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Abstract 
III this paper we address the problem of controlling the 
execution of a query optimizer. We describe a control 
for the optimization process that is based on planning. 
The controller described here is a goal-directed planner 
that intermingles planning with the execution of query 
transformations, and uses execution results to direct further 
planning of optimizer processing. 

We describe this control in the context of the Epoq exten- 
sible architecture. Epoq iz an approach to extensible query 
optimization that integrates specialized rewrite strategies 
through its extensible control mechanism. This paper de- 
scribes our planning-based approach to extensible control 
and illustrates it with a simple example. 

1 Introduction 
Optimization of a query is inherently a process of searching 
the slpace of expressions equivalent to the query. Typically, 
a given optimizer can only visit some portion of this space, 
since the set of transformation rules is ueually incomplete, 
the cost of optimization must be bounded, and the optimizer 
coutrol strategy limits the search. The control strategy of an 
optimizer determines, for any query, the equivalent querier 
that will be searched as well as the order in which they are 
considered. 

The extensible nature of object-oriented systems requires 
that an optimizer’s search be expanded in response to the 
new kinds of expressions that can be written. The approach 
taken by many extensible optimizers is to add new rules for 
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transforming queries. The kinds of rules used to describe 
query transformations, and the control over execution of 
those rules, differ in all systems [5, 7, 16, 191. 

Some systems also recognize a need to support new strate- 
gies for optimization; i.e., extensibility of the optimization 
process itself [ll, 14, 181. The control we present here is 
designed to support thii kind of extensibility. 

The Epoq approach to extensible query optimization 
allows extension of the collection of control strategies that 
can be used when optimizing a query [14]. Each strategy 
can search some portion of the space of queries equivalent 
to the optimizer input query. Different strategies will 
usually search different (possibly overlapping) parts of the 
search space, although different strategies may simply offer 
alternative ways to search the same space. 

An Epoq optimizer is a collection of concurrently available 
ngion modules, each of which embodies one strategy for the 
optimization of query expressions. The Epoq architecture 
integrates the regions through a common interface for the 
region modules, and a global control that combines the 
actions of subordinate regions to process a given query. 

The region modules are organized hierarchically, with a 
parent region controlling its subordinate regions ss though 
they were a collection of transformations. This is illustrated 
in Figure 1. 

The root module of the optimizer communicates with the 
query processing system. It receives a query to optimize, and 
produces an optimized result. This result is computed with 
the assistance of its child regions. Child modules transform 
queries at the request of a parent region, and may also act 
ss parents by using subordinate regions to assist with this 
transformation. 

Structuring the region modules hierarchically puts knowl- 
edge about regions that can cooperate to process a single 
query in one place-i.e., a parent. The parent’s strategy, 
and the characteristics of the query expression being opti- 
mized, determine how the subordinate regions will cooper- 
ate. A parent region composes the transformations of its 
subordinates to produce an equivalent result query. 

We distinguish, two kinds of regions in an Epoq optimizer- 
in$erior’regiortu (ir&ud@g the root) and leaf regions. Both 
kindaof regions are transformations, but they differ in that 
the control of interior regions has to manipulate transforma- 
tions represented by other regions in the optimizer, whereas 
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Figure 1: Epoq architecture 

the control and transformations of a leaf region are internal 
to the region and are not explicitly addressed in the architec- 
ture. Indeed, in Figure 1 the leaf regions are shown simply 
as transformations. Of course, these transformations will, in 
practice, be complicated strategies for manipulating queries. 
The control presented here concentrates on the integration 
of transformation strategies. 

Most extensible optimizers (e.g., [S], [7], [a], [lo], [ZO]) 
provide a fixed control over the application of strategies 
to manipulate queries. This makes it difficult for these 
optimizers to adapt to a changing repertoire of strategies. 
Epoq allows extension of the control as well as the addition 
of new optimization strategies. 

Epoq wss motivated by a need to address extensibility 
in the design of object-oriented query optimizers, but we 
believe that it has more general utility. The architecture and 
control of Epoq increase the range over which any optimizer 
might be extended. 

The major contributions of this paper are 

l a definition of the control problem for extensible query 
optimizers 

l an extensible, planning-based approach to solving the 
optimizer control problem. 

In the next section we present the control problem. 
We approach this problem in the context of the Epoq 
architecture for query optimiiers, described further in 
Section 3. In Section 4 we present a simple example 
optimizer that instantiates thii architecture and can be used 
to illustrate the discussion in later sections. In Section 5 we 
present an architecture for optimizer control and a design 
for a planning system for controlling the activities of an 
optimizer. In Section 6 we compare our work to other 
systems, and we summarize results in Section 7. 

2 The Control Problem 
The strategy for achieving some goal is encapsulated inside 
a region. This strategy is implemented through the region’s 
control over the application of query transformations. In 
an Epoq optimizer, subordinate regions act ss query traus- 
formations, and a parent region controls the application of 
those transformations through requests to subordinates to 
transform a query expression. 

The major decisions that need to be made by a rcgiou 
are 1) which query or subquery to process and 2) which 
region to execute. A region receives a single query to 
transform, as well as a goal for the transformation, aud 
needs to decide what transformations to apply to the query, 
or any subqueries, in order to achieve its goal. Throughout 
the transformation process a region will usually maintain 
a number of alternative query expressions, and will work 
on different of those expressions at different points iu ita 
processing. 

One way to approach this process is to pair query ex- 
pressions with applicable regions, then select an expres- 
sion/region pair to execute.’ Such a control is like a search 
through transformation rules, where the rules are the child 
regions. One difficulty in doing this is in determining whcu 
a region (rule) is the right one to apply to a query. Nor- 
mally, rule-based optimizers do pattern matching (and UBII- 
ally condition testing) of the query expression with the left 
hand sides of rules, then perform some conflict resolutiou if 
more than one rule matches a query (e.g., assign weights to 
rules as in (71). This approach is uot satisfactory for an Epoq 
optimizer because the regions do not behave as precisely ‘as 
rules behave. 

In a rule-based optimizer, rules provide complete infor- 
mation to a search engine, and can be applied by a rule 
execution process. In an Epoq optimizer, a region, behav- 
ing as a rule, provides incomplete information to its parent, 
and applies itself. The result of a region execution is re- 
turned to a parent, but the actual execution of the region is 
done independently of the pareut processing. As a result, a 

region may not achieve its goal and may return a message 
to its parent indicating such a failure. 

An alternative to rule search is to view region executions 
as actions in an optimization planning system. The decisioue 
that need to be made (which region to execute, which 
query expression to manipulate) art managed by a planniug 
system that ls driven by its own planning rules. TllC 

planning rules are heuristics about orderings of region 
applications that will (hopefully) achieve the region’s goals. 
Thus, the planning system is planning the execution of the 
optimizer. Since, in Epoq, a region may fail to transform 
a query (i.e., fail to achievt the region’s goal), the planning 
process cannot proceed independently of the region results 
and is thus interleaved with region execution. This is 
discussed in more detail in Section 5. 

The go& of a region characterize the output queries that 
can be produced by a region. Given a particular query, 

’ An applicable region in one 1hsL cxpact6 LO be aMe lcr whiwe 
its god cm lhe query. Al)r&:al)ility ix wcuod through hwti~urs 
a region provide8 to itr parent c:cmlrd. SWli IIIFMUI’F” tc*t 
necemary conditionw on a query for (L region to trmafortu it. 
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IUCCCW indicsteu whether the region was able to attain a 
particular goal for that query. For example, if a region’s 
goal is to lower cost, and the result query computed by the 
region has a lower cost than the input query, then the region 
was successful at achieving its goal. 

Termination refers to stopping the execution of a region. 
In general a region will have its own internal criteria 
for termination, since termination is an integral part the 
region’s control. Termination may be related to success--a 
region may terminate processing a query when it discovers 
it is successful at achieving its goal. However, termination 
will often be conditional on more than success; for example, 
a region with a goal to lower cost will usually not quit aa 
soon aa the cost is lower, but will continue to try to improve 
the cost until it decides that further work will not be cost 
ellective. Jn all cases, termination must involve conditions 
that are independent of success. A region will not necessarily 
achieve success, so termination conditions must ensure that 
the region stops regardless of success at achieving a goal. 

3 Region Architecture 
All regions have control over the transformation of queries. 
This conceptual view of a region describes the fact that 
a region implements a control strategy for manipulating 
queries. The transformations of a region are those described 
by the control strategy, and the region control implements 
this strategy. For interior regions, the transformations used 
by the control are subordinate regions, as well as, possibly, 
internally defined transformations: For leaf regions, all 
transformations are internally defined.’ 

A region interface provides the support for communick 
tion between the control of a region and its parent or child 
regions. The interface to its parent allows a region to be 
used as a transformation by the parent. The interface to 
a region’s children allows the region to use the children 
as transformations. This interface can request information 
from children which is then supplied to the region’s control. 
Region interfaces are described more completely in [15]. 

Epoq defines a common structure for the interface to en- 
sure structural compatibility. Thii supports communication 
between regiona as well as the addition of new regions to an 
optimizer. The architecture of all parent-child interfaces hi 
the same, although the implementation of this architecture 
may be different for each interface. For example, the archi- 
tecture specifies that a query passes between a parent and a 
child region. Although we would expect aJI interfaces to use 
the same query representation, it is possible for a particular 
parent-child interface to use a different query representa- 
tion. The root region, for example, might accept and return 
a query expression as a string if it can translate that form 

3’hndor~tioru may be explicitly defined in leaf regions; 
for ox-pie, * rule-based optimiwr cant&s M explicit set of 
r&s md a control mechujsm that implements some sort of rule 
WXU& The transformations will often be implicit, i.e., built 
into 111s control mechanism. For example, (L region that uses 
dynunic pro((ramming lo pnerate efficient join orderin(lr ures, 
impkilly, ccunmutstivity and assoclstivity tranxfornmtions on 
lhe join operators. 

PARENT REGION 
(InteIf~ lo child) 

I CHILD RRGION 
(IIItedscelohreAl) 

I 

Figure 2: Interface Between a Parent and Child Region. 

back and forth between the representation to be used in the 
optimizer. 

The diagram of Figure 2 indicates the kinds of information 
passed between a parent and child region. The arrows in 
the figure indicate the direction of information flow. For 
example, queries are passed both ways: a query to be 
transformed is passed from a parent region to a child, and a 
transformed query is passed from a child region to its parent. 

we say A god is ‘recognized’ by a parent region when 
the parent region contains the control mechanisms to 
request that a child region work towards that goal. A 
goal is ‘attainable’ by a region when the region has the 
control mechanisms to work towards that particular goal. 
It is important to ensure that the attainable goals of a 
subordinate intersect the goals recognized by a parent, since 
the subordinate is useless if it cannot achieve any of its 
parent’s goals. 

Applicability refers to the ability of a region to transform 
a query. Thus, applicability is directly related to the control 
strategy of a region; A region for which some transformation 
applies to a query q is said to be applicable to q. Of 
course, assessing applicability of a region to a query by 
finding a transformation sequence is not feasible, so a region 
needs to use other measures to assess its applicability. An 
applicability measure for A region should indicate necessary 
conditions for the region to transform a query. 

Practical measures of applicability may consider goals, 
the input query, termination conditions, transformations, 
region control, etc. Applicability measures provide a means 
for a parent region to eliminate from the decision-making 
process regions that will not be able to process the current 
query. Thus, they are used to improve the efficiency of the 
optimizer. 

Applicability in an Epoq optimizer is similar in function 
to pattern-matching and condition-matching of left-hand 
sides in more traditional rule-based optimizers. Applica- 
bility differs in that it doesn’t guarantee that a region can 
process a query, but only tells when a region can probably 
process a query. This difference is accounted for in the re- 
gion’e control. The region requests a subordinate to achieve 
a particular goal on a query, and must be able to accommo- 
date failure of the subordinate to achieve that goal. 
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Figure 3: Example optimizer design 

4 Running Example 
In this section we give a design for a simple query rewrite 

system to illustrate the capabilities of the Epoq architecture 
and, in particular, to illustrate the planning-based control 
that will be presented in Section 5. The purpose of this 
example is not to define new optimization heuristics or 
propose new optimization strategies. Indeed, designing good 
optimization strategies, and heuristics about interactions 
between different optimization strategies, is an open area 
of research. The Epoq architecture is a vehicle for defining 
such interactions and can be a testbed for experimentation 
with optimizer design heuristics. 

The example optimizer we use throughout the rest of 
thii paper consists of nine regions connected as depicted in 
Figure 3. Each box in the picture is a region and is labelled 
with a name for the region as well M each region’s goal(s). 

The root region, named OPT, uses the following regions 
to do its transformations: 

l SX does pimple query transformations(X) such as predi- 
cate simplification, view substitution, collapsing Project 
operations, etc. 

l CJ converts nested predicates to Join operations, when 
possible. 

l OJ reorders join operations. In particular, this region 
can handle outerJoin and Join operations. 

l SPJ tries to convert nested queries involving Select, 
Project and Join operations into a canonical form 
with rdl Joins followed by Selects followed by Projects. 
Such a form could be conducive to lower level query 
optimizations. 

l DP reorders join operations using a &namic program- 
- ming algorithm and a simple cost model. 

l LC tries to lower the expected sost of the query. 

The OPT region takes a query in a high-level algebraic 
language and applies its subordinate regions to manipulate 
the query and produce an algebraic query with lower 
expected cost. OPT is not a complete optimizer but 

could be used, for example, as a region for a higher-level 
optimizer with a control that uses other regions to translate 
a declarative query to the algebra and manipulate the result 
of OPT to produce a query plan. 

OPT can use its subordinates in different ways depending 
on the nature of the query it is trying to optimize. For 
example, a simple query with no nested expressious could 
be simply processed by region LC to lower the cxpcc~cd 
cost. More complex queries, with nested exprcssious, can bc 
processed by a region that works to uunest the exprcs4onn 
(e.g., SPJ or CJ) followed by a region that reorders the 
resulting Join operations (OJ or DP). The specification of 
such orderings, and the means for choosing among rrgioun 
with the same goals (e.g., OJ and DP) are presented in 
Section 5. 

Region OPT can also choose to process queries using a 
“pilot psss” style algorithm [17] that first applies simple 
transformations to the query (region SX) and is satisfied 
with the result (and quits) if those transformationn reduce 
the expected cost by some amount. If the preliminary pass is 
not satisfactory, more complete processing of the query can 
be undertaken by the lower cost region (LC), for example. 
Such an algorithm could speed processing of simple queries 
by the optimizer. 

The lower cost region (LC) takes advantage of the 
hierarchical structure of the Epoq approach. This region 
has three subordinate regions that it can use in trying to 
achieve its goal of lowering the expected cost of its input 
query expression. Region EX could be a rule processor 
(perhaps built by an optimizer generator [9]) that cstimatcn 
the cost of transformed queries and returns the lowest cost 
query it can find. Region LC can choose to use this rcbion to 
attain its own goal, or can choose to send the query through 
a sequence of modules (CNF and DP, here) each of which 
has its own ntrategy for applying its smaller collection of 
rules to the query (similarly to [5] or [IS]). LC c&d even 
try both strategies, choosing the best result, or codtl IISC 
the strategies in a pilot pass type of approach. 

The leaf regions in this example are complicated ntratcgicx 
for the application of transformations to queries. These 
strategies are controlled by higher-level regions. It should be 
noted that the granularity of leaf strategies could be much 
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finer; for example, R leaf could be a single transformation 
rule, with rtratc~ics for controlling the rules described in a 
parent rcgiou. 

The optirnizcr in this example ignores many of the prob- 
lemr that are encountered with object-oriented queries. For 
example, this optimizer design doeen’t include any process- 
ing for path expressions (as in [12], for example) or any type 
specific optimization (e.g. [13]). Such optimizatione could 
be included as leaf regions, and the control of OPT could 
use these strategies in conjunction with the other strategies 
when appropriate. For example, path expression process- 
ing might be combined with join/outerjoin reordering. The 
Epoq architecture allows such additions to the repertoire 
of atrategies, and the control we present next provides for 
ex*cnsions that can incorporate these additions. 

5 Control Architecture 
The actual transformation of a query expression is the re- 
rponeibility of the region control. The region interface pr+ 
vides information to the control, and relays control results 
and reqnests to other regions. The control components in- 
teract with each other, and with the interface, to effect the 
transformation process. Through itr management of the 
transformation process, the control implements a control 
strategy for the region. 

A decision-making component is the central part of a 
region control. This component makes the decisions about 
what processing the region must do to transform a query. 
It interacts with a control store to obtain information it 
uses in making decisions and to store information that may 
be used in later decisions. The decision-making component 
decides what transformations should be performed (which, 
for interior regions, translates to which subordinate regions 
rhould be executed) to manipulate a query. Conversely, 
the results of transformations can be input to decisions 
about how to (and whether to) continue the transformation 
process. 

The decision-making functionality consists of components 
to choose a focus for processing (Le., a query and goal), 
choose a transformation to execute, decide what to record 
in the store as a result of a transformation, decide when 
to terminate processing, and determine the result of the 
region’s execution. These decision “modules” are reflected 
in the execution depicted in Figure 4. 

The region focuses on a particular query and goal, 
and chooses a process for transforming the query. These 
two decisions are complementary-the transformation to 
perform depends on the query and goal, and the query 
and goal chosen may depend on what transformations are 
available. This duality is evident in rule-based optimizers, 
where queries are matched to tranrformation rules and a 
best query/rule pair is chosen for next execution. In Epoq, 
these decisions are made by a planning system. The query 
and goal form a task for a region to perform, and the 
planning ryrtem finds a sequence of transformations that 
may perform the required task. 

Termination refers to the conditions under which the 
region stops its processing and return8 to itn parent. These 
condition8 are checked after each query tranrformation 

initialize &ore 
while termination conditions not met do 

choose a query and goal 
choose a transformation to process 
transform query 
update store with result info 

endwhile 
return “best” query and success indicator 

Figure 4: Basic Region Execution 

(see Figure 4) and, if the conditions are met, processing 
is completed. In general, the conditions for termination 
are built into the control. For example, a control may 
decide to terminate after processing a certain number 
of transformations, after finding a particular number of 
alternative queries, after generating an alternative that 
attains the region’s goal, after finding no good prospects 
for further processing the input query, etc. 

However, the hierarchical organization of region process- 
ing means that a parent region may want (or need) to have 
some control over the termination of its subordinate regions. 
Such control can be implemented by sending termination 
conditions to a child region through the parent-child inter- 
face. The disjunction of the built-in conditions and the par- 
ent’s condition then become the termination criteria for the 
region. 

A parent can send two kinds of termination conditions: 
conditions involving the state of the query and conditions 
involving the utilization of resources. The former can be 
submitted to a subordinate as Boolean functions with one 
parameter-a query. At each termination check, the child 
can supply the query argument to the parent’s termination 
function and execute the function. For example, suppose 
a parent will be satisfied if a subordinate that works to 
improve cost can improve the cost of the query by 15%. 
The parent would supply a Boolean function Improve(initial 
query, current query) that computes the percentage cost 
difference between an initial query state and the current 
query state and returns true if that percentage is greater 
than or equal to fifteen. The parent would send a closure 
of Improve, with the initial query instantiated, to its child 
through the interface. At each check for termination, the 
child supplies the current query and executes the function. 

Termination conditions involving resource utilization gen- 
erally require reasoning on the part of the child region. As a 
result, if a region wishes to convey such conditions to its chil- 
dren, the children must be constructed to directly respond 
to the particular conditions. For example, suppose a parent 
wishes to set time limits on a child’s execution. The child 
must be able to interpret the time limits and, if it in turn 
calls other regions, must be able to apportion time limits to 
its children. 

The final decision made by a region is the choice of query 
result. This decision b related to the processes that store 
alternative queries since the final query will be one of the 
stored alternatives. It is also related to the region’s goal, 
since a region will choose (if possible) to return an equivalent 
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query that meets the goal. A region must return a query 
that is equivalent to the input query, thus if no satisfactory 
alternative is stored the region must return the original 
query. 

A high-level view of region execution is depicted in 
Figure 4. Basically, a region continues transforming a query 
until the decision to terminate the processing is made. A 
region first chooses a query or subquery to process and a 
goal for that processing. An initial query and goal are 
provided by a parent region through the interface, but as 
processing continues the region may work on intermediate 
results, or on subqueries, with different goals in order to try 
to attain the required goal on the initial query. Intermediate 
transformation results may be stored, and after termination 
a result to be produced by the region is chosen. That result 
may, or may not, reflect success at achieving the initial goal 
for the transformation process. 

The optimizer control is, in effect, choosing sequences of 
subordinate regions to manipulate a query, since the trans- 
formations it chooses to perform on queries are subordinate 
region executions. The extensibility of an Epoq optimizer 
requires, then, that the control component react to the ad- 
dition of new regions. We satisfy this requirement with a 
control that is based on planning the optimization process. 

5.1 Planning-Based Control over Regions 

Planning reduces a task to primitive actions [2]. In the Epoq 
context, a region’s task is to achieve some goal on a query, 
and primitive actions are subordinate region executions. 

Plans use goals to describe tasks and subtasks that can 
be performed to achieve other goals. The planning process 
uses goals to progressively break a task into subtasks, and 
eventually to primitive tasks (i.e., region executions). Thus 
the result of planning is a sequence of subordinate region 
executions that may achieve the region’s goal. 

Plans are defined in a rule-based language, where the 
rules provide heuristics about potentially good interactions 
between region executions. A rule search engine matches 
rules to the current goal and control state (including the 
current query) and chooses rules to execute. Rules describe 
three kinds of actions that can be performed: planning 
actions, primitive actions, and memory updates. Primitive 
actions result in subordinate region executions. Planning 
actions induce a forward chain through rule goals to find 
primitive actions. Update actions modify the region’s 
working memory with information that may be used later 
in the rule search. 

The rule language and working memory are patterned 
after rule-based languages such as OPS5 [4]. A major dif- 
ference, though, is that the Epoq rule interpreter interleaves 
rule manipulation with the execution of subordinate regions. 
This interleaving of planning and execution is required be- 
cause subordinate regions can fail to achieve their stated 
goal, and the success or failure of a region execution to 
achieve its goal affects the optimization process. In other 
words, the sequence of actions that is generated as a plan is 
affected by the execution of thw actions. 

Add-Choice: QuerySet, Query 

Figure 5: Methods supportiug decisions aud qu(:riCR. 

5.2 Control Store 

The control store supports decision-making by maiutainiug 
information used during region execution. Items in the etorc, 
form the working memory of a control. Items are named aud 
typed so that they can be directly accessed by the: rc*giorl 
control and can be manipulated by mc!thods dcliucd over 
their type. The control state cousists of the contents of t.hc: 
store, along with information about the current processing 
step. 

The store always includes an initial aud current version 
of the query being transformed, as well as intermcdiatc 
(equivalent) versions of the query. Intermediate qiic’ry 
versions provide choices of ways to execute a particular 
query, and also provide processing choices for an optimizer. 
For example, in a rule-bssed optimizer intermediate versions 
of a query or subquery are usually maintained autl the rule 
search engine (decision-making component) will match r&s 
to these versions for further processing. 

In order to support control decisions, the stow inch&n a 
log; i.e. a history of previous processing. The log iw usc~i to 
keep track of the actions performed during the procexsing of 
queries. Such information can be used in control dccisiou- 
making, for example, to prevent repetitive processing. It 
will also be used to support the undoing of partid results 
after failure to achieve a goal. 

The store may also include other data defined by a 
particular control. For example, data could bc used to 
help control rule execution. The working memory clcmeuts 
can be matched in rules and, in that way, can provitlc 
informatiou refercuced in rule actionn BR well a8 information 
that helps control the selection of rules to oxocutc. 

A region’s store is local to the region. Any iuforan;rtioa 
that should bc visible to other regions is passed aw arguul(*uts 
through the region interface. In general, a region’s control 
store persists for the duration of the region executiou. 

6.2.1 Query Storage and Management 
The store will contain queries, and two relationships hctwccw 
these queries: subquery and equivalence. The suhqucry 
relationship is an explicit part of the query- -arguments to 
a query can be other queries. Equivalence relationships arc 
instances of a type called QuerySet. The instancrs of this 
type are, abstractly, sets of queries; all queries in a sin&* 
qneryset are equivalent to each other. The store will always 
contain at least one query&-the set of queries equivalent 
to the initial query. 

Some methods for supporting decisions about queries and 
querysets are shown in Figure 5. Methods Get-Cost and 
Get-Equiv retrieve information about the state of a query. 
The Get-Cost method retrievew the curreut cost of a qur*ry. 
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That coat will depend on the cost model being used in the 
optimizer. Retrieving the cost is supported by methods of 
Lhc: cowl model. The Get-Equiv method returns the queryset 
aclxocialed wit.h the input query parameter. This gives 
acccm Lo the queries that are equivalent to the input query, 
thun allowing further processing such BB iterating through 
Ihc: equivalent queries, or choosing an equivalent query for 
processing. 

Methods defined for Type QuerySet may involve decision- 
making. For example, a queryset supports a Choose-Best 
mclhod lo lind the query, in a set of alternative queries, 
that best achieves the required goal. Add-Choice is used 
in the control whenever a new query is generated through 
transformation. The region control can decide, through the 
implcmenlation of Add-Choice, whether or not a particular 
transformation result is stored for future manipulation. 
Method Prune further manages querysets by removing 
equivalent queries that no longer are useful to the control. 

The Query and QuerySet types are global to an optimizer, 
but the type representations and method implementations 
may be redefined within a region. For example, if a region 
processes a query aa simply a llequence of transformed ex- 
prenlions, then the representation could store only the most 
recent query version. In this case, the Add-Choice routine 
would replace the previous query with the new choice, the 
l’ruur rouline would be null, and the Choose-Best routine 
would nimpiy return the query. 

6.2.2 Log Management 

The log is a record of actions taken in a region. It includes 
records of query modifications (i.e., transformations) and 
may include a record of modifications to other information 
stored in memory. The log can support control decisions 
by recording the results of previous decisions. It can also 
support a simple recovery scheme, by offering the ability to 
restore the memory to a point prior to some transformation 
of a query. 

‘I’he log must support a method Append(Log,LogRecord) 
lo add a new record to the log. The Retrieve actions 
uupporlccl by a log depend on the requirements of the 
parlicular decision-making component, and could include 
retrievals to answer such queries as: What was the last 
lrannformat.ion performed? What is the last transformation 
performed on query Q? What is the last transformation that 
resulted in query Q? Haa query Q been transformed yet? 
Has a particular lransformation been used? 

5.3 Rules for Planning 

The planning process uses rules that describe heuristics 
for good interactions between optimization tasks. These 
heuristics guide the decision-making process. 

Rules have the general form 
condition teat - action sequence 

with Ihc semantics that if the left hand side condition is 
sa&fied, t/ten the actions on the right hand side are executed 
in sequence. The left hand side conditions are predicates 
over working memory and applicability predicates over the 
current query. The right hand side actions are planning or 
primitive actions, or memory updates. 

GOAL PACKAGE Good-Rewrite 
SEARCH priority by rule number A one success per rule 
TERMINATION no rule,applies 
METHODS 
1. single-var(Q) A has-op({Select},Q) 

-* ACHIEVE Simple-Transform ON Q. 

2. single-var(Q) 
b ACHIEVE Fast-Rewrite ON Q. 

3. nested(Q) 
-, ACHIEVE Flatter ON Q; 

4. has-op( { Join},Q) 
- ACHIEVE Join-Reorder ON Q. 

5. - ACHIEVE Lower-Cost ON Q. 

Figure 6: Good-Rewrite goal package. 

Applicability conditions for a region describe query states 
that can be manipulated by the region; the predicates in 
a rule further specify the queries to which the particular 
rule is applicable. For example, the Lower-Cost region (LC) 
specifies that it can process any query. However, one of 
the rules in the region may specify that it is a heuristic 
for processing queries with only Select, Project or Join 
operations. 

Working memory predicates can test to see if objects 
with particular values are stored in working memory and, 
if so, may match variables to values of those objects. For 
example, in Figure 7 the WM-MATCH? predicate finds any 
Control-Flag in the local memory with an id of “rulel” and 
a val of “True”, and matches variable ?Q to the query field 
of the matching memory item. ?Q is then bound for the next 
clause of the rule predicate and for the UPDATE action of 
the right hand side of the rule. 

Rules also have an implied predicate that tests the current 
goal of the region. This predicate is implemented by 
collecting rules that test for the same goal into goal packages. 
For example, the goal package of Figure 6 collects five rules 
that are heuristics for rewriting different kinds of queries. 

Goal packages modu,larize the planning process in the 
same way that regions modularize the optimization process. 
Collecting rules with the same goals into a package allows 
for the definition of package search strategies that can take 
advantage of the smaller sets of rules and of any particular 
characteristics of the rule sets [16, 191. Each goal package 
has its own execution and private control store. Thus, ss 
for regions, different goals can define different search control 
strategies and termination conditions. 

The right hand side of a rule describes a sequence of steps, 
or subtasks, that should be taken to attain the desired goal. 
The steps are either goal actions or memory updates. A goal 
action has the form 

ACHIEVE (goal-index) ON (query-variable) 
[GIVING <query-variable>] 

indicating that the goal identified by <goal-index> be 
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GOAL PACKAGE Fast-Rewrite 
SUCCESS one rule successful 
SEARCH one success per rule 
TERMINATION no rule applies 
LOCAL STORE 

TYPE Control-Flag: Record of (id: string, 
val: Bool, query: Query) 

OBJ Q1: Query 
METHODS 

+ ACHIEVE Simple-Transform ON Q 
GIVING 91; 

UPDATELocal(Add, (Done,(Control-Flag 
new(id = rulel, val = True, query = Qi)))). 

WMMATCH?-Local (Control-Flag 
(id = rule1 A val = ‘Due A query = ?Q)) 
A e&cost(?Q) 5 .5 * e&-cost(Q) 
b UPDATEJlocal(Q + ?Q). 

WM-MATCH?&& (Control-Flag 
(id = rule1 A val = True A query = ?Q)) 
A est,ost(?Q) > .5 + e&cost(Q) 
-, ACHIEVE Lower-Cost ON ?Q GIVING Q. 

Figure 7: F&Rewrite goal package. 

achieved on the query represented by the variable in the ON 
clause. The GIVING clause is optional and can be used to 
specify a new variable for storing the result. If IIQ GIVING 
clause is used, the input query is modified. 

Achieve actions describe rubtasks that need to be accom- 
plished to attain the rule goal. The goal can be a primitive 
goal that will be attained by the execution of a subordi- 
nate region, or a planning goal described by a goal package. 
Planning goals elicit a forward chain through goal packages, 
searching for primitive goals to execute. 

For example, consider rule 4 of Figure 6. The goal named 
“JoinReorder” is a primitive goal of the region that can be 
directly attained by a subordinate region (OJ or DP). On 
the other hand, goal “Flatter” (rule 3) is a planning goal of 
the region. Subtaslcs that can achieve this goal are described 
by another goal package (not shown, see [IS]). 

Memory update actions can be used to afTect subsequent 
rule control. For example, the Fast-Rewrite goal package 
(Figure 7) uses the local control store to implement the 
conditional decision structure of the following pilot pass 
style algorithm: 

1. Achieve Simple-Transform on Q Giving Q1. 
2. If Q has been improved by 508, quit; 
3. Else Achieve LowerCost on 91. 

A variable named Done of type Control-Flag is declared in 
local memory and is used by the rules to determine when 
the first rule has completed. The goal package assumes that 
the resalt is stored, by the rules, in variable Q. Thus, if 
the Qr result is natisfictory the second rule of the package 
must move Qr to Q . The third rule in the package uses the 
GIVING clause to move the result to Q. 

Memory update actions can also be used to affect global 
processing. In particular, a rule might insert a record into 
global memory to suggest a goal that would be desitablc to 
achieve on an intermediate query tesnlt. 

6.4 Region Execution 
The desired execution model for the region’s planning 
system is eager in the sense that a single rule (i.e., tssk) is 
executed to completion before trying any other tulen. The 
Achieve actions of the rule induce either a forward chain 
through rule packages ot a region execution, and IJpdate 
actions modify working memory. The actions of a rule are 
performed in sequence, so the execution will basically chain 
through rule packages until a primitive goal is encountered. 
Primitive goals are immediately executed, then processing 
is returned to the next step in the rule that invoked the 
primitive goal action. When a rule successfully completes, 
the newly transformed query is stored and processing may 
continue with auother query, goal and rule. If a rule fails, 
another rule with the same goal will be tried. 

In order to effect this execution model, processing is 
divided into the following modules: 

s High-level region execution - interacts with the interface 
modules; searches for queries, ot subqueries, and goals 
to process; executes goal packages 

l Package execution - chooses rules to achieve the rcquircrd 

god 

l Rule Execution - processes, in sequence, the actionu of 
a rule 

- Achieve actions - invoke processing to achieve the 
stated goal 

- Update - updates working memory 

l Primitive Action - executes subotdinate region 

High-level region execution begins execution of the first 
package and continues, execution until region termination 
conditions are met. Package execution continues executing 
rules to achieve the package god until its termination 
conditions hold. The combination of these two execution 
modules is basically a rule seatch system. Details of the 
execution modules are given in the following subsections. 

6.4.1 High-level region execution 

The invocation of a region passes information needed for 
the region execution through the parent-child interface and 
begins execution of the control loop of Figure 8. 

This loop, dong with the nested loop for package 
execution, effects a search through the rules that guide the 
optimization process for rules that match the current query 
and control state. Initially, a region is given a query and 
a god to achieve on that query. The high-level execution 
module can decide to work on that query, or may decide to 
process a subquery. As a query is processed, transformations 
of the query create dtetnative queries that may be chosen 
for processing in later executions of the high-level loop. 
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INPUT: query Q, goal G, termination condition8 
DIJTPUT: query, Boolean (success indicator) 

initialize current goal, current query, 
global termination conditions 

while <termination conditions) not met do 
choose current goal and query 
invoke package for goal 

cndwhile 
result .- ChooseBest(Get,Equiv(Q), G) 
return result and SucceM?(Reault) 

Figure 8: High-level region Execution 

5.4.2 Packago oxecutlon 

The combination of high-level and package execution is 
analogous to rule search. The high-level execution module 
determines what go8.l will be pursued, and package execution 
user additional conditions on rules to find rule8 to achieve 
the goal. The main job of package execution is to ensure that 

NPUT: query Q 
OUTPUT: query, IUCCCM indicator 

Lave +- Q 
et up a priority queue of rules whose conditions are met 
vhile (queue not empty) 

A (<termination conditions> not met) do 
execute first rule in queue on Q 
if rule complete8 

reinitialize priority queue of rules 
otherwise 

remove first rule from queue 
endw bile 
return result and Succesr?(result, package goal) 

Figure 9: Package Execution 

rules are executed to completion. A rule that complete8 may 
aclrieve the required goal, but a rule that doesn’t complete 
will not achieve the goal. Thus, package execution will 
try rules applicable to b query until a rule execute8 to 
completion. 

A dngle rule application may meet the package’8 goal, but 
the rules in a goal package may also be applied iteratively 
to work toward8 the goal. For example, a goal of lower 
cost may actually be achieved by ruccessively lowering the 
co8t of the query until a satisfactory result ie obtained. The 
termination conditions of the package determine the amount 
of iteration nece88ary to achieve the goal. 

In order to find a rule that may be 8ucce88fu1, the package 
execution module u8err the conditions on the left-hand sides 
of rule8 to determine a priority ordering for the rules. For 
example, the rbrch strategy for the Good-Rewrite goal 
package (Figure 6) defines that rule priority i8 by number, 
as long a8 the rule ha8 not dready been 8ucceMfully applied 
in the region. Thus, if a query satisfies the conditions of 
rule8 1, 2 and 5, but rule 1 WM applied earlier in the search, 

the priority queue will contain rule8 2 and 5, in that order. 
After a rule is applied, the module check8 to see if the rule 

executed to completion. If the rule completes, termination 
conditions are used to determine whether the package will 
further manipulate the result. If the rule doesn’t complete, 
other ruks are tried, in the priority order, until a rule is 
successful or there are no more rules that can be applied to 
the query. 

One built-in termination condition for a rule package is 
that all rules have been tried. The ‘empty queue’ condition 
reflects this termination condition. Other termination con- 
ditions for a package are determined by the requirements of 
the package god. Termination may be related to 8ucce88 
at achieving the goal but must also have conditions that 
are independent of success. In addition, region termination 
condition8 are combined with any global termination con- 
ditions to ensure that no more rules are attempted when 
globd termination is indicated. 

5.4.3 Rule execution 

The required execution is that a rule runs to completion 
before any further rule8 are executed. This is a major 
difference between the Epoq rule engine and most other 
rule systems. In Epoq we require sequential execution of 
rule steps, with no intervening rule execution. A major 
motivation for thie control is the interaction between the 
results of execution of subordinate regions and the planning 
system. In particular, the fact that subordinate regions 
bnd therefore, eventuidly, ruks can fail means that we may 
need to recover from changes made to control state during 
the execution of the rule. By not allowing concurrently 
executing rules, the transaction semantics of rule8 are 
simplifiedP 

The actions designated on the right hand side of a rule are 
executed in sequence until all actions have been successfully 
completed or until the first failing action. Memory update 
actions cannot fail, but Achieve actions can. In the event of 
failure, the control state must be recovered. Failure handling 
is discussed in Section 5.5. If all actions are succe8sfu1, 
the rule is complete and execution returns to the package 
execution module. 

Execution of an Achieve action depends on the goal of 
the action. If the goal is represented by a goal package, 
execution directly transfers control to the indicated package. 
There is no decision to be made here-all decisions about 
further processing are made in the goal package. If the goal 
is a primitive goal of the region, execution transfers to the 
primitive action execution module for that goal. 

5.4.4 Primitive Action execution 

A primitive action tries to directly satiery a goal by executing 
a subordinate region that can satisfy the goal. Since more 
than one region may be able to achieve a particular goal, a 
primitive action must choose between the regions. Also, 
since a region may not succeed at achieving a goal, a 
primitive action must try alternative regions to ensure that 

transaction and f&we semantica for concurrently executing 
rules ir au interesting topic for future n8eardr. 
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no region can achieve the goal before the action admits 
failure. 

Primitive actions use region applicability information to 
determine which region to execute to achieve a goal. SLotic 
opplicobilitypredicates describe the form of queries that can 
be manipulated by a region. They are provided to a parent 
by its subordinate, and can be applied by the parent to 
decide whether to eliminate a region from consideration. 
If there is more than one statically applicable region the 
results of dynamic applicability functions, executed at the 
subordinate regions, are used to further filter out regions 
or to determine an order for trying similar regions. If 
the dynamic applicability information cannot distinguish a 
single region to try, similar regions are ordered randomly. 
This process is described in Figure 10. 

INPUT: query Q 
OUTPUT: query, success indicator 

initialize success := false 
initialize continue := true 
use rule conditions to find applicable regions 
if there is more than 1 applicable region 

order regions (dynamic applicability; random choice) 
while continue 

A ((termination conditions> not met) do 
allocate termination conditions for subordinate and 
execute first region in queue on Q’ + Q 
if region returns success 

set success := true and continue := false 
otherwise 

remove region from queue’ 
if queue-empty then set continue := false 

endwhile 
if success then Add,Choice(Get-Equiv(Q), Q’) 
return Q’ and Success?(Q’, this primitive goal) 

Figure 10: Primitive Action Execution 

A Primitive action sends a copy of the query to be 
processed to a subordinate region. The subordinate region 
will make modifications directly to the query copy and, if 
the region is successful, the primitive action can update 
the global query information with the transformed result. 
The copy semantics put all decisions about maintaining 
transformed results in the domain of the query manipulation 
routines. The advantage of thii approach is the protection 
of the parent region’s memory. The disadvantage of this 
approach is that transformed results will usually reference 
many of the same subqueries as the original query. These 
references m get lost unless the query manipulation 
routines can tecognise common subexpreskns Ping just 
the copied query representations. 

The search for a region to achieve the required goal 
requires only a single successful result. The primitive 
action execution is terminated when a subordinate region 
is succe&~lly executed, when there are no more regions to 
try, or when global termination conditions indicate that no 
more searching is desite$ 

S.5 Handling Failure 
The planning system uses the heuristics defined in the plan- 
ning rules, along with applicability information provided by 
subordinate regions, to determine sequences of region ap- 
plications that will traneform a query to attain the dcsirccl 
goal. However a region execution will not necessarily achicvc: 
the region’s goal on every query to which the region is appli- 
cable. This happens because applicability information pro- 
vides necessary, but not sufficient, conditions for the query 
in order for the region to be able to process the query and 
attain the goal. 

Region execution is a primitive action, and region exccu- 
tion failure can propagate into primitive action failure, rule 
failure, goal package failure, and eventually parent region 
failure. Thus, each of these modules must accommodate the 
possibility of failure. 

The primitive action module handles region execution 
failure by executing other regions that can achieve the same 
goal as the failed region. It will try all regions until it finds 
one that can achieve the goal, or it finds that no rugion 
will attain the goal. In the latter case, the primitive action 
admits failure, which propagates to the rule. 

The sequence of actions on the right hand side of a rule arc 
considered UI a single transaction for recovery purposes. If 
any action on the right hand side of a rule fails, the rule itself 
fails. Any updates made to memory, in particular updates to 
query choices, must be backed out to a point before the first 
rule action. This recovery is handled through maintenance 
of a log of updates to memory state, delimited by transaction 
boundaries. A transaction, in this case, encompaRRcn the 
execution of an entire rule.’ A traneaction starts before the 
first action of a rule is executed and ends when the last rule 
action is successfully completed. Since rules can be nested 
within other rules (through Achieve actions) the recovery of 
a transaction can require backing-out of successful, uc~tcd 
rule executions. 

When a goal package terminates without achieving suc- 
cess, that failure propagates to the rule executing the 
Achieve action that invoked the package. If the goal pack- 
age is a high-level execution no further recovery is required. 
In thie case the high-level execution module must choose 
another query/goal pair to execute. 

Failure of a primitive action or rule will not necessarily 
propagate to region failure, nor does successful proceasing 
of goal packages indicate that the region will be successful 
at achieving its goal. The success, or failure, of a region to 
attain its goal depends solely on the definition of success for 
the goal and the queries that are generated as choices during 
the region’s processing. 

‘Them are certainly situations in which one would want to 
save the resulta of intermediate actions, lince they may o&r 
opportunities for Iater processing. Potentially good intermediate 
Malta could be indicated by incorporating save point actiona in 
r&m - where a save point in&cater at point at which alternative 
querk generated by actiona of the rule should be made persistent. 
Since rulea am effectively ne*ted, an interentingqucntion ia how Lo 
handle save points in the resulting nded transactiona. We defer 
WI anaww to the memantia of save pointa in nested trananctiolu 
to Iater work. 



(1 Related Work 
‘l’ho main difference between the Epoq approach to op- 
timization aud other approaches for extensible or object- 
oriented systrmu is that Epoq provides for extensibility of 
the optimization process itrelf. Most extensible optimiz- 
ers (e.g. [5], [7], [8], [lo], [ZO]) provide a fixed strategy for 
searching for and applying rules for query transformation. 
In other words, although the possible optimizer results can 
be extended, the optimization process is fixed. Proposals for 
object-oriented optimizers either use one of these extensible 
approaches [l] or provide some fixed sequence of optimizer 
processing strategies [3, 211. 

‘I’hc Epoq approach is motivated by the desire to extend 
au optimizer with new strategies for optimization. In other 
words, the optimization process can be extended. This 
leads to the need for an extensible control to direct the 
optimization process. Oplimizcr strategy extensibility also 
motivates the approaches of tanaelotte and Valduriez [II] 
and Sciore and Sicg [18], so we discuss these in more detail 
hc*re. 

Sciore and Sieg [18, 191 group query rewrite rules into 
modules, where different modules can have different rule 
starch and termination strategies. We use a similar 
approach in our planning system. The difference here, of 
course, is that our rules plan the operation of the optimizer 
itself. 

In the Sciore and Sieg approach, modules interact with 
each other in ways that are fixed when the modules, and the 
rulea, are written. In Epoq, control over the execution order 
of regions is separated from the regions being controlled. 
This results in a more modular optimizer and a control 
which can respond to the particular query being processed 
aud to the dynamics of the processing of that query. 

Lanzelotte and Valduriez address the problem of cus- 
tomizing the optimization process to a particular query by 
focuasing on an extensible way to define strategies for ma- 
nipulating query expressions [ll]. Dinerent search strategies 
arc rc*lated through a sub-type hierarchy of strategies, with 
I$$c!r level specifications describing the methods present 
in a search strategy aud lower level specializations (i.e., the 
spccilic strategies) implementing these methods (in different 
waye). A particular strategy can be modified by changing 
the implementation of any of its methods. 

Different strategies are integrated in the sense that they 
all spccidize a common model for search strategies. The 
common model is the search strategy for the optimizer and, 
at optimizer execution time, a specialization of the strategy 
can be used to process a particular query. The search 
strategy npecidizations are andogous to our leaf regions 
(and to the modules of Sciore and Sieg) and, indeed, may 
provide uucful tools for specifying the implementation of 
regions. Bowever, this work does not address the integration 
of the diRircnt strategies to process a single query at 
optimizer execution time. Given a query to process, one of 
the strategies present in an optimizer is chosen to optimize 
lhal query. 

The Epoq approach to query optimization is related to 
the knowledge-baaed approach of [22]. Epoq regions form 
a knowledge base of information about query processing 

ntrategies. The control presented here contains knowledge 
about ways to combine these strategies to process a query. 

The Epoq planning-based control is based on rule-based 
programming languages [4] and reactive planning (6). Our 
rule execution system, though, differs from either of these. 
A rule is a task that, if successful, will result in a desired 
transformation of a query. Thus, a rule describes a 
consistent way to process a query. Our rule engine enforces 
a transaction type of semantics on rules; we require that a 
rule execute to completion before new tasks are considered. 

7 Summary 
In an Epoq optimizer each region is a separate module 
that interacts hierarchicdly with other modules through 
a common interface and a planning-based control. The 
potentid interaction of modules is statically defined by 
control rules, region goals and applicability, but the actual 
interaction between regions depends on the query being 
processed. 

A region module provides, through the interface to its 
parent, a goal for its processing and predicates characteriz- 
ing the queries it expects to be able to manipulate to achieve 
the god. A parent control uses this information az it decides 
how to process a query. 

A parent region must determine an order for executing 
subordinate regions to transform a query to achieve its own 
god. Given a particular query, a region control plans a 
sequence of transformations (i.e., an ordering of subordinate 
region executions) that will, hopefully, manipulate the query 
to achieve the region’s god. The planning process is 
influenced by intermediate results of the plan-i.e., planning 
is interleaved with the execution of subordinate regions. 

Planning rules describe heuristics for interactions between 
regions. These rules also support extensibility in the 
optimizer. The addition of a new region to an optimizer 
may require new rules to describe how this region may 
successfully interact with other regions. These rules are 
added to the planning system’s rule set and manipulated 
in the same way as existing rules. The extensibility of 
the control itself is a unique feature of the planning-based 
control in supporting the extensibility of Epoq. 
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