On the Effectiveness of Optimization Search Strategies
for Parallel Execution Spaces *

Rosana S.G. Lanzelotte®!, Patrick Valduriez!, Mohamed Zait!

'Projet Rodin, INRIA, Rocquencourt, France
?Pontificia Universidade Catélica do Rio de Janeiro (PUC-Rio), Brazil
e-mail: firstname.lastname@inria.fr

Abstract

The cost of query optimization is affected by both the
search space and the search strategy of the optimizer. In
a parallel ezecution environment, the search space tends
to be much larger than in the centralized case. This is
due to the high number of execution alternatives which
implics a significant increase in the optimization cost. In
this paper, we investigate the trade-off between optimization
cost and parallel ezecution cost using the DBSS parallel
query optimizer. We describe its cost model which captures
all essential aspects of parallel ezecutions. We show how
the cost metrics imply a significant increase in the search
space and optimization cost. However, instead of restricting
the search space, which may lead to loosing better plans,
we reduce the optimization cost by controlling the search
strategy. We estend randomized strategies to adapt well
to parallel query optimization. In particular, we propose
Toured Stmulated Annealing which provides a better trade-
off between optimization cost and quality of the parallel
ezeculion plan.

1 Introduction

Query optimization refers to the process of producing an
optimal execution plan for a given input uery, where
optimality is with respect to a cost function to be
minimized. An “optimal” plan has the least cost among
all cquivalent plans. The investigation of equivalent
plans is driven by the optimizer search strategy within
a “search space” in which each point is a possible plan.
Execution plans are typically abstracted in terms of
processing trees (PTs) to capture in a compact way

*This work was partially funded by the Esprit project IDEA,
and the PRC BD3 of the French Ministry of Research.
Permission o copy without fee all or part of this material is
granted provided that the copics are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title vf the publication and its date appear, and notice is given that
copying s by permission of the Very Large Data Base Endow-
ment. To copy ntherwise, or to republish, requircs a fee and/or
apecial permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1093

493

the aspects that are essential for cost estimation and
optimization. PTs express executions which involve
inler-operation or intra-operation parallelism.

Parallel optimization is made difficult by the neces-
sary trade-off between optimization cost and quality of
the generated plans (the latter translates into query ex-
ecution cost). The optimization cost is affected by both
the size of the search space (i.e., the number of possible
PTs) and the search strategy, which can be more or less
exhaustive. Compared to centralized query processing
[Se79], the major problem to be addressed is dealing
with a large space of parallel execution plans. In the
centralized case, the search space gets obviously larger
as the query is more complex, e.g., includes many joins
[Sw89], deals with complex objects or includes recur-
sion [LVZ92]. Even for a reasonable query (e.g., with
less than 10 joins), a parallel execution model yields
a large variety of execution plans due to the various
sources of parallelism. Thus, optimization of reason-
able queries may be intractable if an exhaustive search
strategy is used in conjunction with a large space of
parallel executions.

To reduce optimization cost, most centralized [Se79]
and parallel [SD90, HS91] optimizers restrict the search
space to linear PTs. In [ZZB93], we showed that this
may lead to loosing the optimal PT. Also, linear PTs
cannot capture independent parallelism, where opera-
tions involving disjunct sets of operands are executed
in parallel. An alternative approach is to use a non-
exhaustive search strategy. With this objective, ran-
domized search strategies have been proposed to im-
prove a start solution until obtaining local optima. Ex-
amples of such strategies are Simulated Annealing (SA)
[IC91] and Iterative Improvement (II) {Sw89]. Random-
ized strategies do not guarantee that the best solution
is obtained, but avoid the high cost of optimization.

In this paper, we investigate the trade-off between
optimization and execution costs in a paralle] database
system. Our framework is the DBS3 parallel database
system [BCV91], which is developed by Bull and INRIA

as part of the EDS and IDEA Esprit projects. DBS3
implements a distributed memory (shared-nothing)
execution model on a shared-memory multiprocessor.
However the DBS3 optimizer has a parameterized cost
model which can be set to either shared-memory or
shared-nothing [ZZB93]. In the later case, the execution
plan can be executed on the EDS machine [EDS90]. In
this paper, we use the shared-nothing cost model since
it is the most general. The DBS3 optimizer explores
both sources of parallelism, inter-operation and intra-
operation. It relies on a cost metrics that captures all
the relevant parallel aspects, e.g., relation fragmentation
and scheduling. When compared through this metrics,
many more tentative PTs are kept during the search,
thereby increasing significantly the optimization cost.

The DBS3 optimizer uses efficient non-exhaustive
search strategies [LV91] to reduce query optimization
cost. Using a realistic application, we measure the im-
pact of parallelism on the optimization cost and the op-
timization/execution cost trade-off using several combi-
nations of search space and search strategy. The major
contribution of this paper is an extension of SA called
Toured Simulated Annealing (TSA), to better deal with
parallel query optimization. In all experiments, TSA
yields the best optimization/execution cost ratio. The
conclusion of our experiments is that controlling the
search strategy to réduce the optimization cost is usu-
ally better than restricting the search space.

The rest of the paper is organized as follows. Section
2 describes the different search spaces and related cost
model dealt with by the DBS3 optimizer. Section 3
presents the optimizer search strategies and proposes
several variants to enhance their effectiveness. Section
4 shows the experiments and measurements. Section 5
concludes.

2 Search Space and Cost Model

The main components of a query optimizer are the
search space, the cost model and the search strategy.
Our approach enforces the independency between these
three components, which enables adapting the optimizer
to different requirements. In this section, we describe
the context of the DBS3’s parallel query optimizer
[2ZZB93). Its search space can be set to that of
linear, zigzag or bushy trees. We also describe the
cost function, which models a shared-nothing parallel
execution environment.

2.1 Optimization Context

The DBS3 query compiler takes as input queries
expressed in ESQL, a conservative extension of SQL
supporting objects and recursion [GV92). In this paper,
we consider only select-project-join queries. The query
optimizer selects the best parallel execution plan. The

494

underlying execution system can be either a shared-
nothing or a shared-memory multiprocessor [BCV91].
In this paper, we restrict ourselves to shared-nothing
for it is the most general case.

Exccution plans are modelled by PTs. A PT is a
labelled binary tree where the leaf nodes are relations
of the input query and each non-leaf node is an operator
node (e.g., join, union) whose result is a (ransicnt
relation. A join node captures the join between
its operands. The execution aspects, such as the
join algorithin, are expressed by means of ezecution
annotations. Suppose the following SQL query:

Select * fromn Ry, Ry, R3, K4
where Ry A = R;.A and I83.B = R3.B
and R3C = R4C

Figure 1 shows four PTs for this query. We say that
a PT is complete if it captures all the relations of the
input query (e.g., all the PTs in Figure 1 are completc).

Our optimizer explores both inter-operation and
intra-operation parallelism. Inter-operation parallelisiu
can be dataflow or independent. Dataflow parallelism
is due to pipelining, i.e., one operation starts as soon
as one tuple of the operand is produced. OQtherwise,
the operand is stored, i.e., the corresponding transient
relation is entirely produced before it. is consuined by the
next operation. PTs are enriched to express pipelining
(resp. storing) of transient relations, through directed
(resp. undirected) arcs. For the PTs shown in this
paper, we adopt the following convention: the operand
consumed in pipe is the right input of a node, and the
stored operand is at the left side.

[SDYU] studied two formats for scheduling lincar
plans: left-deep and right-deep trees. In a left-deep
tree, all transient relations are stored, whereay in a
right-deep tree they are consumed in pipeline. Thus all
nodes of a right-deep tree execute in parallel whereas in
a left-deep tree, only one node executes at a time. For
example, Figure 1.(ii), shows a right-deep tree where j4,
jb and j6 are executed in pipeline, and Figure 1.(i),
shows a left-deep tree where the execution of j2 starts
only after j1 is completed and its result stored. Left-
deep and right-deep are two extreme ways to schedule
linear execution plans. In [ZZB93], we proposed a new
scheduling strategy called zigzag. In a zigzag tree, the
transient relation may be either stored or pipelined.
Zigzayg trees are an intermediate format between left-
deep and right-deep trees. That is, they allow to slice
an execution plan into sub-trees scheduled as right-deep
trees and executed in sequence. It is different, from the
slicing strategy proposed in [SD90] in the way the result
of a sub-tree i1s consumed by the first operation of the
subsequent sub-tree. Figure 1.(iii) shows a zigzag tree
where j8 and j9 are executed in pipeline, but j8 starts

Result Result

Right-deep
(i)

Result
m Result
kIR
R
R1 R2 R1 R2 R3 R4
Zig-zag Bushy
(iii) (iv)

Figure 1: Execution Plans as Processing Trees

only after j7 has completed. Bushy PTs, as the one
in Figure 1.(iv), enable another type of inter-operation
parallelism, called independent, because the operations
are independently executed. For example, j10 and j11
are independently executed, because they do not involve
the same data.

Pipelining and storing indications split the PT into
non-overlapping sub-trees, called phases. Pipelined
operations are executed in the same phase, whereas
a storing indication establishes the boundary between
one phase and a subsequent phase. Thus, the execution
scheduling of a P'T can be deterministically derived. The
reasons for splitting the PT into phases are twofold.
First, the algorithm that implements a PT operation
may require the storing of one of its operands (e.g., the
hash join algorithm). Resource contention is another
reason for splitting a PT into phases. If a sequence
ol operations requires more memory than available to
execute simultaneously, it is split into one or more
phases. For example, the PT in Figure 1.(iii) is split
into two phases, although it could be executed in a single
phase if enough memory were available.

Intra-operation parallelism means that a PT op-
eration is executed simultaneously by several nodes.
We call node one processor, together with its mem-
ory and disk. To execute an operation in an intra-
parallel manuer, the operands must have been previ-
ously partitioned, i.e., horizontally fragmented, through
the nodes!. The set of nodes which store a relation is
called its home. For example, the home of relations R,
and Iy is hy, and the home of relations Rz and Ry is ha.
Ouce R; and Rj are placed on the same home hy, and
the partitioning function is based on their join attribute
A, the join j1 can be executed in an intra-parallel fash-
ion on h;. However, to execute j2, cither the result of j1
has to be repartitioned on hgz, or R3 on hy. The home
of an operation is the one in which both operands are
located (e.g., the home of j1 is h;). Usually, the opti-
mizer tries to exploit the placement of the operands to

!'The way a base relation is partitioned is a matter of physical
denign.

495

avoid repartitioning. However, execution plans where
both operands are repartitioned to increase the degree
of parallelism need also be investigated. PT nodes must
bear execution annotations to indicate repartitioning,
when neceded, as well as the algorithm that implements
the operation (nested loop or hash).

2.2 Search Space Size

In this section, we investigate the size of the different
search spaces. The analysis uses standard combinatorial
methods, so details are omitted. Given a query with n
relations, the question is how many PTs can be built
within each type of search space, without considering
several join methods or scheduling, i.e., only the PT
shape matters®. The results are summarized in Table 1.

First, consider a bushy space. The number z, of
possible PT shapes for a ¢query of n relations, supposing
that each PT root riode has a left (resp. right) operand
capturing k (resp n — k) relations, is

n-1 n
T, = Z (k) Tyn_k, where r=1
k=1)

The solution is proven to be #, = (2n — 2)!/(n -
1)! in [TL91], which computes the maximum number
of PT shapes, obtained when Cartesian products are
permitted or all relations are pairwise joinable.

For chain queries (each relation can join with at most
two others, and the two “ends” can join with only one)
without Cartesian products, there are fewer bushy trees,
computed by y, below,

n-1

Yn = z 2k Yn -k, where
k=1

n=1

as the chain can be partitioned in n — 1 places, but
either partition may be the left child. The relationship

2[TL91) computes upper and lower bounds for the search space,
supposing that the optimizer produces many PTs with the same
shape, considering the home of the transient relations and the
acheduling.

yn = 2" lz,/n! may be verified by substitution in
the recurrence. Chain queries have the fewest possible
plans, so y; gives the minimum number of bushy PT
shapes.

Now consider a space of linear PTs. If all relations
are joinable or Cartesian products are investigated, we
have n! as the maximum number of PT shapes in a left
or right-deep space, because all permutations of the n
relations are considered. In a zigzag search space, the
maximum number is multiplied by 2"~2, because, in
each point of a permutation, except the first and second
points, the base relations can be joined as the left or
right operand. What is a little surprising is that the
number 2, of linear PTs is exponential even for chain
queries. If there are k operations to the left of the one
chosen to be performed first, then there are ("7 %) ways
to complete the plan (and there are two choices for the
chosen first operation). This gives the formula

ik S
z"=22(k)=2n—1
k=0

which is the minimum number of left or right-deep PT
shapes. The minimum number of zigzag PT shapes is
obtained by multiplying by 2”2, as for the maximum
number.

2.3 Exploring the Search Space

The search space is explored by the optimizer search
strategy, which either builds PTs or modifies complete
PTs. When building PTs, the main optimizer action is
expand(p), which generates new PT nodes by joining
one relation (base or transient) to the PT node p .
Besides requiring that the relation to be joined with
p is not yet captured by p, the implementation of
expand(p) depends on the type of the search space.
For example, in a linear search space, the relation to be
joined must be a base relation, while in a bushy space it
may be a base or a transient relation. Action expand
may generate several successor nodes to a PT node. It
is up to the search strategy to keep some or all of them
[LVal].

A randomized search strategy builds one or more start .

solutions and tries to improve them by applying random
transformations . The basic action in such strategies is
transform(p), which applies some transformation to
a complete PT p. Only transformations that produce
another complete PT in the same search space are
applied. These are called valid transformations. For
example, if the optimization search space of p is such
that Cartesian products are not investigated, then a
valid transformation must not produce a PT with a
Cartesian product . The valid transformations are also
conditioned by the shape of the investigated PTs:

496

in aleft-deep space, valid transformations are the left
join exchange {ICY91], and the swap, which chooses
randotnly two points in the current PT and swaps
the hase relations consuined by them [Sw84];

in a right-deep space, the valid transformations are
the _right join exchange (join(Ry, join(Ry,R3)) —
join(Ry, join(R1,R3))) and the swap;

in a zigzag space, a valid transformation is one
above and the join commutativity (join(I2, Ky) -~
Join(Ry,y))

in a bushy space, valid transformations are the
join exchange, the join commautativity and the join
associativity (join (join(Ry, Ry), Ra) — join(li,,
joill(Rz,Rs)))

The optimizer search strategy is responsible for guid-
ing the application of expand(p) and transformn(p),
by choosing p at each step, deciding on the successors
to keep, stopping the search and so on. In other words,
it is respousible for deciding how many points of the
search space are investigated and in which order [LV91].
The choices are based on a cost metrics deseribed in the
next section.

2.4 Cost Model

In this section, we propose a cost model that captures
all the aspects of parallelism and scheduling. In order
to compare PTs, we discuss the drawbacks of previous
proposals which do not deal with scheduling.

2.4.1 Cowmparing PTs

Our optimizer explores both kinds of parallelisin, intra
and inter-operation. The latter involves the scheduling
of execution plans. We distinguish two types of
inter-operation parallelism: dataflow and independent.
However scheduling execution plans that allow only
dataflow parallelism (linear plans) is easy. Independent
parallelism (as in bushy plans) is more involved because
there are more scheduling alternatives.

During the exploration of the search space, the search
strategy compares PTs with respect to their cost.
Greedy search strategies, that build PTs by depth-first
search, or randomized ones, that transform complete
PTs, keep at most one PT after each action (i.e., expand
or transform). In these cases, only the cost estimate
is relevant when comparing a PT with another one.
On the other hand, a Dynamic Programming (DP)
strategy [Sc7Y] builds PTs by breadth-first, keeping
all incomplete PTs that are likely to yield an optimal
sohition. Suppose PTspace is the set of all PTs
(complete or incomplete) built by the optimizer search
strategy at some point. At each expand, the search
strategy discards from PTspace the most expensive I'I'

Search Space Min® # of PT | Max.® # of PT Max. # of PT shapes | Max. # of PT shapes
shapes shapes for b relations for 10 relations
Left or Right-deep T n! 120 3,628,800
Zignag gn=2 gn=1 =2 gyl 920 232,243,200
2 (-2 an=2)! .
Bushy — (]) (o2 1,680 17,643,225,600

2Chain queries, PTs without Cartesian products.

bQueries where all relations are pairwise joinable or PTs with Cartesian products.

‘Table 1: Maximum and minimum number of PT shapes in different search spaces.

nodes among the “equivalent” (equiv for short) ones,
Le.,

(Vp,p1 € PTspace) (equiv(p, pr)) A (cost(p) > (:()St(pl))
= PTspace := PTSpace — {p}

The cost estimate of a PT takes into account. its
schedule. Thus, it may happen that, given two schedules
for p and pr and a PT ¢,

cost(p) > cost(pt) and
cost(Join(p, q)) < cost(Join(pt, q))

‘Therefore, it is better not to discard PT node p when
comnpared to p/. In other words, the equivalence cri-
terion must include the comparison of plan scheduling,.
This problem is similar to the tuple order of the result
of a given Pl in System R [Se79], and to resource con-
sumption in [GHK92). In the former, the order infor-
mation influences the costs of subscquent merge joins,
GROUP-BY and ORDER-BY clauses. More generally,
all the aspects of a PT that affect cost estimation, and
which may favor successor nodes, must he considered
when comparing PI's to discard the most costly ones.

The equivalence criterion abstracts all the properties
of a P'I' that are used by the cost model: the set of
captured relations, the home of the produced transient
relation, and the scheduling. More formally:

(Vp.pt € PTspace) ((rels(p) = rels(p)) A (home(p) =
home(pr)) A (sched(p) = sched(pr)) = equiv(p, pr))

The formulas for cost estimation take into account
the used machine resources (e.g. processors), the
number and the structure of the phases which define
the schedule of the execution plan. Consequently, the
criterion sched is refined as follows:

(sched(p) = sched(pt)) <= ((numberO fPhase(p) =
numberQ f Phase(pt)) A (Vi € phase(p)
uscdResources(p, i) = usedResources(pl, i)))

Based on this definition, linear PTs scheduled as
right-deep trees (thus executed in one phasc) and
consuming the same resources (i.e., executed on the

497

card(R) | number of tuples in relation R
width(R) | size of one tuple of relation R
cpu CPU speed

network | network speed

packet the size of a packet

send the time for a send operation
receive the time for a receive operation

Table 2: Cost Model Parameters

same home) are considered equivalent. On the other
hand, bushy plans, scheduled in more than one phase,
are not equivalent to plans scheduled as right-deep trees.

Our proposal may be seen as an extension to [GHK92]
by adding another dimension to the resource vector to
take into account the execution over more than one
phase. The cost metrics becomes a matrix, where each
row represents the resonrce consumption over one phase.
If the plan is scheduled as a right-deep tree, we obtain
a vector as in [GHK92].

2.4.2 Cost Functions
In this section, we define the cost estimate of a PT
containing only join nodes. All formulas given below
compute response time and we simply refer to it by cost.
In addition to the traditional assumptions (uniform
distribution of values and independence of attributes),
we also assume that the tuples of a relation are
uniformly partitioned among the nodes of its home, and
there is no overlap between nodes of different homes,
although several relations may share the same home.
In the following, R refers to a base relation of the
physical schema, and N to the operation captured by a
PT node. p denotes, in the same time, a PT and the
transient relation produced by that PT. The parameters
(database schema or system parameters) used in the
cost model are shown in Table 2.

An optimal execution of the Join operation, requires
each operand relation to be partitioned the same way.
For example, if p and ¢ are both partitioned on n
nodes using the same function on the join attribute,

the operation Join(p, q) is equivalent to the union of
n parallel operations Join(p;,q;), with i = 1,n. 1If
the afore mentioned condition is not satisfied, parallel
join algorithms [VG84] attempt to make such condition
available by reorganizing the relations, i.e., dynamically
repartitioning the tuples of the operand relations ou the
nodes using the same function on the join attribute,

We first estimate the cost of repartitioning an operand
relation R. Obviously, if the relation is appropriately
partitioned, this cost is 0.

Let #tsource be the number of nodes over which
R is partitioned, and #dest be the number of nodes
of the destination home. Each source node contains
card(R)/#source tuples, thus it will send card(R) «
width(R)/(n*packet) packets. If we assume that tuples
will be uniformly distributed on destination nodes, then
each node will receive card(R)/#dest tuples, and thus
will process card(R) * width(R)/(m * packet) incoming
packets. Since a destination node starts processing only
when the first packet arrives, the cost of repartitioning
R on #dest nodes is,

cost(part(R)) = , ,

maz((card(R) * width(R)/(#source * packet)) * send,
(card(R) * width(R)/(#dest x packet)) * rcceive
+send + packet /network)

The cost of joining.tuples of PTs p and ¢, where p and
q are respectively the pipelined and stored operands of
the Join operation, is

cost(Join(p, q)) =maz(costqy(Join(p, q)), cost(part(py))
+ cost(part(q))

where costgy(Join(p, q)) is the cost to process the join
at one node. It depends on the join algorithm used
[Za90]. The repartitioning of p is performed simultanc-
ously to the join processing, after the repartitioning of
¢ has completed.

Given a PT p scheduled in phases (each denoted by
ph), the cost of p is computed as follows

cost(p) = Yo ppep(maznepn(cost(N) + pipe_delay(N))
+ store_delay(ph))

where pipe_delay(N) is the waiting period of node
N, necessary for the producer to deliver the first result
tuples. It is equal to 0 if the input relations of N are
stored. store.delay(ph) is the time necessary to store
the output results of phase ph. It is equal to 0 if ph is
the last phase, assuming that the result are delivered as
soon as they are produced.

To study the behavior of search strategies, an im-
portant property of the cost function is the Adjacent
Sequence Interchange (ASI) property [MS79]. Consider

498

a T whose nodes can be mapped to a sequenee of re-
lations of the form AUVB, where A, B are arbitrary
sequences and U, V non-null sequences. [KBZ86] shows
that the ordering of U and V in the P'T is purely based
on the properties of the sequences U and V| and can be
decided irrespective of the rest of the sequence (e A
and B), only if the cost function verifies the ASI prop-
erty. In our cost inodel, some characteristics of the re-
sult of a PT node may have an impact on the cost and
the optimization choices performed for the subsequent
PT nodes. For examnple, the home of a transient relation
impacts for the cost of the next consuming operation.
Therefore, choosing between two orderings of sequences
in a P'T is dependent on the rest of the sequences. The
ASI property is, then, not verified by our cost model.
The impact of this information on randomized strategies
will be studied in Section 3.2.

3 Search Strategies

The optimizer search stvalegy is \he search algorithm
which investigates P'Ts in a given scarch space. I
niay be ether determindstic (e, builds PI's in o
deterministic fashion) or randomized (i.c., investigates
new I7Ts by applying random transformations on §1s).
In the DBS3 optimizer, we have implemented the
extensible approach described in [LVO1] with several
search strategies, which we now describe.

3.1 Deterministic Search Strategics
Deterministic strategies always choose the same 1 for
a given query in a given scarch space. Examples of such
strategies are Greedy and DI” [Se79).

Greedy strategics are the faster ones because they
investigate very few PTs. They proceed by depth-first,
starting from the relation with the least cardinality.
After each expansion, all the successor nodes are pruned
but, one. Different, heuristics inay be used in conjunction
with a Greedy strategy. In the DBS3 optimizer, we
used the Augmentation Heuristic [Sw89]: the plan starts
by the relation with the least cardinality and, at each
expansion, the successor node with the least cost is
retained. Greedy strategies are also used to generate
start solutions {or randomized strategics.

We have studied a variant, that produces what we call
the Untform Greedy solution. This strategy prodices
one complete PT starting from each base relation via the
Angmentation Heuristic, then chooses the least costly
among these complete PTs as the solution. We have
observed that this is a very eflective strategy to find a
start, solution for Simulated Annealing in linear spaces.

DP proceeds by breadth-first, selecting the least
recently generated PT node to be expanded at each step.
The strategy is almost exhaustive, becanse heuristics
are used to prune bad states as soon as possible. Pruning

discards P'I' nodes which are “cquivalent” to somne other
existing PT node with higher cost (see Section 2.4.1
for a discussion on the equivalence criterion). Because
the pruning policy considers the homes, the number of
phases wnd the resource consumption of each phase, the
nnmber of investigated PIs s mnch larger than in a
centralized environment. ‘The main resource constraint
when using DP proved to be the amount of space
used by the optimizer. Because of breadth-first search,
wany incomplete PTs are generated before the search
ends. Thus, running DP on reasonable queries (e.g., 8
rclations or more) in a bushy search space often causes
the optimizer to run out of space. This is the motivation
Lo use randomized strategies.

3.2 Randomized Strategies

Randomized strategies concentrale on scarching the
optimal solution around some particular points. They
do not guarautee that the best solution is obtained, but
avoid the high cost of optimization. First, one or more
start PTs are built by a Greedy strategy. Then, the
algorithm tries to improve the start PT by visiting its
neighbors. A neighbor P'IY is obtained by applying a
transform to a PT,ie, P'1Y = transform(PT). A PT
is a local minimum if it has the least cost among all its
ucighbors. A PT is a global minimum if it has the least
cost among all the local minima. The effectiveness of a
randomized strategy is related to its ability of reaching
the global minimum. This is more difficult as there are
more local minima.

3.2.1 Randomized Strategics vs. Cost Metrics

The number of local minima depends on the execution
space as captured by the cost model. Thus, the behavior
of randomized strategies is significantly affected by
the properties of the cost metrics. [ICY91] stated
that in search spaces following the ASIl property,
there is a unique local minimum, which is the global
minimum. This enables very effective optimization.
After choosing a randomly generated start PT, apply
transform actions until no less costly neighbor PT
15 generated. In centralized optimizers, cost functions
corresponding to some join algorithms (e.g., merge
join, hash join) do not follow the ASI property.
Nevertheless, [ICY91] observed that many subspaces
follow ASI, leading to many local minima. This
makes randomized strategies investigating many such
subspaces to increase the opporlunitics of finding
the global minimmm. Each strategy implements this
investigation of several subspaces in a different way.
When comparing the cost metrics of a centralized
optimizer to ours, where scheduling is taken into
account, two observations can be drawn. First, the
cost, distribution is much more scattered, iuplying the

499

need Lo look into more subspaces than in the centralized
case. Second, the cost of a neighbor PT can be
radically different (up to a factor of 10) from that of the
starting PT3. This implies that, in a given subspace, the
oplimizer may be able to reach a local minimum earlier,
with less transforms than in the centralized case. Both
factors are more prevailing in bushy execution spaces,
where there are more choices for scheduling, than in a
linear one. ‘

These observations lead to an important conclusion.
A parallel optimizer acting in a bushy space should
investigate more subspaces than a centralized one,
spending less time in the exploration of each subspace.
In the sequel, we present the randomized strategies
implemented in the DBS3 optimizer which take into
account these observations.

3.2.2 Iterative Improvement (II)

11 [Sw89] performs several runs. Each run consists of
improving one start PT by applying transforms, until
a local minimum is reached. Thus, only transforms
that generate PTs which are less costly than the original
one are accepted. The number of runs is equal to the
uumber of relations in the query, i.e., each start PT is
greedily generated from a different base relation. As
the strategy is not exhaustive, not all the neighbors
are visited and it is difficult to recognize a local
minimum. A bound on the number of visited neighbors
is typically accepted as a criterion for reaching the local
minimum. This bound is proportional to the query size:
a parameter localBudget times the number of relations
in the query.

I1 visits as many subspaces as the number of relations
i the query, due to the choice of the several start PTs.
This has been proved effective in centralized optimizers
[Sw89], and we will show that it is also the case in linear
parallel execution spaces, in Section 4.4. However,
the number of visited local minima is insufficient in a
parallel bushy space, due to the excessive scattering of
the cost distribution. This explains the low quality of
the plans chosen by II running in a bushy space. The
localBudget parameter may be smaller in bushy spaces.
Il converges very quickly to each local minimum. The
reason is that, in bushy spaces, a single transforim may
generate a neighbor PT with a very low cost, compared
to that of the original one.

3.2.3 Simulated Annealing (SA)

Contrary to II, all the runs of SA are performed
over a single start state. However, the system has
a temperature property temp, which is reduced at
each run. Optimizer parameters allow specifying the
initial temperature (a factor multiplied by the cost

3This is not the case in centralized bushy spaces [IC91].

of the start PT, typically 2.0), and the decreasing
ratio. The algorithm stops when temp < the “freezing”
temperature, or when a “stable” solution has been found
(i.e., it stays unchanged during four runs, as proposed
in [IC91]). As in II, the local budget for each run is
related to the size of the problem. The criterion for
accepting a transform, however, is diflerent, because
transformed PTs with a higher cost than the original PT
are accepted with some probability, that decreases with
the temperature. Accepting bad moves corresponds to a
“hill climbing” [IC91]: on the other side of the hill there
may exist a better solution.

We have observed that the augmentation heuristic
often approaches the optimal linear solution provided
that it has been applied to a “good” start relation.
It is not possible to predict at first sight which is the
“good” start relation. Similar to [Sw89], we propose to
choose the Uniform Greedy solution (see Section 3.1) as
the unique start solution for SA in linear spaces. This
increased significantly the quality of the solution chosen
by SA.

During the experiments, we observed that SA per-
formed very well in linear spaces, but often failed to
choose the optimal solution in bushy spaces, even when
Uniform Greedy was chosen as the start solution. The
reason is that a single start solution provides too few
chances for exploring a large search space, e.g., with
bushy trees. The standard way to do this, i.e., through
the acceptation of “bad” moves, proved to be not suf-
ficient in a parallel bushy execution space. This moti-
vated our proposal of a modified version of SA.

3.2.4 Toured Simulated Annealing (TSA)

TSA performs n tours of SA, each tour starting with a
different Greedy solution, where n is the number of base
relations in the query. Each start solution is obtained
as for 11, i.e., it is greedily built by the augmentation
heuristic beginning at each base relation.

To prevent the optimization cost of increasing ex-
cessively, each tour is given a very low ratio for the
initial temperature (0.1 instead of 2.0), impelling the
system to accept bad moves less often. This is some-
what analogous to the 2-Phase Optimization strategy
proposed in {IC91]. We also introduced an optimiza-
tion budget, equally divided by the number of tours,
that limits the optimization effort. Similarly to what
happened in II, we observed that each “tour” reached
a local minimum very early, and spent the remaining
time exploring useless solutions. As we keep track of
the best solution found so far, this “wondering” is not
harmful from the point of view of quality of the chosen
plan, but increases uselessly the optimization cost. So,
each tour is given a limited optimization budget, based
on the number of generated PT nodes. We show in Sec-

500

tion 4 that TSA presents the best trade-off between the
optimization cost and the quality of the execution plan.

o

3.2.5 Raundomized Strategies vs. Transform

Actions

The behavior of randomized strategies is affected by the
nature of the applicd transform actions. Recall that a
transformation action must be valid, i.c., coustrained in
the considered search space. All of the deseribed trans
formations generate a PT within the same search space
as the original one with regards to their shape (see See-
tion 2.3). Often swaps and join exchanges turn out to
be invalid if the search space prevents join pernmla-
tions that imply Cartesian products. As these trans
formatious are randomly chosen, their validity must be
verified before they are applied. The number of suecess-
ful attempted actions s related to the “connectivity” of
the query (i.e., the nnmber of join predicates connecting
the relations).

As the join exchange is a particular case of swap, we
conducted some experiments 1o study the behavior of
randomized strategies using one or the other. 11 only
joinExchange is used, it may require (';) n? such
actions to reach the optimal plan; at each step there are
n — 1 possible choices. On the other hand, with swap
the target can always be reached by some sequence of
n — 1 or less actions, aud at cach step, there are (3)
choices. In some sense, joinExchanges are “small”
moves, while general swaps constitute “large” moves.

~

a

Based on these considerations, starting from a plan
that is well away from the optimal, we would expect
joinExchanges to produce small improvements, but
with a higher success rate, compared with swap.
The initial progress should be more remarkable with
swap, sometimes being very lucky and sometimes quite
unlucky. As a local minimun is approached, swap will
have an even higher failure rate, as large moves tend to
be unproductive.

On bushy spaces, the validity of transform actions
are less sensitive to the connectivity of the query. As
their effect is localized on one point of the T, there s
a lesser (resp. none) probability that a join exchange
or a join associativity (resp. join commutativity)
will fail to produce a valid PT in a search space
avoiding Cartesian products. Experitments where join
exchange was not available for bushy spaces performed
poorly. Although the effect of a join exchange can be
produced by a combination of join associativity and join
commutativity, it is essential to have it as an additional
transform action, because it may be valid when a join
associativity may not.

4 Measurements

We now measure the trivde-off between the oplimization
comte versus Lhe quality of the produced execution plan.
In order to make meaningful measurements, we pro-
vided the optimizer with “sensors” and “buttons” to ab-
stract implementation details and to grasp the essence
of the optimizer behavior. We investigate many combi-
nations of search spaces and search strategies for some
sample queries. We show that optimization becomes in-
tractable in some sitnations (e.g., an exhaustive strategy
applied to 9-way join queries in a bushy scarch space).
We demonstrate that restricting the scarch space may
lead to miss the optimal plan. As an alternative to re-
duce the optimization cost, we use randomized strate-
gies. We show that they perform well on parallel envi-
romments and choose the optimal plan in most cases.

4.1 Testbhed

Our measurements use a realistic application: the
Portfolio Club Experimental Model (PEM). This was
designed to provide a realistic experimental base for
complex query definition, evaluation and benchmarking
on the DBS3 system [JKK90]. PEM coustitutes a
simplified model for an application on share market
and investment/portfolio management. The PEM
schema contains 20 relations joinable through foreign
keys. There are three kernel relations, “enterprises”,
“investors” and “holdings”, to which disjoint sets of the
remaining relations are joinable. Besides, “enterprises”
ad “investors” are joinable, as well as “enterprises” and
“holdings”.

The testbed catalogs were generated automatically
using three key parameters which correspond to the
cardinalities of the kernel relations. ‘The cardinalities of
relations vary with respect to each other considerably,
as in real applications. The catalog describes also
the partitioning of relations, the nuinber of nodes and
the attributes used by the partition function. Disjoint
subsels of the relations were partitioned on three
disjoint. homes, containing one kernel relation plus the
set of relations whose foreign key is the primary key
of the kernel relation. We do not consider indexes.
The machine consists of 30 nodes (i.e., processors) and
cach home is constituted by 10 nodes. Table 3 gives
the values of the machine parameters used by the cost
model, validated on the current EDS shared-nothing
parallel system,

We conducted our experiments using equijoin queries
ranging from 4 to 12 relations. If we consider the
database schema as a graph, where a node corresponds
to a relation, an edge connects two nodes if the cor-
responding relations share the same attribnte name.
Thus, a query on a given snbset of relations is the sub-
graph containing them. We considered all the “implied”

501

30 MIPS

200 Mbits/second
512 bytes

33 s

23 us

number of MIPS per CPU

speed of the network

size of o packet,
time for a send operation
time for a receive operation

Table 3: Values of Cost Model Parameters

predicates in a query (e.g., R1.A = R2.B and R2.B =
R3.B inplies R1.A = R3.B). Due to the nature of the
catalog, “star” queries are frequent. They are generally
considered as the hardest to optimize, because of the
large number of permutations of relations not. involving
Cartesian products. Each query was optimized with re-
spect to three catalogs, each containing the same PEM
schema, but with widely varying statistics. The exper-
iments with the optimizer were conducted on a SUN-4
workstation with a 16 MIPS CPU and 32 Mbytes of
meunory. ,

4.2 Experimentation Methodology

The effectiveness of a strategy is strongly related to
the consumed resources, typically time and space. A
common difficulty with resource measurement is that
it 1s very implementation dependent. Therefore we
attempted to identify characteristic actions used by the
various strategies, and to count them, rather than rely
on CPU time or memory size alone. For deterministic
strategies, expand is the most typical action, while
transformn is typical for randomized ones. As both
actions generate new PT nodes, we use the counter
of generated PT nodes to compare different strategies.
Recall that, if randomnized strategies are used within
a search space with no Cartesian products, many
transformation attempts may fail before getting to a
“successful” one. The failures are also tracked by the
counter of generated new PT nodes. Thus, the number
of generated new PT nodes correlate well with time and
space. The number of generated new PT nodes per CPU
second was 20 for both DP and randomized strategies.
Besides its use for experimental measurements, this
counter provides an implementation-independent way to
constrain the resources consumed by the optimizer. The
cost of a PT represents the response time as computed
by the cost functions of the optimizer.

The optimizer behavior depends on a parameter file,
that fixes the search space (right-deep, zigzag, and
bushy. Left-deep are not considered in the experiments)
and the search strategy (DP, II, SA, and TSA),
and parameters for randomized strategies (e.g., global
and local budgets, ratios for initial temperature and
temperature decrease for SA and TSA).

32 S .
- i —%— right-deep ,
0 : .
E 24 | " |
2 ;T8 gzZag '
) ! |
£ 16 ; —* bushy
-1 .
3
]
o
, o
4 5 6 7 8 9 10 1 12
number of relations in the query (i)
200
J—
T Trr T M ;
Z 150 | = right-deep | o
2 : :
S | —0— zigzag | P
g 100
8
3
o
X 50
0 A e
4 5 6 7 8 9 10 11 12

number of relations in the query (iii)

4.3 ‘Quality of Query Execution Plan vs.
Search Space

In the first set of measurements, we were interested
in verifying if choosing a larger search space changes
the optimal solution. @ We applied DP to several
queries in different search spaces using three different
catalogs referred to by catalog(z, j, k) where i, j, and k
are the cardinalities of “enterprises”, “investors”, and
“holding” respectively.

Figure 3 shows the cost of the execution plans
obtained for varying number of relations in the query in
right deep, zigzag and bushy search spaces. The zigzag
solution is always better than the right-deep one. The
bushy solution is sometimes better than zigzag. Clearly,
the choice of a larger space enables finding a better
plan. In large spaces, the optimizer is able to investigate
all possibilities that lead to the best parallelization,
regardless of the initial partitioning of relations.

DP becomes intractable, i.e. runs out of memory,
in zigzag or bushy spaces for queries with ¢ relations
or moret. In these cases, we used the cost of the
solution obtained by TSA. The good surprise is that
TSA in a zigzag or bushy spaces was able to find better
solutions than DP running in a right-deep space. In fact,
our realistic testbed is.such that subsets of relations
are located on disjoint homes. In this situation,

4Recall that the queries are very connected by join predicates,
due to the implied predicates.

502

Execution Cost (s)

120

[rightdeepl 0w w . "
. ' r : 1
9 l O gigrag ! / \ A
! . e - U// M
0 A bushy
30 ———
f p— - B—
L
04 S ST Rk DETEEEY } et ' ‘ [
4 5 6 7 8 9 nwoon 12
number of relations in the query (i)
Figure 2:
Exccution cost of optimal plans obtained by DP/TSA
for varying number of relations in the query.
The three graphs correspond respectively to (i)

catalog(1100,500,1100), (i) catalog(1100,5000,1100),
and (iii) cataloy (10000,500,10000).

independent parallelisin is better than dataflow, which
incurs time-sharing. This favors zigzag and bushy P'I's.

4.4 Quality of Query Execution Plan vs.

. Search Strategy
We applied II, SA and TSA to the same queries as
before, using the catalog(1100,500,1100), in lincar and
bushy spaces.

Figure 3 shows the exccution cost of solutions chosen
by randomized strategies in linear and bushy spaces,

In a linear space, all strategies obtain the same plan
or near as a final solution in most cases (see Figure 3(i}).
Morcover, the cost of the chosen plan is equal or near
to that chosen by DP, when the comparison is possible.

In bushy spaces, for queries with 7 relations or less,
the chiosen solutions have the same cost for all strategies
too (see Figure 3(ii)). However, for more complex
queries, the cost of bushy solutions chosen by different
randomized strategies are considerably different. As
explained in Section 3.2.1, thig is due to the fact that
the cost distribution in bushy parallel spaces is very
scattered. As TSA is able to explore more points in the
search space than the other strategies, it is able to find
better bushy plans. 1t is, then, the best choice when DI
is no more feasible.

Randomized strategies have not been previously
proposed to parallel optimnization. Our experiments
showed that they are very effective, specially with some
improvements. Both modifications proposed to SA (i,

0,

Execution Cost (s)

7 9

number of relations in the query (i)

8

Execution Cost {s)

12

10

number of relations in the query (ii)

6 7 8 9 11

Figure 3: Comparison of Randomized Strategies: (i) right-deep, (ii) bushy.

the Uniform Greedy as the start solution for linear
spaces and the Toured version) have the same goal.
They give this strategy a better chance of looking
around for more points in the solution space.

4.5 Trade-off hetween Optimization and

Excceution Costs

We measured the trade-ofl between optimization and
axccution costs in right-deep and bushy spaces, using
several strategies. The trade-off expresses the increase
rate in both the optimization and execution costs
incurred by a strategy, within a given search space for
a given query. Summing both rates corresponds io
congider the total resources consutned by optimization
and exeention. Each increase rate is estimated with
respecl to the best cost found so far by some strategy.
Given astrategy S, a space E, and a query Q, the trade-
ofl of strategy S to optimize Q in space E is,

trade—of (8, E, Q) = IROC(S, E, Q+IR_EC(S, E, Q)

where [R.OC and IR.EC are the increase rate in
optimization cost and execution cost respectively, i.e.,

{R.OC(S,E,Q) =(0C(S, E, Q) ~ bestOC(E, Q))
JbestOC(E, Q)

IR.EC(S, E, Q) =(EC(S, E, Q) - best EC(E, Q)
[best EC(E,Q)

bestOC(L, Q) = minygOC(St, E, Q)

bestBC(E, Q) = minys: EC(St, E,Q)

OC(S, K,Q) measures the optimization cost (number
of generated new PT nodes) of S to optimize @ in E,
and EC(S, E, Q) measures the execution cost of the PT
produced by S for Q.

Figure 4 shows the trade-off of DP and randomized
strategies for varying number of relations in the query.
For small queries, with less than 7 relations, DP offers
the bost trade-off. For larger queries, the situation is

503

inversed to the benefit of TSA in bushy spaces, and II
in right-deep space.

This result validated the use of randomized strategies
for parallel search spaces when DP becomes intractable.

4.6 Swmmary

The experiments brought in some important insight
regarding optimization in a parallel environment. First,
a larger space than right-deep, as zigzag or bushy,
provides more chances to find a better plan. With
an almost exhaustive strategy in such spaces, such as
DP, optimization becomes intractable beyond a certain
query complexity. In a parallel environment, this limit
is attained even for reasonable queries (8 relations or
more). This is due to the fact that the pruning criterion
is very restrictive.

In previous work, the problem is dealt with restricting
the search space [HS91, SD90]. We chose to apply
randomized search strategies instead. For this purpose,
we used a modified version of SA, that offers a better
trade-off in comparison with other strategies. Our
experiments showed that using a randomized strategy
within a bushy search space is likely to find a better plan
than an exhanstive strategy within a restricted search
space.

We did not consider indexes for simplicity. Their
impact on our results will be studied in a future work.

5 Conclusion

In this paper, we have studied the trade-off between
query optimization and execution costs with DBS3
optimizer. This optimizer explores both kinds of
parallelism, intra and inter-operation, through linear or
bushy plans, and implements several search strategies
including DP, II, and two variants of SA. Using a
realistic testbed, we conducted a series of experiments
to measure the trade-off between optimization cost and
quality of query execution plans.

trade_off

number of relations in the query (i)

trade-off

number of relations in the query (ii)

Figure 4: Trade-off between Plan Execution Time and Opthnization Cost: (i) right-deep, (i) bushy.

The main contribution of this paper 1s to assure
tractability through the use of non exhaustive search
strategies. For this purpose, we extended randomized
strategies for parallel optimization, and demonstrated
their effectiveness.

Contrary to previous works, our results show clearly
that parallel query optimization should not imply
restricting the search space to cope with the additional
complexity. We showed that this may lead to missing
better plans. It is essential to keep the search space
large and to control the search strategy to assure
tractability. Combining bushy search spaces with
randomized strategies is the best solution, when DP
becomes intractable.

References

[BCV91] B. Bergsten, M. Couprie, P. Valduriez: “Pro-
totyping DBS3, a Shared-Memory Parallel Database
System”, PDIS 1991.

[EDS90] EDS Database Group: “EDS Collaborat-
ing for a High-Performance Parallel Relational
Database”, ESPRIT Conf., Brusscls 1990.

[GHK92] S. Ganguly, W. Hasan, R. Krishnamurty:
“Query Optimization for Parallel Execution”, SIG-
MOD 1992.

[GV92] G. Gardarin, P. Valduriez: “ESQL2:. an Ex-
tended SQL2 with F-logic semantics”, IEEE Data
Engineering 1992. ' :

[HS91] W. Hong, M. Stonebraker: “Optimization of
Parallel Query Execution Plans in XPRS”, PDIS
1991.

[IC91] Y.E. loannidis, Y. Cha Kang: “Left-deep vs.
bushy trees: an Analysis of Strategy Spaces and
its Implications for Query Optimization”, SIGMOD
1991.

504

[JKK90] J. Jorgensen, S.M. Kellett, N.C. King: “Port-
folio Club Experimental Model”, EDS
EDS.DD.111.0005, Dec 1990.

[KBZ86] R. Khishnamurty, H. Boral, . Zaniolo: “Op-
timization of Nonrecursive Queries”, VLB 1980.

[LV91] R.S.G. Lanzelotte, P. Valduriez: “Extending the
Search Strategy in a Query Optimizer”, VLDB 1991,

[LVZ92] R.S.G. Lanzelotte, P. Valduriez, M. Zait: “Op-
timization of QObject-Oriented Recursive Queries us
ing Cost-Coutrolled Strategies”, SIGMOID 1992.

[MS579] C.L. Monma, J.B. Sidney: “Sequencing with
series-parallel precedence constraints”, Math. Oper.
Res., 4 1979.

[SDY0] D. A. Schneider, D. J. DeWitt: “Tradeolls in
Processing Complex Join Queries via Mashing in
Multiprocessor Database Machines”, VLDE 1990.

Report

[Se79] P.G. Selinger et al.: “Access Path Sclection
in a Relational Database Management System”,
SIGMOD 1979,

[Sw8Y] A. Swami: “Optimization of Large Join Queries:

combining Heuristics and Combinatorial ‘Tech-
niques”, SIGMOD 1989.

[TL91] K-L. Tan, H. Lu: “A Note on the Strategy Space
of Multiway Join Quéry Optimization Problem in
Parallel Systems”, SIGMOD 1991.

[VG84)] P. Valduriez, (i. Gardarin: “Join and Semi-
join Algorithms for a Multiprocessor Database Ma-
chine”, ACM TODS, Vol. 9, No. 1, 1984.

[Za90] M. Zait: “Access Method Selection in a Parallel
Database System”, Master Thesis, University of
Paris 6, September 1990.

[2ZB93]) M. Ziane, M. Zail, P. Borla-Salamet: “Parallel
Query Processing in DBS3”, PDIS 1993,

