
APPLYING HASH FILTERS TO IMPROVING THE
EXECUTION OF BUSHY TREES

Ming-Syan Chen, Hui-I Hsiao and Philip S. Yu

IBM Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Abstract
In this peper, we explore an approach of interle&ing
a bushy execution tree with hash filters to improve the
execution of multi-join queries. The effect of hash filters
is evaluated first. Then, an efficient scheme to determine
nn effective sequence of hnsh filters for a bushy execution
tree is developed, where hash filters are built and applied
based on the join sequence specified in the bushy tree so
that not only is the reduction effect optimised but also the
cost associated is minimised. Various schemes using hash
filters are implemented and evaluated via simulation. It is
experimentally shown that the application of hash filters is
in general a very powerful means to improve the execution
of multi-join queries, and the improvement becomes more
prominent M the number of relations in a query increases.

I Introduction

111 relational database systems, joins are the most ex-
pensive operations to execute. Applications involving
dccisiou support and complex objects usually have to
specify their desired results in terms of complex multi-
join queries, and some queries may take hours to’com-
plete, thus degrading the system performance. Appar-
ently, such problems could be aggravated by the in-
creases in database size and query complexity nowa-
days [la] (281. A s a result, it has become imperative
to develop solutions for efficient execution of multi-join
queries for future database management [3] [8] [M] [19].

A query plan is usually compiled into a tree of op-
erators, called a join sequence tree, where a leaf node
represents an input relation and an internal node rep
-.

Pcrmiwion to copy without fee all or part of thir material ir
granted provided that the copier are not madr or dirtributcd for
direct commercial oduontagr, the VLDB copyright notice and
the title of the publication and itr date appear, ond notice ir
given that cop+ ir by pcrmirrion of thr Vcrg Large Dato Bare
Endowment. To copy other&r, ot to npublirh, nquinr a fee
and/or rpecial psrmirrion jrom the Endowment.

Proccedingm of the 19th VLDB Conbrence, Dublin,
Ireland, 1998

resents the resulting relation from joining the two re-
lations associated’ with its two child nodes. There are
three categories of query trees: left-deep trees, right-
deep trees, and bushy trees, where left-deep and right-
deep trees are also called linear execution trees, or se-
quential join sequences. A significant amount of re-
search efforts has been elaborated upon developing join
sequences to improve the query execution time. The
work reported in [22] was among the first to explore
sequential join sequences, and sparked off many subse-
quent studies. Several schemes have been proposed to
develop sequential join sequences. A heuristic scheme
to optimire multi-join queries with an enlarged search
space was proposed in [14]. The benefit of using such
techniques as simulated annealing and iterative im-
provement to tackle large search space for query opti-
misation was studied in [23] and [24]. In [ll], a collec-
tion of good sequential plans was first obtained based
on the buffer space, and parallelization of this collec-
tion of plans was then explored.

The bushy tree join sequences, on the other hand,
did not attract as much attention as sequential ones in
the last decade since it was generally deemed sufficient,
by many researchers, to explore only sequential join se-
quences for desired performance. This can be in part
explained by the reasons that in the past the power/size
of a multiprocessor system was limited, and that the
query structure used to be too simple to require fur-
ther parallelizing as a bushy tree. It is noted, however,
that these two limiting factors have been phased out
by the rapid increase in the capacity of multiproces-
sors and the trend for queries to become more com-
plicated nowadays [28], thereby justifying the neces-
sity of exploiting bushy trees. Consequently, it has re-
cently attracted an increasing amount of attention to
explore the use of bushy trees for parallel query pro-
cessing. A combination of analytical and experimen-
tal results was given in [13] to shed some light on the
complexity of choosing left-deep and bushy trees. An

505

integrated approach dealing with both intra-operator
and inter-operator parallelism was presented in [17],
where a greedy scheme taking various join methods
and their corresponding costs into consideration was
proposed. As an extension to [ll], an algorithm han-
dling processor scheduling in a bushy tree was proposed
in [lo], where the inter-operator parallelism is achieved
by properly selecting IO-bound and CPU-bound task
mix to be executed concurrently. For efficient solutions,
only schemes that execute at most two tasks at a time
were explored in [lo]. A two-step approach to deal
with join sequence scheduling and processor allocation
for parallel query processing using sort-merge joins was
devised in [S]. Pipelining hash joins in a bushy tree and
processor allocation within each pipeline were stud-
ied in [4] and [15], respectively. In addition, various
query plans in processing multi-join queries in a shared-
nothing architecture were investigated in [20].

While most prior work on inter-operator parallelism
focused on the execution tree generation to minimize
the query execution cost, there is relatively little result
reported on exploiting the structure of a query tree to
further reduce each individual join cost. It has been
shown that the cost of executing a join operation can
mainly be expressed in terms of the cardinalities of re-
lations involved. In view of this, one would naturally
like to remove unnecessary tuples and reduce the cardi-
nalities of relations involved before a join to minimize
the join cost. As semijoin has traditionally been relied
upon to reduce the amount of inter-site data trans-
mission required for distributed query processing [2]
[5), the technique of hash filtering can be applied in
a parallel database environment to reduce the relation
cardinalities. Note, however, that prior work on hash
filters (or called bit-vector filters) only considered their
use on the joining attribute due mainly to the focus
on linear execution trees [l] [7] [25]‘, thus not fully
taking advantage of the opportunity for utilizing mul-
tiple hash filters to reduce a single relation. As can be
seen later, such an opportunity is made available by the
execution of a bushy tree, and can lead to a very signif-
icant reduction effect on relation cardinalities, thereby
greatly improving the execution of multi-join queries.
Consequently, we explore in this paper the approach
of interleaving a bushy execution tree with hash fil-
ters (HP’s) to minimize the query execution time. It is
worth mentioning that the algorithm we propose aims
at improving the execution of a bushy tree, thus pro-
viding a solution to an increasingly important problem.

1 Note that in dealing with a linear execution tree, one usually
haa only two joking relation8 rcJdhg in xnemory at a time, thus
limiting the applicability of hash flltm to the joining attribute.

Rl HFR, w
r Ii&)-z- ’

0 0
1 1
2 1
3 0
4 1 *----a

R2

Ra after the application of H FR, (B) --* &.

W

Figure 1: An example of the use of hash filters.

Due to the complexity of a bushy tree, hash filters built
and applied in different execution stages can have very
different costs and reduction effects. How to timely and
appropriately build hash filters so as to minimize their
cost as well as optimize their effect is a very important
issue, and hence taken as the objective of this study.

A hash filter built by relation & on its attribute A,
denoted by IIFR,(A), is an array of bits which are ini-
tialized to 0’s. Let &(A) be the set of distinct values
of attribute A in &, and h be the corresponding hash
function employed. The h-th bit of HFR,(A) is set to
one if there exists an a E &(A) such that h(a) 11: k.
Similar to the effect of semijoins, it can be seen that
before joining Z& and Rj on their common attribute
A, probing the tuples of Rj against HFR,(A) and rc-
moving non-matching tupies will reduce the number of
tuples of Rj to participate in the join. The join cost is
thus reduced. An illustrative example of the use of hash
filters can be found in Figure 1, where an HFR,(B) is
built by RI and applied to Ra, with the corresponding
hash function h(bi)= i mod 5. It can be verified that
after the application of HFR,(B), Ra is reduced to the
one given in Figure lb, thus reducing the join cost of
Rr W R2. Note that the effect of hash filters is more
complicated than that of semijoins, since hash collision
can occur for different attribute values (such as bl and
bs in Figure la) when a hash filter is built. In this pa-
per, we shall evaluate the effect of hash filters first, and
then develop an efficient scheme to interleave a bushy

506

execution tree with hash filters to minimize the query
rxccution cont. An mentioned earlier, hash filters built
in different execution stages of a bushy tree can have
different costs and reduction effects. In view of this, the
proposed scheme will assign a join sequence number to
each join operation in the bushy tree when the tree is
being built at the compile timel. The join sequence
numbers specify the order of the joins to be carried
out. Then, based on the join sequence in the bushy
tree, hash filters are built and applied, cost-effectively,
so that not only is the reduction effect optimized but
also the cost associated is minimized. Several illus-
trative examples will be given. Extensive performance
studies are conducted to evaluate various schemes using
hash filters via simulation. It is experimentally shown
that the application of hash filters is in general a very
powerful means to improve the execution of multi-join
queries, and the improvement becomes more prominent
as the number of relations in a query increases.

The rest of this paper is organized as follows.
Preliminaries arc given in Section 2. The effect of hash
tilters and the proposed scheme are presented in Section
3. Performance studies on various schemes using hash
filters are conducted in Section 4 via simulation. This
paper concludes with Section 5.

2 Preliminaries

We assume that a query is of the form of conjunctions of
equi-join predicates. A join query graph can be denoted
by a graph 0 = (V, E), where V is the set of vertices
and E is the set of edges. Each vertex in a join query
graph represents a relation. Two vertices are connected
by an edge if there exists a join predicate on some at-
tribute of the two corresponding relations. We use I&]
to denote the cardinality of a relation Ri and IAl to
denote the cardinality of the domain of an attribute A.
As in most prior work on the execution of database op
erations, we assume that the execution time incurred is
the primary cost measure for the processing of database
operations. Also, we focus on the execution of complex
queries, i.e., queries involving many relations. Notice
that euch complex queries can become frequent in real
applications due to the use of views [28]. The archi-
tecture assumed in the performance study in Section 4
is a multiprocessor system with distributed memories
and shared disks. Barring any tuple placement skew,
the scheme developed in this paper ir applicable to the
shared-nothing architecture where each disk is accessi-
-_--

‘Various heurirticr, much ee thorn in [6] and [lfl, C(UI be
applied to build a buehy execution tree. Note that asigning
requence numbon to joinn while building a buehy tree involves
little overhead.

ble only by a single node. To facilitate our presentation
and performance evaluation, the join method on which
we shall demonstrate the application of hash filters is
the sort-merge join that most existing database man-
agement softwares rely upon. Note that the concept of
interleaving a bushy execution tree with hash filters is
also applicable to improving the query execution time
when other join methods, such as hash joins and nest-
loop joins, are employed, and by no means confined to
the use of sort-merge joins.

Both CPU and I/O costs of executing a query are
considered. CPU cost is determined by the pathlength,
i.e., the total number of tuples processed multiplied by
the number of CPU instructions required for process-
ing each tuple. A parameter on CPU speed (i.e., MIPS)
is used to compute the CPU processing time from the
number of CPU instructions incurred. I/O cost for pro-
cessing a query is determined by disk service time per
page multiplied by the total number of page I/O%. By
doing such, we can appropriately vary the CPU speed
to take into consideration both CPU bound and I/O
bound query processing, and study the impact of uti-
lizing hash filters in both cases. A detailed performance
model on the cost of sort-merge joins and system pa-
rameters used is given in Section 4.

In addition, we assume for simplicity that the
values of attributes are uniformly distributed over
all tuples in a relation and that the values of one
attribute are independent of those in another. Thus,
the cardinalities of resulting relations of joins can be
estimated according to the formula used in prior work
[4]. In the presence of data skew [26], we only have to
modify the corresponding formula accordingly [S].

3 Using Hash Filters for a Bushy Tree
In this section, we shall first evaluate the effect of hash
filters and then propose a scheme to derive hash filters
for a bushy execution tree.

3.1 The Effect of Hash Filters

Let HFR,(A)+Rj denote the application of a hash fil-
ter generated by & on attributed A to Rj. Note that
the reduction of Rj by HFR,(A)+Rj is proportional
to the reduction of Rj(A). The estimation on the size
of the relation reduced is thus similar to estimating
the reduction of projection on the corresponding at-
tribute. Let B,A be the reduction ratio by the ap-
plication of HFR,(A), and the cardindity of Rj after
HFR,(A)dRj cm be estimated as h,AIRjla Clearly,
the determination of &,A depends on the size of a hash
filter since, as shown in Figure 1, different attribute

507

values may be hashed into a same hash entry. To for-
mally derive &,A, consider the ball drawing problem
described below first.

Proposition 1: Suppose k balls are drawn ae-
quentially and independently from m different balls.
Then, the expected number of different balls selected
is m(1 - (1 - k)“).

It can be observed that hashing k = jRi(A)I different
values into a hash filter of m bits is similar to the ex-
periment of drawing k balls from m different balls with
replacement. The following proposition thus follows.

Proposition 2: The reduction ratio by the applica-
tion of HFR,(A), &,A, can be formulated as

/%,A =
i

1 - (1 - A)lR*(A)I, for m < [Al,
R. A
Y-P for m > IAl, (1)

A ’

where Ri(A) is the set of distinct values of attribute A
in a, and m is the number of hash entries in a hash
filter.

Suppose Rj has two attributes A and B. The
problem of estimating the cardinality of Rj projected
on the non-filtered attribute B after HFR,(A)*Rj is
very complicated, and needs to resort to the following
combinatorial problem to resolve: “There are n balls
with T different colors. Each ball has one color and
the T colors are uniformly distributed over the n balls.
Find the expected number of colors if h balls are
randomly selected from the n balls.” Denote the
expected number of colors of the h selected balls as
g(r, n, h). Then, as pointed out in [27], g(r, n, h) can
be formulated as follows,

h “o-i+1
g(r,n,h) = dl-n(~-i+l)I* (2)

i=l

As shown in [2], Eq.(l) can be approximated as
below,

forr< 5,
for h < i,
otherwise.

(3)

We then obtain the reduction effect of a hash fil-
ter on a non-filtered attribute by assigning IRjl = n,
1% (WI = r and IRj IP~,A = h. It can be seen that
when (Rj(B)(= r is much less than (Rjlpi,A = h, the
cardinality of Rj (B) remains approximately the same
after HFR,(A)+Rj. Thus, we azsume in this paper
the number of distinct values of a non-filtered attribute

A
(4

A (b)

Figure 2: An example for the effect of hash filters.

remains the same after a hash filter application to eim-
plify our discussion.

As mentioned earlier, in a bushy tree execution, hash
filters built in different execution stages can have very
different reduction effects. To further investigate the
effect of hash filters in a bushy tree, denote the set of
relations within the subtree under & as S(h). It can
be seen that the size of an intermediate relation Ri will
not be affected by the applications of hash Alters be-
tween relations in S(a). Consider the bushy tree in
Figure 2a for example, Denote the resulting relation
by Ri W Rj m R’myi,j) for convenience. R’1 in Fig-
ure 2a represents the resulting relation of join J#l. It
can be verified that the application of HFR,(A)--+ RI
will reduce the size of RI, and then that of R’l. On
the other hand, the application of HFR,(B)-+R~ only
reduces RI, but not R’I since the effect of HFR~(B) is
offset by the join RI W Rs. This phenomenon can be
stated by the proposition below.

Proposition 3: Suppose R,,, is an intermediate re-
lation in a bushy tree. The size of R, will be re-
duced by HFR,(A)-+& if and only if Rd E S(R,)
and & 4 S(L).

Note that after a join, non-matched tuples are fil-
tered out, meaning that IR’i(A)I 5 I&(A)1 where
R’i = Ri W Rj. Thus, despite that the cardinality

508

of a resulting relation may be larger than those of its
operands, the cardinality of distinct values of a certain
attribute is always decreasing along the execution of a
join sequence. This is the very reason that we shall gen-
erate hash filters based on the join sequence numbers
to optimise their reduction effects in the algorithm to
be described. For example, it can be seen that the re-
dnction effect of HFRtI (A)--rRa is more powerful than
that of HFR,(A) R -+ 3 in Figure 2b. More formally, we
have the following proposition for hash filters.

proposition 4: &,A < Pj,A if Rj E S(a).

3.2 Interleaving a Bushy Tree with HF’s
In light of the results on the effect of hash filters in
Section 3.1, we shall develop a scheme that irpplies
hash liltcrs to improving the execution of a bushy
tree. The proposed scheme will interleave a given
bushy tree with appropriate hash filters so that not
only is the reduction effect optimiaed but also the cost
is minimized. As pointed out earlier, the sort-merge
join method is employed in our discussion on the use
of hash filters. Let #JR, be the sequence number of
the join which relation & is involved in. Joins with
smaller sequence numbers execute first. & in #JR, can
be either a base relation or an intermediate relation3.
As can be seen from algorithm H below, the sequence
number is used to determine the order of hash filters
applied. Specifically, if #JR~ < #JR, and & and
Rj have a common attribute A. Then Rj will build
HFlt,(A) to apply to &. However, & does not build
hash filter for Rj. Rather, in light of Proposition 4, the
application of such a hash filter to Rj will be deferred
until the execution reaches the ancestor of &, say &,
such that #JR, > #JR,. The reduction effect by the
hash filter on attribute A to Rj can thus be optimised.

Algorithm H: Interleaving a bushy tree with hash filters.
Step 1: A join sequence heuristic is applied to determine

a bushy execution tree T.
Step 2: for each leaf node & in T

begin
s 4; Oil =
for each join attribute A of &
Let Rj be the joining relation with &
on attribute A.
begin

if (#JR, 1 #JR~) then Sot*= Sott U A;
end
if (Sot* # 4)

_ __---
s In the cue of dealing with a rsgmantedright-deep tree, which

is (I bushy tree with right-deop rubtreee [4], one CM use segment
rcquence nunabors, inotebd of join roquonco numbom, to properly
insert hash Altorr into tho buehy tree among different l egmento.

Step 3:

Step 4:

Step 5:

begin
Scan &, and V A E &tl, build HFR,(A)
by Ri;
Send RFR,(A) to Rj, where Rj is the
joining relation with & on attribute A.

end
end
for each leaf node & in T
begin

if & receives all HF’s for its join attributes
then
begin

& applies HF’s to filter out non-matching
tuples.
& starts/resumes its sorting phase.

end
end
for each join J in T
begin

if both relations & and Rj under J have
completed their sorting phases then
begin

Perform the join J;
(When generating the resulting relation R,,)
Generate HFR,(A) for attribute A if 3 a
base relation Ry joining with R, on A
such that #JR, 1 #JR,;
Send HFR,(A) t6 its recipient;
Update the execution tree T accordingly
by removing & and Rj.
(R, becomes a leaf node.)

end
end
if ITI= then return results
else got0 Step 3.

The operations of algorithm H can be described as
follows. In Step 1, a bushy tree is built first. Then,
relations involved in later joins will build hash filters
for those involved in earlier joins in Step 2. Let Sott be
the set of attributes to build HF’s. The first conditional
statement in Step 2 to set up Sot* assures that only
necessary hash filters will be generated and applied to
other relations. Also, it can be seen that a relation will
be scanned at most once to build HF’s for attributes
in Sot,. Every relation, after receiving and utilising
all its filters, starts its sorting phase in Step 3. The
merge phase of a join begins when all of its operands
are available in Step 4. It can be observed that building
HF’s can be carried out when output tuples are being
generated, thus avoiding another relation scan. The
procedure repeats until all joins are completed as stated
in Step 5.

509

Figure 3: Application of hash filters for joins J#l and
J#2.

Figure 4: Application of hash filters for J#3 and J#4.

3.3 Examples and Variations

Consider the bushy tree in Figure 3 for example. Since
Re D4 R7 ie the first join to perform, we have H&(F)
--+ fi7, Hh(G) + Rr and H FR,(G) + & before
the execution of Rg W R7. Then, prior to the second
join RI W Rs, four haah filters, HFR,(E) 3 Ra,
HFR,(A) -+ RI, HFR,(D) + Rs and HFR,(D) --$
Rq are applied. The bushy tree after the first two
joins ia shown in Figure 4. We ,in turn have the
hash filters HFJ~,(B) -+ Re and HFR#,(F) -+ R~J
applied as shown in Figure 4 before the join R& W Rs.
Similarly, following the operations in algorithm H, the
applications of hash filters are illustrated in Figures 4
and 5. It can be seen that to have a better reduction
effect according to Proposition 4, HF~,(A)+RI and
HFRI,(E)-+& are built after the join RI W Rs,
instead of being built by & and Ra, respectively, in
the bushy tree in Figure 3.

Rb
Figure 5: Application of hash filters for J#5, J#G and
J#7.

Clearly, there art many variationa of algorithnl tf
above. To provide more insights into the approach of
hash filters, extensive simulation will be conducted in
Section 4 to evaluate various schemes uaiug ha9h fil-
ters. For notational readability, algorithm H will be
denoted by CA in what follows, where CA stands for
its nature of “check and apply.” Instead of interleaving
the joins in a bushy tree with haah filters, hash filters
can be built directly from base relations and applied
as a preprocessing of a bushy tree. Such an approach
will be referred to aa scheme SM, where SM stands
for Qmple.” Also, hash filters can be regenerated
from intermediate relations, and repeatedly applied to
achieve better reduction effect at the cost of tmploy-
ing more hash filtera. This alternative ie denoted by
RG, standing for “regeneration.” The conventional ap-
proach without using hash filters, denoted by NF (i.e.,
“no heeh filters”), will also be implemented for a com-
parison purpose.

Note that the first step of the sorting phase can be
performed while a hash filter is being built to minimize
both CPU and I/O coats. In addition, in the case that
indices are available for certain attributes, we can scan
the corresponding indicts instead of the whole relation
in Step 2 to reduce the cost. Optimization on these
issues ia system dependent, and can in fact further
increase the performance improvement achievable by
using hash filters.

4 Performance Study

We first describe the performance model used to
evaluate the benefit of different haah filter generation
and application schemes in Section 4.1. Parameters
used in simulation art given in Section 4.2. Simulation

510

results arc then presented and analyzed in Section 4.3.

4.1 Model Overview

The performance model consists of three major com-
ponents: Query Manager, Optimizer, and Executor.
Query Manager is responsible for generating query re-
quests as follows. The number of relations in a query is
determined by an input parameter, sn. Relation cardi-
nalities and join attribute cardinalities are determined
by a set of parameters: &or& carv, fd(R), f&d, allu,
and id(A). R 1 t e a ion cardinalities in a query are com-
puted from a distribution function, fd(R), with a mean,
R card, and a deviation, CUTV. Cardinalities of join at-
tributes are determined similarly by Acord, attv, and
f,(A). There is a predetermined probability, p, that
au edge (i.e., a join operation) exists between any two
relations in a given query graph. The larger p is, the
larger the number of joins in a query will be. Note
that some queries so generated may have disconnected
query graphs. Without loss of generality, only queries
with connected query graphs were used in our study,
and those with disconnected graphs were discarded.

Optimizer takes a query request from Query Man-
ager and produces a query plan in the form of a bushy
tree. Join sequence numbers are assigned to internal
no&s of the bushy tree to represent the order of join
opthrations determined by Optimizer. The bushy tree
query plan is determined by the minimum cosl heuris-
tic described in [6] that tries to perform the join with
the minimal cost first.

Executor traverses the query plan tree and carries
out join operations sequentially according to join se-
quence numbers determined by Optimizer. As men-
tioned earlier, the sort-merge join method is used. De-
pending upon the schemes simulated, hash filters ofjoin
attributes are generated at different stages of query ex-
ecution. Note that unlike those hash filters in SM and
CA that can only be applied to base relations, those in
RG can even be applied to intermediate relations.

Our model computes both CPU and I/O costs of
executing a query. CPU cost for sorting and merging
is determined by the total number of tuples processed
multiplied by the number of CPU instructions per tu-
pie. We assume that the costs of sorting and merg-
ing for each tuple are the same, and both are equal
to Ztuplr. Using sort-merge joins, it takes O(NlogN)
steps to sort a relation with N tuplea, and taker from
O(N1 f A$?) to O(N1 x A$) steps to merge two sorted
relations of size N1 and Ng. Under the assump
tion that attribute values are uniformly distributed

over the attribute domain, the CPU cost of joining
two relations in our model can be approximated as
I tlrple x (NI log Nl + NZ log i% + N1 + Nz). The CPU
processing time is obtained by dividing the total num-
ber of CPU instructions per query by the CPU speed,
cpu,peed. By dealing with the pathlength per tu-
pie and the CPU speed, we can vary the CPU speed
to make a query execution either CPU bound or I/O
bound, and study the impact of using hash filters in
both cases.

I/O cost for processing a query is determined by
. . disk service time per page, tpio, multiplied by the to-

tal number of page reads and writes. To sort a re-
lation of P pages, log, P + 1 iterations of disk I/O
are required, where m is the number of main memory
buffer pages available for sorting. Each iteration reads
P pages into memory for sorting and writes P sorted
pages to disk. To merge two sorted relations of PI and
Pz pages, PI + Pa pages are read into memory. The
number of pages written to disk after a join operation
is determined by the size of the resulting relation, P,..
Thus, the total number of I/O’s required to join two
relations of size PI and Pa is 2 x (Pl(lo& 9 + 1) +
S(lo&, 4 + 1)) + PT.

CPU cost for generating and applying HF’s is
determined by two parameters, Iho8h and IpVobr. Ihosh
is the number of CPU instructions required to generate
hash value and set the corresponding bit in the hash
filter for each tuple. &r&c is the number of instructions
needed to check whether an attribute value of a tuple
has a match in the filter, and if that bit is set,
add the tuple to a temporary relation to be joined
later. The CPU cost of generating HF for a join
attribute is computed by multiplying Iha8h by the
relation cardinality. Note that HF generation phase
can be combined with the first step of the sorting
phase of a join, thus avoiding I/O overhead for HF
generation. CPU cost for applying an HF is equal
to &,bc multiplied by the relation cardinality. Also,
in our simulation model, hash filters are implemented
as bit-vectors and can in general fit in memory, thus
minimizing extra I/O’s required for maintaining them.

4.2 Parameter Setting

To simplify our simulation study, we assume that
join operations in a bushy tree are executed sequen-
tially, thus not resorting to inter-operator parallelism
to demonstrate the power of hash filters. The impact
of combining the use of hash filters and parallel query
execution is slated for future study. We select queries
of four size-s, i.e., queries with 4, 8, 12, and 16 relations.

511

The average CPU, I/O, and total costs for this exper-
iment are shown in Figures 6, 7, and 8, respectively.
In these figures and all following figures except Pig-
ure 12, the ordinate is the execution time in seconds
while the abscissa denotes the number of relations in a
query. Figures 6 and 7 show that with 10 MIPS CPU,
these queries using the sort-merge join method are I/O
bound. The 15 ms page I/O time setting assumes RC-
quential I/O without prefetching or disk buffering (t.g.,
reading one track at a time). Note that this experiment
could become CPU bound if disk buffering or a larger
page size was used.

Table 1: Parameters used in simulation.

This set of selections covers a wide spectrum of query
sizes ranging from a simple three way join to a more
than twenty way join. For each query size, 500 query
graphs were generated, and as mentioned in Section
4.1, only queries with connected query graphs are used
in our study.

To conduct the simulation, [7], [12], and [21] were
referenced to determine the values of simulation pa-
rameters. Table 1 summarizes the parameter settings
used in simulation. The number of CPU instructions
per tuple read was set to 300 while those for HF gen-
eration and application are set to 100 and 200, respec-
tively. The buffer was assumed to have 2K pages, and
each page was assumed to contain 40 tuples. Disk str-
vice time per page was assumed to be 15 milliseconds
while the CPU speed was set to either 2 MiPS or 10
MIPS.

4.3 Simulation Results

In the simulation program, which was coded in C, the
action for each individual relation to go through join
operations, as well as generate and apply hash filters,
was simulated. For each query in the simulation, four
schemes, i.e., NF (no filter), SM (simple), CA (check
and apply) and RG (regenerate HF), were applied to
execute the query, and the execution time for each
scheme was obtained.

Experiment 1: 10 MIPS CPU with attv= 1OOK
and carv= 1OOK

In the first experiment, the CPU speed was set to
10 MIPS while both attu and c~ru were set to 100K.

Using the sort-merge join method, the I/O cost of
sorting a relation of P pages is of the order tyio x
P x log,,, P, while the CPU cost is of the order
ttuplr X &,.d X log &,d, where ltupla is the sorting time
per tuple (X It,&/CP[Jl,& and Rccrrd is equal to
p x prize. Given the parameter settings in Table I, the
I/O cost for sorting two 1M tuple relations is approxi-
mately equal to 1,000 seconds while the corresponding
CPU cost is approximately 1,200 seconds. I/O cost for
merging two sorted relations is about 750 seconds, plus
the I/O cost of writing the resulting relation to disk,
whereas the CPU cost associated is about 60 seconds.
This accounts for the reason that Experiment 1 is I/O
bound.

Figures 6 and 7 also show that using hash filters
results in a slight performance improvement in terms
of both CPU and I/O costs required when sn is small
(an < 8). The improvement increases significantly
as the number of relations increases. It can be sec:n
from Figure 8 that CA performs the best among all
schemes evaluated while NF is outperformed by all
other schemes. As described in Section 3, CA is devised
with the goal of optimizing the reduction effect of
HF’s as well as minimizing the cost associated. The
results from this experiment confirm our analysis in
Section 3. Note that SM performs better than RG
when sn 5 12, while the latter performs better when
an = 16. This can be explained as follows. First, the
additional filtering (size reduction) effect by applying
a hash filter generated by an intermediate relation (say
&) to relation Rj under RG is usually not significant if
a hash filter on the same attribute has been generated
by a offspring of & and applied to Rj, or a offspring
of Rj, before. Second, RG consumes extra systern
resources to regenerate HF’s after every join operation,
except the last one. When un is small, the cost of
generating additional HF’s is larger than the benefit
of additional sise reduction. When an increasen, the
depth of the query execution tree increases, which in

512

Tho nutrkw of relations

Figure 6: The CPU cost for each scheme when Figure 8: The total cost for each scheme
MIPS-10. MIPS=lO.

i

,...

Figure 7: The IO cost for each scheme.

turn causes more join operations to benefit from the
effect of additional filtering. As a result, the benefit
provided by additional filtering in RG outweighs the
cost of additional HF generations when an is large.

The minimum, maximum, and standard deviation
of query execution time for the four schemes when
sn= 12 are shown in Table 2. The standard deviation
of the query execution time is about 7.9% of ‘mean
for NF, whereas those are 18.9%, 26.2%, and 25% of
mean for SM, CA, and RG, respectively. Note that the
minimum cod heuristic used by our model to determine
the bushy execution tree does not consider the effect of
hash filters. Thus, the benefits of using haah filters
in ditferent bushy trees vary. This is the very reason
that SM, CA, and RG produce larger relative standard
deviations than NF.

The number of hash filters applied in each scheme
is shown in Table 3. SM and CA apply the same
number of hash filters for each query, since in both
schemes, HF’e are applied to base relations only. In

. 12

The number of relations

when

Table 2: Statistics for the cost of each scheme when
the query size is 12 and MIPS=lO.

RG, in addition to I-IF’s applied to base relations, a
hash filter for the next join attribute is regenerated
from the resulting relation after every join. RG
therefore generates and applies the most hash filters.
However, our simulation results show that RG performs
worse than both CA and SM when sn is small (sn 5
12). As previously explained, this is due to the fact
that the effect of hash filters diminishes as they are
repeatedly applied, and is thus not worthwhile the cost
of generating additional hash filters. This indeed agrees
with the estimation in Eq.(3), which states that the
number of distinct values of a non-filtered attribute
only slightly decreases after the application of a hash
filter. When an iz large (sn > 12), RG performs better
than SM, but still worse than CA.

Table 3: The average number of hash filters applied in
each scheme.

513

s 12

The number 01 retatlons

Figure 9: The IO cost for each scheme.

As pointed out earlier, the above experiment can be-
come CPU bound if the disk access time is reduced.
To provide more insights into this phenomenon, an ex-
periment is conducted, where the page size is increased
to 480 tuples, approximately equal to the track size of
a typical workstation disk nowadays. Disk access time
per page thus increases to 30 ms accordingly while all
other parameters remain unchanged. The average I/O
costs for the four schemes in this experiment are shown
in Figure 9. Note that since CPU speed remains as 10
MIPS, CPU costs for the four schemes are the same as
those in Figure 6. From Figures 7 and 9, it can be seen
that I/O costs for the four schemes in this experiment
are significantly reduced as compared to those required
in the prior experiment. Consequently, this experiment
is CPU bound as evidenced by the results in Figures 6
and 9.

Experiment 2: 2 MIPS CPU with attv= lOOK,
and carv= 1OOK

In Experiment 2, the CPU speed was changed to 2
MIPS while all other parameters remained the same
as in Experiment 1. The average CPU cost for this
experiment is shown in Figure 10. Since changing the
CPU speed does not affect I/O costs, I/O costs for the
four schemes in this experiment are the same as those
in Experiment 1, as shown in Figure 7. It can be seen
from Figures 7 and 10 that queries in Experiment 2 are
CPU bound under NF. Figures 6 and 10 show that the
three HF based schemes lead to larger reductions on
CPU cost when queries are CPU bound, but their rela-
tive improvement over NF is approximately the same in
both experiments. Figure 11 shows the average query
execution times (i.e, CPU cost + I/O cost) for the four
schemes. It can be observed that relative performance

MIPS.2
CPU eat

1 0 12

The number of relatlons

Figure 10: The CPU cost for each scheme when
MIPS=P.

among these schemes is very similar to that in E:xpcr-

iment 1. CA continues to outperform the other three
schemes while NF still performs the worst. The three
schemes utilizing hash filters reduce the query execu-
tion time of NF by more than 50%, when sn > 12.

The improvement of CA over NF for both Experi-
ments 1 and 2 is shown in Figure 12, where the ordi-
nate is the ratio of execution time of CA to NF, and
the abscissa denotes the number of relations in a query.
It can be seen from Figure 12 that the improvement in-
creases as an increases. When an = 4, the execution
of CA is about 84% of that of NF with 10 MIPS CPU,
and this ratio becomes 76% with 2 MIPS CPU. When
sn = 16, such a ratio decreases to about 39% with 10
MIPS CPU, and to 28% with 2 MIPS CPU. Figure
12 also shows that CA generates a larger cost reduc-
tion when queries are CPU bound. Note that with a
slower CPU, the absolute CPU cost reduction achieved
by CA is larger. Since the I/O cost is not affected by
the change in CPU speed, the ratio of cost reduction by
CA becomes larger when CPU is slower. Experiments
1 and 2 demonstrate that hash filter is a very powerful
means to reduce the query execution time, especially
for complex queries, in both CPU and I/O bound cases.

The minimum, m+imum, and standard deviation of
query execution time for each scheme with sn=12 are
shown in Table 4, where CA again has the smallest
maximum and minimum execution times, but the
second largest standard deviation, agreeing with our
observation in Experiment 1.

5 Conclusions

In this paper, we explored an approach of interleaving
a bushy execution tree with hash filters to improve the

514

q Nr

The number of mlatlons

Figure 11: The total cost for each scheme when
MIPS=2.

I ..YL ,.., .,., F==l................... .1

02

The number of reldona

Figure 12: Execution cost ratio of CA to NF.

ljz- standard dev maximum minimum
NF 15632 293295 184366
SM 20028 180580 67206

-CA 21485 165182 41077
RG 27389 206659 SO?07

Table 4: Statistics for the cost of each scheme when
sn=12 and MIPS=2.

515

execution of multi-join queries. An efficient scheme
to determine an effective sequence of hash filters for a
bushy execution tree has been developed, where the
hash filters are built and applied based on the join
sequence specified in the bushy tree so that not only
is the reduction effect optimized but also the cost
azzociated ia minimized. Various schemes using hash
filters were implemented and evaluated via simulation.
By varying the CPU speed, both CPU and I/O bound
jobs were investigated. Extensive simulation results
were obtained to provide insights into the use of hash
filters. It is experimentally shown that the application
of hash filtera is in general a very powerful means to
improve the execution of multi-join queries, and the
improvement becomes more prominent as the number
of relations in a query increases.

References

PI

PI

[31

M

151

PI

PI

E. Babb. Implementing a Relational Database
by Means of Specialized Hardware. ACM Bans-
actions on Database Systems, 4(1):1-29, March
1979.

P. A. Bernstein and D.-M. W Chiu. Using Semi-
Joins to Solve Relational Queries. Journal of
ACM, 28(1):25-40, January 1981.

II. Boral, W. Alexander, et al. Prototyping
Bubba, A Highly Parallel Database System. IEEE
Z+anaactiom on Knowledge and Data Engineer-
ing, 2(l)+24, March 1990.

M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C.
Young. Using Segmented Right-Deep Trees for the
Execution of Pipelined Hash Joins. Proceedings of
the 18th International Conference on Very Large
Data Bases, pages 15-26, August 1992.

M.-S. Chen and P. S. Yu. Interleaving a Join Se-
quence with Semijoins in Distributed Query Pro-
cessing. IEEE !#ansactionr on Parallel and Dis-
tributed Syrtems, 3(5):611-621, September 1992.

M.-S. Chen, P. S. Yu, and K.-L. Wu. Scheduling
and Processor Allocation for Parallel Execution
of Multi-Join Queriez. Proceedings of the 8th
International Conference on Data Engineering,
pages 58-67, February 1992.

D. J. Dewitt, S. Ghandeharizadeh, D. A. Schnei-
der, A. Bricker, H.I. Hsiao, and R. Rasmussen.
The Gamma Database Machine Project. IEEE
!&alwactions on Knowledge and Data Engineer-
ing, 2(1):44-62, March 1990.

[8] D. J. Dewitt and J. Gray. Parallel Database Sy5
terns: The Future of High Performance Database
Systems. Comm. of ACM, 35(6):85-98, June 1992.

[9] D. Gardy and C. Puech. On the Effect of Join
Operations on Relation Sizes. ACM ‘I#-ansacfionr
on Database Systems, 14(4):574-603, December
1989.

[lo] W. Hong. Exploiting Inter-Operator Parallelism
in XPRS. Proceedings of ACM SIGMOD, pages
19-28, June 1992.

[ll] W. Hong and M. Stonebraker. Optimization
of Parallel Query Execution Plans in XPRS.
Proceedings of the 1st Conference on Parallel and
Distributed Information Systems, pages 218-225,
December 1991.

[12] H.-I. Hsiao and D. Dewitt. A Performance
Study of Three High Availability Data Replication
Strategies. Proceedings of the 1st Conference
on Parallel and Distributed Information Systems,
pages 79-84, December 1991.

[13] Y. E. Ioannidis and Y. C. Kang. Left-Deep vs.
Bushy Trees: An Analysis of Strategy Spaces and
its Implication for Query Optimization. Proceed-
ings of ACM SIGMOD, pages 168-177, May 1991.

[14] R. Krishnamurthy, H. Boral, and C. Zaniolo. Op
timization of Nonrecursive Queries. Proceedings of
the l,%h International Conference on VeTy Large
Data Bases, pages 128-137, August 1986.

[15] M.-L. Lo, M.-S. Chen, C. V. Ravishankar, and
P. S. Yu. On Optimal Processor Allocation to
Support Pipelined Haah Joins. Proceedings of
ACM SIGMOD, pages 69-78, May, 1993.

[16] R. A. Lorie, J.-J. Daudenarde, J. W. Stamos, and
H. C. Young. Exploiting Database Parallelism In
A Message-Passing Multiprocessor. IBM Journal
of BeseaTch and Development, 35(5/6):681-695,
September/November 1991.

[17] H. Lu, M.-C. Shan, and K.-L. Tan. Optimisa-
tion of Multi-Way Join Queries for Parallel Exe-
cution. Proceedings of the 17th International Con-
ference on Very Large Data Baeee, pages 549-560,
September 1991.

[la] P. Mishra and M. H. Eich. Join Processing in
Relational Databases. ACM Computing Surveys,
24(1):63-113, March 1992.

[19] H. Pirahesh, C. Mohan, J. Cheng, T. S. Liu,
and P. Selinger. Parallelism in Relational Data
Base Systems: Architectural Issues and Design

Approaches. Proceedings of the 2nd International
Symposium on Databases in Parallel and Dia-
tributed Syrtems, pages 4-29, July 1990.

[20] D. Schneider. Complex Query Processing in Mul-
tiprocessor Database Machines. Technical Re-
port Tech. Rep. 965, Computer Science Depart-
ment, University of Wisconsin-Madison, Septem-
ber 1990.

[21] D. Schneider and D. J. Dewitt. A Performance
Evaluation of Four Parallel Join Algorithma in
a Shared-Nothing Multiprocessor Environment.
Proceedings of ACM SIGMOD, pages 1 lo-12 1,
1989.

[22] P. G. Selinger, M. M. Aatrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access Path Selection
in a Relational Database Management System.
Proceedings of ACM SIGMOD, pages 23--34, 1979.

[23] A. Swami. Optimization of Large Join Queries:
Combining Heuristics with Combinatorial Tech-
niques. Proceedings of ACM SIGMOD, pages 367
376, 1989.

[24] A. Swami and A. Gupta. Optimization of Large
Join Queries. Proceedings of ACM SIGMOD,
pages 8-17, 1988.

[25] P. Valduriez and G. Gardarin. Join and Semijoin
Algorithms for a Multiprocessor Database Ma-
chine. ACM ‘Zkansactiona on Database Systems,
9(1):133-161, March 1984.

[26] J. L. Wolf, D. M. D ias, P. S. Yu, and J. Turek. An
Effective Algorithm for Parallelizing Hash Joins in
the Presence of Data Skew. Proceedings of the 7th
International Conference on Data Engineering,
pages 200-209, April 1991.

[27] S. B. Yao. Approximating block access in database
organizations. Comm. of ACM, 20:260-261, April
1977.

[28] P. S. Yu, M.-S. Chen, H. Heiss, and S. H.
Lee. On Workload Characterization of Relatioual
Database Environments. IEEE fiansactions on
Software Engineering, 18(4):347-355, April 1992.

516

