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Abstract

The declarativeness of relational query languages is
very attractive for developing applications. However,
many applications also need to invoke external func-
tions or to access data that is not stored in the
database. It is not hard to express references to such
foreign funetions in the query language. However, the
issue of cost-based optimization of relational queries
in the presence of such foreign functions has not pre-
viously been addressed satisfactorily. In this paper,
we descenibe a comprehensive approach to this problem.
Our key observation is that the optimization must take
into account semantic information about foreign func-
tions. ‘Therefore, we provide a simple declarative rule
language to express such semantics. We present algo-
rithms necessary for applying the rules and for gen-
crating the space of equivalent queries. The equiv-
alent queries provide the oplimizer with an enriched
excention space. We show how we can modify the tra-
ditional join reordering algorithm based on dynamic
programming to obtain an optimal plan from the exe-
cution space. We provide necessary extensions to the
cost model that are needed in the presence of foreign
lunctions.
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1 Introduction

Relational database systems provide the ability to con-
veniently query the data stored in their databases.
However, in many applications, there is a need to in-
tegrate data and operations that are ezternal to the
database (let us refer to them as foreign functions).
For example, it will be convenient to invoke UNIX L-
brary functions as part of a relational query. Moreover,
for many problem domains, highly tuned applications
exist. The ability to exploit such existing applications
is important since redevelopment can be prohibitively
expensive. Furthermore, for many applications, only
part of the data that is needed may be stored in the
database and much of the data may reside externally.
Access to such external data is provided by a set of
interface routines. For example, many specialized Geo-
graphic Information Systems (GIS) are available today
that provide the ability to store and access geographic
data. On the other hand, information on attributes
(c.g., population of a city) is usually stored in a re-
lational database. Thus, for GGIS as well as for other
applications, the ability to invoke foreign functions in
a relational query is very useful.

The ability to answer relational queries efficiently re-
lies on the ability of the optimizer to choose from the
repertory of evaluation options. Therefore, when we
add the ability to invoke foreign functions, we also must
provide necessary extensions to the optimizer to ensure
efficient execution of queries. In this paper, we will ad-
dress the optimization and related issues for relational
queries that invoke foreign functions. There are other
dimensions to the problem of supporting foreign func-
tions (e.g., format conversion, complex objects), that
we do not address in this paper.

1.1 Motivating Application

To illustrate the key challenges to optimization intro-
duced by foreign functions, we briefly describe an appli-



cation that allows us to access information about busi-
nesses and their locations in the Bay Area. This appli-
cation has been built in the Papyrus project [CHK+91]
at HP Laboratories. The details of this application ap-
pear in [KNP92].

The application is built on top of ETAK! MapEnginc
and a relational storage manager. The MapEnginc is a
geographic data manager? that provides the ability to
store and query maps.

The relational store is used to maintain attribute in-

formation about businesses. In particular, the relation
Business contains information about the type of husi-
nesses, their telephone numbers as well as addresses.
The MapEngine is used to store the locations of the
business establishments in the Bay Area. The func-
tion Map retrieves all points? in the map that corre-
spond to business establishments. Similarly, a function
Map_Restaurant is used to access points in the map
that correspond to all restaurants in the Bay Area.
The boolean function Inside is used to test whether
a given point is within a given rectangular window.
The MapEngine also provides an additional function
M apclip that, given a window, returns all points, cor-
responding to business establishments in the map that
are in that window.

For our application, we need to support queries that
span the relational system as well as the MapEngine.
An example of such a query is to be able to retricve
names of restaurants that are located within a certain
window in the map. In order to be able to answer
such queries, each tuple of Business has an attribute
which acts as an index for accessing information in the
MapEngine. Similarly, each record in the MapEngine
points to the tuple in the table Business where the
altribute information about the corresponding husiness
establishment is maintained.

1.2 Challenges for Optimization

The above application brings about two fundamental
requirements on optimization, as discussed below.
First, the semantic information associated with
foreign functions needs to be captured and exploited
for optimization. This is illustrated by the following
example. Additional examples of semantic information
that is useful, in the context of our application, appear
in Section 3. In that section, we will show how such se-

'ETAK Inc. designs vehicle navigation systems and produces
digital map databases.

2For our application, we also integrated another spatial data
manager. For brevity, we will not distinguish between the two
spatial data managers.

3We will represent a point or a window as a single argument;
althougl: a variety of representations is possible.
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mantic information can be represented in a declarative
fashion.

Example 1.1: Let us consider the query to find, given
a window, all points in the map that are m the win-
dow. The query can be answered by invoking Map aud
testing, with the function Inside, that cach of the re
trieved locations is inside the window. The query ean
also be answered by invoking Mapelip. Since the use of
M apelip can greatly reduce the cost of evaluation of the
query, the above semantic inforiation is significant. il

Next, we observe that the decision to maodily a given
query using semantic information may need to be cost-
based. In other words, whether apphication of the se
mantic knowledge reduces cost of evalnation depends
on the cost parameters and thus blind application of
semantic information may sacrifice optimality, as the
following example illustrates. Thercfore, we must have
an algorithm for cost-based optimization in the pres
cnce of scmantic information.

Example 1.2: Let us consider the query to tind all
restanramts in the downtown Palo Alto. This query
can be answered by selecting all restaurants from
the table Business and then invoking the function
Mapelip.  Alternatively, we can invoke the function
Map_Hestaurant and then select the restaurants in
downtown Palo Alto by invoking Inside. These two
queries are equivalent, but the optimal plan for one of
the queries may be better, even by an order of magni-
tude, cornpared to the optimal plan for the other query,
depending on whether the indexing effect of restriet
ing locations to downtown Palo Alto is more eflective
than indexing based on restricting the businesses to be
restaurants. §

Thus, in the presence of foretgn functions, there may
be multiple ways to answer the same query and such
semantic information is extremely valuable for query
optimization and must be captured. However, the ap-
plication of such semantie information for query opti
mization needs to be cost-hased.

1.3 Overview of our Approach

In this paper, we present an approach Lo optimization
in the presence of foreign functions that takes into ac-
count the ohservations made above. We allow the se
mantic information to be specified in a declarative way
(using a simple extension to SQL) by using rewrite rules
with clean semantics. The rewrite rules are used to gen-
erate alternative equivalent gueries. An optimal plan
is picked by our optimizer in a cost-based fashion that
considers all such queries.



In order to realize our approach to oplinization, sev-
eral technical challenges need o be addressed. The
declarativeness of the rules shifts the responsibility of
deternnning applicability of the rules to the optimizer.
Thus, our algorithm must ensure that application of a
rule results in 4 query equivalent to the given query
{Section 3). Next, we must generate the set of cquiva-
lent queries using the rewrite rules (Seetion 1), Finally,
we need o consider the problem of choosing among
the optimal plans of these equivalent queries. The last
step requires modifications to the well-known join re-
ordering algorithm (as in System R [SACH79]) that
uses dynanic programming approach (Section 5). The
presenee of foreign funetions introduces other exten-
sions Lo query processing as well as to the cost model
(Sections 6 and 7).

The key element. of our approach is the use of a
declarative langunage for rewrite rules. We will com-
ment on the pros and cons of such an approach in Sec-
tion 8. Although our approach requires enhancements
to the existing relational optimizers, it does not, require
an architectural redesign. ‘

2  Queries, Foreign Functions

We will consider conjunclive queries for the purpose
of this paper. Conjunctive queries correspond to the
subset of SQL which has the following form. Observe
that the the WHERE clause is a conjunction of conditions.

SELECT columnlist FROM Tablelist
WHERE condl AND ... AND condk

We observe that every conjunctive query is a flattened
select-project-join (SPJ) query. This subset of SQL is
widely used.

A reference to a foreign function may occur as a con-
dition, or as a table, or as a function in a SQL query.

Example 2.1: Let us consider a slightly modified ver-
sion of the query that was informally stated in Exam-
ple 1.1, Let us assume that we have a table BUSINESS
that has five altributes: NAME, TYPE, EARNING, SIZE
and ETAKID. The map on MapEngine is modeled as a
foreign table MAP consisting of attributes ETAKID and
LOCATION. The attribute ETAKID in both the tables
refers to the key in the MapEngine. Recall from Ex-
ample 1.1 that Inside acts as a condition that checks
whether a point is within a window. Therefore, it
can be represented as a condition in the WHERE clause
of the query.  Finally, we have a foreign function
EXPECTED-REVENUE which takes the size of a restau-
rant as an input argument and estimates the average
expected earning of a restaurant. The following query
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finds all restaurants that are in the map in the window
w whose earnings are better than expected

SELECT BUSINESS.NAME,

FROM BUSINESS, MAP

WHERE BUSINESS.TYPE ‘Restaurant’

AND BUSINESS.ETAKID MAP .ETAKID

AND INSIDE(w, MAP.LOCATION)

AND BUSINESS.EARNING >
EXPECTED-REVENUE (BUSINESS.SIZE)

MAP.LOCATION

For notational convenience, we will represent con-

Junctive queries as domain calculus expressions as is

done in nonrecursive Datalog [UlI88]. In domain-
caleulus, a conjunctive query is represented as a set
of conjuncts (also called literals). Thus, references to
either table, function or condition in the SQL state-
ment will appear as a conjunct. The mapping to such
a domain-calculus representation is straight-forward.

Example 2.2: The domain-calculus representation for
the query in Example 2.1 is:

Query(name, location) : —
Business(naimne, Restaurant, earn, size, eid),
Map(eid, location), Inside(w, location),

Ezp_Rev(size, exp), earn > exp
The constants in the query are in typewriter fonts.

In our notation, there are no explicit equality clauses.
Instead, the equalities are implicitly represented as
cquality of variables in the expression. Like SQL, a
query evaluates to a bag of tuples *. As illustrated
in Example 2.2, a reference to foreign function in the
domain-calculus representation appears as a conjunct.
Therefore, we say that foreign functions are modeled
as foreign lables (We will use the terms foreign func-
tions and foreign tables interchangeably). Despite the
fact that representations of a foreign table and a stored
table appear syntactically similar, the distinction be-
tween the two will need to be drawn for query evalua-
tion as well as for query optimization.

A foreign function may have safety constraints.
Safety constraints are needed to ensure that during in-
vocation, the foreign function is passed values to its
“input” arguments. For example, before the conjunct
Inside in Example 2.1 is evaluated, both its arguments
need to be bound. Such safety constraints need to be
specified when the foreign function is registered with
the database.

4Note that the above is unlike the approach typically used
in deductive databases, where a set semantics is associated with
such a notation.



3 Rewrite Rules

The objective of the rewrite rules is to capture seman-
tic information associated with foreign tables and their
relationship to database tables. This information will

alent® to the given query. Subsequently, a cost-based

aviany fnsm

optimizer constructs an optimal plan for a guery from
the execution space of equivalent queries.

The language for expressing rewrite rules is declar-
ative and requires simple syntactic extensions to SQL.

Roughly speaking, a rewrite rule has the format:

REWRITE QUERY1 AS QUERY2

where QUERY1 and QUERY2 are relational queries such
that the result relations have the same arity. Since in
this paper, we are considering only conjunctive queries,
we will adopt the following notation for rewrite rules.

L(x,y) - R(x,3)

The expressions L(x,y) and R(x,z) are conjunctive
expressions and will be called the left-hand side and
the right-hand side of the rule respectively. We note
that x, y and z are ordered sets of variables. Any
variable that occurs in either side of the rewrite rule is
called an universal variable (e.g., any variable in x).

3.1 Semantics

Our intent is to use rewrite rules to derive semantically
equivalenl queries. There are two aspects of semantics
associated with a rewrite rule.

First, a rewrite rule L(x,y) — R(x,z) asserts that
over any database, the queries @; and Q,, as defined
below, result in the same bag of tuples. In other words,
Q: and @, are equivalent (denoted @y = Q).

Qi(x) L(x,y)
Q- (x) R(x,z)

Observe that only the universal variables occur as pro-
jection variables of @, and Q.

Next, a rewrite rule also specifies a rule for deriva-
tion of a new query. It says that an occurrence & of
L(x,y) in a query may be replaced by the subexpres-
sion R(x,z) after appropriate renaming to derive a new
query. The arrow in the rewrite rule is used to indicate
that only an occurrence of the left-hand side of the rule
should be substituted by the corresponding occurrence

5We say that two queries are equivalent if they result in the
same bag of tuples over any database.

Sidentical to an expression upto renaming of variables or sub-
stituting a constant for a variable. !
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of the right-hand side {and not vice-versa) to generate
equivalent queries. By the notation Q =, @', we de-
note that Q' is derived from Q using the rewrite rule
”

The semantics of the rewrite rule, as discussed above,
imposes directionality. Thercfore, to express that ei-
ther left-hand or right-hand side of the rule can he sub
stituted by the other to derive a new query, we ueed
two rewrite rules. For brevity, we will express that by a
bidirectional rule using the notation L(x,y) «— R(x,z).

Example 3.1: Consider the rewrite role in Exam
ple 1.1. We will represent that rewrite rule as

Map(cid, loc), Inside(window, loc)

~— M apelip(eid, loc, window)

Note that the safely constraint requires the last argu
ment of Mapelip to be bound. In this example, the
variables eid, loc and window are all nniversal vari-
ables. The semantics imply that, over any database,
queries () and Q.. must result in same bag of tuples,

Qi(eid, loc, window) : —
Map(eid, loc), Inside(window, loc)

Q. (eid, loe, window) : — Mapelip(cid, loc, window)

We also observe that the left-hand side of the rewrite
rule has an occurrence in the query @, given below.
Thus, using the above rewrite rule (say r), we derive

the query @', i.e, Q =, (.

Q(name,loc) : ~

Business(namne Restaurant, carn, eid),
Mup(cid, loe), Inside(w, loc),
Intersect(wl, w2, w)

Q'(name,loc) : —
Business(name,Restaurant, carn, eid),
Mapelip(eid, loc, w), Intersect(wi, w2, w)

Example 3.2: The following rule is used informally
in Example 1.2. It says that in order to obtain loca
tions of restaurants, we cau either take a join hetween
Business and Map or can invoke Map_Restaurant:

Business(name,Restaurant, earn, sizc, ¢id),
Map(eid, loc) & Map.Restaurant(cid, loc)

In this example, eid and loc are universal variables, Il



Example 3.3: The following rule for MapEngine says
that ijnstead of checking whether a point belongs to
cach of the two given windows, we can check whether
the point helongs to the intersection of windows.

Iuside(w]l, point), Inside(w?2, point)

— Inside(w, point), Intersect(wl, w2, w)

Using this rule, the problem of finding all businesses
in multiple windows can be reduced to the problem of
finding all businesses in the intersection of the windows.

Example 3.4: Assume there is an index on Map for
a given eid. We can refer to the access function for
the indexed scan by Mapwithid(eid,loc). In order to
ensure that the optimizer takes the indexed scan as a
possibility, we specify the following rewrite rule:

Map(eid, loc) — Mapwithid(eid, loc)

The safety constraint ou Mapwithid requires eid to be
bound. §

3.2 Sound Application of a Rewrite Rule

Let us assume that Q =, Q'. Since our objective is
to use the rewrite rules for query optimization, we are
intercsted in @' only if it is equivalent to Q. The fol-
lowing example shows that not all derived querics are
necessarily equivalent to the given query.

Example 3.5: We observe that the query @ has an
occurrence of the left-hand side of the rewrite rule in
Example 3.2,

QUloe) : -
Business(bizname, Restaurant, earn, size, eid),

M ap(eid, loc), Owner(bizname, bob)

lHowever, replacing the occurrence with the right-hand
side of the rewrite rule results in query @', which is not
semantically equivalent to Q. '

Q)'(loc) : —
M ap_Restaurant(eid, loc), Owner(bizname, bob)

In the above example, the crux of the problem is
that the seiantics of rewrite rules guarantees that the
left-hand and right-hand sides of the rewrite rules are
cquivalent over universal variables only. Thus, in order
to ensure that the queries that we derive are semanti-
cally equivalent, we must ensure that only appropriate
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occurrences of the left-hand side of the rewrite rule in
the query are replaced. It turns out, for a rewrite rule
L(x,y) — R(x,z) to have an appropriate occurrence
in a query @, the latter must have the form:

Q(u) : ~L(v,w),G(t)

where the set of variables w is disjoint from the set
u as well as the set t. Note that (7(t) represents the
conjunction of the rest of the literals in the query and
t represents the set of all variables that occur in GG. If
the query has the above form, then we can derive an
equivalent query Q’.

Q’(u) : —R(v,s),G(¢)

The following definition of sound occurrence captures
appropriate occurrences. The definition is simplified
for presentation and assumes that there are no inequal-
ity conditions in the query. A complete description ap-
pears in [CS93].

Definition 3.6: Let [ — r be a rewrite rule. An occur-
rence I’ of l in Q is a sound occurrence if the variable
renaming is such that (a) only variables in ! that are
mapped to constants in !’ are universal variables (b)
The literals in !’ share with the rest of the literals in Q
only those variables that correspond to universal vari-
ables of 1. ]

Example 3.7: It can be seen that the occurrence in
Example 3.5 is not a sound occurrence. We observe
that the variable bizname is shared with the literal
Owner which is not in the occurrence of the rule. How-
ever, bizname is not a renaming of a universal vari-
able. Let us now consider a variant of the query in
Example 3.5 where the literal Owner is replaced by
Historic(loc) in Q. In this case, there is a sound oc-
currence. I

Using the definition of sound occurrence, we now
present an algorithm for deriving a semantically equiv-
alent query using rewrite rules. A sound application of
a rewrile rule consists of two steps:

1. Identify a subexpression such that there is a sound
occurrence of the left-hand side of the rule in the
query.

Substitute the subexpression with the right-hand
side of the rule (after renaming).

The following theorem, shown in [CS93], is a key prop-
erty of sound application.

Lemma 3.8: Let Q =, Q'. Then, Q'
obtained by a sound application of v to Q.

QifrQ is



We outline an algorithm rewrite(r,Q) to generate
all equivalent queries obtained by sound applications
of the rewrite rule r to a given query. First, we enu-
merate all possible occurrences of the left-hand side of
the rewrite rule to the query. Next, for each occur-
rence, we test whether the occurrence is sound. If so,
we generate the corresponding equivalent query (Sce
Figure 1).

In the worst case, rewrite(r, Q) is exponential in the
size of the query. However, for queries with no repeated
table names, there is a unique sound application of a
rule and the algorithm for sound application takes timne
linear in the combined size of the query and the rewrite
rule. Moreover, the size of the query is typically liinited
to a few literals. In practice, our algorithm for enwmer-
ating sound applications performs satisfactorily.

4 Optimization with Rewrite Rules

The traditional optimization problem is to choose an
optimal plan for a query. However, sound applications
of rewrite rules generate alternatives to a query that are
semantically equivalent. Therefore, the optimization
problem becomes that of picking the cheapest among
the optimal plans of the set of equivalent gueries in a
cost-based fashion. Thus, our optimization algorithm
consists of the following two steps.

1. Generate the set of equivalent queries.

2. Choose the cheapest among the optimal plans for
each query obtained from Step 1.

The Step 2 of the algorithm is accomplished by an
algorithm which extends the System R style of join
enumeration using a dynamic programming approach.
This algorithm will be described in Section 5. We now
describe Step 1 below.

4.1 Generating Equivalent Queries

The set of equivalent queries that are obtained from a
given query by sound applications of rewrite rules will
be referred to as the closure of the query, defined below.
We will present an algorithm to compute the closure.

Definition 4.1: The closure of a query Q with respect
to a set R of rewrite rules is the set of queries:

closure(R, Q) = {Q'|Q Zr Q'8

The symbol Q =5 Q' is used to denote the fact that
@’ has been obtained from Q by a finite sequence of
sound applications of the set R of rewrite rules.
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Example 4.2: Consider the following guery.
QUloc) : —=Map(eid, loc), Inside(wi, loc), Inside(w2, loc)

We can apply the rule in Example 3.3 to generate the
query:

Q'(loc) : = Map(cid, lor),

Inside(w, loc), Intersect(wl, w2, w)

Finally, an application of the rewrite rule in Exan
ple 3.1 results in a query Q7

Q" (loc) : =Mapelip(eid, loc, w), Inlersect(v1, w2, w)

in this example, we have observed a sequence of rule
applications. |

The algorithin to compute the elosure is given in Iig
ure |.

The algorithm gen_closure is ilerative.  During
each iteration, derived queries that were pot ob-
tained hefore, act as the seeds Lo generate addi
tional queries in the current iteration. To generate
quertes, the algorithm repeatedly invokes the function
rcwrite. 'The control-structure of this algorithin is sim
ilar to semi-natve algorithm that is used in deduetive
databases [Ban86].

Lemma 4.3: The function gen.closure(it,Q) com-
putes closure(R, Q).

Assuming that each query hias a bounded length, the
complexity of gen_elosure is polynomial in the size of
1 and closure(l¢,Q). In order to access the relevant
rules efficiently, we maintain the rules in a rule-table
which is indexed on the conjuncts that appear on the
left-hand side of the rule. A detailed discussion of -
plementation is beyond the scope of this paper.

Observe that the termination of gen_closure depends
on whether the closure of the query with respect to a
set of rewrite rules is finite or not. For the applica
tions that we have considered, we found that the clo
sure of a query is typically limited to a few queries
only. Therefore, neither termination nor the size of the
closure posed any problerus. Nonetheless, we have al-
gorithins that test suflicient conditions for finiteness of
closure [(CS93]. These algorithms take time lincar
the size of the sct of rules and the query. In case the
closure is not provably finite, or if we desire Lo restrict
the set of equivalent queries that are generated, we can
do partial enumeration of closure.



Function gen_closure( R, Q)
hegin
S o Q;
IR
repeat
new = (0
for cach ¢ in 4 and » in K do
new = new U rewrite(r, ¢);
endfor
if new C S then return(s);
& = new - 5
S=5ud;
forever
end

Function rewrite(r, Q)
begin
Qr = 0 )
for every sound occurrence A
of rin Q do
Qr = Qr U {AQ}
where Aq is the derived query
due to occurrence 4
endfor
return(Q,)
end

Figure 1: Algorithin to Compute Closure

Partin] Enumeration of Closure: For sclective
enumeration of closure, we can use a budgel to spec-
ily an upper bound on the maximun time spent on
cnumeration. Another alternative is to bound the size
of any query that is used as a seed to generate other
queries. We can also modify the rewrite rules to achieve
partial enumeration. This is illustrated by the follow-
ing example.

Example 4.4 The following rewrite rule expresses the
knowledge that all restaurants in the map are in a win-
dow w. ‘Therefore, if we are asked to find restaurants
that are in any window, we can intersect the given win-
dow with w before we search.

Business(name,Restaurant, carn, size, eid),
Mapelip(eid, loc, window) —
Business(name, Restaurant, earn, size, eid),
Mapelip(eid, loc, small awin),

Interseet(window,w, small_win)

limagine a query which consists of the conjuncts in the
left- hand side of the rewrite rule. It is easy to see that
the closure for this query is infinite,

lHowever, we can represent the rule in Example 4.4
as follows.

Business(name, Restaurant, carn, size, eid),
Mapelip(ecid, loc, window) —
Business(name Restaurant, earn, size, eid),

Speeial M apelip(eid, loc, window)

Our modified rewrite rule contains a new table name
SpecialMapelip.  Unlike the original rule, the new
rule can not be used repeatedly since there is no
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rewrite rule where Special M apelip occurs in the left-
hand side. Thus, the closure is finite. After the
closure is generated, we substitute the expression for
Special Mapelip(eid, loc, window). In effect, we have
avoided generating the entire closure. I

In this example, we have shown how we can treat a
subexpression as a single literal and thereby restrict the
enumecration of closure. The choice of the subexpres-
sion determines the subset of closure that is selected
for enumeration. It can be shown that by using this
strategy, any set of rewrite rules can be rewritten to
ensure that the effective closure is finite.

Pruning the set of Equivalent Queries: The set
of equivalent queries that are generated by gen_closure
are considered by the cost-based optimizer to pick the
optimal plan. Since optimization of queries is expen-
sive, it is appropriate that we eliminate queries that
are not promising, i.e., not likely to yield an optimal
plan. It is possible to designate certain rewrite rules as
always-improving. Thus, if r is always-improving and
if Q =, @', then we do.not optimize @ since it is as-
sumed that @' will always result in a better optimal
plan. For example, the rewrite rule in Example 3.3
may be marked as always-improving. An interesting
approach will be to use crude cost measures to approx-
imate the cost of query evaluation to weed out queries
that are not promising.

5 Choosing an Optimal Plan

The presence of rewrite rules and foreign tables intro-
duces new dimensions to the traditional optimization
problem. First, the presence of foreign tables requires



introduction of new join methods as well as cost mod-
els that are appropriate for foreign tables. Second, the
traditional join enumeration phase must ensure that
only those reordering of the joins are considered which
satisfy the safety constraints. In other words, we need
to ensure that the bindings that are passed to the for-
eign functions satisfy the safety constraints. Finally,
our task is to choose an optimal plan when there are
multiple queries which are equivalent.

In this section, we address the last of the above three
twists to the traditional optimization problem. We will
address the issue of extensions to the cost modei in Sec-
tion 7. ¥For this section, we will assume that the cost
model can assign a real number to any given plau in the
execution space (defined below) and satisfies the princi-
ple of optimality [GHK92, CLRY0], which is implicit in
relational optimizers that use dynamic programming.
We will omit any discussion on the problem of ensur-
ing safety since this is a rather well-studied problem
(See [UNIB8)). ,

The optimization problem is to choose a plan of
least cost from the execution space. The execution
of a query can be represented syntactically as anno-
tated join trees [GHK92] where the the internal node
is a join operation and each leaf node is a database
table’. Thus, the ereculion space consists of the space
of all join trees® for each equivalent query obtained
from Step 1 of optimization {Section 4).

Since the execution space is the union of the exe-
cution spaces of the equivalent queries, we can obtain
the following simple extension to the optimization al-
gorithm:

1. Optimize each query using the traditional algo-
rithm and obtain the best plan for the query.

Choose the cheapest among the best plans ob-
tained in Step 1.

For Step 1, we can use any traditional relational opti-
mizer [SAC*79]. The space requirement for this algo-
rithmn is the maximum space required for optimization
of any of the equivalent queries. However, the algo-
rithm has a poor time complexity since it fails to take
advantage of the common subezpressions among equiv-
alent, queries to reduce the optimization time.

5.1 Algorithm that Reuses Optimal Plans

Our algorithm uses dynamic programming and extends
the well-known join enumeration algorithm in System

“In our case, a leaf node can be a foreign table as well.

8The implementation of our optimizer considers only the {cft-
deep join trees, i.e., join trees where the right child of every join
node is a base table (leaf).
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R [SACY79].  1u that algorithm, the commonality
among the subqueries ¥ of a single query to reduce
the time complexity of the optimization. In our case,
we exploit the commonality among subgueries across
meltiple cquivalent guerics during optimization. Thus,
the key idea is to save and share the optimal plan for
the common subqueries.

The problem of identifying common subgueries he
tween two arbitrary conjunctive querics is computa
tionally hard. However, we detect commonality that
arises duce 1o application of rules. Thus, if we apply the
rule { — r 1o obiain a new gquery Q' from Q, then we
know that @' and @ vust share the subquery consist
ing of the literals (Q — ). Such shared subqueries can
he detected without any overhead during appheation of
the rules. The following cxample illustrates this tech
nique. The optimal plan for such conmmon subqueries
are shared.

Example 5.1: Consider an application of the rewrite
rule in Example 3.2 to query @ that results in the
query Q. The MapEngine file Historic contains
the focation of all historic sites and the foreign table
Price(loc,amount) provides the value of the real os
tate.

Q(amount) : —Historic(loc),
Business(biznamne, Restaurant, carwn, cid),

Map{eid, loc), Price(loc,amount)

Q' (amount) : —Historic(loc),

Map_Restauranit(eid, loc), Price(loc, ainount)

Observe that both the gueries have the same first and
last. literals in the body. This commonality is detectod
at the time the rewrite rule is applied by observing
which literals arc left unchanged by the application of
the rule. Thus, the optimal plan for the conmon sub.
query flistoric(loc), Price(loc, amount), is used while
optimizing the query Q as wellas @'. §

It is well-known that dynamic programming based
algorithins can be presented either as top-down or
bottom-up (sce’ {CLR90]). A top-down dynamic pro-
gramming based algorithm is presented in Figure 2.

We optitiize each query one at a time. The optimal
plans for all shared subquerics are stored in a plan la-
ble and are never rederived. Hashing is used to look up
the plan table. Thus, whenever, a plan necds to be con-
structed, we consult the plan table to check whether the
plan already exists. We have omitted the base cases in

"We use the term subguery interchangeably with the term
subexpression of a query.



Procedure OptPlan(Q) :

begin
if caistsoptimal(Q) then return;
Let (2 = (ql [ 'lﬂ);
Let S = Q — {a)s

for each i do

OptPlan(S;);
% = Plan for Q fromn S; and ¢;
endfor;

Choose best among P
and add to plan table.
end

Figure 2: Join Enumeration Algorithm

Opt plan where the query has al most two literals (i.e.,
asingle join). The above cases as well as the generation
of % from S; and ¢; (See Figure), are handled by a lo-
cal optimizer which is invoked by this join-enumneration
algorithm. The local optimizer uses information about
the cost-model. As in traditional optimizers, our op-
timizer treats the built-in boolean conditions (sargable
predicates) specially.

Example 5.2: Consider Example 5.1, Let us assume
that the query Q is represented by the string (1234).
However, once the rewrite rule is applied, a new literal
Map_Restaurant(eid, loc) is created and the represen-
tation for Q' will be (145). The optimization of the
query @ will create the optimal plan for (14) which is
then stored in the plan table. During the optimization
of the query @', first the plan table is consulted to see
whether a plan for (145) already exists. Since it does
not exist, we must construct the optimal plans for each
subquery. In particular, before constructing the opti-
mal plan for (14), the plan table is consulted and the
existing optimal plan for (14) is reused for optimiza-
tion. B

The algorithin Optplan has the desirable feature that
for no shared subquery, the optimal plan is rederived.
Moreover, only plans for shared subqueries are retained
in the plan table.

5.2 Discussion

It is possible that for a given foreign table, there may
be different implementations which differ on the safety
constraints. The join enumeration method invokes the
implementation whose safety constraints are satisfied.

We note that when there is a budget on optimiza-
tion timne, our strategy of optimizing one query at a
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time is convenient because it is possible to terminate
the optimization once the optimal plan for one of the
equivalent queries has been constructed.

Since potentially we are optimizing many queries, we
use a branch and bound strategy along with the top-
down algorithm. Thus, if a partial plan is found to
have exceeded the cost of the optimal plan that has
been found so far, then that partial plan need not be
completed since it is guaranteed to be suboptimal.

We are exploring the opportunities for heuristics in
guiding the search. For example, heuristics may be
used to determine the order in which queries are opti-
mized.

Bottom-up Algorithms: It is also possible to use
bottom-up variants of our algorithms. There can be at
least, two possible variants in a bottom-up approach.
Oue possibility is to optimize all the equivalent queries
together. Thus, optimal plans for all subqueries of size
n are constructed before any optimal plan for any sub-
query of size (n + 1) is constructed. This approach has
the advantage that it requires less space than the top-
down approach (by reusing the space). On the other
hand, since the subqueries for all equivalent queries
are constructed together, the time for the completion
of the optimal plan for the first query is longer than
that for the top-down. approach. Another variant of
the hottom-up algorithm is where optimization is done
one query at a time but the optimal plans of shared sub-
queries are saved. While this rectifies the shortcoming
of the previous approach, it suffers from the problem of
not being able to share the plan for the maximal shared
subquery.

Inexpensive Tables: In a traditional relational op-
timnizer, the selection conditions are not reordered dur-
ing join-enurneration. Rather, the selection conditions
are evaluated as early as possible. Since the cost of
reordering joins is exponential in the number of literals
being reordered, this helped save optimization time.

The invocations of some foreign tables may also
be inexpensive. For example, the foreign table
Inside(w, loc) checks whether a point loc is inside the
window w. An invocation of Inside is inexpensive and
Inside may be considered like a selection condition in
a relational query. Thus, we allow foreign tables to be
designated as inezpensive tables. In a query, the literals
that correspond to inexpensive tables are not reordered
but are evaluated as early as possible in the join-order
without violating the safety constraints.

We call the rest of the literals as reorderable, which
are then considered for join enumeration. Thus, given
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a query, the optimizer needs to identify reorderable lit-
erals and place the inexpensive tables for evaluation as
early as possible in the join order. Thus, the presence
of inexpensive tables in a query introduces the step to
generate reorderable units [(CS93).

Affiliated Tables: in addition to being inexpen-
sive to evaluate, the selection conditions in relational
queries play an additional role. Their presence influ-
ences the cost of scan. Thus, in Systen R [SAC'*79]
architecture, selection conditions are pushed down to
the RSS layer. In general, the cost of evaluation of a
foreign table may be influenced by the presence of a set
of other foreign tables. While rewrite rules may be used
to capture such dependencies among foreign tables, we
provide another alternative in our optimizer.

At the time of registering a foreign table one could
specify a set of affiliated tables. Each affiliated table
must be a condition, i.e., all its arguments need to be
bound (e.g, Inside). The cost of invoking a foreign ta-
ble s influenced by the presence of affiliated tables in
the query. During the join enumeration, the optimizer
considers the foreign table and its affiliated tables to-
gether. The cost model provides the join enumcrator
the cost of invoking the foreign table in the presence of
affiliated tables. The details of affiliated tables appear
in [CS93].

Example 5.3: Let us consider a hidden mplementa-
tion for Mapclip that takes an arbitrarily set of win-
dows and returns all points that are in each of the
windows. We designate such an implementation as
M apclipService(eid,loc, W) where W is a set of win-
dows. Thus, the cost of evaluating Mapclip depends on
the presence of Inside in the query. Therefore, we des-
ignate Inside as an affiliated table for Mapclip. Then,
given the query Q, the query optimizer considers it as a
single invocation of M apclip with two affiliated tables.

Q(eid) Mapclip(eid, loc,wl), Inside(loc, w2),

Inside(loc, w3)
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The cost model is responsible to return the cost of
invocation in the preseuce of affiliated tables. lu of
fect, this query will be compiled as the invocation of
MapelipServiee(eid, loc, {w1,92,w3}). 1

The sunmimary of the steps in the optimization pro
cess is shown in Figure 3.

6 Query Processing for Foreign Func-
tions

The objective of this section is to introduce the query
processing techniques for foreign functions that our op-
tirnizer considers. ‘This discussion is relevant for the
cost model, preseuted in the next section. We consider
the join operation and tnake the simplifying assump
tion that the foreign table occurs as the right child of a
Join node in a left-deep tree. Therefore, in a lefi-deep
join tree, the table with which the foreign table joins
1s referred 1o as the left table.

Auy access (o a foreign table tnpust respect, its safety
constraimts. Therefore, before a tuple can be obtained
from a forcign table, it must be passed the bindings
that are required due to safety constraints and for each
such binding, an invocation is tade for the foreign ta
ble. Such a technique is ineflicient for invoking aforeign
table which has a high cost of invoration and for cach
invocation returns many tuples as output.

In our approach, query processing for foreign func
tions consists of viewing the “join™ with a foreign table
to have two phases: mvocation and residual join. ‘The
invocation phase cousists of passing the values for the
bound arguments of the foreign table from the lefl ta-
ble. There are several ways in which this invocation
may occur:

o Sitmple Innocation: For each tuple in the lefl table,
an invocation is made.

o Group Invocation: In this scheme, for cach distinet
values of the bound arguments from the left table,
a single invocation is made.



The group invocation technique adds the overhead of
identifying the set of distinet values for the hound ar-
gwments, However, it has the advantage of fewer invo-
cations, which is important for foreign tables for which
cach tvocation is expensive Moreover, if the left ta-
ble is already sorted on the bound arguments prior to
join, then group invocation is superior. The section
on cost. model would capture the tradeofl in the two
approaches.

Since an invocation generates a set of tuples, the step
of residual join is similar to a traditional join and any
Join method may be used. The selection conditions
that apply to one or more free (output) arguinents of
the foreign table, are evaluated during this phase. ‘The
sunplest chioice for the residual join is nested loop where
the taples generated for each invocation are treated as
the matching tuples of the inner table. This residual
join method can be combined with the two techniques
for invocation,

"Fhe combination of simple invocation and the choice
of nested loop joiu technique results in a join algorithmn
which is siinilar to the traditional nested loop join. We
call this join technique foreign nested loop join (FNL).
The combination of group invocation and the nested
loop join results in an algorithm very similar to the sort
merge join and we refer to it as foreign sort-merge join
(FFSM). An outline of the FSM algorithm is presented in
Figure 4. The FSM algorithm is the algorithm of choice
when the invocation of foreign tables is expensive.

In order to reduce the number of invocations, caching
the results of invocation was suggested in Postgres and
such an alternative can be used with our approach as
well, 'The correctness of caching (or group invocation)
depends on the assumption that foreign tables are in-
variant during query processing. Such an assumption
is not always true (e.g., if the foreign table is a random
nunber generator).

7 Extensions to the Cost Model

‘The cost model inust be able to compute the cost of
any given plan. For traditional relational optimizers,
a descriptor for a table includes statistical information
about the table such as the number of unique values
in cach argument position (i.e., in each column) and
the expected number of tuples in the table. The cost
model uses the descriptors to compute the cost of an
operation (e.g, a join). The cost model also produces a
new descriptor which contains the statistical informa-
tion of the intermediate table which is obtained after
the join.

Our approach to the cost model is to preserve the
relational descriptor for the database tables and inter-
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Function FSM(Left, FTable)
(Left is left table, FTable is a Foreign Table)
begin
Join = 0
Temp_Le ft = GROU PBY (Left, Bound)
where sorting and Grouping is by
the bound arguments of FTable
for every group L; of Temp_Left do
FT; = Invoke(FTable, Bval;)
where Buval; are the values in group L,
for bound arguments of Bound
Join = Bag.lUnion(Join, Merge(L,, ry))
endfor
return(Join)
end

Figure 4: Foreign Sort Merge Join Algorithm

mediate tables. However, two extensions are needed
First, we need to provide a descriptor for foreign ta-
bles. Next, we have to explain, how such a descriptor
can be combined with a relational descriptor.

7.1 Descriptor for Foreign Tables

For each foreign table, the following information can
be registered. A full description of the registration lan-
guage appears in [(CS93]. This cost model is an exten-
sion of the model proposed in [CGK89].

o Safety Constraints: 'This information is not di-
rectly used by the cost model, but is used by the

optimizer to determine permissible join-orders.
Cost: The cost of invoking the foreign table once.

Fanoutl: The number of “output tuples” expected
for each invocation.

For each attribute:

- Domain Size: We need to provide the size of
the representation of each domain element.
We also need to specify the cardinality of the
domain. A permissible assignment to cardi-
nality is infinite.

Unique Value Factor: The expected number
of unique values the attribute has for each in-
vocation. If this parameter is not explicitly
provided, the fanout is used to approximate
this factor. If all the domains are finite, uni-
form distribution assumption is used to com-
pute this factor.



Observe that the parameters in the descriptor need not
necessarily be constants, but can depend as well on
any constants that appear in the query during compi-

lation [CS93].

Example 7.1: A possible descriptor for the foreign ta-
ble Intersect(window!, window2, window3) could be
characterized by a cost of .012ms, a fanout of 1, unique
value factor of 1. The size of each domain element is
that corresponding to a real and the domain has car-
dinality infinite. The fanout is 1 since intersection
of two windows result in one window. The safety con-
straint on the function is that the first two argument.
positions must be bound before it is invoked.

7.2 Computing the Descriptor

In this section, we address the extensions that are
needed to compute a descriptor. For simplicity, we only
consider the scenario where the foreign table occurs as
a right leaf node of left deep join trees. We can as-
sume the existence of a descriptor for the left table
with which the foreign table joins. In our optimizer,
one can register a customized funclion to compute the
descriptor for the table resulting after the join. Such
a function can take as its argument the descriptor for
the left table. In the rest of this section, we provide a
default way to compute the descriptor for the interme-
diate table.

We introduce the left uniqueness factor as a cost pa-
rameter. The left uniqueness factor estimates the ex-
pected number of distinct invocations of the foreign
table for a given descriptor for the left table. We have
considered several ways to approximate the left unique-
ness factor. In this paper, we present the simplest ap-
proximation.

For the foreign table, some argument positions may
be required to be bound. Therefore, there exists a cor-
responding set of attributes A in the left table which
provide the values for the bound arguments of the for-
eign table. Let P be the product of the expected num-
ber of unique values for the set of attributes A in the
left table. We use the descriptor of the left table to
compute P. Let N be the number of tuples in the
left table. We observe that the number of distinct in-
vocations can exceed neither P nor N. Therefore, we
can use min(P, N) to estimate the left uniqueness fac-
tor. Our formula provides an upper bound of the left
uniqueness factor. '

Example 7.2: Consider the following query which
provides the location of the terminals for the bus
routes. Assume that the descriptor for Terminal has
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100 tuples and the number of expected unigue values
in the second argument is 10,

Query(route,loc) : —

Terminal(roule, eid), Map(eid, loc)

Therefore, P 10 and N =
unigueness factor is 10. §

100. Henece, the left

In the following discussion, we assume that there are
no selection conditions other than equality between the
left table and the bound arguments of the foreign table.
The effect of selection conditions on free argininents as
well as the effect of projection on foreign tables on the
descriptor are taken into account by treating the result
of the join of left table with the foreign table as an
intermediate table (like any interior node of the jom
tree). Therefore, we provide the cost formulas for the
invocation phase only.

¢ Number of Tuples: The estimated number of tu-
ples after the join is N' = F »« N, where F' is the
fanout of the foreign table and N is the number of
tuples in the left table.

Number of Unique Values: The estinated nunber
of unique values corresponding to the ith argn
ment of the foreign table is given by: UV F; « U1
where UV F; is the unique value factor for the ith
attribute. The parameter U1 is the left uniqueness
factor.

Cost: We will provide the cost of foreign nested
loop and foreign sort-merge join. We assimine that
N is the number of tuples in the left table, (' is
the cost of invoking the foreign table and U/ ] is the
uniqueness factor. The following costs are for the
invocation phase only.

- Foreign Nested Loop: (V' x N.
- Foreign Sort-Merge: Coslyor( N} + U1 (!

A Critique of Declarative Rewrite
Rules

The declarative nature of our rewrite rules provides
case of specification of semantic knowledge. For exam-
ple, in the MapEngine application, the scmantic knowl
edge was captured using a few rewrite rules and the
optimization algorithm ensured that the rules were ex-
ploited to produce an optimal plan. Nonetheless, the
irade-off between such a declarative language and a
procedural language is that between the case of specili-
cation.with the need for expressivity and possibly efli-
ciency concerns. For example, as discussed in Section 5,



we sometimes find it convenient to use the notion of
affiliated tables (instead of rewrite rules) in order to
express the knowledge that a set of conditions need to
be “pushed-down”. In contrast to our approach, Star-
burst [PHH92] uses a procedural language to express
the semantic knowledge. While making specification of
semantic knowledge harder, such an approach enables
rewrite rules to express any desirable transformation
and leaves the design of search algorithms open-ended.
We should note that the ability to invoke and optimize
foreign functions is a limited form of extensibility. In
contrast, the Starburst architecture has far more am-
bitious goal of providing extensibility.

9 Related Work

Many extensible systems have been proposed [("H90]
with varying degrees of support for extensibility in
the optimizer [B(G92, GD87, Loh88, PHHY2, SIGiP90).
The query rewrite optimization [PHH92] in Starburst
is most directly related to our approach. As discussed
in the preceding section, the query rewrite optimiza-
tion in Starburst relies on a procedural language. The
rule programmer is responsible for ensuring termina-
tion and search algorithms. A key reason for such a
design decision is to reserve the ability to express rules
of arbitrary complexity. For example, the rewrite rule
language in Starburst is used not only to express se-
maniic knowledge, but also to express the rules for
query transformation used in optimization (e.g., flat-
tening a query). In contrast, we focused on only ex-
tending the optimizer to handle queries with foreign
functions. Qur narrow focus enabled us to use a rewrite
language that is declarative. The termination and the
search algorithm to generate equivalent queries are part.
of the oplimizer and need not be specified by the rule
prograuuner. Furthermore, in Starburst, an applica-
tion of a rewrite rule is used as a heuristic. In contrast,
we use rewrite rules to generate alternatives for the op-
timizer, fromn which the latter chooses an optimal plan
in a cost-based fashion.

"T'he idea of using semantic knowledge to transform a
query into one which yields a cheaper optimal plan has
been examined in the context of semantic query opti-
mization (See [CGM90]). Unlike our approach, they
use a conventional query optimizer to optimize equiv-
alent. queries and thus do not share optimization of
common subexpressions.  Furthermore, our algorithm
for generating equivalent queries is based on conjunc-
tive query equivalence, instead of resolution based tech-
niques |(!(iM90] and preserves the duplicate semantics
of SQL.

Query optimization in the presence of foreign func-
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tion was examined in [('GK&9, HS93]. Neither of these
approaches provides any opportunity to use seinantic
knowledge. The contribution of [C(GK89] is to present
a cost model for optimization in the presence of foreign
functions such that a traditional dynamic programming
algorithm can be used. We have further extended their
cost model. Recently, [HS93] presents an optimization
algorithm for a restricted class of foreign functions. In
his work, foreign functions are restricted to be condi-
tions (boolean predicates). Thus, he does not consider
the foreign functions that generate data tuples (e.g.,
M apelip).

Aref and Samet [AS91] present a variety of strategies
for choosing a plan in scenarios where retrieval requires
accessing a relational database as well as a spatial data
repository. Using rewrite rules, we can express the dif-
ferent alternatives that they consider.

10 Conclusion

The ability to invoke foreign functions in a relational
query is important for many applications since it pro-
vides them the opportunity to exploit existing code and
data that is external to the database. Such integration
raises several issues. In particular, it provides us with
new challenges in optimization.

In this paper, we have described a comprehensive ap-
proach for optimization in the presence of foreign func-
tions. An optimizer, based on our approach, has been
implemented at HP Laboratories. We provide a declar-
ative rewrite rule system which can be used to express
semantics of foreign functions. The rewrite rules are
specified using simple extensions to SQL. The rewrite
rules are used to present the optimizer with a set of
equivalent queries. We have provided an algorithm to
enumerate the equivalent queries. Qur optimization al-
gorithm is able to guarantee optimality of the plan over
the enriched space of optimization. We have developed
an extension to the traditional dynamic programming
algorithm that exploits commonality among the equiv-
alent queries. Our framework includes extensions to
the cost model and query processing techniques that
are necessary for foreign functions. For efficiency in
optimization, we provide the ability to specify that cer-
tain tables are tnexpensive or affiliated. Finally, we can
use our framework to optimize relational queries where
the database stores materialized views [CS93]. Intu-
itively, materialized views provide the optimizer with
semantically equivalent queries to choose from.
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