Control of an Extensible Query Optimizer:
A Planning-Based Approach

Gail Mitchellt

Abstract

In this paper we address the problem of controlling the
cxecution of a query optimizer. We describe a control
for the optimization process that is based on planning.
The controller described here is a goal-directed planner
that intermingles planning with the execution of query
trausforinations, and uses execution results to direct further
planning of optimizer processing.

We describe this control in the context of the Epoq exten-
sible architecture. Epoq is an approach to extensible query
optimization that integrates specialized rewrite strategies
through its extensible control mechanism. This paper de-
scribes our planning-based approach to extensible control
and illustrates it with a simple example.

1 Introduction

Optimization of a query is inherently a process of searching
the space of expressions equivalent to the query. Typically,
a given optimizer can only visit some portion of this space,
since the set of transformation rules is usually incomplete,
the cost of optimization must be bounded, and the optimizer
control strategy limits the search. The control strategy of an
optimizer determines, for any query, the equivalent queries
that will be searched as well as the order in which they are
considered. :

The extensible nature of object-oriented systems requires
that an optimizer’s search be expanded in response to the
new kinds of expressions that can be written. The approach
taken by many extensible optimizers is to add new rules for

tGTE Labs, Waltham, MA 02254 USA. gmitchell@gte.com

$ilewlett-Packard Labs, Palo Alto, CA 94304-1120 USA.
dayal@hplabs.hp.com)

$Computer Science Department, Brown University, Provi-
dence, RI 02912 USA. sbz@cs.brown.edu

Permission 1o copy without fee all or part of this material is
granted provided that the copies are not made or distribuied for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and ils date appear, and notice is given
that copying is by permission of the Very Lorge Data Base En-
dowment. To copy otherwise, or to republish, reqhirea;-o'!ec
and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1993

517

Umeshwar Dayal!

Stanley B. Zdonik®

transforming queries. The kinds of rules used to describe
query transformations, and the control over execution of
those rules, differ in all systems [5, 7, 16, 19).

Some systems also recognize a need to support new strate-
gies for optimization; i.e., extensibility of the optimization
process itself [11, 14, 18]. The control we present here is
designed to support this kind of extensibility.

The Epoq approach to extensible query optimization
allows extension of the collection of control strategies that
can be used when optimizing a query {14]. Each strategy
can search some portion of the space of queries equivalent
to the optimizer input query. Different strategies will
usually search different (possibly overlapping) parts of the
search space, although different strategies may simply offer
alternative ways to search the same space.

An Epoq optimizer is a collection of concurrently available
region modules, each of which embodies one strategy for the
optimization of query expressions. The Epoq architecture
integrates the regions through a common interface for the
region modules, and a global control that combines the
actions of subordinate regions to process a given query.

The region modules are organized hierarchically, with a
parent region controlling its subordinate regions as though
they were a collection of transformations. This is illustrated
in Figure 1.

The root module of the optimizer communicates with the
query processing system. It receives a query to optimize, and
produces an optimized result. This result is computed with
the assistance of its child regions. Child modules transform
queries at the request of a parent region, and may also act
as parents by using subordinate regions to assist with this
transformation.

Structuring the region modules hierarchically puts knowl-
edge about regions that can cooperate to process a single
query in one place—i.e., a parent. The parent’s strategy,
and the characteristics of the query expression being opti-
mized, determine how the subordinate regions will cooper-
ate. A parent region composes the transformations of its
subordinates to produce an equivalent result query.

We distinguish two kinds of regions in an Epoq optimizer—

ingerior "regions (ingluding the root) and leaf regions. Both

kinds of regions are transformations, but they differ in that
the control of interior regions has to manipulate transforma-
tions represented by other regions in the optimizer, whereas

Global Control
[1
Y Y
Contral Control Control
T 1
| '
t i
‘Transformations Transforoetions
| I
Control Control
T LI
| |
= '{ I | h-!lan-dm
] | |
A-!>B C!>D I!!>F

Figure 1: Epoq architecture

the control and transformations of a leaf region are internal
to the region and are not explicitly addressed in the architec-
ture. Indeed, in Figure 1 the leaf regions are shown simply
as transformations. Of course, these transformations will, in
practice, be complicated strategies for manipulating queries.
The control presented here concentrates on the integration
of transformation strategies.

Most extensible optimizers (e.g., [5], [7], [8], [10], [20))
provide a fixed control over the application of strategies
to manipulate queries. This makes it difficult for these
optimizers to adapt to a changing repertoire of strategies.
Epoq allows extension of the control as well as the addition
of new optimization strategies.

Epoq was motivated by a need to address extensibility
in the design of object-oriented query optimizers, but we
believe that it has more general utility. The architecture and
control of Epoq increase the range over which any optimizer
might be extended.

The major contributions of this paper are

¢ a definition of the control problem for extensible query
optimizers

¢ an extensible, planning-based approach to solving the
optimiger control problem.

In the next section we present the comtrol problem.
We approach this problem in the context of the Epogq
architecture for query optimizers, described further in
Section 3. In Section 4 we present a simple example
optimizer that instantiates this architecture and can be used
to illustrate the discussion in later sections. In Section 5 we
present an architecture for optimizer control and a design
for a planning system for controlling the activities of an
optimizer. In Section 6 we compare our work to other
systems, and we summarige results in Section 7.

2 The Control Problem

-~ aa e a

The strategy for achieving some goal is encapsulated insidc
a region. This strategy is implemented through the region's
control over the application of query transformations. In
formations, and a parent region controls the application of
those transformations through requests to subordinates to
transform a query expression.

The major decisions that need to be made by a region
are 1) which query or subquery to process and 2) which
region to execute. A region receives a single query to
transform, as well as a goal for the transformation, aud
needs to decide what transformations to apply to the query,
or any subqueries, in order to achieve its goal. 'T'hroughout
the transformation process a region will usually maintain
a number of alternative query expressions, and will work
on different of those expressions at diflerent points in its
processing.

One way to approach this process is to pair query ex-
pressions with applicable regions, then select an expres-
sion/region pair to execute.! Such a control is like a search
through transformation rules, where the rules are the child
regions. One difficulty in doing this is in determining when
a region (rule) is the right one to apply to a query. Nor-
mally, rule-based optimizers do pattern matching (and usu-
ally condition testing) of the query expression with the left
hand sides of rules, then perform some conflict resolution if
more than one rule matches a query (e.g., assign weights to
rules as in [7]). This approach is not satis{actory for an Epoq
optimizer because the regions do not behave as precisely as
rules behave.

In a rule-based optimizer, rules provide complecte infor-
mation to a search engine, and can be applied by a rule
execution process. In an Epoq optimizer, a region, behav-
ing as a rule, provides incomplete information to its parent,
and applies itself. The result of a region execution is re-
turned to a parent, but the actual execution of the region is
done independently of the parent processing. As a result, a
region may not achieve its goal and may return a message
to its parent indicating such a failure.

An alternative to rule search is to view region executions
as actions in an optimization planning system. The decisions
that need to be made (which region to execute, which
query expression to manipulate) are managed by a planning
system that is driven by its own planning rules. The
planning rules are heuristics about orderings of region
applications that will (hopefully) achieve the region’s goals.
Thus, the planning system is planning the execution of the
optimizer. Since, in Epoq, a region may fail to transform
a query (i.e., fail to achieve the region’s goal), the planning
process cannot proceed independently of the region results
and is thus interleaved with region execution. This is
discussed in more detail in Section 5.

The goals of a region characterize the output queries that
can be produced by a region. Given a particular query,

1 An applicable region is one that cxpects to be able to achicve
its goal on the query. Applicability is assessed through functionn
a region provides (o its parent control. Such measures test
necessary conditions on a query for a region to transform it.

518

success indicates whether the region was able to attain a
particular goal for that query. For example, if a region’s
goal is Lo lower cost, and the result query computed by the
region has a lower cost than the input query, then the region
was successful at achieving its goal.

Termination refers to stopping the execution of a region.
In general a region will have its own internal criteria
for termination, since termination is an integral part the
region’s control. Termination may be related to success—a
region may terminate processing a query when it discovers
it is successful at achieving its goal. However, termination
will often be conditional on more than success; for example,
a region with a goal to lower cost will usually not quit as
soon as the cost is lower, but will continue to try to improve
the cost until it decides that further work will not be cost
cffective. In all cases, termination must involve conditions
that are independent of success. A region will not necessarily
achieve success, so termination conditions must ensure that
the region stops regardless of success at achieving a goal.

3 Region Architecture

All regions have control over the transformation of queries.
This conceptual view of a region describes the fact that
a region implements a control strategy for manipulating
queries. The transformations of a region are those described
by the control strategy, and the region control implements
this strategy. For interior regions, the transformations used
by the control are subordinate regions, as well as, possibly,
internally defined transformations. For leaf regions, all
transformations are internally defined.?

A region interface provides the support for communica-
tion between the control of a region and its parent or child
regions. The interface to its parent allows a region to be
used as a transformation by the parent. The interface to
a region’s children allows the region to use the children
as transformations. This interface can request information
from children which is then supplied to the region’s control.
Region interfaces are described more completely in [15].

Epoq defines a common structure for the interface to en-
sure structural compatibility. This supports communication
between regions as well as the addition of new regions to an
optimizer. The architecture of all parent-child interfaces is
the same, although the implementation of this architecture
may be different for each interface. For example, the archi-
tecture specifies that a query passes between a parent and a
child region. Although we would expect all interfaces to use
the same query representation, it is possible for a particular
parent-child interface to use a different query representa-
tion. The root region, for example, might accept and return
a query expression as a string if it can translate that form

2Transformations may be explicitly defined in leaf regions;
for example, a rule-based optimizer contains an explicit set of
rules and a control mechanism that iinplements some sort of rule
search, The transformations will often be implicit, i.e., built
into the control mechanism. For example, a region that uses
dynamic programming to generate efficient join orderings uses,
implicitly, commutativity and associativity transformations on
the join operators.

519

PARENT REGION
(Interface to Child)

| [A

Y !

CHILD REGION
(Interface to Parent)

Figure 2: Interface Between a Parent and Child Region.

back and forth between the representation to be used in the
optimizer.

The diagram of Figure 2 indicates the kinds of information
passed between a parent and child region. The arrows in
the figure indicate the direction of information flow. For
example, queries are passed both ways: a query to be
transformed is passed from a parent region to a child, and a
transformed query is passed from a child region to its parent.

We say a goal is ‘recognized’ by a parent region when
the parent region contains the control mechanisms to
request that a child region work towards that goal. A
goal is ‘attainable’ by a region when the region has the
control mechanisms to work towards that particular goal.
It is important to ensure that the attainable goals of a
subordinate intersect the goals recognized by a parent, since
the subordinate is useless if it cannot achieve any of its
parent’s goals.

Applicability refers to the ability of a region to transform
a query. Thus, applicability is directly related to the control
strategy of a region; a region for which some transformation
applies to a query ¢ is said to be applicable to q. Of
course, assessing applicability of a region to a query by
finding a transformation sequence is not feasible, so a region
needs to use other measures to assess its applicability. An
applicability measure for a region should indicate necessary
conditions for the region to transform a query.

Practical measures of applicability may consider goals,
the input query, termination conditions, transformations,
region control, etc. Applicability measures provide a means
for a parent region to eliminate from the decision-making
process regions that will not be able to process the current
query. Thus, they are used to improve the efficiency of the
optimizer.

Applicability in an Epoq optimizer is similar in function
to pattern-matching and condition-matching of left-hand
sides in more traditional rule-based optimizers. Applica-
bility differs in that it doesn’t guarantee that a region can
process a query, but only tells when a region can probably
process a query. This difference is accounted for in the re-
gion’s control. The region requests a subordinate to achieve
a particular goal on a query, and must be able to accommo-
date failure of the subordinate to achieve that goal.

OPT
Goals: Good Rewrite;|
Fast Rewrite

o) _ sX LC
Goal: Join Reorder Goal: %:\l:lfznn Goal: Lower Cant
1] L i
e SPJ DP CNF EX
Goal: Convert Join . . Joi Goal: Predicate Goal: Best Bat
" : Gol; Join Reorder :
Predicate Goal: SFJ Form oin Reorder Cont

Figure 3: Example optimizer design

4 Running Example

In this section we give a design for a simple query rewrite
system to illustrate the capabilities of the Epoq architecture
and, in particular, to illustrate the planning-based control
that will be presented in Section 5. The purpose of this
example is not to define new optimization heuristics or
propose new optimization strategies. Indeed, designing good
optimization strategies, and heuristics about interactions
between different optimization strategies, is an open area
of research. The Epoq architecture is a vehicle for defining
such interactions and can be a testbed for experimentation
with optimizer design heuristics.

The example optimizer we use throughout the rest of
this paper consists of nine regions connected as depicted in
Figure 3. Each box in the picture is a region and is labelled
with a name for the region as well as each region’s goal(s).

The root region, named OPT, uses the following regions
to do its transformations:

o SX does simple query transformations(X) such as predi-
cate simplification, view substitution, collapsing Project
operations, etc.

e CJ converts nested predicates to Join operations, when
possible.

e OJ reorders join operations. In particular, this region
can handle QuterJoin and Join operations.

o SPJ tries to convert nested queries involving Select,
Project and Join operations into a canonical form
with all Joins followed by Selects followed by Projects.
Such a form could be conducive to lower level query
optimizations.

o DP reorders join operations using a dynamic program-
ming algorithm and a simple cost model.

¢ LC tries to lower the expected cost of the query.

The OPT region takes a query in a high-level algebraic
language and applies its subordinate regions to manipulate
the query and produce an algebraic query with lower
expected cost. OPT is not a complete optimizer but

could be used, for example, as a region for a higher-level
optimizer with a control that uses other regions to translate
a declarative query to the algebra and manipulate the result
of OPT to produce a query plan.

OPT can use its subordinates in different ways depending
on the nature of the query it is trying to optimize. For
example, a simple query with no nested expressions could
be simply processed by region LC to lower the expected
cost. More complex qucries, with nested expressions, can be
processed by a region that works to unnest the expressions
(e.g., SPJ or CJ) followed by a region that reorders the
resulting Join operations (OJ or DP). The specification of
such orderings, and the means for choosing among regions
with the same goals (e.g., OJ and DP) are preseated in
Section 5.

Region OPT can also choose to process queries using a
“pilot pass” style algorithm [17] that first applies simple
transformations to the query (region SX) and is satisficd
with the result (and quits) if those transformations reduce
the expected cost by some amount. If the preliminary pass is
not satisfactory, more complete processing of the query can
be undertaken by the lower cost region (LC), for example.
Such an algorithm could speed processiug of simple querics
by the optimizer.

The lower cost region (LC) takes advaniage of the
hietarchical structure of the Epoq approach. This region
has three subordinate regions that it can use in trying to
achieve its goal of lowering the expected cost of its input
query expression. Region EX could be a rule processor
(perhaps built by an optimizer generator [9]) that estimates
the cost of transformed queries and returns the lowest cost
query it can find. Region LC can choose to use this region to
attain its own goal, or can choose to send the query through
a sequence of modules (CNF and DP, here) each of which
has its own strategy for applying its smaller collection of
rules to the query (similarly to [5] or [18]). LC could even
try both strategies, choosing the best result, or could usc
the strategies in a pilot pass type of approach.

The leaf regions in this example are complicated strategics
for the application of transformations to querics. These
strategics are controlled by higher-level regions. It should be
noted that the granularity of leaf strategies could be much

520

finer; for example, a leaf could be a single transformation
rule, with strategics for controlling the rules described in a
parent regiou.

The optimizer in this example ignores many of the prob-
Jeins that are encountered with object-oriented queries. For
example, this optimizer design doesn’t include any process-
ing for path expressions (as in [12], for example) or any type
specific optimization (e.g. [13]). Such optimizations could
be included as leaf regions, and the control of OPT could
use these strategies in conjunction with the other strategies
when appropriate. For example, path expression process-
ing might be combined with join/outerjoin reordering. The
Epoq architecture allows such additions to the repertoire
of strategies, and the control we present next provides for
extensions that can incorporate these additions.

5 Control Architecture

The actual transformation of a query expression is the re-
sponsibility of the region control. The region interface pro-
vides information to the control, and relays control results
and requests to other regions. The control components in-
teract with each other, and with the interface, to effect the
transformation process. Through its management of the
transformation process, the control implements a control
strategy for the region.

A decision-making component is the central part of a
region control. This component makes the decisions about
what processing the region must do to transform a query.
It interacts with a control store to obtain information it
uses in making decisions and to store information that may
be used in later decisions. The decision-making component
decides what transformations should be performed (which,
for interior regions, translates to which subordinate regions
should be executed) to manipulate a query. Conversely,
the results of transformations can be input to decisions
about how to (and whether to) continue the transformation
process.

The decision-making functionality consists of components
to choose a focus for processing (i.e., a query and goal),
choosc a transformation to execute, decide what to record
in the store as a result of a transformation, decide when
to terminate processing, and determine the result of the
region’s execution. These decision “modules” are reflected
in the execution depicted in Figure 4.

The region focuses on a particular query and goal,
and chooses a process for transforming the query. These
two decisions are complementary—the transformation to
perform depends on the query and goal, and the query
and goal chosen may depend on what transformations are
available. This duality is evident in rule-based optimizers,
where queries are matched to transformation rules and a
best query/rule pair is chosen for next execution. In Epogq,
these decisions are made by a planning system. The query
and goal form a task for a region to perform, and the
planning system finds a sequence of transformations that
may perform the required task.

Termination refers to the conditions under which the
region stops its processing and returns to its parent. These
conditions are checked after each query transformation

521

initialize store

while termination conditions not met do
choose a query and goal
choose a transformation to process
transform query
update store with result info

endwhile

return “best” query and success indicator

Figure 4: Basic Region Execution

(see Figure 4) and, if the conditions are met, processing
is completed. In general, the conditions for termination
are built into the control. For example, a control may
decide to terminate after processing a certain number
of transformations, after finding a particular number of
alternative queries, after generating an alternative that
attains the region’s goal, after finding no good prospects
for further processing the input query, etc.

However, the hierarchical organization of region process-
ing means that a parent region may want (or need) to have
some control over the termination of its subordinate regions.
Such control can be implemented by sending termination
conditions to a child region through the parent-child inter-
face. The disjunction of the built-in conditions and the par-
ent’s condition then become the termination criteria for the
region.

A parent can send two kinds of termination conditions:
conditions involving the state of the query and conditions
involving the utilization of resources. The former can be
submitted to a subordinate as Boolean functions with one
parameter—a query. At each termination check, the child
can supply the query argument to the parent’s termination
function and execute the function. For example, suppose
a parent will be satisfied if a subordinate that works to
improve cost can improve the cost of the query by 15%.
The parent would supply a Boolean function Improve(initial
query, current query) that computes the percentage cost
difference between an initial query state and the current
query state and returns true if that percentage is greater
than or equal to fifteen. The parent would send a closure
of Improve, with the initial query instantiated, to its child
through the interface. At each check for termination, the
child supplies the current query and executes the function.

Termination conditions involving resource utilization gen-
erally require reasoning on the part of the child region. As a
result, if a region wishes to convey such conditions to its chil-
dren, the children must be constructed to directly respond
to the particular conditions. For example, suppose a parent
wishes to set time limits on a child’s execution. The child
must be able to interpret the time limits and, if it in turn
calls other regions, must be able to apportion time limits to
its children.

The final decision made by a region is the choice of query
result. This decision is related to the processes that store
alternative queries since the final query will be one of the
stored alternatives. It is also related to the region’s goal,
since a region will choose (if possible) to return an equivalent

query that meets the goal. A region must return a query
that is equivalent to the input query, thus if no satisfactory
alternative is stored the region must return the original
query. ,

A high-level view of region execution is depicted in
Figure 4. Basically, a region continues transforming a query
until the decision to terminate the processing is made. A
region first chooses a query or subquery to process and a
goal for that processing. An initial' query and goal are
provided by a parent region through the interface, but as
processing continues the region may work on intermediate
results, or on subqueries, with different goals in order to try
to attain the required goal on the initial query. Intermediate
transformation results may be stored, and after termination
a result to be produced by the region is chosen. That result
may, or may not, reflect success at achieving the initial goal
for the transformation process.

The optimizer control is, in effect, choosing sequences of
subordinate regions to manipulate a query, since the trans-
formations it chooses to perform on queries are subordinate
region executions. The extensibility of an Epoq optimizer
requires, then, that the control component react to the ad-
dition of new regions. We satisfy this requirement with a
control that is based on planning the optimization process.

5.1 Planning-Based Control over Regions

Planning reduces a task to primitive actions [2]. In the Epoq
context, a region’s task is to achieve some goal on a query,
and primitive actions are subordinate region executions.

Plans use goals to describe tasks and subtasks that can
be performed to achieve other goals. The planning process
uses goals to progressively break a task into subtasks, and
eventually to primitive tasks (i.e., region executions). Thus
the result of planning is a sequence of subordinate region
executions that may achieve the region’s goal.

Plans are defined in a rule-based language, where the
rules provide heuristics about potentially good interactions
between region executions. A rule search engine matches
rules to the current goal and control state (including the
current query) and chooses rules to execute. Rules describe
three kinds of actions that can be performed: planning
actions, primitive actions, and memory updates. Primitive
actions result in subordinate region executions. Planning
actions induce a forward chain through rule goals to find
primitive actions. Update actions modify the region’s
working memory with information that may be used later
in the rule search.

The rule language and working memory are patterned
after rule-based languages such as OPS5 [4]. A major dif-
{erence, though, is that the Epoq rule interpreter interleaves
rule manipulation with the execution of subordinate regions.
This interleaving of planning and execution is required be-
cause subordinate regions can fail to achieve their stated
goal, and the success or failure of a region execution to
achieve its goal affects the optimization process. In other
words, the sequence of actions that is generated as a plan is
affected by the execution of those actions.

Get_Cost: Query — cost
Get_Equiv: Query — QuerySet
Choose_Best: QuerySet, Goal — Query
Prune: QuerySet —+ QuerySct
Add.Choice: QuerySet, Query -—+ QuerySet

Figure 5: Methods supporting decisions and queries.

8.2 Control Store

The control store supports decision-making by maintaining
information used during region execution. Items in the store
form the working memory of a control. Items are named and
typed so that they can be directly accessed by the region
control and can be manipulated by methods defined over
their type. The control state consists of the contents of the
store, along with information about the current processing
step.

The store always includes an initial and current version
of the query being transformed, as well as intermediate
(equivalent) versions of the query. Iutermediate query
versions provide choices of ways to execute a particular
query, and also provide processing choices for an optimizer.
For example, in a rule-based optimizer interinediate versions
of a query or subquery are usually maintained and the rule
search engine (decision-making component) will match rules
to these versions for further processing,

In order to support control decisions, the store includes a
log; i.e. a history of previous processing. The log is used to
keep track of the actions performed during ihe processing of
queries. Such information can be used in control decision-
making, for example, to prevent repetitive processing. It
will also be used to support the undoing of partial results
after failure to achieve a goal.

The store may also include other data defined by a
particular control. For example, data could be used to
help control rule execution. The working memory clements
can be matched in rules and, in that way, can provide
information referenced in rule actions as well as information
that helps control the selection of rules to cxecute.

A region’s store is local to the region. Any information
that should be visible to other regions is passed as arguments
through the region interface. In general, a region’s control
store persists for the duration of the region execution.

5.2.1 Query Storage and Management

The store will contain queries, and two relationships between
these queries: subquery and equivalence. The snbquery
relationship is an explicit part of the query--arguments to
a query can be other queries. Equivalence relationships are
instances of a type called QuerySet. The instances of this
type are, abstractly, sets of queries; all queries in a single
queryset are equivalent to each other. The store will always
contain at least one queryset—the set of queries equivalent
to the initial query.

Some methods for supporting decisions about queries and
querysets are shown in Figure 5. Methods Get.Cost and
Get_Equiv retrieve information about the state of a query.
The Get_Cost method retrieves the current cost of a query.

522

‘That cost will depend on the cost model being used in the
optimizer. Retrieving the cost is supported by methods of
the cost model. The Get.Equiv method returns the queryset
associated with the input query parameter. This gives
access Lo the queries that are equivalent to the input query,
thus allowing further processing such as iterating through
the equivalent queries, or choosing an equivalent query for
processing.

Methods defined for Type QuerySet may involve decision-
making. For example, a queryset supports a Choose_Best
method to find the query, in a set of alternative queries,
that best achieves the required goal. Add_Choice is used
in the control whenever a new query is generated through
transforination. The region control can decide, through the
implementation of Add.Choice, whether or not a particular
transformation result is stored for future manipulation.
Method Prune further manages querysets by removing
equivalent queries that no longer are useful to the control.

The Query and QuerySet types are global to an optimizer,
but the type representations and method implementations
may be redefined within a region. For example, if a region
processes a qucry as simply a sequence of transformed ex-
pressions, then the representation could store only the most
recent query version. In this case, the Add_Choice routine
would replace the previous query with the new choice, the
Prune routine would be null, and the Choose.Best routine
would simply return the query.

5.2.2 Log Management

The log is a record of actions taken in a region. It includes
records of query modifications (i.e., transformations) and
may include a record of modifications to other information
stored in memory. The log can support control decisions
by recording the results of previous decisions. It can also
support a simple recovery scheme, by offering the ability to
restore the memory to a point prior to some transformation
of a query.

I'he log must support a method Append(Log,LogRecord)
to add a new record to the log. The Retrieve actions
supported by a log depend on the requirements of the
particular decision-making component, and could include
retrievals to answer such queries as: What was the last
transformation performed? What is the last transformation
performed on query Q7 What is the last transformation that
resulted in query Q? Has query Q been transformed yet?
Has a particular transformation been used?

5.3 Rules for Planning
The planning process uses rules that describe heuristics
for good interactions between optimization tasks. These
heuristics guide the decision-making process.
Rules have the general form
condilion test — action sequence

with the scmantics that if the left hand side condition is
satisfied, then the actions on the right hand side are executed
in sequence. The left hand side conditions are predicates
over working memory and applicability predicates over the
current query. The right hand side actions are planning or
primitive actions, or memory updates.

GOAL PACKAGE Good_Rewrite
SEARCH priority by rule number A one success per rule
TERMINATION no rule applies

METHODS
1. single.var(Q) A has_op({Select},Q)
——+ ACHIEVE Simple_Transform ON Q.

2. single_var(Q)
~—+ ACHIEVE Fast_Rewrite ON Q.

3. nested(Q)
—~ ACHIEVE Flatter ON Q;

4. has_op({Join},Q)
— ACHIEVE Join.Reorder ON Q.

5. —— ACHIEVE Lower_Cost ON Q.

Figure 6: Good_Rewrite goal package.

Applicability conditions for a region describe query states
that can be manipulated by the region; the predicates in
a rule further specify the queries to which the particular
rule is applicable. For example, the Lower_Cost region (LC)
specifies that it can process any query. However, one of
the rules in the region may specify that it is a heuristic
for processing queries with only Select, Project or Join
operations.

Working memory predicates can test to see if objects
with particular values are stored in working memory and,
if so, may match variables to values of those objects. For
example, in Figure 7 the WM_MATCH? predicate finds any
Control_Flag in the local memory with an id of “rulel” and
a val of “True”, and matches variable ?7Q to the query field
of the matching memory item. ?Q is then bound for the next
clause of the rule predicate and for the UPDATE action of
the right hand side of the rule.

Rules also have an implied predicate that tests the current
goal of the region. This predicate is implemented by
collecting rules that test for the same goal into goal packages.
For example, the goal package of Figure 6 collects five rules
that are heuristics for rewriting different kinds of queries.

Goal packages modularize the planning process in the
same way that regions modularize the optimization process.
Collecting rules with the same goals into a package allows
for the definition of package search strategies that can take
advantage of the smaller sets of rules and of any particular
characteristics of the rule sets [16, 19]. Each goal package
has its own execution and private control store. Thus, as
for regions, different goals can define different search control
strategies and termination conditions.

The right hand side of a rule describes a sequence of steps,
or subtasks, that should be taken to attain the desired goal.
The steps are either goal actions or memory updates. A goal
action has the form

ACHIEVE <«goal_index» ON <«query_variable»
[GIVING < query.variable:y]

indicating that the goal identified by < goal.index» be

523

GOAL PACKAGE Fast_Rewrite
SUCCESS one rule successful
SEARCH one success per rule
TERMINATION no rule applies
LOCAL STORE
TYPE Control_Flag: Record of (id: string,
val: Bool, query: Query)

OBJ Qi: Query
METHODS
—+ ACHIEVE Simple_Transform ON Q
GIVING Qi;
UPDATE_Local(Add, (Done,(Control_Flag
new(id = rulel, val = True, query = Q,)))).

WM_MATCH?_Local (Control_Flag
(id = rulel A val = True A query = ?Q))
A est_cost(?Q) < .5 » est_cost(Q)
—+ UPDATE_Local(Q ~ ?Q).

WM_MATCH? Local {Control_Flag »
(id = rulel A val = True A query = 7Q))
A est_cost(?Q) > .5 * est_cost(Q)
— ACHIEVE Lower_Cost ON ?7Q GIVING Q.

Figure 7: Fast_Rewrite goal package.

achieved on the query represented by the variable in the ON
clause. The GIVING clause is optional and can be used to
specify a new variable for storing the result. If no GIVING
clause is used, the input query is modified.

Achieve actions describe subtasks that need to be accom-
plished to attain the rule goal. The goal can be a primitive
goal that will be attained by the execution of a subordi-
nate region, or a planning goal described by a goal package.
Planning goals elicit a forward chain through goal packages,
searching for primitive goals to execute.

For example, consider rule 4 of Figure 6. The goal named
“Join_Reorder” is a primitive goal of the region that can be
directly attained by a subordinate region (OJ or DP). On
the other hand, goal “Flatter” (rule 3) is a planning goal of
the region. Subtasks that can achieve this goal are described
by another goal package (not shown, see [15]).

Memory update actions can be used to affect subsequent
rule control. For example, the Fast.Rewrite goal package
(Figure 7) uses the local control store to implement the
conditional decision structure of the following pilot pass
style algorithm:

1. Achieve Simple_Transform on Q Giving Q;.
2. If Q has been improved by 50%, quit;
3. Else Achieve Lower.Cost on Q.

A variable named Done of type Control_Flag is declared in
local memory and is used by the rules to determine when
the first rule has completed. The goal package assumes that
the resalt is stored, by the rules, in variable Q. Thus, if
the Qi result is satisfactory the second rule of the package
must move Q) to Q . The third rule in the package uses the
GIVING clause to move the result to Q.

Memory update actions can also be used to affect global
processing. In particular, a rule might insert a record into
global memory to suggest a goal that would be desirable to
achieve on an intermediate query result.

5.4 Region Execution
The desired execution model for the region’s planning
system is eager in the sense that a single rule (i.e., task) is
executed to completion before trying any other rules. The
Achieve actions of the rule induce either a forward chain
through rule packages or a region execution, and Update
actions modify working memory. The actions of a rule are
performed in sequence, 8o the execution will basically chain
through rule packages until a primitive goal is encountered.
Primitive goals are immediately executed, then processing
is returned to the next step in the rule that invoked the
primitive goal action. When a rule successfully completes,
the newly transformed query is stored and processing may
continue with another query, goal and rule. If a rule fails,
another rule with the same goal will be tried.

In order to effect this execution model, processing is
divided into the following modules:

o High-level region execution - interacts with the interface
modules; searches for queries, or subqueries, and goals
to process; executes goal packages

o Package execution - chooses rules to achieve the required
goal

o Rule Execution - processes, in sequence, the actions of
a rule

— Achieve actions - invoke processing to achieve the
stated goal

— Update - updates working memory
o Primitive Action - executes subordinate region

High-level region execution begins execution of the first
package and continues execution until region termination
conditions are met. Package execution continues executing
rules to achieve the package goal until its termination
conditions hold. The combination of these two execution
modules is basically a rule search system. Details of the
execution modules are given in the following subsections.

5.4.1 High-level region execution

The invocation of a region passes information neceded for
the region execution through the parent-child interface and
begins execution of the control loop of Figure 8.

This loop, along with the nested loop for package
execution, effects a search through the rules that guide the
optimization process for rules that match the current query
and control state. Initially, a region is given a query and
a goal to achieve on that query. The high-level execution
module can decide to work on that query, or may decide to
process a subquery. As a query is processed, transformations
of the query create alternative queries that may be chosen
for processing in later executions of the high-level loop.

524

INPUT: query Q, goal G, termination conditions
OUTPUT: query, Boolean (success indicator)

initialize current goal, current query,
global termination conditions
while € termination conditions’®» not met do
choose current goal and query
invoke package for goal
endwhile
result ~— Choose. Best(Get_Equiv(Q), G)
return result and Success?(Result)

Figure 8: High-level region Execution

5.4.2 Package execution .

The combination of high-level and package execution is
analogous to rule search. The high-level execution module
determines what goal will be pursued, and package execution
uses additional conditions on rules to find rules to achieve
the goal. The main job of package execution is to ensure that

INPUT: query Q
OUTPUT: query, success indicator

Qsave — Q
set up a priority queue of rules whose conditions are met
while (queue not empty)
A (<termination conditions:» not met) do
execute first rule in queue on Q
if rule completes
reinitialize priority queue of rules
otherwise
remove first rule from queue
endwhile
return result and Success?(result, package goal)

Figure 9: Package Execution

rules are executed to completion. A rule that completes may
achieve the required goal, but a rule that doesn’t complete
will not achieve the goal. Thus, package execution will
try rules applicable to a query until a rule executes to
completion.

A single rule application may meet the package’s goal, but
the rules in a goal package may also be applied iteratively
to work towards the goal. For example, a goal of lower
cost may actually be achieved by successively lowering the
cost of the query until a satisfactory result is obtained. The
termination conditions of the package determine the amount
of iteration necessary to achieve the goal.

In order to find a rule that may be successful, the package
execution module uses the conditions on the left-hand sides
of rules to determine a priority ordering for the rules. For
example, the search strategy for the Good.Rewrite goal
package (Figure 6) defines that rule priority is by number,
as long as the rule has not already been successfully applied
in the region. Thus, if a query satisfies the conditions of
rules 1, 2 and 5, but rule 1 was applied earlier in the search,

525

the priority queue will contain rules 2 and 3, in that order.

After a rule is applied, the module checks to see if the rule
executed to completion. If the rule completes, termination
conditions are used to determine whether the package will
further manipulate the result. If the rule doesn’t complete,
other rules are tried, in the priority order, until a rule is
successful or there are no more rules that can be applied to
the query.

One built-in termination condition for a rule package is
that all rules have been tried. The ‘empty queue’ condition
reflects this termination condition. Other termination con-
ditions for a package are determined by the requirements of
the package goal. Termination may be related to success
at achieving the goal but must also have conditions that
are independent of success. In addition, region termination
conditions are combined with any global termination con-
ditions to ensure that no more rules are attempted when
global termination is indicated.

5.4.3 Rule execution

The required execution is that a rule runs to completion
before any further rules are executed. This is a major
difference between the Epoq rule engine and most other
rule systems. In Epoq we require sequential execution of
rule steps, with no intervening rule execution. A major
motivation for this control is the interaction between the
results of execution of subordinate regions and the planning
system. In particular, the fact that subordinate regions
and therefore, eventually, rules can fail means that we may
need to recover from changes made to control state during
the execution of the rule. By not allowing concurrently
executing rules, the transaction semantics of rules are
simplified.®

The actions designated on the right hand side of a rule are
executed in sequence until all actions have been successfully
completed or until the first failing action. Memory update
actions cannot fail, but Achieve actions can. In the event of
failure, the control state must be recovered. Failure handling
is discussed in Section 5.5. If all actions are successful,
the rule is complete and execution returns to the package
execution module.

Execution of an Achieve action depends on the goal of
the action. If the goal is represented by a goal package,
execution directly transfers control to the indicated package.
There is no decision to be made here—all decisions about
further processing are made in the goal package. If the goal
is a primitive goal of the region, execution transfers to the
primitive action execution module for that goal.

5.4.4 Primitive Action execution

A primitive action tries to directly satisfy a goal by executing
a subordinate region that can satisfy the goal. Since more
than one region may be able to achieve a particular goal, a
primitive action must choose between the regions. Also,
since a region may not succeed at achieving a goal, a
primitive action must try alternative regions to ensure that

3Transaction and failure semantics for concurrently executing
rules is an interesting topic for future research,

no region can achieve the goal before the action admits
failure.

Primitive actions use region applicability information to
determine which region to execute to achieve a goal. Static
applicability predicates describe the form of queries that can
be manipulated by a region. They are provided to a parent
by its subordinate, and can be applied by the parent to
decide whether to eliminate a region from consideration.
If there is more than one statically applicable region the
results of dynamic applicability functions, executed at the
subordinate regions, are used to further filter out regions
or to determine an order for trying similar regions. If
the dynamic applicability information cannot distinguish a
single region to try, similar regions are ordered randomly.
This process is described in Figure 10.

INPUT: query Q
OUTPUT: query, success indicator

initialize success :== false
initialize continue := true
use rule conditions to find applicable regions
if there is more than 1 applicable region
order regions (dynamic applicability; random choice)
while continue
A (€ termination conditions:® not met) do
allocate termination conditions for subordinate and
execute first region in queue on Q' — Q
if region returns success
set success := true and continue := false
otherwise
remove region from queue’
if queue-empty then set continue := false
endwhile
if success then Add.Choice(Get_Equiv(Q), Q')
return Q' and Success?(Q’, this primitive goal)

Figure 10: Primitive Action Execution

A Primitive action sends a copy of the query to be
processed to a subordinate region. The subordinate region
will make modifications directly to the query copy and, if
the region is successful, the primitive action can update
the global query information with the transformed result.
The copy semantics put all decisions about maintaining
transformed results in the domain of the query manipulation
routines. The advantage of this approach is the protection
of the parent region’s memory. The disadvantage of this
approach is that transformed results will usually reference
many of the same subqueries as the original query. These
references can get lost unless -the query manipulation
routines can recognize common subexpressions using just
the copied query representations.

The search for a region to achieve the required goal
requires only a single successful result. The primitive
action exectution is terminated when a subordinate region
is successfully executed, when there are no more regions to
try, or when global termination conditions indicate that no
more searching is desired.

5.5 Handling Failure

The planning system uses the heuristics defined in the plan-
ning rules, along with applicability information provided by
subordinate regions, to determine sequences of region ap-
plications that will transform a query to attain the desired
goal. However a region execution will not necessarily achicve
the region’s goal on every query to which the region is appli-
cable. This happens because applicability information pro-
vides necessary, but not sufficient, conditions for the query
in order for the region to be able to process the query and
attain the goal.

Region execution is a primitive action, and region execu-
tion failure can propagate into primitive action failure, rule
failure, goal package failure, and eventually parcnt region
failure. Thus, each of these modules must accommodate the
possibility of failure.

The primitive action module handles region execution
failure by executing other regions that can achieve the same
goal as the failed region. It will try all regions until it finds
one that can achieve the goal, or it finds that no region
will attain the goal. In the latter case, the primitive action
admits failure, which propagates to the rule.

The sequence of actions on the right hand side of a rule are
considered as a single transaction for recovery purposes. If
any action on the right hand side of a rule fails, the rule itsclf
fails. Any updates made to memory, in particular updatos to
query choices, must be backed out to a point before the first
rule action. This recovery is handled through maintenance
of alog of updates to memory state, delimited by transaction
boundaries. A transaction, in this case, encompasscs the
execution of an entire rule.* A transaction starts before the
first action of a rule is executed and ends when the last rule
action is successfully completed. Since rules can be nested
within other rules (through Achieve actions) the recovery of
a transaction can require backing-out of successful, nested
rule executions.

When a goal package terminates without achieving suc-
cess, that failure propagates to the rule executing the
Achieve action that invoked the package. If the goal pack-
age is a high-level execution no further recovery is required.
In this case the high-level execution module must choose
another query/goal pair to execute,

Failure of a primitive action or rule will not nccessarily
propagate to region failure, nor does successful processing
of goal packages indicate that the region will be successiul
at achieving its goal. The success, or failure, of a region to
attain its goal depends solely on the definition of success for
the goal and the queries that are generated as choices during
the region’s processing.

$There are certainly situations in which one would want to
save the results of intermediate actions, since they may offer
opportunities for later processing. Potentially good intermediate
results could be indicated by incorporating save point actions in
rules - where a save point indicates at point at which alternative
queries generated by actions of the rule should be made persistent.
Since rules are eflectively nested, an interesting question is how to
handle save points in the resuliing nested transactions. We defer
an answer to the semantics of save points in nested transactions
to later work.

526

6 Related Work

‘T'he main difference between the Epoq approach to op-
timization and other approaches for extensible or object-
oriented systems is that Epoq provides for extensibility of
the optimization process itself. Most extensible optimiz-
ers (e.g. [5], [7], [8), [10], [20]) provide a fixed sirategy for
searching for and applying rules for query transformation.
In other words, although the possible optimizer results can
be extended, the optimization process is fixed. Proposals for
object-oriented optimizers either use one of these extensible
approaches [1] or provide some fixed sequence of optimizer
processing strategies {3, 21].

The Fpoq approach is motivated by the desire to extend
an optimizer with new strategies for optimization. In other
words, the optimization process can be extended. This
leads to the need for an exiensible control to direct the
optimization process. Optimizer strategy extensibility also
motivates the approaches of Lanzelotte and Valduriez {11]
and Sciore and Sicg [18], so we discuss these in more detail
here.

Sciore and Sieg [18, 19] group query rewrite rules into
modules, where different modules can have different rule
scarch and termination strategies. We use a similar
approach in our planning system. The difference here, of
course, is that our rules plan the operation of the optimizer
itself.

In the Sciore and Sieg approach, modules interact with
cach other in ways that are fixed when the modules, and the
rules, are written. In Epoq, control over the execution order
of regions is separated from the regions being controlled.
This results in a more modular optimizer and a control
which can respond to the particular query being processed
and to the dynamics of the processing of that query.

Lanzelotte and Valduriez address the problem of cus-
tomizing the optimization process to a particular query by
focussing on an extensible way to define strategies for ma-
nipulatiug query expressions [11). Diflerent search strategies
are related through a sub-type hierarchy of strategies, with
higher level specifications describing the methods present
in a search strategy and lower level specializations (i.e., the
specific strategies) implementing these methods (in different
ways). A particular strategy can be modified by changing
the imnplementation of any of its methods.

Different strategies are integrated in the sense that they
all specialize a common model for search strategies. The
common model is the search strategy for the optimizer and,
at optimizer execution time, a specialization of the strategy
can be used to process a particular query. The search
strategy specializations are analogous to our leaf regions
(and to the modules of Sciore and Sieg) and, indeed, may
provide useful tools for specifying the implementation of
regions. However, this work does not address the integration
of the differcnt strategies to process a single query at
optimizer execution time. Given a query to process, one of
the strategies present in an optimizer is chosen to optimize
that query.

The Epoq approach to query optimization is related to
the knowledge-based approach of [22]. Epogq regions form
a knowledge base of information about query processing

527

strategies. The control presented here contains knowledge
about ways to combine these strategies to process a query.

The Epoq planning-based control is based on rule-based
programming languages [4] and reactive planning [6]. Our
rule execution system, though, differs from either of these.
A rule is a task that, if successful, will result in a desired
transformation of a query. Thus, a rule describes a
consistent way to process a query. Our rule engine enforces
a transaction type of semantics on rules; we require that a
rule execute to completion before new tasks are considered.

7 Summary

In an Epoq optimizer each region is a separate module
that interacts hierarchically with other modules through
a common interface and a planning-based control. The
potential interaction of modules is statically defined by
control rules, region goals and applicability, but the actual
interaction between regions depends on the query being
processed.

A region module provides, through the interface to its
parent, a goal for its processing and predicates characteriz-
ing the queries it expects to be able to manipulate to achieve
the goal. A parent control uses this information as it decides
how to process a query.

A parent region must determine an order for executing
subordinate regions to transform a query to achieve its own
goal. Given a particular query, a region control plans a
sequence of transformations (i.e., an ordering of subordinate
region executions) that will, hopefully, manipulate the query
to achieve the region’s goal. The planning process is
influenced by intermediate results of the plan—i.e., planning
is interleaved with the execution of subordinate regions.

Planning rules describe heuristics for interactions between
regions. These rules also support extensibility in the
optimizer. The addition of a new region to an optimizer
may require new rules to describe how this region may
successfully interact with other regions. These rules are
added to the planning system’s rule set and manipulated
in the same way as existing rules. The extensibility of
the control itself is a unique feature of the planning-based
control in supporting the extensibility of Epoq.

Acknowledgements

The research described in this paper was performed while
Umeshwar Dayal was affiliated with Digital Equipment
Corporation, Cambridge Research Lab, and Gail Mitchell
was affiliated with Brown University.

Partial support for this work was provided to Brown Uni-
versity by the Office of Naval Research and the Defense Ad-
vanced Research Projects Agency under contract N00014-
91-J-4052 ARPA order 8225, and contract DAAB-07-91-C-
Q518 under subcontract F41100.

References

[1] Catriel Beeri and Yoram Kornatzky. Algebraic Opti-
mization of Object-Oriented Query Languages. In Pro-
ceedings ICDT, Paris, France, 1990.

(2]

(3)

(6]

(7]

(8]

(9]

(10]

(11}

(12)

(13]

(14]

(15}

(16]

Eugene Charniak and Drew McDermott. Introduction
to Artificial Intelligence, Addison-Wesley, Reading,

MA.,, 1985.

Sophie Cluet. Langages et Optimisation de Requétes
pour Systémes de Gestion de Base de Données Ori-
entés-Objet. PhD thesis, Université de Paris-Sud - Cen-
tre d’Orsay, June 1991.

Thomas A. Cooper and Nancy Wogrin. Rule-based Pro-
gramming with OPS5. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1988.

Béatrice Finance and Georges Gardarin. A Rule-
Based Query Rewriter in an Extensible DBMS. In
Proceedings of the 7th International Conference on
Data Engineering, pages 248-256. IEEE, 1991,

R. James Firby. Adaptive Ezecution in Complex
Dynamic Worlds. PhD thesis, Yale University, January
1989. YALEU/CSD/RR#672.

Goetz Graefe. Rule-Based Query Optimization in
Ezxtensible Database Systems. PhD thesis, Univ. of
Wisconsin-Madison, November 1987.

Goetz Graefe. Volcano, an Extensible and Parallel
Query Evaluation System. Technical Report CU-CS-
481-90, University of Colorado at Boulder, July 1990.

Goetz Graefe and David J. DeWitt. The EXODUS
Optimizer Generator. In SIGMOD Proceedings, pages
160-172. ACM, May 1987.

Laura M. Haas et al. Extensible Query Processing in
Starburst. In SIGMOD Proceedings, pages 377-388.
ACM, June 1989.

Rosana S. G. Lanzelotte and Patrick Valduriez. Ex-
tending the Search Strategy in a Query Optimizer. In
Proceedings of the 17th VLDB Conference, pages 363 —
373, 1991.

Rosana S. G. Lanzelotte, Patrick Valduriez, M. Ziane,
and J.-P. Cheiney. Optimization of Nonrecursive
Queries in OODBs. In Proceedings of the Second
International Conference on Deductive and Object-
Oriented Databases, December 1991,

Christopher V. Malley and Stanley B. Zdonik. A
Knowledge-Based Approach to Query Optimization. In
Proceedings of the First International Conference on
Ezpert Database Systems, pages 329-344, 1987.

Gail Mitchell, Stanley B. Zdonik, and Umeshwar Dayal.
An Architecture for Query Processing in Persistent Ob-
ject Stores. In Proceedings of the Hawaii International
Conference on System Sciences, volume 11, pages 787-
798, January 1992.

Gail A. Mitchell. Extensible Query Processing in an
Object-Oriented Database. PhD thesis, Department
of Computer Science, Brown University, May 1993.
Technical report CS-93-16.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar
Hasan. Extensible/Rule Based Query Rewrite Opti-
mization in Starburst. In SIGMOD Proceedings, pages
39-48. ACM, June 1992.

(17)

(18]

528

Arnon Rosenthal, Umeshwar Dayal, and David Reiner.

Speeding a Query Optimizer: The Pilot Pass Approach.
Computer Corp. of America, unpublished note.

Edward Sciore and John Sieg, Jr. A Modular Query
Optimizer Generator. In Proceedings of the 6th
International Conference on Data Engineering, pages
146-153, 1990, '

John Connor Sieg, Ir. Making

technology work. PhD thesis, Boston University, 1989.

Michael Stonebraker. Inclusion of New Typcs in Rela-
tional Database Systems. In Michael Stonebraker, edi-
tor, Readings in Database Systems. Morgan Kaufmann
Pub. Inc., 1988.

Dave D. Straube and M. Tamer Ousu. Queries
and Query Processing in Object-Oriented Database
Systems. ACM Transactions on Office Information

Systems, 8(4):387-430, October 1990.

H.J.A. van Kuijk and P.M.G. Apers. Semantic Query
Optimization in Distributed Databases: A Knowledge-
Based Approach. In Goetz Graefe, editor, Workshop on
Database Query Optimization, pages 53-58, Portland,
OR, May 1989,

