
Multi- Join Optimization for Symmetric Multiprocessors

Eugene J. Shekita
Honesty C. Young

IBM Almaden Research Center
San Jose, CA, USA

{shekita,young}Qalmaden.ibm.com

Abstract

This paper looks at the problem of multi-join query
optimization for symmetric multiproceasore. Optimizrt-
lion algorithms based on dynamic programming and
greedy heuristics are described that, unlike traditional
methods, include memory resources and pipelining in
their cost model. An analytical model is presented
and used to compare the quality of plans produced
by each optimization algorithm. Experimental results
show that, while dynamic programming produces the
be& plans, simple heuristics often do nearly as well.
The came results are also used to highlight the advan-
tages of bushy execution trees over more restricted tree
shapes.

1 Introduction
Relational database systems are increasingly being used
to execute decision-support queries. Such queries are
used to discern sales trende, analyze marketing data,
etc., and often they include multi-way joins with long
execution times. One way to improve the execution
times of these complex queries is through parallelism,
and symmetric multiprocessors (SMPs) provide a cost-
effective alternative. The best way to optimize queries
for parallel execution is still largely an open problem,
however [3].

This paper looks at the problem of multi-join opti-
mization for SMPe. Recently, the authors of [5] showed
how the time-honored method of optimizing database
queries, namely dynamic programming [14], could be
cxtcndcd to include both pipelining and parallelism.
WC build on that work in the context of SMPs, show-
ing how memory resources can be included as well. The

Pcrmirrion lo copy willout fee all or pari of tkir maMial
ir #ronfed provided ihot the copier ate nol mode or dirtributed
jot direct commercial advantage, rhr VLDB copyright nolice and
lhc We of the publiealios and Or date appear, and notice ir
given that coptinl ir by parmirrion of tAe Very La-c Data Bare
Endowmcnk To copy other&c, or to ropublirh, requirer 4 jee
and/or rpccial ptmairrion jrom the Endowmenk

Ptoceedjng of the 19th VLDB Conference,
Dublin, Ireland, 1993.

Kian-Lee Tan
Department of Information Systems

and Computer Science
National University of Singapore

tanklQiscs.nus.sg

importance of including memory reaourcea during op-
timization W(LB previously demonstrated in [1, 131 for
shared-nothing multiprocessors and more recently in
[ZO] for SMPs. None of those studies considered the
full variety of execution trees that are examined here,
however. These include left-deep, right-deep, deep, seg-
mented right-deep, and bushy trees.

In addition to dynamic programming, we also de-
scribe optimization algorithms based on greedy heuris-
tics that feature much lower computational complex-
ity. An analytical model is presented and used to com-
pare the quality of plans produced by each optimization
algorithm. Experimental results show that, while dy-
namic programming produces the best plans, the simple
heuristics often do nearly as well. The same results are
also used to highlight the advantages of bushy execution
trees over more restricted tree shapes.

The remainder of this paper is organized az follows:
In Section 2 we introduce the terminology and notation
that shall be used throughout this paper. In Section 3,
we describe the process and execution models on which
our optimization algorithms are based. This is followed
by Section 4, where we describe optimization algorithms
that use dynamic programming and greedy heuristics.
Next, in Section 5, we present an analytical cost model
that is used by the optimization algorithms to compute
elapsed time. Finally, the results of our experimental
study are presented in Section 6, and conclusions are
drawn in Section 7.

2 Terminology and Notation
Throughout this paper, it is assumed that the query
optimizer produces an ezecuiion plan, which is then ex-
ecuted by the database management system (DBMS).
Execution plans for multi-join queries will be depicted
as trees, with each internal node corresponding to a join
and each leaf node corresponding to a base relation.
Only hash-based join methods [4, 151 will be consid-
ered, since they generally offer superior performance.
To simplify the discussion, only full-relation joins are
considered.

Following the convention established in 1131, each

479

join in an execution tree will have its building relation to
the left and ita probing relation to the right. Hash tables
are built on building relations and probed by probing
relations. If all the internal nodea of an execution tree
have at least one leaf (i.e., base relation) as a child,
then the tree is called deep [9]. Otherwise it is called
bushy. A lefl-deep tree ia a deep tree whose probing
relations are restricted to base relations. Conversely, a
righf-deep tree is a deep tree whoee building relations
are restricted to base relations. As defined, the search
apace of bushy treea includes deep trees, which in turn
includes left-deep and right-deep trees. Examples of
left-deep, righbdeep, deep, and bushy trees are shown
in Figure 1.

kft-deeptree

bushy tree

Figure 1: Examples of Different Query Trees

3 The Process and Execution
Models

All the optimization algorithms described in thii paper
are based on the same process and execution model.
This will allow us to develop just one co& model and
use it to analyae all the optimization algorithms being
studied.

3.1 The Process Model

To exploit inter- and intra-query parallelism aa well aa
I/O parallelism, a threaded process model is assumed
in this paper, where each processor is assigned its own
dedicated CPU thread and multiplexed over Borne num-
ber of I/O threads. CPU threads are used for join pro
ceasing, while I/O threads are ueed in conjunction with
double buffering to initiate asynchronous I/C. To facil-
itate I/O parallelism, relations are assumed to be uni-
formly declustered over all disks.

For join processing, a simpk parallelisation of a
uniprocessor haah join is modeled. The model aaBumee
that a eingle hash table ia built (in parallel) for each

join and then probed by all proceseore. The haeh ta-
bles of right-deep tree segments are probed in a parailcl,
pipelined fashion by all procetraors to achieve both inter-
and intra-operator paralleliem. More will be said about
this shortly.

3.2 An Alternative Process Model

The advantages of this process model are its simphc-
ity and eelf-balancing nature. It is self-balancing due
to the fact that each processor participate iu every
join. Thus, within a right-deep segment, the procetwors
will gravitate towards the join that requircR the mo&
proceeeing. This simplifies optimization and runtimc
scheduling by eliminating the problem of how to assign
and balance the load across processors.

One potential disadvantage of this process model ia
that a single hash table ia used for each join, i.e., ha.&
tables are not partitioned by processor as in shared-
nothing architectures [2]. In practice, this could lead to
lower cache hit rat&, since each processor would work
with larger hash tables.

An alternative process model with more overhead
for inter-process communication but potentially bettor
cache behavior was described in [20]. In that procefls
model, hash tablea are partitioned by physical proccs-
8or as in shared-nothing architectures [2, 131, and data
ie repartitioned using shared memory aa described in
[S]. The assignment of CPU threads to hash partitions
is fixed, but physical processora are allowed to migrate
among CPU threads (if necessary) to dynamically bal-
ance data flows.

To judge how eeneitive our results were to the choice
of the process model, we constructed analytical models
for both of the above alternatives. Experimental results
turned out to be nearly identical. This is due to the fact
that the cost equations for the two process models are
essentially the same, modulo the cost of repartitioning
data in shared memory, which is small in relative terma
[6]. Thus, the general results of this paper should hold
regardlees of which process model is used. More empir-
ical evidence is needed to determine which alternativc~
actually performs better in practice.

3.3 The Execution Model

All the optimization algorithms described in thia pa-
per are baaed on a wgmenfed execution model, which iR
similar to the one described in [I]. In a segmented exe-
cution model, a query plan is broken down into a collec-
tion of memory-resident, right-deep segments that are
executed one at a time. By memory-resident, we mean
that the hash tables for all the building relationa in a
segment fit in memory. This execution model does not
restrict the shape of a query plan - arbitrary bushy

480

trees are rllowed. However, pipelining along right-deep
segments is ueed to achieve inter-operator parallelism
rather than parallel execution of independent subtrees,
i.e., B&y-lne parallelism [7l.

Our segmented execution model differs slightly from
the one described in [I]. There, the full result of each
righl-deep segment waz always written to disk. Here,
to exploit memory resource3 more fully, we allow part
or all of the result to be materialized in memory if it
plays the role of a building relation in the next segment
to be executed.

Figure 2 shows how a segmented execution model
might be used to execute an &relation join. As shown,
the query plan, which is a bushy tree, has been broken
into four right-deep segments. Segment 1 is executed
first, followed by segment 2, and so on. The order of ex-
ecution is determined by data dependencies. Segment 1
is not dependent on the results of any other segment and
80 it is executed first.

Figure 2: Segmented Execution

Using cardinality estimates, the optimizer has de-
termined that R,c and R7 will not both fit in memory.
Thus, the right-deep subtree rooted at Zc is broken into
segments 1 and 4. All of segment l’s result Zz is writ-
ten to disk to free up as much memory as possible for
subsequent joins. The optimizer has also determined
that the building relations for segment 2, namely RI
and Ra, will both fit in memory but that there is not
enough memory to hold all of the intermediate result
Zz. Thus, part of Zz is written to disk during the prob-
ing phase of segment 2, and later read when segment 3
is executed. In contrast to segment 2, the optimizer has
determined that segment 3’s result Za will At in mem-
ory along with its building relations & and ZZ. Con-
sequently, Z4 is used to build a hash table in memory
during the probing phase of segment 3. Finally, the op-
timizer has determined that the building relations for
segment 4, namely R7 and 4, will both fit in memory.

As mentioned, it is up to the optimizer to keep track
of memory resources and determine segment boundaries
as it generates a query plan. This information is then
used at runtime for scheduling the execution of seg-
ments within the query plan.

3.4 The Case for a Segmented
Execution Model

The main advantage of a segmented execution model
is that optimization and runtime scheduling is greatly
simplified. This is because only one right-deep segment
is ever executed at a time. The disadvantage is that
that bushy-tree parallelism is not exploited. For exam-
ple, in Figure 2, it could be advantageous to execute
segment 1 in parallel with segment 2.

We would argue that the opportunities to exploit
bushy-tree parallelism are often limited, however. For
example, it would almost never make sense to execute
segments 1 and 2 in parallel. If that waz done, then
memory would be overcommitted, and more I/O for
intermediate results would be generated. This inierme-
diofe Z/O, az we will refer to it, is particularly onerous,
since each intermediate I/O really translates into two
disk accesses - a write and then a read. In [13], the
authors found that it is always better to break up right-
deep segments and avoid overcommitting memory for
precisely this reason.

One instance where bushy-tree parallelism can offer
an advantage is when the query plan looks like the one
shown in Figure 3. If everything fits in memory, then it
could be advantageous to execute the subtrees 2’1 and
Tz in parallel. But this is only true when:

1. TI is I/O bound and TZ is CPU bound or vice versa.
The gains in this case accrue from a more balanced
system [7].

2. The join predicates are such that TI and T2 just
happen to access relations which are declustered
over disjoint sets of disks. The gains in this case
accrue from I/O parallelism.

In addition to these limitations, note that case 1) usu-
ally requires caze 2) to be true. This is because, if any
of the relations accessed in TI and TZ reside on the same
set of disks, then there is likely to be arm contention,
which would tend to make both TI and TZ I/O bound.

Although it may not be obvious, note that if Tl and
T2 were both CPU bound, then there is nothing to be
gained by executing them in parallel (assuming linear
speedup). To see this, let there be p processors, and let
WI and W2 correspond to the amount of work involved
in executing Tl and T2, respectively. Then it should
be clear that the optimal processor assignment is to
proportionally allocate p * WI/(WI + W2) processors to

481

%

T2

Tl

Figure 3: Candidate for Bushy-Tree Parallelism

T’r and p. Wg/(Wi + Ws) processors to Ts. Using this
assignment, the time to execute the two subtrees in
parallel would be:

(Wl W-2

Tnaz p * W1/(W1+ W2)‘p W?/(Wl e W2) >

But this equals:

which is the same amount of time it that it would take
to serially execute the two subtrees, one after the other.

In this paper, relations are assumed to be uniformly
declustered over all disks, which is a reasonable assump-
tion for the sort of small-scale parallelism that an SMP
offers. Not only does it simplify system management,
but it also facilitates parallel I/O, which is essential
for high performance. Moreover, there is no concept
of “node locality” on au SMP, which is often the moti-
vation for alternative declustering strategiee in ahared-
nothing architectures.

Because of our aesumptions about how data has been
declustered, bushy-tree parslleliem offers no advantages
in our study and is therefore not considered. In gen-
eral, we recognize that there may be cases where bushy-
paralleii$m may prove useful. However, because of its
limitations, the scheduling problems it introduces, and
its impact on the search space, it is not clear whether it
is really worthwhile for an optimizer to actively seek for
bushy-tree parallelism. A better alternative may be to
make the optimizer cognizant of bushy-tree parallelism
in its cost model and exploit it when possible but not
actively search for it.

4 The Optimization Algorithms
Before picking a set of optimization algorithms to study,
we identified three key issues that were of interest to us.
These were:

How could dynamic programming 1141 be modified
to include memory resources and elapsed time in
its search strategy?

How would the plans produced by the modified ver-
sion of dynamic programming compare to heuris-
tics that have been described in the literature [l]?

l HOW much could be gained by letting the optimizer
consider generalieed bushy trees versus restricting
it to just, say, deep, left-deep or right-deep trees?

4.1 Dynamic Programming vs.
Heuristics

Dynamic programming is the time-honored method of
optimizing join queries [14]. It is based on exhaus-
tive enumeration with pruning and produces “optimal”
plans. We were particularly interested in dynamic pro-
gramming because of the huge commercial investment
that has gone into it - virtually all commercial op-
timieers are based on on it. We felt that if a sirnplc
modification to dynamic programming could producr
competitive query plans for SMP architectures, then
that would be of considerable commercial interest.

One of the problems with dynamic programming is
that it hss exponential complexity in terms of the num-
ber of relations in the query [ll]. In practice, however,
its performance has generally been found to be accepl-
able. This is because queries with more than 10 joins
are rare. In a survey of 30 major DB2 customers [19],
for example, the most complex join query from a sample
of 200 queries involved “just” 8 relations.

Another problem with dynamic programming is that
memory reaoutces are usually ignored in optimizers
based on it. This stems from the fact that its origins as
an optimization technique date back to the days when
computer memories were small and there was little op-
portunity for caching data in memory. As argued in
[13], however, several relations can often fit in memory
today. Consequently, we were interested in the prob-
lem of how to add an awareness of memory resources
to the search space of dynamic programming and what
its impact would be.

Yet another problem with dynamic programming is
that optimizers based on it have traditionally used re-
source consumption (the sum of I/O and CPU usage)
as their cost metric. As argued in [5], however, elapsed
time is probably a better metric to use for the execution
of complex multi-join queries in parallel systems. Con-
sequently, we were also interested in what the impact
of using elapsed time sa a cost metric would be.

As we will show, it is not particularly hard to mod-
ify dynamic programming to include both memory rc-
sources and elapsed time. However, one can thtrn prove:
that dynamic programmingno longer produces optimal
plans p]. in short, it becomes nothing more than an cx-
pensive heuristic. Nonetheless, we felt that a modified
version of dynamic programming could produce better
query plans than other heuristics by virtue of its sheer
“brute force”.

482

4.2 Exploring the Advantages of
Bushy and Deep Trees

In addition to dynamic programming, we were also in-
terested in examining how much could be gained by
letting the optimizer consider generalized bushy trees
for query plans. A recent study [l] showed how a r+
stricted form of bushy trees could offer better perfor-
mance than right-deep trees. We wanted to investigate
this issue more thoroughly and examine unrestricted
bushy, left-deep, and deep trees as well.

The main advantage that bushy and deep trees of-
fer over left-deep and right-deep trees is that they can
reduce or eliminate I/O for intermediate results. As
mentioned earlier, this internaedioie I/O is particularly
onerous because each I/O really translates into two disk
accesses - a write and then a read. Moreover, in a
batch environment it can cause disk arm contention
that might have otherwise been avoided.

Figure 4 illustrates how a deep tree can reduce in-
termediate I/O. There, three possible query plans for
a 4-relation join are shown. In the figure, we have a+
sumed that R+J is huge, Rs is the size of memory, I1 is
314 the eiee of memory, Rr is l/2 the size of memory,
and that all other relations are l/4 the size of memory.
Because of Rc’s size and the shape of the join graph,
the join order is essentially fixed.

As shown, part of the intermediate result Ii has to
be written to disk in the left-deep tree. This is because
Rr and Ir do not both fit completely in memory. In the
right-deep tree, on the other hand, II can be pipelined,
and thus intermediate I/O for it is avoided. However,
now the intermediate result Zs has to be written to disk,
since RI, Rs, and RS do not all fit in memory. In con-
trast to the left-deep and right-deep trees, intermediate
l/O can be avoided all together in the deep tree. This
is achieved by pipelining Ii and then materializing 12
in memory.

In general, left-deep trees generate less I/O than
right-deep trees, since intermediate I/O can be com-
pletely avoided whenever the building relation and re-
sult of a single join can fit in memory. Furthermore,
the memory for the building relation can be released as
soon as the join’s result has been materialized. On the
other hand, right-deep trees can pipeline large interme-
diate results that would otherwise have to be written to
disk. Finally, deep and buehy trees get the best of both
worlds. Like left-deep trees, intermediate results can
be materialized in memory to free up space for subse-
quent joins, and like right-deep trees, pipelining can be
used to avoid materializing large intermediate results.
Compared to deep trees, bushy trees can reduce inter-
mediate I/O further by virtue of the fact that there is
more latitude in picking join orders. This can lead to
smaller intermediate results and less I/O in some CCIWS.

Based on the above observations, one would expect
bushy trees to offer the best performance, followed
closely by deep trees, then left-deep trees, and finally
right-deep trees (assuming l/O costs dominate). Our
results will show that this is indeed the case. In [13],
cases were provided where right-deep trees performed
much better than left-deep trees. This only happened
when the building relations were declustered over dis-
joint sets of disks, however. Thus, more I/O parallelism
was possible with right-deep trees, as all building re-
lations could be scanned in parallel. However, when
the building relations are uniformly declustered over all
disks, as modeled here, this advantage disappears.

4.3 Optimization Using Dynamic
Programming

To study the quality of plans produced by dynamic pro-
gramming, we built a stripped-down optimieer baaed on
it. This optimizer, which we refer to as our DP opti-
mizer, takes an arbitrary join graph as input along with
statistics on join selectivities and relation cardinalities
and outputs a query plan. We built our DP optimizer
in a general way so that output plans can be restricted
to bushy, deep, left-deep, or right-deep trees by simply
changing a runtime flag.

Our DP optimizer is, for the most part, a atraight-
forward implementation of dynamic programming [14].
The only real difference is the way the cost of subplans
are computed. Optimizers based on dynamic program-
ming typically compute a single cost value for each sub-
plan that is based on resource consumption. If one sub-
plan for a given set of relations is cheaper in terms of re-
source consumption than another subplan for the same
set of relations, then the more expensive plan is pruned.

As noted earlier, we wanted to replace resource con-
sumption with elapsed time and also account for mem-
ory resources in some way. This was accomplished by
simply replacing the single cost value that is usually
kept for each subplan by a pair (et,mc), where et is
the elapsed time to execute the subplan and mc is the
memory consumption of the subplan. The way et is
computed will be described shortly. The value of mc
is computed using the input statistics on relation car-
dinalities and join selectivities. It includes the memory
needed to compute the subplan’s result, but not any
memory released along the way when intermediate re-
sults are written to disk. The value of mc is used in
pruning and also used to determine how a subplan will
be broken up into right-deep segments during its exe-
cution.

To illustrate how mc is computed, we return to the
deep tree in Figure 4. Letting]&I denote the size of
relation &, the value of mc for the eubplan rooted at 12
is computed as lRll + IRzl. At the time the subplan is

483

join graph

RO RI R2 R3

Rl RO RI RO RI RO

IeftdecpllW right-deep me deep tree

Figure 4: Example where Deep nee can Eliminate Intermediate I/O

generated, it is not known whether I2 will be pipelined,
written to disk, or materialized in memory. Thus, IZS 1 is
not included in mc. Following much the same logic, the
value of mc for the eubplan rooted at IS is computed aa
l&l + lRzl+ 1121.

In comparing subplans, (et, mc) pain, are used aa
follows: Let (etl, mcl) be the cost of aubplan 1, and let
(etl, mea) be the cost of subplan 2, where both subplans
are over the same set of relations. If et1 < et2 V (et1 =
et2 A mcl $ mcs), then subplan 1 is considered to be
less expensive. Otherwise, subplan 2 is considered to
be lew expensive. This gives precedence to et, using
mc as a tie breaker. It is motivated by the fact that,
all things being equal, the subplan that consumes less
memory is probably a better choice, as plane built on
it are likely to generate less intermediate I/O.

During pruning, we initially kept only one aubplan
for a given eet of relations. However, one can construct
casea where choosing the eubplan with lower cost ac-
tually leada to a more expensive plan overall. This is
because the chosen subplan might have a lower et value
but a much greater mc value, which leads to trouble
later on. Thus, pruning based on cost (as we have de-
fined it) does not produce “optimal” plans. This obser-
vation led us to modify our DP optimizer so that up to
n alternatives ordered by (et, mc) could be kept for each
subplan. One can show that the complexity of dynamic
programming blows up by O(n2) when n alternatives
are kept. However, by trial and error, we found that
n = 2 works well. More will be said about this later.

4.4 Optimization Using Heuristics

In addition to our DP optimirer, we also built an op
timizer based on simple greedy heuristics. We refer to
this as our HR optimizer. Simple variations on the same
greedy heuristic were implemented for bushy, deep, left-
deep, and right-deep trees. We also implemented an im-
proved version of the BC heuristic that WBB described in
[I]. The choice of which heuristic to uee is determined
by a runtime flag.

All but the BC heuristic are variations on the same

basic idea. A join graph C ia input, where each node
in G corresponds to a baee relation Z& and each edge
corresponds to a join predicate. The query plan ie then
built bottom-up in a greedy fashion, join-by-join. A
simple “mix&e” heurietic is used to decide which join
to add next to the plan.

For bushy trees, the algorithm in Figure 5 is exe-
cuted. As shown, the algorithm tries all possible pairs
of relations for its first join. For each atarting pair,
a query plan is generated bottom-up, join-by-join. At
each step, all the unjoined pairs of relations connected
by a join predicate are considered. The pair &, Rj
that produces the lsmallest result is chosen aa the next
join. Both & x Rj and Rj x & are examined, and the
join order with the least cost (as defined in the previ-
ous section) is the one chosen. The join is added to
the current plan being constructed, and then & and
RJ are collapeed into one node in G to reflect the fact
that they have been joined. This continues until all the
relations have been joined. The least costly plan gen-
erated among all starting paim of relations forms the
final output.

The algorithm shown in Figure 5 is similar to the
bushy heuristic described in [l]. It is easy to show that
the algorithm enumeratea O(n3) joins for a fully con-
nected join graph with n relations. Although it is not
shown in Figure 5, the memory consumption of a query
plan is computed as the plan is built. This information
ie used to choose join order8 and also used to determine
how the plan will be broken up into right-deep segments
during its execution.

Due to space considerations, we omit detailed de-
scriptions for the deep, left-deep, and right-deep heurie-
tic algorithms. The algorithms are similar to the one
shown in Figure 5, however, with relatively minor
changes to accommodate restrictions on the shape of
the query tree. For all other tree ehapea, R, in the
inner-most loop is restricted to a tmc relation, and R,,
ia restricted to the node in G corresponding to the 1-t
join added to the current plan. In addition, for left-
deep and right-deep trees, the join order ie restricted to

484

input G
Best Plan.cost = 00
for &, Rj in G connected by an edge do

Current Plan = mincoat(& x Rj, Rj x &)
collapse &, Rj in G
while lCl > 1 do

lMinJoinl = 00
for &, R, in G connected by an edge do

if IR, x &,(< IMinJoinl then
Min Join = mincost(& x &,R, x &)
i=x,j=g

endif
endfor
add MinJoin to CurrentPlan
collapse &, Rj in G

endwhile
if CurrentPlan.cost < BeslPlan.cost then

BedPlan = Current Plan
endif

endfor
output BeetPlan

R, x & and & x R.r, respectively.

Space considerations also prohibit us from describing
the BC heuristic in detail. BC is, at its core, a right-
deep heuristic. However, when it detects that another
building relation will not fit in memory, BC choosea a
new pair of relations and begina building another right-
deep segment. The result of one right-deep segment can
be used aa the building or probing relation in another
right-deep segment, 80 BC actually produces a bushy
tree, albeit a restricted one. In [l], it was aeaumed that
the full result of every right-deep segment was written
to disk. Here, we allow part or all of the result to be
materialbred in memory if it plays the role of a building
relation in the next segment to be executed.

Unlike dynamic programming, the heuristic aIg+
rithme do not enumerate all poeeible join permutations.
Consequently, one would expect dynamic programming
to always produce better query plans for a given tree
shape. Our results will show that this ie indeed the case.
On the other hand, the heuristic algorithms have dr&
matically lower complexity, making them attractive in
aituatione where optimization time is a concern. More-
over, the results will show that the bushy-tree heuristic
often produces surprisingly good plans.

// try all starting pairs of relations
// pick cheapest join order for pair
// reflect join in G
// stop when no more relations to join
// pick next pair using mineize heuristic
// examine all unjoined pairs
// remember mineize join

// add minsiee join to current plan

// keep cheapest plan seen so far

Figure 5: Bushy-Tree Heuristic

5 The Cost Model for
Computing Elapsed Time

In this section, we present an analytical mode1 for com-
puting the elapsed time to execute a hash-based, multi-
join query. All the optimization algorithms described in
this paper used the cost mode1 that will be described.
Although the mode1 computes elapsed time, it can be
wed to compute resource consumption as well.

The cost mode1 assumea a segmented execution
mode1 like the one described earlier. It also a8-
aumea that I/O and CPU processing can be overlapped
through double buffering and asynchronous I/O. IBM’s
DB2 product featurea such a capability [17]. Finally,
a linear speedup through parallelism is assumed. On
real SMP implementations, this has been shown to be
an accurate assumption for small degreea of parallelism
PI.

5.1 Parameters of the Cost Model

The system parameters of the cost model are shown
in Table 1. In choosing the parameters, we sought to
pick values that are representative of SMP platforms
which are available today or will be available in the
near future. Towards this end, we have modeled a 150
Mhr processor. On database workloads, a good rule
of thumb ia that it takes roughly 2.5 clock ticks per

485

Cpi
P
m
&nit

metup

%eek

iobondwidth

Parameter 1 Description
mhz I clock rate of individual processor

1 Default ..-.--.
I 150 Mhz

Parameter
Wise

r

probe
compare
hash
moue
project
concatenate
lock
unlock
h

average number of clocks cycles per instruction 2.5
number of processors in the system 4
memory available for join processing 128 Mbytes
CPU instructions to initiate an I/O 5000
device time to setup an I/O 1 msec
average seek time of an individual disk 10 msec
bandwidth of an I/O unit 16 Mbyte+ec

Parameter

Table 1: System Parameters

Description
I/O block size
record size
instructions to probe a hash table
instructions to compare join attributes
instructions to hash a join attribute
instructions to move a record in memory
instructions to project a record in memory
instructions to concatenate two records in memory
instructions to acquire a lock
instructions to release a lock
average number of probes to find match in hash table

Table 2: Algorithm Parameters

mips

IRI

.
~044quential

*hmdom

insert

f indmatch

generate

Default
1 MByte
200 bytes
100
100
50
200
100
100
10
10
1.2

Description
effective MIPS rate of a single processor

mips = mhrfcpi
size of an arbitrary relation R in blocks

PI= [gq
time to perform a sequential block I/O

t04cqucntiol = ioretup + +.ae/ (P. iobonduridth)

time to perform a random block I/O .
%ondom = %eck + %equential

time to insert a record in a hash table
insert = lock + h . (probe + compare) + moue + unlock

time to find a matching record in a hash table
f indmatch = h - (probe + compare)

time to generate a result record
generate = project + concatenate

Table 3: Derived Parameters

instruction on HISC processors [l&J]. Consequently, a
150 Mhs processor will execute roughly 150/2.6 or 60
MIPS on a database workload.

Note that some number of I/O “units” are assumed
to be connected to the processors, with each unit de-
livering 15 Mbytes/eec of bandwidth. No single disk
can deliver this much bandwidth, so in practice each
unit would actually consist of several disks working in
parallel, e.g., a HAID [12].

To keep the system balanced, we let the number of
I/O units scale with the number of processors. Thus,
with 4 processors, there will be 4 I/O units and the
aggregate I/O bandwidth of the whole system will be
4 x 15 or 60 Mhytes/sec. This turns out to be just
enough bandwidth to keep the building phase of the
queries under study slightly CPU bound. An I/O band-
width of 60 Mbytes/set is well within the capability of
existing mainframes but is aggressive by current work-
station standards. Over time, however, the I/O ca-
pabilities of workstation servers will undoubtedly be-
come more mainframe-like. Even today, a single IBM
ItS6000/980 server can support several microchannels,
each of which can nominally handle 80 Mbytes/set of
I/O bandwidth.

Table 2 lists various algorithm parameters.’ The val-
ues that have been chosen are similar to those used in
previous studies [4, 15, lo]. A large I/O block size has
been chosen to reduce the impact of disk seeks.

Derived parameters are listed in Table 3. Most of the
equations should be self-explanatory. IjRll corresponds
to the number of records in an arbitrary relation R,
and all records are 200 bytes long. Note that, in all the
equations, CPU operations are implicitly divided by the
processor MIPS rate. Thus, CPU costs are in terms
of time rather than instruction counts. Also note that
each block l/O is assumed to be split up and performed
in parallel over all I/O units. Finally, it is assumed that
“emnrt” disk controllers supporting out-of-order reads
are used. These would effectively eliminate rotational
delays on large block I/O operations. Consequently,
rotational delays have not been included in the cost
model.

Before moving on, it is important to warn the reader
not to get too caught up in debating how realistic the
parameter values we chose are. Since CPU and I/O
processing are overlapped, what really matters is the
speed of the CPU relative to the bandwidth of the I/O
subsystem. We will present results for the default I/O
bandwidth, which represents a fairly balanced system,
as well as comment on the results for high and low I/O
bandwidths. Thus, the reader will have some feel for
how the performance of the algorithms would change

-I Note that a uniproceesor CM bc modeled by simply wtting
p = 1 and lock = unlock = 0.

under different parameter settings (e.g., more expensive
CPU operations).

5.2 Cost Equations

A segmented execution model makes it easy to calculate
the elapsed time of a multi-join query. Since only one
right-deep segment is executed ‘at a time, only a model
for the execution of a single, memory-resident segment
is needed. The elapsed time to execute an arbitrary
query plan is simply the sum of the elapsed times to
execute each memory-resident segment within the plan.

Figure 6 shows the right-deep segment that will be
used for reference. Each fi corresponds to a base rela-
tion or an intermediate result that was previously writ-
ten to disk. Each Ii corresponds to an intermediate re-
sult. Since the right-deep segment is memory-resident,
the sum of the building relations must fit in memory,
that is, Cf.-,]&I s m/io,i,,.

Ik is either written to disk or used
I2 to build a hash table in memory

RI S

Figure 6: Right-Deep Segment used for Reference

If RI is larger than memory, then the pipeline has
just one stage (i.e., k = 1) and a hybrid-hash join is
used [4, 151. Hybrid-hash requires hash buckets to be
written to disk. A cost mode1 for it has been covered
elsewhere [lo] and so we omit the analysis here. Note
that our results do include many queries where hybrid-
hash joins were required, however.

The elapsed time to execute a memory-resident,
right-deep segment is the sum of the times to build the
hash tables for each fi and the time to probe the hash
tables with S. The probe of the hash tables falls into
one of two cases: Either 1) all or part of the result Ik
is written to disk, or 2) the records from Ik are used to
build a hash table in memory.

5.2.1 The Time to Build the Hash Tables

Since I/O and CPU processing are overlapped, the time
to build a hash table for & is:

P build = ma4%,d~ C&ild 1

where ioduild is the I/O time required to read & from
disk, and cpu;,ild is the CPU time required to build
the hash table for & in memory. Initially, queries are

487

sssumed to run in batch mode, which is often the case
for the kinds of complex queries that are of interest
here. Batch-mode execution allows sequential I/O to
be used during the building phase, consequently:

The CPU time required to build the hash table for
& includes the time to initiate the I/O for & and the
time to insert each record of I& into its hash table.
Assuming linear speedup this is:

IRil

y . (hush + insert)

To avoid disk arm contention, the hash tables for
each & are built serially, one after the other. Thus, the
elapsed time to build all the hash tables in the right-
deep segment is:

k

Tbuitd = C’ %ild
i=l

5.2.2 The Time to Probe and Write the
Result to Disk

We first consider the case where all or part of Ik is
written to disk. When that happens, S is read from
disk and used to probe for a match in RI’s hash table.
When a match is found, the resulting join record is then
used to probe for a match in Rs’s hash table. This
process is repeated until there is no match, or until all
the hash tables have been probed. In the latter case, the
resulting record is moved to an output buffer. Since I/O
and CPU processing are overlapped, the elapsed time
to perform these steps can be expressed as:

Tprobs+writc = ~~~(ioprobe+cvrilc, C~probctrrite 1

where ioprobc+curite is the I/O time required to read S
and write zk to disk, and ~upr&+~ri#c is the CPU time
required to initiate I/O operations and probe the hash
tables. Since S and Ik compete for the same disk arms,
sequential I/O is no longer possible here, even in batch
mode.

If Ik plays the role of a building relation in the next
segment to be executed, then only the fraction f of Ik
that does not fit in memory is actually written to disk.
In this case, the value off is calculated as:

m - CL, IRil
hi

On the other hand, if 4 plays the role of the probing re-
lation in a subsequent segment (not nccensar ily the next

one to be executed), then all of zk is written to disk,
i.e., f = 1. This is done to free up as much memory aa
possible for other segments and also to simplify schedul-
ing. Using the appropriate Vahe for f, iop+&~+~ri~r is
calculated as:

ioprob.8twrite = (ISI + f . IlkI) . kondom

Fo; each join, the CPU time includes the time to
probe for a match and the time to generate the result.
There is also the time to move 4 to the output buffer.
Letting ZO = S, we then have:

Cppraba+write =
IsI + ’ * IrkI . ioini,+

P

One caveat needs to be mentioned about the calcu-

E”“‘“.(hash + f indmateh) +
iz0 P

’ lIzill
c

- . generate +
it1 P

f ’ ll1kll . move

P

lation of f. For left-deep, right-deep, and deep trees,
the calculation of f is correct as it stands. For bushy
trees, however, there can be cases where two or more
composite subtreeP1, say, Tl and T2, appear as building
relations slang the same unbroken, right-deep segment
(see Figure 3). In that case, the haah table for the re-
eult of 2’1 may consume memory that is not available
for use by T2. This happens when f < 1 in ?‘I. If it
turns out that insufficient memory is available lo exe-
cute T3, then T2 is scheduled to be executed before 1;
and all of its result is written to disk. This greedy-like
scheduling heuristic, which is not claimed to bc opti-
mal, means the optimizer never haa to backtrack and
recompute the cost of a eubtree under different memory
restrictions,

5.2.3 The Time to Probe and Build a Hash
Table on the Reeult

If & plays the role of a building relation in the next
join to be executed, and there is enough memory to
hold RI - & aa well as ZI, then a hash table is built for
zk in memory ss its records are produced. Following
much the same logic as above, the equations for this
case are:

Tprobe+build = niat(ioprobe+build, CPUprobc+bdd)

ioprobc+build = IsI ’ iorcqucntiol

ISI
CPUprobr+build = - 'hnit+

P

'-' llrill c p . (hash + f indmatch) +
I=0

- . generate +

!!$!! . (hash + insert)

Here, note that sequential I/O has been modeled.
Sequential I/O ia possible because the disks are only
accessed to read S.

6 Results
To quantitatively compare dynamic programming and
the heuristic algorithms, we conducted a aeriea of ex-
periments. The resulta of those experimenta are pre+
scnted in this section. In each experiment, 1000 multi-
join queries were optimized and the resulting plans were
compared on the basis of elapsed time (aa estimated by
the cost model of the previous section). Re~ulta were
collected for bushy, deep, left-deep, and right-deep trees
using both dynamic programming and heurietice. Re-
eulta were collected for the improved version of the BC
heurietic M well. We Amt present results for the default
parameter setting, and then’comment on how sensitive
the resulte were to changes in the values of key param-
eters.

0.1 How the Queries were Generated
The default parameter settings were for &relation joine.
As mentioned, 1000 different multi-join queries were
generated and used aa input to the DP and HR op
timizeru. For each query, the optimizera took a join
graph along with atatistica on relation cardinalitiea and
join aelectivitieu aa their input. The data for a query
was generated in two steps. First a join graph was gen-
erated, then relation cardinalitiea and join selectivitiea
were assigned to the graph.

Join graphs were generated using the algorithm de-
scribed in [8]. Although that algorithm generatea only
acyclic graphs, we felt that it was adequate because
in practice moat multi-join queries tend to have sim-
ple join predicates (191. Moreover, star-shaped graphs,
which have nearly worst-case complexity in dynamic
programming [ll], are still pomible.

When it came to a4gning relation cardinalitiee and
join selectivitiea, we tried to strike a balance between
realistic values and values that would produce a large
variance in the memory requirementa and elapsed time
of different queries. After some experimentation, we
found that wing three relation types (small, medium,

and large) worked well. The cardinality of small,
medium, and large relations were uniformly distributed
over [lOK, 2OK], [lOOK, 200K], and [lM, 2M] records,
respectively. Using these relation typea, the algorithm
to assign cardinalitiea and join eelectivitiee worked as
follows:

1.

2.

3.

The type (small, medium, or large), but not the
cardinality, of the final result was picked.

Each node (i.e., relation) A was randomly assigned
a type (small, medium, or large) and then ran-
domly Meigned a cardinality in that type’s range.

The join selectivity js of each edge (RI, &) was
chosen by fitit picking a value u for 1lRr x &I] in
[0.5~mW&ll, II&II), (1.5-3~(llR111,11&41)1 ad
then solving js . (llR1 x R4) = u

If the product of all the relation cardinalitiee and all the
join aelectivitiea (i.e., the cardinality of the final result)
fell within the range of the final result type chosen in
step l), then the algorithm exited. Otherwise it back-
tracked to step 2), and tried new join eelectivities. The
algorithm restarted itself if it found that it had back-
tracked over 500 times. The calculation for js reflects
the fact that a join’s size is often a function of its input
relations. The multipliers of 0.5 and 1.5 were added to
increase the variance in the size of intermediate results.
All join eelectivitiea were treated as independent.

This algorithm, which is admittedly ad hoc, worked
quite well in practice. In fact, the elapsed times of
queries varied so much that we had to use 1000 queries
in each experiment to get the 95% confidence intervals
for our results down to the rtl% range.

6.2 How Results were Averaged

The following abbreviations will be used in describing
the results:

DP.BY = dynamic programming, bushy trees
DP.DE = dynamic programming, deep treea
DP.LD = dynamic programming, left-deep treea
DP.RD = dynamic programming, right-deep treea
HR.BY = heuristic, bushy trees
HR.DE = heuristic, deep trees
HR.LD = heuristic, left-deep trees
HR.RD = heuristic, right-deep trees
HR.BC = heuristic, improved BC, bushy treea

Since elapsed timea varied wildly from query to query,
results were scaled by the elapsed time for DP.BY.
For example, let DP.BYi and DP.DEi equal the (*
timated) time to execute the plan generated by DP.BY

489

and DP.DE for query i, respectively. Then the scaled
average for DP.DE was calculated as:

1 iooo DP.DE
1ooO * i=l DP.BYi c

Finally, note that the time to write the final result of
each query to disk was not included in elapsed time cal-
culations. We felt that this was more realistic because
aggregates are often used on complex join queries to
condense the final result into a readable report. More-
over, the time to write the final result to disk would be
the same for each optimization algorithm.

0.3 Results for the Default Parameter
Settings

Results for the default parameter settings are shown in
Figure 7. Most of the results can be explained simply on
the basis of intermediate I/O. The algorithms that per-
formed well generated plans requiring less intermediate
I/O, while the the algorithms that performed poorly
generated plans requiring more intermediate I/O.

Figure 7: Average Elapsed-Time Ratios for the Default
Parameter Settings (&Relation Joins)

Looking at the results for the DP algorithms, one
can see that DP.BY and DP.DE generated equally good
plans. DP.BY performed slightly better by virtue of
the fact that it had more latitude in picking join or-
ders, which led to less intermediate I/O in some cases.
In contrast to DP.DE, the (estimated) execution times
of plans generated by DP.LD were, on average, about
28% greater than the execution times of plans gener-
ated by DP.BY. This is because pipelining cannot be
used in left-deep trees to avoid materialiring large in-
termediate results. Sometimes these have to be written
to disk, causing more intermediate I/O. Finally, DPRD
did significantly worse than all the other DP algorithms,

generating plans with execution times that were, on av-
erage, 129% greater than the execution times of plans
generated by DP.BY. This is because intermediate re-
sults cannot be materialised in right-deep trees to free
up memory, and once all of memory is consumed by
building relations, intermediate I/O is required.

Looking at the results for the HR algorithms, one
sees much the same trends that showed up in the DP
algorithms. In all cases, the heuristic algorithms per-
formed slightly worse than their DP counterparts, how-
ever. This is because the HR algorithms do not enumer-
ate all possible join permutations, which can sometimes
lead to join orders that produce more intermediate I/O.
We were surprised by how well both HR..BY and HR.DE
performed, while the relative performance of HR.BC is
similar to the findings described in (11.

In addition to execution times, it is also interest-
ing to look at the average resource consumption and
number of joins enumerated by each optimization algo-
rithm. This data is shown in Table 4. As shown, the
algorithms with the best performance in terms of exe-
cution time also had the best performance in terms of
resource consumption. Not surprisingly, the HR algo-
rithms enumerated far fewer joins on average. The fact
that HR.BY and HR.DE produced competitive plans
while enumerating fewer joins make them very attrac-
tive. Despite their simplicity, HR.BY and HR.DE were
still able to do a good job of optimizing I/O, and this
was enough to make them competitive.

Algorithm Conrump tion
DP.BY 24.92
HR.BY 25.80
DP.DE 25.93
HR.DE 27.07
HR.BC 29.74
DP.LD 30.56
HR.LD 32.25
DP.RD 52.92
HR.RD 53.96

Resource Joins
Enumerated

873
98
487
98
71
251
56
251
56

Table 4: Avg Resource Consumption (in set) and Avg
Number of Joins Enumerated for the Default Parameter
Settings (&Relation Joins)

In Table 4, note that we set up the DP optimizer
so that it kept 2 alternatives for each subplan. This
increased the number of joins enumerated by a factor
of 4, and was done to ensure that DP.BY produced
near-optimal plans which could be used as the basis for
comparison. (Recall that, here, dynamic programming

490

ie only an expensive heuristic.) Through experiment&
tion, we found that 2 alternatives sufficed and that 3
or more alternatives offered virtually no improvement.
When just 1 alternative was kept, there was a slight
degradation in performance, but usually on the order
of only a few percentage points. Note that multiple
plan alternativez could have been kept for the heuris-
tic algorithms aa well. This would have improved their
performance somewhat.

6.4 Worst-Case Results for the Default
Parameter Settings

The mark of a good optimization algorithm is that it al-
ways produces optimal or near optimal execution plans
without breaking down on certain queries. Figure 8 is
used to show how well each optimization algorithm met
this criteria. That figure shows the maximum elapsed-
time ratioa found for each algorithm among all queries.
It further illuetratez the advantages of bushy execution
trecrr over more restrictive tree shapes. Considering
that the HR algorithmz enumerate far fewer joins, it
ehould come aa no surprise that the maximum elapsed-
time ratios were uniformly higher for them. What is
surprising is how well HRBY performed, even .at its
worst.

B
16.0 -

c

1

10.0 -

4

oP.BY tlnw 0P.w HRDB mBc DP.l.0 HfuD oP.Ro HRAO

Figure 8: Max Elapsed-Time Ratios for the Default
Parameter Settings (&Relation Joins)

8.5 Results for Other Parameter
Settings

To judge how sensitive our results were to changes in the
valuea of key parameters, we also generated results for
eix other parameter settings. In each case, these differed
from the default settings by just one parameter value.
hulte were generated for I-relation joins, 1Zrelation
joins, 10 Mbytes of I/O bandwidth (all random I/O),

20 Mbytes of I/O bandwidth, 64 Mbytes of memory,
and 256 Mbytes of memory.

Due to space limitations we cannot show those re-
sults here (see [16] for the full set of results). The
trends that were observed for the default eettings re-
mained largely unchanged, however. In moat, c88e%, the
average elapsed-time ratioa differed from those of the
default parameter settinga by leas than 5%. Most of
the result8 could still be explained simply on the ba&
of intermediate I/O. More relations, more I/O band-
width, and leas memory tended to amplify the relative
differences in the algorithms, while fewer relations, leas
I/O bandwidth, and more memory tended to reduce the
relative differences in the algorithms.

Before leaving this section, it is worth noting that,
az the amount of memory available for join processing
was changed, both the DP and HR optimizer picked
very different plans. This contradicts the hypothesis
put forth in [8], where it waz argued that optimizers can
effectively ignore memory resourcea While this may be
true for execution models in which the result of every
join is written to disk, it iz certainly not true if mem-
ory resourcea are used more effectively and taken into
account during optimization.

7 Conclusion
This paper looked at the problem of multi-join query
optimization for symmetric multiprocesaom. A zeg-
mented execution model that uzea pipelining to achieve
inter- and intra-operator parallelism was presented, and
then optimization algorithms using dynamic program-
ming and greedy heuristics were described for that ex-
ecution model. Unlike traditional methods, the opti-
mization algorithms that were described include both
memory resources and pipelining in their coat model.
A mode1 of memory resources iz needed to fully exploit
available memory resources. Otherwise, suboptimal ex-
ecution plans may be generated.

An analytical model was derived and used to com-
pare the quality of plans produced by each optimiza-
tion algorithm. Experimental results for 1000 differ-
ent 8-relation join queries were presented. The rmults
showed that, although dynamic programming produced
the beet execution plans, the simple heuristics that were
described often did nearly as well while enumerating far
fewer joins during optimization. The same results also
highlighted the advantages of using bushy and deep ex-
ecution trees. Execution plans for bushy and deep trees
were able to do a better job of exploiting memory re-
sources. Consequently, they were able to generate leas
I/O for intermediate results, and this led to a reduction
in execution times.

In terms of numbers, for dynamic programming, the

491

elapsed time to execute left-deep query plans averaged
28% longer than bushy plans, while the elapsed time to
execute right-deep plans averaged 129% longer. In con-
trast, the elapsed time to execute deep plam~ was within
5% of the time to execute bushy plans, even though
roughly half as many joins were enumerated during op-
timization. Results for the heuristic algorithms followed
similar trends. Since the shape of the query tree was the
dominant factor in determining execution time, these
general results should also hold for uniprocessora and
shared-nothing multiprocessors.

References

[l] M. Chen, M. Lo, P. Yu, and II. Young. Using
segmented right-deep trees for the execution of
pipelined hash joins. In Prvc. of the 18th VLDB
Conf., August 1992.

[2] D. Dewitt and R. Gerber. Multiprocessor hash-
based join algorithms. In Proc. of the 11th VLDB
Conf., August 1985.

(31 D. Dewitt and J. Gray. Parallel database systems:
The future of database processing or a passing fad.
Sigmod Record, 19(4), December 1990.

[4] D. Dewitt, R. Katz, F. Olken, L. Shapiro,
M. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems. In
Proc. of ihe 1984 SIGMOD Conf., June 1984.

[5] S. Ganguly, W. Hasan, and R. Kriehnamurthy.
Query optimization for parallel execution. In Proc.
of the 1999 SIGMOD Conf., June 1992.

[S] G. Graefe. Encapsulation of parallelism in the vol-
cano query processing system. In Proc. of the 1990
SIGMOD Conf., May 1991.

[7] W. Hong. Exploiting inter-operation parallelism in
XPRS. In Proc. of ihe 1998 SIGMOD Conf., June
1992.

[8] W. Hong and M. Stonebraker. Optimization of
parallel query execution plans in XPRS. In Proc.
of the 1st Int’l. Conf on Parallel and Disiributed
Information Systems, December 1991.

[S] Y. Ioannidis and Y. Kang. Left-deep vs. bushy
trees: an analysis of strategy spaces and its im-
plications for query optimization. In Proc. of the
1991 SIGMOD Conf., June 1991.

[lo] H. Lu, K. Tan, and M. Shan. Hash-based join al-
gorithms for multiprocessor computer with shared

M

P21

P31

P41

WI

WI

1171

WI

WI

PO1

memory. In Proc. of the 16fh VLDB Conf., August
1990.

K. Ono and G. Lohman. Measuring the complexity
of join enumeration in query optimization. In Pvvc.
of ihe 16th VLDB Conf., August 1990.

D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
PVWC. of the 1988 SIGMOD Conf., June 1988.

D. A. Schneider and D. J. Dewitt. Tradeoffs in
processing complex join queries via hsshing in mul-
tiprocessor database machines. In Proc. of the 16th
VLDB Conf, August 1991.

P. Selinger, M. Aatrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational
database system. In Proc. of the 1979 SIGMOD
Conf., June 1979.

L. Shapiro. Join processing in database systems
with large main memories. ACM tins. Database
Sys., 11(3), September 1986.

E. Shekita, H. Young, and K. Tan. Multi-join opti-
mization for symmetric multiprocessors. Research
Report, IBM Almaden Research Center, 1993. In
preparation.

J. Teng. DB2 buffer pool management. In 199%
IBM DBP Technical Conference, October 1992.

J. Torrellas, A. Gupta, and J. Hennessy. Char-
acterizing the cache performance and eynchroniecl
tion behavior of a multiprocessor operating system.
In Proc. of the 5th Int’l. Conf on Architectural
Support for Programming Languages and Oprrat-
ing Systems, October 1992.

A. Tsang and M. Olschanoweky. A study of
Database 2 customer queries. Technical Report
03.413, IBM Santa Teresa Laboratory, April 1991.

M. Ziane, M. Zait, and P. Borla-Salamet. Paral-
lel query processing in DBS3. In Proc of the 2nd
Ini’l. Conf. on Parallel and Distributed Informa-
tion Systems, January 1993.

4!)2

