger than the others.

7 The Gambling Optimization Algorithm

The input is $\left(\epsilon_{1}, \ldots, c_{m}\right)$, the list of evaluation plans to be considered in this order, incluced by heuristics for a sperific class of queries. The output is an evaluation plan + that is "recommended as the best". The basic idea of the algorithm is to perform trials of evaluation plans, one at a time, "gambling" some work required for estimation of the plan in an attempt to discover a better plan. The loound for the gambling cost depends on the best estimated cost so far. The algorithm consists of application of two major parts:

1. CHOOSE-SMALL-SE'T-OF-BEST-PLANS

2. (HOOSH-BEST-PLAN

The idea behind this split into two parts is as follows. Whell we are considering each of the plans in turn, we need to use statistical sampling in order to estimate ther costs. In gelleral, this estimation is expensive, especially for the more complex types of queries. If we take large samples for greater accuracy of the estimation, we might spend most of the gambling cost just on sampling, giving up consideration of many potential plans. On the other hand, taking small samples may lead, because the lack of accuracy, to recommend a plan that is significantly worse that the real best plan. Our two plass algorithm provides a balance. In the first phasse, we use samples that are relatively small, so that. we can spend the gambling time on considering many potential plans. However, instead of keeping just the best cstimated plan we keep a small set of the hest plans. Then, in the second phase we concentrate
on a more accurate sampling, spending the remaining amount of the gambling time to try to find the best plan.
The choose-small-set-of-best-plans procedure appears in Figure 3. It is in general self-explanatory ${ }^{\ddagger}$: here we just clarify important points. The pair of lower and upper Bounds-of-estimated-cost of an evaluation plan is derived from the statistical confidence intervals. Incremental-spent-cost is the cost spent by the algorithm after the last improvement of the Best-total-cost is made. Max-Trials-Cost is used to bound the gambling time. To compure Max-trials-cost, which is redone after each improvement of Best-total-cost, we suggest the use of

$$
\begin{aligned}
& \min \{\alpha * \text { Best - total - cost, } \\
& \quad \beta *(\text { lower bound of Best }- \text { total }-\operatorname{cost})\}
\end{aligned}
$$

where α denotes some fraction of the entire evaluation cost we are ready to gamble. The parameter β should be a higher fraction than α and serves as a "watch dog", that is, if we overestimate the best Best-total-cost, then, in the worst case we are going to spend at most fraction β of the real cost. Finally, MAX-EVAL-PLANS is a compile-time parameter specifying the maxinal number of best plans to be kept for the output.

The
input
to Choose-best-plan is Best-eval-plans which is provided by choose-small-set-of-best-plans; the output is the recommended plan. In each iteration of the algorithm some computational cost is paid for additional sampling to estimate more accurately the costs of the current best plan $e_{\text {best }}$ and the plan e which is more likely than other plans to replace the current best. Also, we discard all plans for which it can be statistically verified that they are either more expensive than $e_{\text {best }}$ or close to it up to a certain small percentage ε. This ε denotes a marginal percentage of cost, and used to avoid useless sampling for comparing plans that have practically indistinguishable costs. The iterations end when either only one plan is left, or when we have exhausted Max-sampling-cost.

The procedure choose-best-plan appears in Figure 4. Max-trials-cost is computed as in the procedure choose-small-set-of-best-plans, but with different coefficients, reflecting the fraction of the entire cost we are ready to gamble. One-trial-cost is the cost spend in one iteration; it depends on a compile time parameter hax-Iteratiohs. It is important that MaX-ITERATIOHS be sufficiently large, so that Max-trials-cost will be spent fairly and many

[^3]```
let \(c_{b e s t} \in\) Best-eval-plans be the plan that has the least estimated cost;
set Spent-cost to 0;
while size of Best-eval-plans \(>1\) do begin
 for cach plan \(e^{\prime}\), cxcept \(e_{b e s t}\), COMPUTE statistical confidence \(\mathcal{C}_{e^{\prime}}\) with which the cost of \(e^{\prime}\)
 exceeds the cost of \(e_{b e s t}\) plus \(\varepsilon\) percent; suppose \(\mathcal{C}_{e}\) is the lowest;
 discard all plans \(e^{\prime}\) in Best-eval-plans with \(\mathcal{C}_{e^{\prime}} \geq\) SIGMIFICAMT_COMFIDEMCE;
 COMPUTE Max-trials-cost as a function of
 Estimated-cost.f best and Bounds-of-estimated-cost.cbest;
 set One-trial-cost to Max-trials-cost/MaX-ITERATIOXS;
 if One-trial-cost > Max-trials-cost - Spent-cost then
 discard all plans but \(f_{b \in s t}\) from Best-eval-plans
 else begin
 increment Spent-cost by One-trial-cost;
 evaluate-optimal-Partition-of One-trial-cost giving costs Cost1 and Cost2
 of work to be spent on estimating costs of ebest and e respectively;
 TAKE additional samples for estimating costs of \(e_{b e s t}\) and \(e\) spending
 Cost1 and Cost 2 respectively and re-estimate the costs of \(e_{b e s t}\) and \(e\);
 if Estimated-cost.e best \(>\) Estimated-cost.e then
 set \(e_{b e s t}\) to \(e\);
 end
end
return \(\epsilon_{b e s t}\)
```

Figure 4: Procedure choose-best-plan
plans will have chance to compete for the first place. Note that, intuitively, there is a trend in the iterations to eventually discard $c$ as the confidence intervals of costs for $\epsilon_{b e s t}$ and $e$ get smaller, since it becomes more likely that the confidence $\mathcal{C}_{e}$ will exceed the confidence $\mathcal{C}_{e^{\prime}}$ of some other plan $\boldsymbol{e}^{\prime}$. On the other hand, max-Iterations should not be too large, because of the overhead this can create. Finally, evaluate-OPTIMAL-PARTITION-OF One-trial-cost means, intuitively, maximizing the confidence of the decision which plan, cbest or $e$, is the best. This is done by minimizing the variance of the random variable Estimated-cost.e-Estimated-cost. $\epsilon_{b e s t}$, which is a function of the sizes of the samples for $e_{b e s t}$ and $e$, subject to the constraint that the total cost on sampling is One-trial-cost. This problem usually translates to minimizing a quadratic function in one variable and can be easily done.

## 8 A Constraint Sort Join Algorithm

We adapt the algorithm of $[9,37]$ for $n$-dimensional rectangle intersection to perform an analog of the sorted equijoin. It is not possible to sort directly on a
constrained attribute, since each tuple allows a range of values for that attribute and tuples may overlap. Instead we sort the endpoints of the ranges in the tuples, using not only the value of the endpoint, but also the type of the boundary: whether it is a point or a lower or upper boundary, and whether the boundary was caused by a strict or nonstrict inequality. (We must, assume here that, for each common attribute $X$ of type constrained real in the relations, there is a range for $X$ in the canonical form of each relation.)

The value value(e) of an endpoint $e$ may be any real number, $-\infty$ or $\infty$. For each endpoint $c$, there is a boundary type bdry(e), and these are ordered as follows: upper-strict < lower-nonstrict < point < upper-nonstrict < lower-strict. We write $c_{1} \preceq f_{2}$ if value $\left(e_{1}\right) \leq \operatorname{value}\left(e_{2}\right)$, or value $\left(e_{1}\right)=$ value $\left(r_{2}\right)$ and $b d r y\left(e_{1}\right) \leq b d r y\left(e_{2}\right)$.

To simplify the exposition, we assume initially that there is only one common attribute which is not regular in both relations. For each relation $P$, lei $p$ be the relation on the common attributes which is the projection of $P$ except that there are, in general, two elements of $p$ corresponding to each tuple, one for each endpoint ${ }^{\S}$. (In practice it is not necessary to construct

[^4]construct $p$ and y from input relations $P$ and $Q$; S-sorl $p$ and $q$;
muflulia Output lo $\|_{\text {; }}$
inllialive Active-set-for-p to $\emptyset$;
'milialise Active-set-for-q $10 \|$;
milializi $i$ and j tol;
ropest
if $p_{i} \leq q_{j}$ then begin
if $p_{i}$ is a point then ald tuplr $\left(p_{i}\right) \bowtie$ active-set-for-q to Output;
if $p_{i}$ is a lower boundary then begin
add luple $\left(p_{i}\right)$ to Active-set-for-p; add tuplc $\left(p_{i}\right) \bowtie$ Active-set-for-q lo Output end:
if $p_{i}$ is an uppor boundary then begin remone luplr $\left(p_{i}\right)$ from Active-set-for-p; incroment i:
chal
elsis:
We perform the same steps as in the then clause, with the roles of $p$ and $q$, and $i$ and $j$ swapped;
until $p$ or $q$ has been exhaustod;
return Output

Figure 5: A sort join algorithm
$p$ explicitly.) We say that $p$ is $\preceq$-sorted if it is sorted according to the lexicograplic combination of the order on the regular attributes and $\preceq$. We write tuple $\left(p_{i}\right)$ to denote the tuple of $P$ that produced the $i$ 'th element of $p$. We say $p_{i} \preceq q_{j}$ if $p_{i}$ and $q_{j}$ agree on values for the regular attributes and the valur of $p_{i}$ on the remaining attribute $\preceq$ the value of $I_{j}$ on that attribute.
'The algorithon (Figure 5) first $\preceq$-sorts $p$ and $q$ corresponding to the input relations $P$ and $Q$. It then applies the plane-sweep technique [9], traversing the ridpoints in order from least to greatest. At each stage of the swerp, Active-set-for-p (Active-set-for-q) loolds the set of tuples of $P^{\prime}(Q)$ which contain the current condpoint. If the current endpoint $e$ comes from $p$ throluple(f) $\bowtie$ Active-set-for-q must be contained in $P \bowtie Q$, and similarly if $\varepsilon$ comes from $q$. We record this information at lower endpoints only, since upper cudpoints only duplicate the information. The remainder of the algorithon updates Active-set-for-p and Active-set-for-q.

When we have only one dimension (that is, only one constrained attribute) then Active-set-for-p and Active-set-for-q can be simple set data structures. For two dimensions, wo want to filter out
from Active-set-for-q those tuples which fail to intersect the current luple due to the ranges on the second constrained altribute. The appropriate data structure is the interval tree [ 9 ] which allows us to do this filtering efficiently. In general, for d dimensions we use a combination of range and interval trees $[9,37]$. This gives the algorithm for a $d$-dimensional sorted join a worst-case time of $O(N \log N+M \log M+$ $\log ^{d-2} N+\log ^{d-2} M+K$ ), and a worst-case space cost of $O\left(M \log ^{d-1} M+N \log ^{d-1} N\right)$, where $P$ has $M$ tuples, $Q$ has $N$ tuples and the output relation has $K$ tuples.

We refer to the regular attributes and the first constrained attribute as scanned attributes and the remaining attributes, those for which filtering is done inside the active sets, are called active attributes.

## 9 Optimization for Constraint Select-Project-Join Queries

In this section we show how to use the gambling algorithm to evaluate constraint join-select-project queries. We consider queries having up to two relations, that is, of the form

$$
\begin{array}{lll}
\text { CONSTRUCT } & \begin{array}{c}
a(\bar{X}) \\
\text { FROM }
\end{array} & b(\bar{Y}), \\
& & c(\bar{Z}) \\
& \text { WHERE } & \operatorname{cons}(\bar{W})
\end{array}
$$

where $b$ and $c$ are constraint relations and cons $(\bar{X})$ a set of linear constraints. We propose the following evaluation scheme:

1. Decide on whether to use a regular join, or a constraint sort join or constraint indexed join algorithin.
2. For a constraint sort join choose scanned attributes that should include all regular (in both relations) common attributes, in addition to one selected constrained common attribute. Choose also a set of active common attributes. If the set of scanned attributes is already ordered, decide on whether selections are to be done on this relation (in the process probably destroying the ordering).
3. For an index join, decide which of the relations is to be scanned, and choose an index on common attribute(s) for the other relation. The selections before the join will be done only on the scanned relation.
4. Choose a subset $T$ of attributes from $\operatorname{cons}(\bar{W})$ and for each altribute $V \in T$ extract from cons

The range on $l^{\prime}$. Only nseful attributes should be chosen in $T$, that is. those that appear in at lrast one of the relations on which selection is to to done. Let $s$ denote the set of all attributes for which there are non-trivial range constraint.
5. For each relation $r$ on which selection is 10 be dome,
(a) Pirk an index whoser selection condition can be explicitly checked by the range constraints on attributes in $\mathrm{s}^{\prime}$.
(b) Using this index, select all tuples from $r$ which satisfy the range constraints.
(c) From these tuples filter out those which do mot satisfy simply checkable constrambs w.e.t $r$ in cons and the extracted range constraints.
(d) Project out all regular altributes in $r$ that do not appeat elsewhere in the query, climmal ing duplicales."
6. Perform the chosen join algorithm on the resulting relations.
7. Fibler out all tuples in the new relation that do not satisfy constraints in coms that are simply cheokable w.r.t. the new relation, or do not satisfy the exiracted range constraints.
8. Project out all regular ateributes in the new retation that do not appear in cons nor in the answer relation a, eliminating duplicates.
9. For each remaining tuple $t$, filter out those for which the ronjunction of $t$ and roms is unsatistiable.
10. From the remaining tuples project out regular attributes that do not appear in a, eliminate duphcates and put the resulting tuples into the required for a canonical form;

Each series of choices in the evaluation scheme gives rise to a possible evaluation plan. We discuss only briefly the trial evaluation of a particular plan $e$, and estimating its cost, referred in the ganbling algorithm as "DO-TRIAL-EVAL-OF e" and "FIND Estimated-cost.c." First we extract ranges from com.s for variahles in $T$ in Step 4 . Then, we take a sample. of tuples from the relations on which selection is to be done. Exactly as in the case of select-project query in Soction if we estimate the number of tuples satisfying

[^5]1.he selecting condition of the index, and the momber of tuples afior the additional filtering and projection in Step 5(b,c) and using this information the cost of the index and the filtering.

Estimation of the cost of the join in Step 6 depends on the join medhod. For indexed join, we use the sam ple from the scamed relation. 'This sample is likely to have beron taken already for csimmation ol selecten cost. Then we actually join each luple in life sample with the second relation using the chosell index. It is done in order to measure the average cost per tuple and to estimate the number of tuples in the result of the join in Step 6. For sort..join, we take sample of pairs of tuples from the relations $b$ and $r$. Note that in order to get sullicient accuracy of the estmation the size of the sample should be significantly larger than that of indexed join. We use this sample to estimate the the average mimber of fuples in b that caulbe jomed wilh Onfe luple in 8 in the sorl joill and viee versa and then to sublestituto therse mmbers in the formula for ther sent join cost. The cost cstimation of the remaining steps is done by actually performing this steps on the wsult of the "simmated cost", and then normalizing the costs, amalogically to what is done in the estimation for select-projert gurics. Here too we use statisti cal tests to compuite Bounds-of-best-total-cost of r with signilicant statistical conlidence.

The only non-trivial part of the estimation of trial evaluation cosi, referred in the gambling algorithon ats "ESTIMATED-COST-OF-DO-TRIAL-EVAL-OF $r "$ is esti mating range extraction costs. 'This is dome cxarlily as in the case for select-project queries.

Finally we provide some heuristics on the order in which evaluation plans are to be considered in the gam bling algorithon. We propose to consider plans carlar whon they:

1. require fewer additional range extrachions.
2. anoong the plans with indexed join, use a "stronger" index, where "stronger" in delined as for select-project queries. For the plans with sort join consider as follows. If there is at lasi ond attribute to be active, consider first the plans with smaller number of active attributes. Among those, consider first those with active attribute that is regular in one relationll.
3. have stronger indices for selection.
4. use an indexed join when picking a plan to be the first.

[^6]5. alloug plans that are nol distinguished by the previolls criboria, pick any one, preserving fairoses (for example pick one at random).

## References

|1| M.MI. Antahan el. al., System R: A Relational Approarl to Database Management, $A(M$ Trans. on Dalahuse Siysitemes 1, 2, ! $1: 37,1976$.
|: P.A. Bernstoin \& N. Coodman, The Power of Natural Somijoins, sla M Journal on Compating 10, 4, T5 571.1981.
[.3] A Buodsky, (. Lassc\% \& J. I. Lanse\%, Separability of Dolyhodra amt a New Approach to Spatial Stor


[1] A. Brockay \& Y. Sagiv, Inference of monotonicity consetaints in datalog programs. Proc. AC'M
 Dutabuse Sigste ms, Philadelphia, I989, 190 199.
 tions of lufimite Query Answers, froe. As:M shle (1) (1). 17.4-183. 19x!.
(ij) I.S. ('hakravarthy \& I. Minker, Multiplu Query Processing in Deductive Databases using Query (iraphs, Prom. VIOR, $3 \times 4$ 391, 1986.
[i] O.I). ('hamberlin et. al., Support for Repetitive 'Iransactions and Ndhoc Querics in System R, ACM Trans. on Databuse Systeme (6, 1, 70 94, 1981.
|x| D. Damiels et. al., An latroduction to Distributed Qury ('ompilation in R*, IBM Research Report. RIBMIT, I9x:
[9] H. lidetsbrumber, A new approad to rectangle intersections, late II, Intermational fournal of Computer Mallumatics, 13, 221 229, 1983.
 tational Datahase Mallagement System, Proc. S/CiMol), 23 34, 1979.
[11] A. (intlman, R-trees: A dynamic index structure for spatial searching, froc: ACM Sl(iMOD, 4757, 198. 1.
| 2 | P S. V. Hall, Optimization of a Simgle Relational Fixpression in a Relational Database, IBM Journal of Reseatch aral Development 20, 3, 244~257, 1976.
[1.3] M.R. Hansem, B.S. Hansen, P. Lucas \& P. van Limde Boas, Integrating Relational Databases and Constrain Langnages, fomputer Langnages 14, 2, 63 r. $19 \times 9$.
[14] J. Mallar, S. Michaylov, P. Stuckey \& R. Yap. The ( $A A^{\prime}(R)$ language and System, AC'M Transalions on Programmang Languages, 14(3), July 1992, 339 395.
[15] J. Jaffar \& J-I. Lasse\% Gomstraint Jogic Programming, Proc. Conf. on Principles of Programmenty Languages, 1987, 111 - 119.
[16] J. Jaffar, M.J. Maher, P.J. Stuckey \& R.H.C. Yap, Output in CLP(R), Proc. Int. Conf. on Fifth Generation Computer Systcms 1992. Tokyo, Japan, Vol. 2, 1992, 987-995.
[17] A. Kilug, On Conjunctive Queries Containing Inequalities, $J A C M 35,1,146 \cdot 160,1988$.
[18] P. Kanellakis, (i. Kuper \& P. Revesz, Constraint Qnery Langnages, Journal of Computer and System iccences, to appear. (A preliminary version appeared in Proc. 9th P(OD.S, 299 313, 1990.)
[19] D. Kemp \& P. Stuckey, Bottom Up Constraint Logic Programming Without Constraint Solving, Technical Report, Dept. of Compuler Science, University of Melbourne, 1992.
[20] 1). Kemp, K. Ramamohanarao, I. Balbin \& K. Meenakshi, Propagating Constraints in Recursive Deductive Databases, Proc. North Americun Conference on Logic Programming, 981-998, 1989.
[21] P. Kanellakis, S. Ramaswamy, D.E. Vengroff \& J.S. Vitter, Indexing for Data Models with Constraints and Classes, Proc. PODS, 1993.
[22] J-1. Lassez, Querying Constraints, Proc. 9th PODS, 288 298, 1990.
[2:3] J-L. Lassez, 'T. Huynh \& K. McAloon. Simplification and Elimination of Redundant Lincar Arithmetic Constraints. In Proc. North American Conforencr on Logic: Programming, Cleveland, 1989. pp. (35) 51.
[24] J-L. Lassez \& K. McAloon, A Canonical Form for Generalized Linear Constraints, Journal of Symbolic Computation, to appear.
[25] R.J. Lipton \& J.F. Naughton, Query Size Estimation by Adaptive Sampling, Proc. 9th PODS, 40-46, 1990.
[26] A. Levy, Y. Sagiv, Coustraints and Redundancy in Datalog, Proc. 11-th PODS, 67-80, 1992.
[27] M.J. Maher, A Transformation System for Deductive Database Modules with Perfect Model Semantics, Proc. 9th Conf. on Foundations of Software Technology and Theovetical Computer Science, Bangalore. India, LNCS 405, 89-98, 1989.
[28] Priority Scarch Trees, SIAM Journal of Computing 14(2), May 1985, 257-276.
[29] L.F. Mackert \& (i. M. Lohnan, R* Optimizer Validation and Performance Evaluation for Local Queries, Proc. S/CMOD), 84 95, 1986.
[30] J. Minker, Scarch Strategy and Selection Function for an Inferential Relational System, ACM Trans. on Database Systems 3, 1, 1 31, 1978.
[31] I.S. Mumick, S.J. Finkelstein, H. Pirahesh \& R. Ramakrishnan, Magic Conditions, Proc. 9th PODS, 314 330, 1990.
[32] F.P. Palermo, A Database Search Problem, in: Information Systems COINS IV, J.T. 'Tou (Ed), Plenum Press, 1974.
[33] R.M. Pecherer, Ffficient Evaluation of Expressions in a Relational Algebra, Proc. ACM Pacific Conf., 44-49, 1975.
[34] F.P. Preparata \& M.I. Shamos, Computational (icometry, Springer-Verlag, 1985.
[35] R. Kamakrishan, Magic Templates: $\Lambda$ Spellbinding Approarh to Logic Programs, Journal of Logir Programming, 11, 189-216, 1991.
[36] N. Roussopoulos, D. Leifker, Direct spatial search on pictorial databases using packed R-trees, Proc. A (' $M$ SIGMOD, 17-31, 1985.
[37] H.W. Six \& D. Wood, Counting and reporting intersections of $d$-ranges, IEEE Trans. Computing C.31, 181 187, 1982.
[38] J.M. Smith \& P.Y. Chang. Optimizing the Performance of a Relational Algebra Database Interface, Commanications of the $A C M 18,10,568-579,1975$.
[39] T. Sellis, N. Roussopoulos, C. Faloutsus, The $R^{+}$. tree: A dynamic index for multidimensional objects, Proc. 13th Int. Conf. Very Large Dala Bascs, 507 518, 1987.
[40] D. Srivastava, Subsumption and Indexing in Constraint Query Languages with Linear Arithmetic Constraints, Annals of Mathematics and Artificial Intelligence, to appear.
[41] D. Srivastava \& R. Ramakrishnan, Pushing Constraint Selections, Proc. Ith PODS, 301-315, 1992.
[42] K.-Y. Whang \& R. Krishnamurthy, Query Optimization in a Memory-Resident Domain Relational Calculus Database System, ACM Trans. on Database Systems 15, 1, 67 95, 1990.
[43] E. Wong \& K. Youssefi, Decomposition - A Strategy for Query Processing, ACM Trans. on Database Systems 1, 3. 223-241, 1976.
[44] M. Yannakakis, Algorithms for Acyclic Database Schemes, P'roc. VLDR, 82 94, 1981.


[^0]:    I'rimixaion to copy withont fee all or part of this material is granterd providerd that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publicationand its date appear, and notice is given that copying is by permission of the Very Large Data Hase Endownent. 'To copy otherwise, or to republish, requires a fee and/or special permission from the Fandownent.

    Proceedings of the 19th. VLDB Conferonce, Dublin, Iraland, 1093.

[^1]:    *In [18], existential quantifiers are not allowed.

[^2]:    ${ }^{\dagger}$ Typically, $f(m, k)=O(\log m+k)$.

[^3]:    ${ }^{\text {t }}$ Subprocedures requiring additional explanation appear in the algorithm in small capitals.

[^4]:    SIf a range is, in fact, a point then $p$ contains only one element for that tuple.

[^5]:    T Two tuples are duplicate if they are identical including the canonical form of the constraints.

[^6]:    Iliecall that since we always put regular common altributes to be stamed, an active attobute ramot be regular in both relations.

