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Abstract 

This paper looks at the problem of multi-join query 
optimization for symmetric multiproceasore. Optimizrt- 
lion algorithms based on dynamic programming and 
greedy heuristics are described that, unlike traditional 
methods, include memory resources and pipelining in 
their cost model. An analytical model is presented 
and used to compare the quality of plans produced 
by each optimization algorithm. Experimental results 
show that, while dynamic programming produces the 
be& plans, simple heuristics often do nearly as well. 
The came results are also used to highlight the advan- 
tages of bushy execution trees over more restricted tree 
shapes. 

1 Introduction 
Relational database systems are increasingly being used 
to execute decision-support queries. Such queries are 
used to discern sales trende, analyze marketing data, 
etc., and often they include multi-way joins with long 
execution times. One way to improve the execution 
times of these complex queries is through parallelism, 
and symmetric multiprocessors (SMPs) provide a cost- 
effective alternative. The best way to optimize queries 
for parallel execution is still largely an open problem, 
however [3]. 

This paper looks at the problem of multi-join opti- 
mization for SMPe. Recently, the authors of [5] showed 
how the time-honored method of optimizing database 
queries, namely dynamic programming [14], could be 
cxtcndcd to include both pipelining and parallelism. 
WC build on that work in the context of SMPs, show- 
ing how memory resources can be included as well. The 
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importance of including memory reaourcea during op- 
timization W(LB previously demonstrated in [1, 131 for 
shared-nothing multiprocessors and more recently in 
[ZO] for SMPs. None of those studies considered the 
full variety of execution trees that are examined here, 
however. These include left-deep, right-deep, deep, seg- 
mented right-deep, and bushy trees. 

In addition to dynamic programming, we also de- 
scribe optimization algorithms based on greedy heuris- 
tics that feature much lower computational complex- 
ity. An analytical model is presented and used to com- 
pare the quality of plans produced by each optimization 
algorithm. Experimental results show that, while dy- 
namic programming produces the best plans, the simple 
heuristics often do nearly as well. The same results are 
also used to highlight the advantages of bushy execution 
trees over more restricted tree shapes. 

The remainder of this paper is organized az follows: 
In Section 2 we introduce the terminology and notation 
that shall be used throughout this paper. In Section 3, 
we describe the process and execution models on which 
our optimization algorithms are based. This is followed 
by Section 4, where we describe optimization algorithms 
that use dynamic programming and greedy heuristics. 
Next, in Section 5, we present an analytical cost model 
that is used by the optimization algorithms to compute 
elapsed time. Finally, the results of our experimental 
study are presented in Section 6, and conclusions are 
drawn in Section 7. 

2 Terminology and Notation 
Throughout this paper, it is assumed that the query 
optimizer produces an ezecuiion plan, which is then ex- 
ecuted by the database management system (DBMS). 
Execution plans for multi-join queries will be depicted 
as trees, with each internal node corresponding to a join 
and each leaf node corresponding to a base relation. 
Only hash-based join methods [4, 151 will be consid- 
ered, since they generally offer superior performance. 
To simplify the discussion, only full-relation joins are 
considered. 

Following the convention established in 1131, each 
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join in an execution tree will have its building relation to 
the left and ita probing relation to the right. Hash tables 
are built on building relations and probed by probing 
relations. If all the internal nodea of an execution tree 
have at least one leaf (i.e., base relation) as a child, 
then the tree is called deep [9]. Otherwise it is called 
bushy. A lefl-deep tree ia a deep tree whose probing 
relations are restricted to base relations. Conversely, a 
righf-deep tree is a deep tree whoee building relations 
are restricted to base relations. As defined, the search 
apace of bushy treea includes deep trees, which in turn 
includes left-deep and right-deep trees. Examples of 
left-deep, righbdeep, deep, and bushy trees are shown 
in Figure 1. 

kft-deeptree 

bushy tree 

Figure 1: Examples of Different Query Trees 

3 The Process and Execution 
Models 

All the optimization algorithms described in thii paper 
are based on the same process and execution model. 
This will allow us to develop just one co& model and 
use it to analyae all the optimization algorithms being 
studied. 

3.1 The Process Model 

To exploit inter- and intra-query parallelism aa well aa 
I/O parallelism, a threaded process model is assumed 
in this paper, where each processor is assigned its own 
dedicated CPU thread and multiplexed over Borne num- 
ber of I/O threads. CPU threads are used for join pro 
ceasing, while I/O threads are ueed in conjunction with 
double buffering to initiate asynchronous I/C. To facil- 
itate I/O parallelism, relations are assumed to be uni- 
formly declustered over all disks. 

For join processing, a simpk parallelisation of a 
uniprocessor haah join is modeled. The model aaBumee 
that a eingle hash table ia built (in parallel) for each 

join and then probed by all proceseore. The haeh ta- 
bles of right-deep tree segments are probed in a parailcl, 
pipelined fashion by all procetraors to achieve both inter- 
and intra-operator paralleliem. More will be said about 
this shortly. 

3.2 An Alternative Process Model 

The advantages of this process model are its simphc- 
ity and eelf-balancing nature. It is self-balancing due 
to the fact that each processor participate iu every 
join. Thus, within a right-deep segment, the procetwors 
will gravitate towards the join that requircR the mo& 
proceeeing. This simplifies optimization and runtimc 
scheduling by eliminating the problem of how to assign 
and balance the load across processors. 

One potential disadvantage of this process model ia 
that a single hash table ia used for each join, i.e., ha.& 
tables are not partitioned by processor as in shared- 
nothing architectures [2]. In practice, this could lead to 
lower cache hit rat&, since each processor would work 
with larger hash tables. 

An alternative process model with more overhead 
for inter-process communication but potentially bettor 
cache behavior was described in [20]. In that procefls 
model, hash tablea are partitioned by physical proccs- 
8or as in shared-nothing architectures [2, 131, and data 
ie repartitioned using shared memory aa described in 
[S]. The assignment of CPU threads to hash partitions 
is fixed, but physical processora are allowed to migrate 
among CPU threads (if necessary) to dynamically bal- 
ance data flows. 

To judge how eeneitive our results were to the choice 
of the process model, we constructed analytical models 
for both of the above alternatives. Experimental results 
turned out to be nearly identical. This is due to the fact 
that the cost equations for the two process models are 
essentially the same, modulo the cost of repartitioning 
data in shared memory, which is small in relative terma 
[6]. Thus, the general results of this paper should hold 
regardlees of which process model is used. More empir- 
ical evidence is needed to determine which alternativc~ 
actually performs better in practice. 

3.3 The Execution Model 

All the optimization algorithms described in thia pa- 
per are baaed on a wgmenfed execution model, which iR 
similar to the one described in [I]. In a segmented exe- 
cution model, a query plan is broken down into a collec- 
tion of memory-resident, right-deep segments that are 
executed one at a time. By memory-resident, we mean 
that the hash tables for all the building relationa in a 
segment fit in memory. This execution model does not 
restrict the shape of a query plan - arbitrary bushy 
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trees are rllowed. However, pipelining along right-deep 
segments is ueed to achieve inter-operator parallelism 
rather than parallel execution of independent subtrees, 
i.e., B&y-lne parallelism [7l. 

Our segmented execution model differs slightly from 
the one described in [I]. There, the full result of each 
righl-deep segment waz always written to disk. Here, 
to exploit memory resource3 more fully, we allow part 
or all of the result to be materialized in memory if it 
plays the role of a building relation in the next segment 
to be executed. 

Figure 2 shows how a segmented execution model 
might be used to execute an &relation join. As shown, 
the query plan, which is a bushy tree, has been broken 
into four right-deep segments. Segment 1 is executed 
first, followed by segment 2, and so on. The order of ex- 
ecution is determined by data dependencies. Segment 1 
is not dependent on the results of any other segment and 
80 it is executed first. 

Figure 2: Segmented Execution 

Using cardinality estimates, the optimizer has de- 
termined that R,c and R7 will not both fit in memory. 
Thus, the right-deep subtree rooted at Zc is broken into 
segments 1 and 4. All of segment l’s result Zz is writ- 
ten to disk to free up as much memory as possible for 
subsequent joins. The optimizer has also determined 
that the building relations for segment 2, namely RI 
and Ra, will both fit in memory but that there is not 
enough memory to hold all of the intermediate result 
Zz. Thus, part of Zz is written to disk during the prob- 
ing phase of segment 2, and later read when segment 3 
is executed. In contrast to segment 2, the optimizer has 
determined that segment 3’s result Za will At in mem- 
ory along with its building relations & and ZZ. Con- 
sequently, Z4 is used to build a hash table in memory 
during the probing phase of segment 3. Finally, the op- 
timizer has determined that the building relations for 
segment 4, namely R7 and 4, will both fit in memory. 

As mentioned, it is up to the optimizer to keep track 
of memory resources and determine segment boundaries 
as it generates a query plan. This information is then 
used at runtime for scheduling the execution of seg- 
ments within the query plan. 

3.4 The Case for a Segmented 
Execution Model 

The main advantage of a segmented execution model 
is that optimization and runtime scheduling is greatly 
simplified. This is because only one right-deep segment 
is ever executed at a time. The disadvantage is that 
that bushy-tree parallelism is not exploited. For exam- 
ple, in Figure 2, it could be advantageous to execute 
segment 1 in parallel with segment 2. 

We would argue that the opportunities to exploit 
bushy-tree parallelism are often limited, however. For 
example, it would almost never make sense to execute 
segments 1 and 2 in parallel. If that waz done, then 
memory would be overcommitted, and more I/O for 
intermediate results would be generated. This inierme- 
diofe Z/O, az we will refer to it, is particularly onerous, 
since each intermediate I/O really translates into two 
disk accesses - a write and then a read. In [13], the 
authors found that it is always better to break up right- 
deep segments and avoid overcommitting memory for 
precisely this reason. 

One instance where bushy-tree parallelism can offer 
an advantage is when the query plan looks like the one 
shown in Figure 3. If everything fits in memory, then it 
could be advantageous to execute the subtrees 2’1 and 
Tz in parallel. But this is only true when: 

1. TI is I/O bound and TZ is CPU bound or vice versa. 
The gains in this case accrue from a more balanced 
system [7]. 

2. The join predicates are such that TI and T2 just 
happen to access relations which are declustered 
over disjoint sets of disks. The gains in this case 
accrue from I/O parallelism. 

In addition to these limitations, note that case 1) usu- 
ally requires caze 2) to be true. This is because, if any 
of the relations accessed in TI and TZ reside on the same 
set of disks, then there is likely to be arm contention, 
which would tend to make both TI and TZ I/O bound. 

Although it may not be obvious, note that if Tl and 
T2 were both CPU bound, then there is nothing to be 
gained by executing them in parallel (assuming linear 
speedup). To see this, let there be p processors, and let 
WI and W2 correspond to the amount of work involved 
in executing Tl and T2, respectively. Then it should 
be clear that the optimal processor assignment is to 
proportionally allocate p * WI/( WI + W2) processors to 
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% 

T2 

Tl 

Figure 3: Candidate for Bushy-Tree Parallelism 

T’r and p. Wg/(Wi + Ws) processors to Ts. Using this 
assignment, the time to execute the two subtrees in 
parallel would be: 

( Wl W-2 

Tnaz p * W1/(W1+ W2)‘p W?/(Wl e W2) > 

But this equals: 

which is the same amount of time it that it would take 
to serially execute the two subtrees, one after the other. 

In this paper, relations are assumed to be uniformly 
declustered over all disks, which is a reasonable assump- 
tion for the sort of small-scale parallelism that an SMP 
offers. Not only does it simplify system management, 
but it also facilitates parallel I/O, which is essential 
for high performance. Moreover, there is no concept 
of “node locality” on au SMP, which is often the moti- 
vation for alternative declustering strategiee in ahared- 
nothing architectures. 

Because of our aesumptions about how data has been 
declustered, bushy-tree parslleliem offers no advantages 
in our study and is therefore not considered. In gen- 
eral, we recognize that there may be cases where bushy- 
paralleii$m may prove useful. However, because of its 
limitations, the scheduling problems it introduces, and 
its impact on the search space, it is not clear whether it 
is really worthwhile for an optimizer to actively seek for 
bushy-tree parallelism. A better alternative may be to 
make the optimizer cognizant of bushy-tree parallelism 
in its cost model and exploit it when possible but not 
actively search for it. 

4 The Optimization Algorithms 
Before picking a set of optimization algorithms to study, 
we identified three key issues that were of interest to us. 
These were: 

How could dynamic programming 1141 be modified 
to include memory resources and elapsed time in 
its search strategy? 

How would the plans produced by the modified ver- 
sion of dynamic programming compare to heuris- 
tics that have been described in the literature [l]? 

l HOW much could be gained by letting the optimizer 
consider generalieed bushy trees versus restricting 
it to just, say, deep, left-deep or right-deep trees? 

4.1 Dynamic Programming vs. 
Heuristics 

Dynamic programming is the time-honored method of 
optimizing join queries [14]. It is based on exhaus- 
tive enumeration with pruning and produces “optimal” 
plans. We were particularly interested in dynamic pro- 
gramming because of the huge commercial investment 
that has gone into it - virtually all commercial op- 
timieers are based on on it. We felt that if a sirnplc 
modification to dynamic programming could producr 
competitive query plans for SMP architectures, then 
that would be of considerable commercial interest. 

One of the problems with dynamic programming is 
that it hss exponential complexity in terms of the num- 
ber of relations in the query [ll]. In practice, however, 
its performance has generally been found to be accepl- 
able. This is because queries with more than 10 joins 
are rare. In a survey of 30 major DB2 customers [19], 
for example, the most complex join query from a sample 
of 200 queries involved “just” 8 relations. 

Another problem with dynamic programming is that 
memory reaoutces are usually ignored in optimizers 
based on it. This stems from the fact that its origins as 
an optimization technique date back to the days when 
computer memories were small and there was little op- 
portunity for caching data in memory. As argued in 
[13], however, several relations can often fit in memory 
today. Consequently, we were interested in the prob- 
lem of how to add an awareness of memory resources 
to the search space of dynamic programming and what 
its impact would be. 

Yet another problem with dynamic programming is 
that optimizers based on it have traditionally used re- 
source consumption (the sum of I/O and CPU usage) 
as their cost metric. As argued in [5], however, elapsed 
time is probably a better metric to use for the execution 
of complex multi-join queries in parallel systems. Con- 
sequently, we were also interested in what the impact 
of using elapsed time sa a cost metric would be. 

As we will show, it is not particularly hard to mod- 
ify dynamic programming to include both memory rc- 
sources and elapsed time. However, one can thtrn prove: 
that dynamic programmingno longer produces optimal 
plans p]. in short, it becomes nothing more than an cx- 
pensive heuristic. Nonetheless, we felt that a modified 
version of dynamic programming could produce better 
query plans than other heuristics by virtue of its sheer 
“brute force”. 
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4.2 Exploring the Advantages of 
Bushy and Deep Trees 

In addition to dynamic programming, we were also in- 
terested in examining how much could be gained by 
letting the optimizer consider generalized bushy trees 
for query plans. A recent study [l] showed how a r+ 
stricted form of bushy trees could offer better perfor- 
mance than right-deep trees. We wanted to investigate 
this issue more thoroughly and examine unrestricted 
bushy, left-deep, and deep trees as well. 

The main advantage that bushy and deep trees of- 
fer over left-deep and right-deep trees is that they can 
reduce or eliminate I/O for intermediate results. As 
mentioned earlier, this internaedioie I/O is particularly 
onerous because each I/O really translates into two disk 
accesses - a write and then a read. Moreover, in a 
batch environment it can cause disk arm contention 
that might have otherwise been avoided. 

Figure 4 illustrates how a deep tree can reduce in- 
termediate I/O. There, three possible query plans for 
a 4-relation join are shown. In the figure, we have a+ 
sumed that R+J is huge, Rs is the size of memory, I1 is 
314 the eiee of memory, Rr is l/2 the size of memory, 
and that all other relations are l/4 the size of memory. 
Because of Rc’s size and the shape of the join graph, 
the join order is essentially fixed. 

As shown, part of the intermediate result Ii has to 
be written to disk in the left-deep tree. This is because 
Rr and Ir do not both fit completely in memory. In the 
right-deep tree, on the other hand, II can be pipelined, 
and thus intermediate I/O for it is avoided. However, 
now the intermediate result Zs has to be written to disk, 
since RI, Rs, and RS do not all fit in memory. In con- 
trast to the left-deep and right-deep trees, intermediate 
l/O can be avoided all together in the deep tree. This 
is achieved by pipelining Ii and then materializing 12 
in memory. 

In general, left-deep trees generate less I/O than 
right-deep trees, since intermediate I/O can be com- 
pletely avoided whenever the building relation and re- 
sult of a single join can fit in memory. Furthermore, 
the memory for the building relation can be released as 
soon as the join’s result has been materialized. On the 
other hand, right-deep trees can pipeline large interme- 
diate results that would otherwise have to be written to 
disk. Finally, deep and buehy trees get the best of both 
worlds. Like left-deep trees, intermediate results can 
be materialized in memory to free up space for subse- 
quent joins, and like right-deep trees, pipelining can be 
used to avoid materializing large intermediate results. 
Compared to deep trees, bushy trees can reduce inter- 
mediate I/O further by virtue of the fact that there is 
more latitude in picking join orders. This can lead to 
smaller intermediate results and less I/O in some CCIWS. 

Based on the above observations, one would expect 
bushy trees to offer the best performance, followed 
closely by deep trees, then left-deep trees, and finally 
right-deep trees (assuming l/O costs dominate). Our 
results will show that this is indeed the case. In [13], 
cases were provided where right-deep trees performed 
much better than left-deep trees. This only happened 
when the building relations were declustered over dis- 
joint sets of disks, however. Thus, more I/O parallelism 
was possible with right-deep trees, as all building re- 
lations could be scanned in parallel. However, when 
the building relations are uniformly declustered over all 
disks, as modeled here, this advantage disappears. 

4.3 Optimization Using Dynamic 
Programming 

To study the quality of plans produced by dynamic pro- 
gramming, we built a stripped-down optimieer baaed on 
it. This optimizer, which we refer to as our DP opti- 
mizer, takes an arbitrary join graph as input along with 
statistics on join selectivities and relation cardinalities 
and outputs a query plan. We built our DP optimizer 
in a general way so that output plans can be restricted 
to bushy, deep, left-deep, or right-deep trees by simply 
changing a runtime flag. 

Our DP optimizer is, for the most part, a atraight- 
forward implementation of dynamic programming [14]. 
The only real difference is the way the cost of subplans 
are computed. Optimizers based on dynamic program- 
ming typically compute a single cost value for each sub- 
plan that is based on resource consumption. If one sub- 
plan for a given set of relations is cheaper in terms of re- 
source consumption than another subplan for the same 
set of relations, then the more expensive plan is pruned. 

As noted earlier, we wanted to replace resource con- 
sumption with elapsed time and also account for mem- 
ory resources in some way. This was accomplished by 
simply replacing the single cost value that is usually 
kept for each subplan by a pair (et,mc), where et is 
the elapsed time to execute the subplan and mc is the 
memory consumption of the subplan. The way et is 
computed will be described shortly. The value of mc 
is computed using the input statistics on relation car- 
dinalities and join selectivities. It includes the memory 
needed to compute the subplan’s result, but not any 
memory released along the way when intermediate re- 
sults are written to disk. The value of mc is used in 
pruning and also used to determine how a subplan will 
be broken up into right-deep segments during its exe- 
cution. 

To illustrate how mc is computed, we return to the 
deep tree in Figure 4. Letting ]&I denote the size of 
relation &, the value of mc for the eubplan rooted at 12 
is computed as lRll + IRzl. At the time the subplan is 
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join graph 

RO RI R2 R3 

Rl RO RI RO RI RO 

IeftdecpllW right-deep me deep tree 

Figure 4: Example where Deep nee can Eliminate Intermediate I/O 

generated, it is not known whether I2 will be pipelined, 
written to disk, or materialized in memory. Thus, IZS 1 is 
not included in mc. Following much the same logic, the 
value of mc for the eubplan rooted at IS is computed aa 
l&l + lRzl+ 1121. 

In comparing subplans, (et, mc) pain, are used aa 
follows: Let (etl, mcl) be the cost of aubplan 1, and let 
(etl, mea) be the cost of subplan 2, where both subplans 
are over the same set of relations. If et1 < et2 V (et1 = 
et2 A mcl $ mcs), then subplan 1 is considered to be 
less expensive. Otherwise, subplan 2 is considered to 
be lew expensive. This gives precedence to et, using 
mc as a tie breaker. It is motivated by the fact that, 
all things being equal, the subplan that consumes less 
memory is probably a better choice, as plane built on 
it are likely to generate less intermediate I/O. 

During pruning, we initially kept only one aubplan 
for a given eet of relations. However, one can construct 
casea where choosing the eubplan with lower cost ac- 
tually leada to a more expensive plan overall. This is 
because the chosen subplan might have a lower et value 
but a much greater mc value, which leads to trouble 
later on. Thus, pruning based on cost (as we have de- 
fined it) does not produce “optimal” plans. This obser- 
vation led us to modify our DP optimizer so that up to 
n alternatives ordered by (et, mc) could be kept for each 
subplan. One can show that the complexity of dynamic 
programming blows up by O(n2) when n alternatives 
are kept. However, by trial and error, we found that 
n = 2 works well. More will be said about this later. 

4.4 Optimization Using Heuristics 

In addition to our DP optimirer, we also built an op 
timizer based on simple greedy heuristics. We refer to 
this as our HR optimizer. Simple variations on the same 
greedy heuristic were implemented for bushy, deep, left- 
deep, and right-deep trees. We also implemented an im- 
proved version of the BC heuristic that WBB described in 
[I]. The choice of which heuristic to uee is determined 
by a runtime flag. 

All but the BC heuristic are variations on the same 

basic idea. A join graph C ia input, where each node 
in G corresponds to a baee relation Z& and each edge 
corresponds to a join predicate. The query plan ie then 
built bottom-up in a greedy fashion, join-by-join. A 
simple “mix&e” heurietic is used to decide which join 
to add next to the plan. 

For bushy trees, the algorithm in Figure 5 is exe- 
cuted. As shown, the algorithm tries all possible pairs 
of relations for its first join. For each atarting pair, 
a query plan is generated bottom-up, join-by-join. At 
each step, all the unjoined pairs of relations connected 
by a join predicate are considered. The pair &, Rj 
that produces the lsmallest result is chosen aa the next 
join. Both & x Rj and Rj x & are examined, and the 
join order with the least cost (as defined in the previ- 
ous section) is the one chosen. The join is added to 
the current plan being constructed, and then & and 
RJ are collapeed into one node in G to reflect the fact 
that they have been joined. This continues until all the 
relations have been joined. The least costly plan gen- 
erated among all starting paim of relations forms the 
final output. 

The algorithm shown in Figure 5 is similar to the 
bushy heuristic described in [l]. It is easy to show that 
the algorithm enumeratea O(n3) joins for a fully con- 
nected join graph with n relations. Although it is not 
shown in Figure 5, the memory consumption of a query 
plan is computed as the plan is built. This information 
ie used to choose join order8 and also used to determine 
how the plan will be broken up into right-deep segments 
during its execution. 

Due to space considerations, we omit detailed de- 
scriptions for the deep, left-deep, and right-deep heurie- 
tic algorithms. The algorithms are similar to the one 
shown in Figure 5, however, with relatively minor 
changes to accommodate restrictions on the shape of 
the query tree. For all other tree ehapea, R, in the 
inner-most loop is restricted to a tmc relation, and R,, 
ia restricted to the node in G corresponding to the 1-t 
join added to the current plan. In addition, for left- 
deep and right-deep trees, the join order ie restricted to 
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input G 
Best Plan.cost = 00 
for &, Rj in G connected by an edge do 

Current Plan = mincoat(& x Rj, Rj x &) 
collapse &, Rj in G 
while lCl > 1 do 

lMinJoinl = 00 
for &, R, in G connected by an edge do 

if IR, x &,( < IMinJoinl then 
Min Join = mincost(& x &,R, x &) 
i=x,j=g 

endif 
endfor 
add MinJoin to CurrentPlan 
collapse &, Rj in G 

endwhile 
if CurrentPlan.cost < BeslPlan.cost then 

BedPlan = Current Plan 
endif 

endfor 
output BeetPlan 

R, x & and & x R.r, respectively. 

Space considerations also prohibit us from describing 
the BC heuristic in detail. BC is, at its core, a right- 
deep heuristic. However, when it detects that another 
building relation will not fit in memory, BC choosea a 
new pair of relations and begina building another right- 
deep segment. The result of one right-deep segment can 
be used aa the building or probing relation in another 
right-deep segment, 80 BC actually produces a bushy 
tree, albeit a restricted one. In [l], it was aeaumed that 
the full result of every right-deep segment was written 
to disk. Here, we allow part or all of the result to be 
materialbred in memory if it plays the role of a building 
relation in the next segment to be executed. 

Unlike dynamic programming, the heuristic aIg+ 
rithme do not enumerate all poeeible join permutations. 
Consequently, one would expect dynamic programming 
to always produce better query plans for a given tree 
shape. Our results will show that this ie indeed the case. 
On the other hand, the heuristic algorithms have dr& 
matically lower complexity, making them attractive in 
aituatione where optimization time is a concern. More- 
over, the results will show that the bushy-tree heuristic 
often produces surprisingly good plans. 

// try all starting pairs of relations 
// pick cheapest join order for pair 
// reflect join in G 
// stop when no more relations to join 
// pick next pair using mineize heuristic 
// examine all unjoined pairs 
// remember mineize join 

// add minsiee join to current plan 

// keep cheapest plan seen so far 

Figure 5: Bushy-Tree Heuristic 

5 The Cost Model for 
Computing Elapsed Time 

In this section, we present an analytical mode1 for com- 
puting the elapsed time to execute a hash-based, multi- 
join query. All the optimization algorithms described in 
this paper used the cost mode1 that will be described. 
Although the mode1 computes elapsed time, it can be 
wed to compute resource consumption as well. 

The cost mode1 assumea a segmented execution 
mode1 like the one described earlier. It also a8- 
aumea that I/O and CPU processing can be overlapped 
through double buffering and asynchronous I/O. IBM’s 
DB2 product featurea such a capability [17]. Finally, 
a linear speedup through parallelism is assumed. On 
real SMP implementations, this has been shown to be 
an accurate assumption for small degreea of parallelism 
PI. 

5.1 Parameters of the Cost Model 

The system parameters of the cost model are shown 
in Table 1. In choosing the parameters, we sought to 
pick values that are representative of SMP platforms 
which are available today or will be available in the 
near future. Towards this end, we have modeled a 150 
Mhr processor. On database workloads, a good rule 
of thumb ia that it takes roughly 2.5 clock ticks per 
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Cpi 
P 
m 
&nit 

metup 

%eek 

iobondwidth 

Parameter 1 Description 
mhz I clock rate of individual processor 

1 Default ..-.--. 
I 150 Mhz 

Parameter 
Wise 

r 

probe 
compare 
hash 
moue 
project 
concatenate 
lock 
unlock 
h 

average number of clocks cycles per instruction 2.5 
number of processors in the system 4 
memory available for join processing 128 Mbytes 
CPU instructions to initiate an I/O 5000 
device time to setup an I/O 1 msec 
average seek time of an individual disk 10 msec 
bandwidth of an I/O unit 16 Mbyte+ec 

Parameter 

Table 1: System Parameters 

Description 
I/O block size 
record size 
instructions to probe a hash table 
instructions to compare join attributes 
instructions to hash a join attribute 
instructions to move a record in memory 
instructions to project a record in memory 
instructions to concatenate two records in memory 
instructions to acquire a lock 
instructions to release a lock 
average number of probes to find match in hash table 

Table 2: Algorithm Parameters 

mips 

IRI 

. 
~044quential 

*hmdom 

insert 

f indmatch 

generate 

Default 
1 MByte 
200 bytes 
100 
100 
50 
200 
100 
100 
10 
10 
1.2 

Description 
effective MIPS rate of a single processor 

mips = mhrfcpi 
size of an arbitrary relation R in blocks 

PI= [gq 
time to perform a sequential block I/O 

t04cqucntiol = ioretup + +.ae/ (P. iobonduridth) 

time to perform a random block I/O . 
%ondom = %eck + %equential 

time to insert a record in a hash table 
insert = lock + h . (probe + compare) + moue + unlock 

time to find a matching record in a hash table 
f indmatch = h - (probe + compare) 

time to generate a result record 
generate = project + concatenate 

Table 3: Derived Parameters 



instruction on HISC processors [l&J]. Consequently, a 
150 Mhs processor will execute roughly 150/2.6 or 60 
MIPS on a database workload. 

Note that some number of I/O “units” are assumed 
to be connected to the processors, with each unit de- 
livering 15 Mbytes/eec of bandwidth. No single disk 
can deliver this much bandwidth, so in practice each 
unit would actually consist of several disks working in 
parallel, e.g., a HAID [12]. 

To keep the system balanced, we let the number of 
I/O units scale with the number of processors. Thus, 
with 4 processors, there will be 4 I/O units and the 
aggregate I/O bandwidth of the whole system will be 
4 x 15 or 60 Mhytes/sec. This turns out to be just 
enough bandwidth to keep the building phase of the 
queries under study slightly CPU bound. An I/O band- 
width of 60 Mbytes/set is well within the capability of 
existing mainframes but is aggressive by current work- 
station standards. Over time, however, the I/O ca- 
pabilities of workstation servers will undoubtedly be- 
come more mainframe-like. Even today, a single IBM 
ItS6000/980 server can support several microchannels, 
each of which can nominally handle 80 Mbytes/set of 
I/O bandwidth. 

Table 2 lists various algorithm parameters.’ The val- 
ues that have been chosen are similar to those used in 
previous studies [4, 15, lo]. A large I/O block size has 
been chosen to reduce the impact of disk seeks. 

Derived parameters are listed in Table 3. Most of the 
equations should be self-explanatory. IjRll corresponds 
to the number of records in an arbitrary relation R, 
and all records are 200 bytes long. Note that, in all the 
equations, CPU operations are implicitly divided by the 
processor MIPS rate. Thus, CPU costs are in terms 
of time rather than instruction counts. Also note that 
each block l/O is assumed to be split up and performed 
in parallel over all I/O units. Finally, it is assumed that 
“emnrt” disk controllers supporting out-of-order reads 
are used. These would effectively eliminate rotational 
delays on large block I/O operations. Consequently, 
rotational delays have not been included in the cost 
model. 

Before moving on, it is important to warn the reader 
not to get too caught up in debating how realistic the 
parameter values we chose are. Since CPU and I/O 
processing are overlapped, what really matters is the 
speed of the CPU relative to the bandwidth of the I/O 
subsystem. We will present results for the default I/O 
bandwidth, which represents a fairly balanced system, 
as well as comment on the results for high and low I/O 
bandwidths. Thus, the reader will have some feel for 
how the performance of the algorithms would change 

-I Note that a uniproceesor CM bc modeled by simply wtting 
p = 1 and lock = unlock = 0. 

under different parameter settings (e.g., more expensive 
CPU operations). 

5.2 Cost Equations 

A segmented execution model makes it easy to calculate 
the elapsed time of a multi-join query. Since only one 
right-deep segment is executed ‘at a time, only a model 
for the execution of a single, memory-resident segment 
is needed. The elapsed time to execute an arbitrary 
query plan is simply the sum of the elapsed times to 
execute each memory-resident segment within the plan. 

Figure 6 shows the right-deep segment that will be 
used for reference. Each fi corresponds to a base rela- 
tion or an intermediate result that was previously writ- 
ten to disk. Each Ii corresponds to an intermediate re- 
sult. Since the right-deep segment is memory-resident, 
the sum of the building relations must fit in memory, 
that is, Cf.-, ]&I s m/io,i,,. 

Ik is either written to disk or used 
I2 to build a hash table in memory 

RI S 

Figure 6: Right-Deep Segment used for Reference 

If RI is larger than memory, then the pipeline has 
just one stage (i.e., k = 1) and a hybrid-hash join is 
used [4, 151. Hybrid-hash requires hash buckets to be 
written to disk. A cost mode1 for it has been covered 
elsewhere [lo] and so we omit the analysis here. Note 
that our results do include many queries where hybrid- 
hash joins were required, however. 

The elapsed time to execute a memory-resident, 
right-deep segment is the sum of the times to build the 
hash tables for each fi and the time to probe the hash 
tables with S. The probe of the hash tables falls into 
one of two cases: Either 1) all or part of the result Ik 
is written to disk, or 2) the records from Ik are used to 
build a hash table in memory. 

5.2.1 The Time to Build the Hash Tables 

Since I/O and CPU processing are overlapped, the time 
to build a hash table for & is: 

P build = ma4%,d~ C&ild 1 

where ioduild is the I/O time required to read & from 
disk, and cpu;,ild is the CPU time required to build 
the hash table for & in memory. Initially, queries are 
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sssumed to run in batch mode, which is often the case 
for the kinds of complex queries that are of interest 
here. Batch-mode execution allows sequential I/O to 
be used during the building phase, consequently: 

The CPU time required to build the hash table for 
& includes the time to initiate the I/O for & and the 
time to insert each record of I& into its hash table. 
Assuming linear speedup this is: 

IRil 

y . (hush + insert) 

To avoid disk arm contention, the hash tables for 
each & are built serially, one after the other. Thus, the 
elapsed time to build all the hash tables in the right- 
deep segment is: 

k 

Tbuitd = C’ %ild 
i=l 

5.2.2 The Time to Probe and Write the 
Result to Disk 

We first consider the case where all or part of Ik is 
written to disk. When that happens, S is read from 
disk and used to probe for a match in RI’s hash table. 
When a match is found, the resulting join record is then 
used to probe for a match in Rs’s hash table. This 
process is repeated until there is no match, or until all 
the hash tables have been probed. In the latter case, the 
resulting record is moved to an output buffer. Since I/O 
and CPU processing are overlapped, the elapsed time 
to perform these steps can be expressed as: 

Tprobs+writc = ~~~(ioprobe+cvrilc, C~probctrrite 1 

where ioprobc+curite is the I/O time required to read S 
and write zk to disk, and ~upr&+~ri#c is the CPU time 
required to initiate I/O operations and probe the hash 
tables. Since S and Ik compete for the same disk arms, 
sequential I/O is no longer possible here, even in batch 
mode. 

If Ik plays the role of a building relation in the next 
segment to be executed, then only the fraction f of Ik 
that does not fit in memory is actually written to disk. 
In this case, the value off is calculated as: 

m - CL, IRil 
hi 

On the other hand, if 4 plays the role of the probing re- 
lation in a subsequent segment (not nccensar ily the next 

one to be executed), then all of zk is written to disk, 
i.e., f = 1. This is done to free up as much memory aa 
possible for other segments and also to simplify schedul- 
ing. Using the appropriate Vahe for f, iop+&~+~ri~r is 
calculated as: 

ioprob.8twrite = (ISI + f . IlkI) . kondom 

Fo; each join, the CPU time includes the time to 
probe for a match and the time to generate the result. 
There is also the time to move 4 to the output buffer. 
Letting ZO = S, we then have: 

Cppraba+write = 
IsI + ’ * IrkI . ioini,+ 

P 

One caveat needs to be mentioned about the calcu- 

E”“‘“.( hash + f indmateh) + 
iz0 P 

’ lIzill 
c 

- . generate + 
it1 P 

f ’ ll1kll . move 

P 

lation of f. For left-deep, right-deep, and deep trees, 
the calculation of f is correct as it stands. For bushy 
trees, however, there can be cases where two or more 
composite subtreeP1, say, Tl and T2, appear as building 
relations slang the same unbroken, right-deep segment 
(see Figure 3). In that case, the haah table for the re- 
eult of 2’1 may consume memory that is not available 
for use by T2. This happens when f < 1 in ?‘I. If it 
turns out that insufficient memory is available lo exe- 
cute T3, then T2 is scheduled to be executed before 1; 
and all of its result is written to disk. This greedy-like 
scheduling heuristic, which is not claimed to bc opti- 
mal, means the optimizer never haa to backtrack and 
recompute the cost of a eubtree under different memory 
restrictions, 

5.2.3 The Time to Probe and Build a Hash 
Table on the Reeult 

If & plays the role of a building relation in the next 
join to be executed, and there is enough memory to 
hold RI - & aa well as ZI, then a hash table is built for 
zk in memory ss its records are produced. Following 
much the same logic as above, the equations for this 
case are: 

Tprobe+build = niat(ioprobe+build, CPUprobc+bdd) 

ioprobc+build = IsI ’ iorcqucntiol 



ISI 
CPUprobr+build = - 'hnit+ 

P 

'-' llrill c p . (hash + f indmatch) + 
I=0 

- . generate + 

!!$!! . (hash + insert) 

Here, note that sequential I/O has been modeled. 
Sequential I/O ia possible because the disks are only 
accessed to read S. 

6 Results 
To quantitatively compare dynamic programming and 
the heuristic algorithms, we conducted a aeriea of ex- 
periments. The resulta of those experimenta are pre+ 
scnted in this section. In each experiment, 1000 multi- 
join queries were optimized and the resulting plans were 
compared on the basis of elapsed time (aa estimated by 
the cost model of the previous section). Re~ulta were 
collected for bushy, deep, left-deep, and right-deep trees 
using both dynamic programming and heurietice. Re- 
eulta were collected for the improved version of the BC 
heurietic M well. We Amt present results for the default 
parameter setting, and then’comment on how sensitive 
the resulte were to changes in the values of key param- 
eters. 

0.1 How the Queries were Generated 
The default parameter settings were for &relation joine. 
As mentioned, 1000 different multi-join queries were 
generated and used aa input to the DP and HR op 
timizeru. For each query, the optimizera took a join 
graph along with atatistica on relation cardinalitiea and 
join aelectivitieu aa their input. The data for a query 
was generated in two steps. First a join graph was gen- 
erated, then relation cardinalitiea and join selectivitiea 
were assigned to the graph. 

Join graphs were generated using the algorithm de- 
scribed in [8]. Although that algorithm generatea only 
acyclic graphs, we felt that it was adequate because 
in practice moat multi-join queries tend to have sim- 
ple join predicates (191. Moreover, star-shaped graphs, 
which have nearly worst-case complexity in dynamic 
programming [ll], are still pomible. 

When it came to a4gning relation cardinalitiee and 
join selectivitiea, we tried to strike a balance between 
realistic values and values that would produce a large 
variance in the memory requirementa and elapsed time 
of different queries. After some experimentation, we 
found that wing three relation types (small, medium, 

and large) worked well. The cardinality of small, 
medium, and large relations were uniformly distributed 
over [lOK, 2OK], [lOOK, 200K], and [lM, 2M] records, 
respectively. Using these relation typea, the algorithm 
to assign cardinalitiea and join eelectivitiee worked as 
follows: 

1. 

2. 

3. 

The type (small, medium, or large), but not the 
cardinality, of the final result was picked. 

Each node (i.e., relation) A was randomly assigned 
a type (small, medium, or large) and then ran- 
domly Meigned a cardinality in that type’s range. 

The join selectivity js of each edge (RI, &) was 
chosen by fitit picking a value u for 1lRr x &I] in 
[0.5~mW&ll, II&II), (1.5-3~(llR111,11&41)1 ad 
then solving js . (llR1 x R4) = u 

If the product of all the relation cardinalitiee and all the 
join aelectivitiea (i.e., the cardinality of the final result) 
fell within the range of the final result type chosen in 
step l), then the algorithm exited. Otherwise it back- 
tracked to step 2), and tried new join eelectivities. The 
algorithm restarted itself if it found that it had back- 
tracked over 500 times. The calculation for js reflects 
the fact that a join’s size is often a function of its input 
relations. The multipliers of 0.5 and 1.5 were added to 
increase the variance in the size of intermediate results. 
All join eelectivitiea were treated as independent. 

This algorithm, which is admittedly ad hoc, worked 
quite well in practice. In fact, the elapsed times of 
queries varied so much that we had to use 1000 queries 
in each experiment to get the 95% confidence intervals 
for our results down to the rtl% range. 

6.2 How Results were Averaged 

The following abbreviations will be used in describing 
the results: 

DP.BY = dynamic programming, bushy trees 
DP.DE = dynamic programming, deep treea 
DP.LD = dynamic programming, left-deep treea 
DP.RD = dynamic programming, right-deep treea 
HR.BY = heuristic, bushy trees 
HR.DE = heuristic, deep trees 
HR.LD = heuristic, left-deep trees 
HR.RD = heuristic, right-deep trees 
HR.BC = heuristic, improved BC, bushy treea 

Since elapsed timea varied wildly from query to query, 
results were scaled by the elapsed time for DP.BY. 
For example, let DP.BYi and DP.DEi equal the (* 
timated) time to execute the plan generated by DP.BY 
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and DP.DE for query i, respectively. Then the scaled 
average for DP.DE was calculated as: 

1 iooo DP.DE 
1ooO * i=l DP.BYi c 

Finally, note that the time to write the final result of 
each query to disk was not included in elapsed time cal- 
culations. We felt that this was more realistic because 
aggregates are often used on complex join queries to 
condense the final result into a readable report. More- 
over, the time to write the final result to disk would be 
the same for each optimization algorithm. 

0.3 Results for the Default Parameter 
Settings 

Results for the default parameter settings are shown in 
Figure 7. Most of the results can be explained simply on 
the basis of intermediate I/O. The algorithms that per- 
formed well generated plans requiring less intermediate 
I/O, while the the algorithms that performed poorly 
generated plans requiring more intermediate I/O. 

Figure 7: Average Elapsed-Time Ratios for the Default 
Parameter Settings (&Relation Joins) 

Looking at the results for the DP algorithms, one 
can see that DP.BY and DP.DE generated equally good 
plans. DP.BY performed slightly better by virtue of 
the fact that it had more latitude in picking join or- 
ders, which led to less intermediate I/O in some cases. 
In contrast to DP.DE, the (estimated) execution times 
of plans generated by DP.LD were, on average, about 
28% greater than the execution times of plans gener- 
ated by DP.BY. This is because pipelining cannot be 
used in left-deep trees to avoid materialiring large in- 
termediate results. Sometimes these have to be written 
to disk, causing more intermediate I/O. Finally, DPRD 
did significantly worse than all the other DP algorithms, 

generating plans with execution times that were, on av- 
erage, 129% greater than the execution times of plans 
generated by DP.BY. This is because intermediate re- 
sults cannot be materialised in right-deep trees to free 
up memory, and once all of memory is consumed by 
building relations, intermediate I/O is required. 

Looking at the results for the HR algorithms, one 
sees much the same trends that showed up in the DP 
algorithms. In all cases, the heuristic algorithms per- 
formed slightly worse than their DP counterparts, how- 
ever. This is because the HR algorithms do not enumer- 
ate all possible join permutations, which can sometimes 
lead to join orders that produce more intermediate I/O. 
We were surprised by how well both HR..BY and HR.DE 
performed, while the relative performance of HR.BC is 
similar to the findings described in (11. 

In addition to execution times, it is also interest- 
ing to look at the average resource consumption and 
number of joins enumerated by each optimization algo- 
rithm. This data is shown in Table 4. As shown, the 
algorithms with the best performance in terms of exe- 
cution time also had the best performance in terms of 
resource consumption. Not surprisingly, the HR algo- 
rithms enumerated far fewer joins on average. The fact 
that HR.BY and HR.DE produced competitive plans 
while enumerating fewer joins make them very attrac- 
tive. Despite their simplicity, HR.BY and HR.DE were 
still able to do a good job of optimizing I/O, and this 
was enough to make them competitive. 

Algorithm Conrump tion 
DP.BY 24.92 
HR.BY 25.80 
DP.DE 25.93 
HR.DE 27.07 
HR.BC 29.74 
DP.LD 30.56 
HR.LD 32.25 
DP.RD 52.92 
HR.RD 53.96 

Resource Joins 
Enumerated 

873 
98 
487 
98 
71 
251 
56 
251 
56 

Table 4: Avg Resource Consumption (in set) and Avg 
Number of Joins Enumerated for the Default Parameter 
Settings (&Relation Joins) 

In Table 4, note that we set up the DP optimizer 
so that it kept 2 alternatives for each subplan. This 
increased the number of joins enumerated by a factor 
of 4, and was done to ensure that DP.BY produced 
near-optimal plans which could be used as the basis for 
comparison. (Recall that, here, dynamic programming 
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ie only an expensive heuristic.) Through experiment& 
tion, we found that 2 alternatives sufficed and that 3 
or more alternatives offered virtually no improvement. 
When just 1 alternative was kept, there was a slight 
degradation in performance, but usually on the order 
of only a few percentage points. Note that multiple 
plan alternativez could have been kept for the heuris- 
tic algorithms aa well. This would have improved their 
performance somewhat. 

6.4 Worst-Case Results for the Default 
Parameter Settings 

The mark of a good optimization algorithm is that it al- 
ways produces optimal or near optimal execution plans 
without breaking down on certain queries. Figure 8 is 
used to show how well each optimization algorithm met 
this criteria. That figure shows the maximum elapsed- 
time ratioa found for each algorithm among all queries. 
It further illuetratez the advantages of bushy execution 
trecrr over more restrictive tree shapes. Considering 
that the HR algorithmz enumerate far fewer joins, it 
ehould come aa no surprise that the maximum elapsed- 
time ratios were uniformly higher for them. What is 
surprising is how well HRBY performed, even .at its 
worst. 

B 
16.0 - 

c 

1 

10.0 - 

4 

oP.BY tlnw 0P.w HRDB mBc DP.l.0 HfuD oP.Ro HRAO 

Figure 8: Max Elapsed-Time Ratios for the Default 
Parameter Settings (&Relation Joins) 

8.5 Results for Other Parameter 
Settings 

To judge how sensitive our results were to changes in the 
valuea of key parameters, we also generated results for 
eix other parameter settings. In each case, these differed 
from the default settings by just one parameter value. 
hulte were generated for I-relation joins, 1Zrelation 
joins, 10 Mbytes of I/O bandwidth (all random I/O), 

20 Mbytes of I/O bandwidth, 64 Mbytes of memory, 
and 256 Mbytes of memory. 

Due to space limitations we cannot show those re- 
sults here (see [16] for the full set of results). The 
trends that were observed for the default eettings re- 
mained largely unchanged, however. In moat, c88e%, the 
average elapsed-time ratioa differed from those of the 
default parameter settinga by leas than 5%. Most of 
the result8 could still be explained simply on the ba& 
of intermediate I/O. More relations, more I/O band- 
width, and leas memory tended to amplify the relative 
differences in the algorithms, while fewer relations, leas 
I/O bandwidth, and more memory tended to reduce the 
relative differences in the algorithms. 

Before leaving this section, it is worth noting that, 
az the amount of memory available for join processing 
was changed, both the DP and HR optimizer picked 
very different plans. This contradicts the hypothesis 
put forth in [8], where it waz argued that optimizers can 
effectively ignore memory resourcea While this may be 
true for execution models in which the result of every 
join is written to disk, it iz certainly not true if mem- 
ory resourcea are used more effectively and taken into 
account during optimization. 

7 Conclusion 
This paper looked at the problem of multi-join query 
optimization for symmetric multiprocesaom. A zeg- 
mented execution model that uzea pipelining to achieve 
inter- and intra-operator parallelism was presented, and 
then optimization algorithms using dynamic program- 
ming and greedy heuristics were described for that ex- 
ecution model. Unlike traditional methods, the opti- 
mization algorithms that were described include both 
memory resources and pipelining in their coat model. 
A mode1 of memory resources iz needed to fully exploit 
available memory resources. Otherwise, suboptimal ex- 
ecution plans may be generated. 

An analytical model was derived and used to com- 
pare the quality of plans produced by each optimiza- 
tion algorithm. Experimental results for 1000 differ- 
ent 8-relation join queries were presented. The rmults 
showed that, although dynamic programming produced 
the beet execution plans, the simple heuristics that were 
described often did nearly as well while enumerating far 
fewer joins during optimization. The same results also 
highlighted the advantages of using bushy and deep ex- 
ecution trees. Execution plans for bushy and deep trees 
were able to do a better job of exploiting memory re- 
sources. Consequently, they were able to generate leas 
I/O for intermediate results, and this led to a reduction 
in execution times. 

In terms of numbers, for dynamic programming, the 
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elapsed time to execute left-deep query plans averaged 
28% longer than bushy plans, while the elapsed time to 
execute right-deep plans averaged 129% longer. In con- 
trast, the elapsed time to execute deep plam~ was within 
5% of the time to execute bushy plans, even though 
roughly half as many joins were enumerated during op- 
timization. Results for the heuristic algorithms followed 
similar trends. Since the shape of the query tree was the 
dominant factor in determining execution time, these 
general results should also hold for uniprocessora and 
shared-nothing multiprocessors. 
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