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Abstract 

Several incremental algorithms have been proposed to 
evaluate database production rule programs. They all 
derive from existing incremental algorithms, like RETE 
and TREAT, developed for rule-barred systems in the 
framework of Artificial Iutclligence. In this paper, we 
addreati a specific but crucial problem that, arises with these 
incrcmcutal algorithms: how much data should be profitably 
materialized aud maiutaiued in order to speed-up program 
c:virluation ? We show that the answer exposf!s to a well 
kuown tradeoff. Our major contributiou is to propose an 
adaptive dgorithtu that takes as input a program of ruleH 
aud raturun fur each rule, the xat of most profitable relational 
expreseious that should be maintained in order to obtain 
a good compromise. A notable feature of our algorithm 
iw that it works for both set-oriented and instance-oriented 
rules. We compare our irlg0ritlhrlls with existing incremental 
algorithms for dntabine production rule programs. 

Kuywordn: incremcnlul ulgordlbms, pmluciion rules, 
dutubusr rule lungungc proccssitrg, rule progrum opii- 
tnirulifm. 

1 Introduction 

I’rfductiorl rules h;ivfa flenifmdmtxd to be a power- 
ful programming paradigm to specify quf!riffs, views, 
intqrity constraints id triggers in a database sys- 
tcm [DE88], [SLRBB], [KdMSDO], [SKdM92], [SJGP90], 
[Haa92], [WCL91]. H owever, the problem of efficiently 
Hupporting rules in a database system still constitutes a 
major challenge to entablixh the viability of rule-based 
tc:chuology. A few papers have addressed this problem 
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by adapting algorithms that were designed by AI re- 
searchers to optimize OPS5 rule programs in a main 
memory environment. 

Most database rule systems (see [HW92]) follow a 
recognize-act-cycle similar to that of OPS5 [BFKM85]. 
A production rule consists of an action that must be 
executed whenever a condition over the database holds. 
In active database rule languages, an event can be 
associated with the (condition, action) pair. Usually, 
the action is a set of operations on the database, that 
is insertions, deletions, and updates. Executing a rule 
program proceeds by (i) evaluating rule’s conditions 
against the database, (ii) choosing one rule instantiation 
whose condition is satisfied, (iii) executing the action of 
the selected rule, and repeating the cycle until a fixed- 
point is reached (if any). The set of tuples that satisfies 
a rule condition in a given database state is called a 
sutisfying rule instun2iation. 

A critical part of rule evaluation is the match phase 
(phase (i) above), h w ere satisfying rule instantiations 
are computed. A naive algorithm would execute the 
fl~ery associated with each rule’s condition against the 
entire database on each cycle. This approach rapidly 
becomes intractable as soon as the number of rules and 
facts gets large. To overcome this problem, incrementul 
algorithms that maintain state information from cycle 
to cycle have been proposed by AI researchers. The two 
main known algorithms that fall into this category are 
RETE [For821 and TREAT [Mir87]. 

The RETE algorithm maintains the result of the first 
matching phase into an ad-hoc data structure called a 
discrimination network. In this structure, the result of 
each select and join operation that occurs in every rule’s 
condition is recorded and stored in some node. Results 
of selections are stored in ulphu-memory nodes and 
form the input portion of the discrimination network. 
The results of joins are stored in beta-memory nodes. 
Nodes corresponding to the select and join operations 
that occur in the same rule’s condition are connected 
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together in the form of a dataflow network. Satisfying 
rule instantiations are stored in the output nodes of the 
network. 

RETE transforms the recognize-act-cycle above as 
follows. Phase (i) is removed from the cycle and be- 
comes an iniiialiralion phase during which the discrim- 
ination network is built. A new phase is then inserted 
in the cycle after phase (iii). It propagates every change 
to the database done by a rule’s action, (expected to be 
very small compared to the size of the database), to- 
wards the appropriate alpha and beta-memories. Thus, 
the set of rule instantiations is incrementally (or dif- 
ferentially) maintained. The TREAT algorithm essen- 
tially differs from RETE by the fact that it does not 
maintain beta-memory nodes. TREAT only maintains 
alpha-nodes and the set of all the satisfying rule instan- 
tiations. 

Our starting point for this research is that incremen- 
tal algorithms have an inherent tradeofi Intuitively, 
maintaining some node N in a discrimination network 
is profitable if the work spent in computing the changes 
to the operands involved in the expression that com- 
putes N and in updating the current value of N from 
its previous value is less than that spent in comput- 
ing it directly from its operands. The three important, 
factors in this type of improvement are, (1) the ability 
to efficiently compute the differential change to N for 
arbitrary expressions, (2) the boundedness of this dif- 
ferential, and (3) the number of times N is used with 
regard to the number of times N is changed. 

In a sense, RETE and TREAT are two opposite 
answers to this tradeoff. RETE must do aa much work 
to maintain memory nodes whenever tuples are deleted 
from the database as it does to maintain memory nodes 
whenever tuples are inserted. TREAT does much less 
work when tuples are deleted from the database since it 
does not have to update the intermediate join results. 
Only the final set of rule instantiations has to be 
updated. But TREAT does do more work than RETE 
when tuples are inserted because rule conditions have 
to be reevaluated for these new tuples. 

The purpose of this paper is to systematically inves- 
tigate this problem of profitability of incremental algo- 
rithms for rulebased programs. Our main contribution 
is to propose an adaptative algorithm that given a rule 
program chooses the better compromise of discrimina- 
tion network in between RETE and TREAT. Following 
previous work on the design of incremental algorithms 
in the framework of high-level programming languages 
such as SETL ([PK82], [Pai83]), our algorithm relies 
on a heuristic-baaed characterization of the notion of 
profitability. More, our algorithm is baaed on a careful 
analysis of the migration flow of data in a rule program. 

IJsually, a rule language 11,~ either set,-oricwtfd (tug., 

Aricl, RDL, Starburst) or illat,allcc:-oricntrtl rules (~,g., 
OPS5, R.PL, PRSII). W. I e 8 low that0 lollis tlifferfw2: 

of semantic.9 greatly influences the clmicc of a Kfmfi 

discrimination network. A llotal)l~~ feat#llrf? of or1r 

algorithm is tllat, it, works for I~,f.h xc+oric~ntc:d and 
instance-oriented rules. 

This paper is structured.as follows. !+rtion 2 prfwfvt.H 

our rule language, introduces useful tfvlliIiology, and r(*- 
lates our language to OPS5. In Section 3, wc tlrscriho 
RETE and TR.EAT algo&hms and c:xhihit thc*ir illhcar- 
ent t,radeoff. In Section I, WV rharar,tcqizc a~~tmf~lr~fmf 

exprrBsions, that can be tasily cliffi!rc,llt,iat.cIcI with rt:- 
spoct to some changes to their operauds. ‘lhw, wt. tlf*- 
fine when a relation is profitable to maintain and givcb 
an algorithm that, extracts maximal profitable relations 
from a given conjunctive formula. Section 5 presrnts 
our main adaptative algorithm, which given a set of 
rules determines the better discrimination nc*twork to 
build. Section 6 compares our work with other related 
work. Finally, Section 7 concludes the paprr. 

2 The Rule Language 
In order to make the prestsntation of our algorithnls 
general and independent from a particular rule-lbasrtl 
language syntax, we shall use a Datalog-like notation 
for rules. From a semantic point of view, WC* distiuguish 
set-oriented rules from inst,ance-orierit,ecl r&s. 

2.1 Terminology 
We briefly review some terminology. A fncf over it 
predicate Q of arity n is an expression Q(u~, ..,, (I,,) 
where each (ii is a constant. A dnlabase s&ma is a 
finite set of pretlicatcs. A (dahbnsu) inalnncc over a 
achema S is a finite set of facts over predicates in ,.. If 
Ik is a set of facts and Q a predicntc in ,$, Q(“) cif!md.r*w 

the set, of facts over Q in 4. A lilcrul is RII exprf?ssioe of 
the form (~)Q(tl, ,.., z,) where rrr 2 0, Q is a predicatc~ 
of arity m and each ti ia either a variable or a constant. 
An eg-lilernl is an expression of the form (~)el = $1 
where ~1, “2 are variables or constants. We shall 11s~ 
letters 2, y, 2, . . . to denote variables, and grrek lettc~m 
to denote constants. 

Definition 2.1 A ralc is an expression of thcb form 

where each Aj is a literal and each Ri is a literal or au 
eq-literal. A rth program is a finite set, of rules. 

We consider that there may exist a partial ordering 
between rules where r i r’ means that if r nutI r’ arc: 
both firahlr at the same timca, then r IIW priority ovc’r 
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1.‘. ‘I’llis ortlorirtg i8 m4s1rnif~l t,o lw av;iiI;il~le at, ally 
l.illlcr (luring program execution. We tlenot,c (r, 5) a 
rlllc lm)granl with a priority ordering between rules. 

2.2 Set-orieutcd Rdes 

A rule Cilll be int~t~rl~rc:tacl using either aii instance- 
oric:ut,c*d or a sc:t-orit*nt,t:tl seluantics. We st.art. with thr 
IilSb Oll(!. 

Effect of II rule 011 a database hetance: Let, P be 
a nrla: body - A,, . . . . A,,, ~fil, . . . . -B,, and I a set of 
facts. Let r’ be a ground instance of r euch that. (i) each 
positive literal of the body of r’ iH a fact. in I and each 
negative literal or eq-literal in the body of I“ holds, and 
(ii) t!ilCll variable is valuated to some conetaut occuring 
in I. ‘l’hc:n r’ is #aid to be a ~~linjyiny inslance of r in 
1. Now, the set. of ground literals in the heads of all the 
niitisfying innt.aucc~s of r iii I is called Climb cJrf:ct fjj r 011 
I ( clVnot.t!d c j jE(‘& (I). 

Intuitively, the effect of rule r on I is the global effect. 
nblaiucd by considering the actions of all the satisfying 
instances of r in I. 

Definition 2.2 A rule r is said to be fir&e in a state 
I if there exists a fact, A suc.h that either 

l IA E cjjt~$.(f), A e e/j&(f) and A E I 

Thus, a rule is firable if its firing would produce a net 
change to the current databaae state. 

Summrticw of u rule l~ogram: Let (I’, 5) be a 
rule program. ‘I’his program defines a r&lion among 
database instances as follows. For each state I, J is 
rtxr/rublt: from I using I’ if there is a firable rule r in r 
SII& that, no other firable rule has priorit,y over r, and 
.I cousirits of tile facts A HI& that.: 

l A is in I U c / jwt, (I) and -A is not in e jjeclr (I) 
or 

l A is in I and A, -A are both in (: jjt!cl,(Z). 

If a srquence of reachable states has a limit, it is called 
a jiq)&nt of the program. Notice that a program may 
IIHVP scvc~ritl fixpoints or no fixpoiut, at all. 

Dejhition 2.3 (liven a rule program and a state 1, 
t,hca cotrflict srt is defined to be the set of all the firable 
rules in I. 

2.3 Instance-oriented Rules 

A set-oriented rule is fired for all its inst,ant,iations in 
one step whereas an instance-oriented rule is fired for 
one instantiation in one step. Thus, the difference is 
that, we consider the effect, of a satisfying rule instance 
alone. If r’ is a satisfying instance of r, we denot,e the 
effect of r’ on I by e jject,., (I). We define r as a firable 
rule if there exists a satisfyingfirable instance r’ of r that 
obeys the conditions of Definition 2.2., where e j ject, (I) 
is replaced by e j ject,, (I). Then, the semantics of a rule 
program is defined as for set-oriented rules except that 
r is replaced by a satisfying instance r’ and e j ject, (I) 
is replaced by e j ject,, (I). Finally, the conflict set is 
defined to be the set of all the firable satisfying instances 
of rules in a state I. 

2.4 Comparisons with OPS5-like Languages 

OPS5 [BFKM85] is the underlying language for which 
RETE and TREAT have initially been designed. Com- 
pared to our language, OPS5 has three main differences: 
facts are timestamped, the language has a refraction- 
based semantics, and priorities beetwen rules are dy- 
namic. 

lu spite of these differences of semantics, our final 
algorithm is applicable to OPSS-like languages. The 
main reason is that we seek to optimize the specific 
phase of matching rules against, the database, which is 
common to all rule-based languages [HW92]. 

3 Incremental Computation Algorithms 

In this section, we describe and compare the discrimina- 
tion networks built. by RETE and TREAT. We assume 
that, rules are instance-oriented (as in OPS5). 

3.1 RETE Network 

Consider the following rule: 

1.1 : A(~,u,z), B(z,y,P), C(r,xro) ---, 
[X7, z, 4, -C(r, Y, 2) . 

This rule is compiled by RETE in the dataflow 
network depicted in Figure 1. The network has three 
alpha-nodes nl, n2, n3, and two beta-nodes yl, ~2, 
where: 

nl = UA.~=~A, n2 = UB.~+B, and n3 = uc.l& 
pl = H{nl.l,n2.2,n1.q(nl Wnl.lzn2.1 n2), and 
112 = n{pl.l,pl.2,pl.3,n3.3)(yl Wp1.2=n3.2 n3) 

where 6, H, and w respectively denote relational select, 
project, and join. 

The incremental evaluation procedure of a rule program 
proceeds essentially as follows: 
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I P2 

Figure 1: RETE network for rule rl 

incremental evaluation of a rule progm7n 

state := initial database state; 
match rules against state until a firahle rule is fouutl 
and record the results into the discrimination setwork; 
while there exists a firable rule’ r do 

slate := result of firing r ou stute; 
for each input node N of the uetwork do 

if N has changed Ihen propagate the chauge 
to the successor nodes of N; 

select a firable rule r; 
end while 

Compared to the original evaluation procedure used by 
RETE and TREAT, there is one main difference. Since 
we assume statically-defined priorities between rules, 
there is no need to construct the whole conflict set before 
entering the while loop. We only need to find one firable 
rule (step t). Thus, selecting a firable rule in step $ may 
require to match some non-already tried rules against 
sue in order to compute their set of satisfying iustances 
and hence, to expand the discrimination network. 

3.2 TREAT Network 
TREAT compiles rule rl in a dataflow network similar 
to RETE. The only difference with RETE’s network is 
that the result of the join between nl and nz is not kept. 
On the other hand, TREAT maintains for each rule its 
set of satisfying instances. This coincides with node 1~2 
in RETE’s network. Calling 1’ this node, we have 

p = ~{nl.l,nz.z,n1.3,n3.3}{~~ %l.l=nZ.l n2 %K!=n3.2 

nW. 

In fact, TREAT also retnembrrs in JJ the t.uplt* iclc*ut.ifit~rs 
of the matching tuples. 

3.3 Traclc:off l3ctwcx!ll RETE nd TREAT 

TIIP lnain qu&ion r;&tl I,y the tm%viour; c*x;rmpl~~ is: 
“is il. worl,hwhih* t,o kqb INJde pl '!'I. 'ii) aiisw(‘r, WC 
need to compare! thtb work tlonc* by c~clr algorit.hru at. 
each cycle. 

RETE does an extra work to maintain 1~ when a 
deletion to ns occurs. But, some ilnl)lt~~~l~~tlt~at.ion.u 01 
RETE optimize it by recording tuple iclentifirrs in the 
nodes (as TREAT does). On the othc*r hand, ‘I’R.EA1 
does an extra work to prolmgatc in.ur*rtions ht*caun~~ 
the join bc?tSwcn rrl and n2 needs to be rc~rom~u~l.t~tl 
at, each cycle. Clearly, on this example, the t.rath!olf 
will favor RETE (avc?n if RETE doen not. opt.iluixc* t.h(* 
maintenance of 1~2 with tuple iclent&rs). 

Now, suppose that the act.iou t)art of tllc~ rult! ix 
changed, yicMing the following rule: 

Since’ t11c~ hotly of P~ is t,htb S;UIW ;I.‘I rl, t,hc* ntbt.workx 
rmq~ectivrly built, by RX’I’E and TR.Eh’l’ for 1’2 ;brr* ;w 
the networks for ~1 ISub ihis t.imcs, ‘I‘RlSA’l’ outpc*rforll~?c 
R.ETE bacaurrc: IJIV o111y c:lli~~. CA t.11~ rl11(- is 1~0 ~l~+~t.~~ 
facts and these dt:let,ionx require. IWS work wi1.h ‘l’l~.EA’l’. 
Indeed, RE’I’E will ut)(lJ.e II~&*N 112, 1’1 aatl 112 whc?ro;w 
TREAT will update n’L and 1’. 

The abovc~ examples 1~op~f1111y make one point.. Th(%ro 
is au inhereut ISradeoff in incremcnlal algorithms. Mniu- 
tainirq infomation may help for coqmt.in~ 1it:w rult! 
instantiations hiit4 Illity hurt0 pA-mnanct! whrti rulr ill- 
st8ant.iations are dt:lc~l~etl from the conflict, sat.. III general, 
a rule progritm 11,~r a notI-taonot,oili~ I~c+avior wiCIi rt*- 
spect, to its conflict. Wt. iUlC1 solvillg t.li(* t.riitlt& drpt~lids 
on the* particular rule prograIn. 

4 Computation of Profitable Relations 

Idt!ally, an algoriChiil tJi;tt. clioo~t~x in cli.qc~ri~~~ilial.ic~~i 
network for a set, of rllltwi s11o111t1 coIIsid(*r I.WO illrport.;rllt. 
factors: 

1. the abili1.y to fi/LGtrlly conipu1.1~ 1.11~ tlilf~rc*rlt.iiil 
change to (Avery tmlt~ in the nabwork a.ys()ciat.ml with 
a relat,ional expression, given tht! 1114 chaug~ to its 
predecessor nodes, 

2. the p~~~~filnhilil~ of mniulaiuing a node in thcb ur+- 
work for speeding calrul;&mrc thl.1, will follow thtr 
nlirl,arinli~al.iotI of l.htl no&*. 
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It0t.h ~~ondit.ioi~s mnst, IM* mc*t. I.0 tlc!cidc: to ItIaintain a 
IIO~IV ~II t.htb Ilc+work. ‘I%! IirNt, prol)lc~t~ is addressed in 
S7t.ioiix I. I ;ui(I 1.2, whih* tht* XI~U~II~ 011v is iuldr(:Ns(:~l 
III St*c*t.ioii 1 .:I. 

Our ~COI&YII is 110t, totally new. Previous work (e.g., 
[I)( !L8!)]) has atltlrc~ssed the problem of tlct.crniining 
which data arc useful to maintain in order t,o speed- 
lip t,hc: llliliIll~:lliUlCC of a materialized view when base 
rc+rt.ionx change. AII int,oreating case is wlicn t,he new 
value of the view can be computed from its previous 
(slort~tl) value and t.hct tliffc~rt~ulial changes applied to its 
cq~~rirritl rolirt,iotls. The view is said to be iirloi~omoauly 
coii~l~ul.al~le. We genc~ralize this notion. 

III wlial follows, a c*/raiq to a predicat.o inst.ance is 
c*it.hc!r ill1 iaswliorl or a flclelion of tuples. The sign 
of il. pr~~dicate in a conjunction of liMaIs inclicat,es if it. 
occurs positively or nc!gat,ively. We also dt~not~f: +(lc) the 

rtrlirt.ioll ffc/itrVd ’ by a conjunct.ion of lilt*rals Q(5) in 
st.at.c: /k. Without, lo ‘Y f h. o gc~norality, wt: ouly consider 
foriiiiil~rx 4 where! ~acli predicate occurs only once (this 
iiiay INS iichicvcd hy renaming). 

D~diuitiou 4.1 I,& Q, bc: a (safe) conjunctiou of litcrals 
;in~l r ii rhangc~ 1.0 a predicate P occuring in a. Then ct, 
is f~~~l~~~~f~n~ot~s for I’ wrt. r if fbr any A:, cP(‘+‘) can oiily 
IN: c*oilil)iitc:d from a(‘) and C. 

‘l’his cl&ition is generiilizt~d to a wt, of rliairges. 

l)c!fimit.iou 4.2 I,& Q, IN! a (safe) conjunct,iou of literals 
illl(I (lp ;L sc4. of Cllilllgf?H LO P. @ is 1111h~J1110119 for P 
wrt. C!.p if 4 is aiit.onom0us for P wrt, (*very change of 
(I,. I,c*l. C I)e il scrt, of rhanges to some prcdirates of Q. 
4) is ~~lon0~J1.s wrt. C if for each predicate P ilKId for 
13ch chi~igt: c of C, eil.ht:r r hm no effect. on P, or 4 is 
a111.01101110us for P wrb C. 

Sullicicqit, conditions to &tect. aut,ononious expres- 
sious ill?! prcsc:ntc:d I)t!loW. We shall use t,he following 
llot.ilt,iOllS. I,crt. ct, bts a (safe) conjunction of literals and 
I’ a pr~Vli(:ilt,e in Cp. WC partition the Vilrial)les of Qr into 
t.lirt*c: wt,s: SV C0lltAllN variables .hwcd by 1’ and SONle 

Ot.ht!r ~)r~Y~icat~t! (Jf 0, Pv cOllt4hH Variablfs that OCCllr 

xol~ly in P, and I1V cont.ains the rr:nrf1i71ir1y variables. 

First rmcl Socw~~d Autonomy Criteria: Let. It be 
il SLiltA’ illl(l lk+l the shtf! d)t#aind after applying a 
clla,l~‘~ (’ t.0 P(k). 

I. If I’ in positiac, ant1 c is a fffhlc, lheu * is 
aut~on(mmus for I’ wrb c and the relation defined 

--- 

2. 

by 4 in state II, is d&led hy: 

{ 

A+“) = dk)(SV, PV, RV) W AP(k)(SV, PV), 
,l)(k+l) _ a,(k) _ AQ,‘k’ (1) - 

wl,ttrrf &p(k) = p(k) _ p(k+‘) 

If P is rreyutitre and c is an insed, then Cp is 
autonomous for P w.r.t, c and the relation defined 
by @ in state Ik is defined by formula (l), in which 
A.p(k) = p(k+l) _ p(k). 

&fore introducing the third criteria, we need another 
definition. 

Ddinition 4.3 Let P(A1, . . . . A,,) be a relational schema 
and S be a subset of {Al, . . . . A,,}. We say that IIsP is 
stable wrt, a set of changes c, if for any state Ik, C has 
no effect on IIsP(“). 

FOr inskance, P is stable on {x} wrt. the changes 
induced by rule f: R(x, z), P(x, y) - P(r, z). 

Third Autonomy Criteria: If P is posi2ive, c is an 
irrscri and I&P is stable wrt r, then 0 is autonomous 
for P w.r.t c and the relation defined by Cp in state Ik 
is defined by 

1 
Adk) = (JJ~sv,riv~ @(k)(SV, PV, RV)) W AP(‘I)(SV, PV), 
,#,(“+I) = a(k) u L\@(k) 

(2) 

where AI’(‘) = Ptkt’) - Pck). 

Example 4.1: Take Cp = R(z, z) W P(r, y) and rule 
11.(3!, z), P(x, y) + P(x,z). Given a state Ik, when r 
fires, the set, of t.uples APck) inserted into Pck) is such 
that III,)AP(~) c I-I,,, Pck). By the third autonomy 
criteria, @ is autonomous for P wrt, the changes induced 
by r, and Q(k+l) can be easily computed using formula 

(2). 
Remark however, that if r has a set-oriented seman- 

tics then the rule can only be fired once because after the 
first firing no new tuples can be inserted into P. Thus, 
maintaining Qck) will not, be profitable. On the other 
hand, if r has an instance-oriented semantics then r can 
IN? fired many times before reaching a fixpoint. Hence, 
maintaining @tk) will be pwjituble. 

4.2 Producer-filter Decomposition of an 
Expression 

In this section, we make use of the notion of producer- 
filter view initially introduced in [Bry89]. We provide 
a different, definition of a producer-filter and relate 
this notion to the previous concept of autonomous 
expression. We first+ use a motivat,ing example. 

Example 4.2: Take the expression: 
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and suppose we have a se!t of changes C consisting of 
deletions from A, insertions into C that keep I1(c,l)C 
invariant, insertions into D, and insertions and deletions 
to E. According to the three autonomy criteria, @I is 
autonomous wrt all changes of C hut, deletions from E. 
Now, take formula: 

02 = 42, Y), B(Y,z), C(z,u), -D(z, ~1 

GZ is clearly autonomous wrt to C. Suppose that. 
T(z, y, 5, U) is the relation defined by @z, and let us 
define T(z, y,z, u,f~) as: (T W E) x {true) U (T -I W 

E) x {false}. Th e relation defined_ by 4q is simply 
computed by n{,,,,,,,,,(a,,=l.~,~ T). Furthermore, 
when a tuple t is deleted from E then all tuples of ? 
that match with 1 have their fE attribute set, to frr1.w. 

Thus, maintaining relation ? is easy when deletions 
to E occur and can be profifable to compute t,he rdatkm 

defined by @I. 

Definition 4.4 Let Cp he a (safe) conjnnction of liter- 
als. Assume that @ = t$ A $J, where 4 is safe and all 
1/, variables are bound by positive literals in 4. Then I$ 
(resp. 111) is said to be a prodtrcer (resp. a filler) for a, 
and (4, $J) is said to be a prodaccr-jilter decomposition. 

Definition 4.5 Let (4, $J) be a prodrccr-filter decom- 
position of a formula *. Let, rl, = (-t)Bl(Zl), . ., 
(7)B,,(Zn), and T(A1, . ..&) the relation defined by 4. 
We define the relation T with schema {Al, . ..At} U 

{fi, . . . . fn}, where Dom(fi) = {true, false} as: 

where b< denotes the semi-outer join operator [1JM!)]. 

Intuitively, f?r each tuple 1 of T (the producer), there 
is a tuple in T that indicates whether t satisfies the 
condition of the filter (formula $). 

Proposition 4.1 Let (4, $J) be a producer filter decom- 
position of Qp and X? the associated relation. Let P he 
a predicate of 0 and C a set of changes. If either P 
occurs in $J, or * is autonomous 3 for P wrt C then ? 
is autonomous for P wrt C. 

In the previous example, (a~, YE) is a prodwer filter 
decomposition of 01 which is autonomous wrt the set, 
of changes we considered. 

4.3 Algorithm to Compute Profitable 
Relations 

We now characterize profitable relations and provide 
an algorithm that computes the maximal profitable 
relations from a given conjunction of literals. 

3for a sake of simplicity we sldl nbusively use the word 
imtonmnous for a relation 

Given a forrnnln, there niay IN many l~rolil.;ilJ~~ 

snbexpmclsions l)ntO not. all of tticarn will be int.crcat.ing 

to maintain. Take 4 = A($, y), B(y, z), C:(z, T), and 
assume that t.he set, of changes C consist,s of inst!rt.ions 

into A that, keep 11 A,~A invariant,, clclcCons from Ij, antI 

instbrbions int,o C that knep 11(7.1(: invariant.. ‘I’IIw A, 

Ij, C:, A W B, B W C arc all @profitnblc snl)c.xprc:ssions 

wrt C. N~~vc*rth&ss, memorizing ancl nlaillt.;rining all 

thcsv relations is clearly not, a gaocl cornl~rotnisc*. 011r 

algorit~lirn only strlt:rl.s rnfrrinrrtl rdat,ions. in mr cm’, it 

will randomly rhoost! t*o rnaint.ain t4l.llc*r fl nntl f3 W (,I, 

or C ancl fI W B. 

Maximal Profitable Relations Algorithm 
input: R safe coli,jrluc:l.iou of lit.c4s Cp, irncl in se1 of c:h:ru~~ C 

output: A = a set of @-profitable rrlations NIICII that covey 

operaid r4atiou I&my;x to only out! crxprewsion; 

M - R; /* :I wt. of iautOiionioiis rxprt4c,ux ‘/ 
strp 1 : 
(,irilfl a counrction graph cj wlitrre vt:rtic:c+s ilrc’ li(.c*r;rls of 4’ 
aucl there is ilu eilge bt!twet*n lit.er;rls 1’1 ;rid P2 if tlic-y 

have at least a variable iii c0111niou; 

rtrp 2 : 

repeat 
P + f-hoo.~edqolrrff! (q%‘g’c); 
/* retucu a literal of 0 that is NOII markecl in cj */ 
mark P in 9; 
g + choo.~~_rrrtrx_rrr1~!~:~~rrs,tsio~~ (G, C, I’, I’); 

/* coustriic4. r maximal aul.on0ntous c*xprc:wsiou from I’ ‘/ 

M - M u {!I); 
until all IIO~W of cj wilh positive* lit.c.r;rls art! markt4; 
rtrp 3 : 
7 +- {unmarkecl litc:rals in 0) U (j E M s.1. j is ;L singh*- 

LOII ;ud tlmrc! ix SCNIIC 11 itI M w.1. (I’,/) iw a producer-lillvr 

tlr:colliI)r)silioll of 1, A j amI its ;Lssoc:i;rl.c*tl rt4atioti is 
aiiloitonioiis wrt C ); 

P + rr&wqwrltrccr (M-T); 
/* an element of P is a proclucrr-filter clecoliii,ositioil (p, j) 

s.t. p is in M-T and f is inihaliscxl with H. */ 

for / in 7 do 

b’ f’) + rc:fect-lJn,fftrcc,r-Ffter (j, P, C); 

/* (P, f’) 6 p n.t. (P, f 1 is a protlucer-filter clecornposi- 
tioli aid ils associated relation is aiitonomom4 wrl C. 

When several ele~nents of P are canclithtr-, WC clroostr 

the riiost scktk onr; if 1101ii: p is rancloidy s&cGtl.*/ 
if p cxist.s then aclcl j to j’; 

Od 
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dcp 4: 

A - C; 
for (p, /) in ‘P do 

if / f Y) or y in uot a siugle lilcrnl then ;rtlcl the relrtiou 
a.qnoc:i;rtcxi with (p, f) to A ; 
fi 

od 
return A ; 

At St.q 2 of the algorithm, we choose a node, called 
the search:, in the predicate connection graph and then 
construct a maximal autonomous expression from this 
node. Note that there may be several autonomous ex- 
prcssions that can be built from a given node. The 
hc!uristics used to choose the source and compute the 
l’rcfcrrcd autonomous expression is detailled in Ap- 
pcsndix A. Jn general, we are interested in the selectivity 
of it literal (some arguments can be constants) because 
we want to compute a profitable relation with the small- 
t!sb size. 

At the end of Step 2, M contains a set of autonomous 
expremions but some nodes of 0 may remain unmarked 
(negative literals). In Step 3, T is constructed with 
[MJtelltial fibers to some alltononlous expressions of M. 
Each autonomous expression that is not in F becomes 
a producer-filter decomposition in P. Then, we try to 
integrate every literal of F within the filter of some 
producer-filter decomposition in P. 

In the la& step of the algorithm, we output relations 
that arc! associated with in2erdiny producer-filter 

decompositions, i.e., those where the filter is not empty 
or the producer is not reduced to a single literal. 

5 The COSMA Algorithm 
5.1 Output Token Relation8 
Before presenting our algorithm we need to define 
specific relations, called output foEen relations, that 
play a key role in the computation of a rule program. 

Intuitively, given a rule r and a literal 1 = (y)P(q in its 
head, the output token relation associated with r and 
1 records the net effect of r on the instance of P, for a 
particular database state. Such relations are essential 

because they enable to know if a rule is firable: at least 
one of its output token relations must be not empty. 
More, when a rule fires, output8 token relations serve to 
compute the effect of the rule. 

The definition of an output8 token relation varies 
according to the semantics of rules. 

Definition 5.1 Let r be a set-oriented rule, 1 = 
(y)P(Z) a literal in the head of r, and I a database state. 
The output token relation, noted OT(r,I), associated 
with r and 1 is the set of ground instances of P in 
c:ffcc&(I) that represent a net change to Z(P). 

For instance-oriented rules, the definition slightly 
differs because we have to identify to which satisfying 
rule instance is associated each t,uple of OT. In fact, 
every triple in the relation defined by the body of a 
rule, represents a satisfying instance of that rule. 

Defiuition 5.2 Let r be an instance-oriented rule, 1 = 
(l)P(Z) a literal in the head of r, and I a database state. 
Each tuple in OT(r, 1) is the concatenation of two tuples, 
t and t’ where t is a tuple in the relation defined by the 
body of r that corresponds to a satisfying instance r’ of 
r, and 1’ is a ground instance of P in ef feet,, (I) that 
represents a net change to Z(P). 

5.2 Migration Flow of Data in a Program 

As we mentioned before, our algorithm relies on the 
knowledge of the changes to any predicate that are 
induced by the program at, a particular point in time. 
Extracting this knowledge from a rule program requires 
to perform a careful analysis of the migration flow of 
data within the rule program. Because we assume 
statically-defined priorities between rules, this analysis 
can be done statically. 

In order to capture the migration flow of data, we 
construct a labelled direct,ed graph Z called an Influence 
gruph. Rules are the vertices of Z and there is an arc 
from r to r’ if there are predicates occurring in the head 
of r that also occur in r’. In the following, we say that 
r has an influence over r’. The label associated with 
(r, r’) is a set, of expressions of the form 1 0 1’ where 1 
(resp. 1’) is a literal of the head of r (resp. head of 
r’) and 0 is in {+, -}. The expression 1 + 1’ (resp. 1 
- 1’) means that, when r fires, its effect wrt 1 has for 
consequence to add (resp. to remove) tuples into (resp. 
from) OT( r, 1’). 

Example 5.1: Consider the following program J?: 

rl : A(x,(r,y), B(y,@), E(z,v,y), ~F(x,z) -+ C(x,z) 
rz : C(X,Y), D(Yw) - WAX) 
r3 : B(x,Y$), -D(&Y,x), E(v,x) - D(b,x), -C(YJ) 
~4 : A(x,Y,z), D(&x,Y), C(O), F(z,w) - -W,x), WY) 

Table 5.1 represents the Infrtrence graph of program r, 
rows [resp. columns] represent r [resp. r’] : 

Defiuition 5.3 Let Z be the influence graph of a 
program I’ and rot-1 . . .r, a path in 1. If there exists 
a sequence (lo 40 11)(11 81 1~). . . (L-1 0,-l I,,) where 
(li Bi li+l) is an expression in the label of (ri,ri+l), 
then this sequence is said to be a propagation path from 
ro to r,. If for each i E (0, . . . , (n - 1))) t$ = + , then 
the propagation path is positive. If 0,-l = -, then the 
propagation path is negutiue. 
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r1 

--^- Tl (&) (c+L } { C + YT;;, C+F ) 

72 U'+D} {D-D,D--C} ID+-A,D+F) 
23 {-c-kc} {D t D, -C - D ) {D - D, D -4: ) { -42 - -A, -C - F , D + -IA, D + F ) _- .-_ 
~4 { -A - C, F - C } ( -A - -A, -A - F, F + -A, Y + 1: ) -.. .-_ 

Table 5.1: Inflnencc ~rapl~ of I‘ 

The priority ordering between rules enables to simplify 
an influence graph by removing some labels. Assume for 
instance that rl, ~2 and rs have priority over r4 in the 
previous example. Rule r4 can only be fired when no 
other rule is firable. Since OT(r4, ‘A) has not yet been 
computed any firing of rl, r2 and r3 has no effect on 
OT(r4,lA). Furthermore, if v-4 fires, neither rl or PJ or 
t-3 becomes firable. Thus, t-4 has no effect on OT(rl, C). 
Hence, the labels of the arcs (rl, rq), (r2, rd), (r3, r4) 
and (r4, q) are irrelevant and can be discarded, thereby 
changing the propagation paths in 1. This is formalized 
below. 

Definition 5.4 Let (I’, 5) be a program, Z its influence 
graph, and p = 1 8 1’ an element, of the label of (r, r’). 
Then p is relevant iff 

l r and r’ are not comparable wrt 5, or 

l r’ has priority over r and p is a positive propagation 
path from r to r’, or 

l r has priority over r’ and there exist a rule r” that 
has not priority over r’ and a positive propagation 
path, p’, from r” to r, such that p’ p is a propagation 
path from r” to r’. 

Irrelevant portions of the labels can be discarded from 
the influence graph. To illustrate, in Table 5.1 bold 
characters represent the label expressions that can be 
discarded. 

5.3 The Algorithm 

Given a program (I’, <), with either an instance- 
oriented or a set-oriented semantics, COSMA is a one- 
pass algorithm which produces for each rule, which 
relations should be materialized, how to compute these 
relations and how to differentially maintain them. 

COSMA incrementally builds an injluencc pup/~ and 
simultaneously computes the relevant label expressions. 
When all the labels of the edges ending at some rule 
r are fully computed, the influence graph provides the 
necessary knowledge about the possible set of changes, 
say C, to the predicates occuring in r. Then, r is 
annotated with two specific sets noted Effect and Subezp 
using the Annotate,Rule algorithm. 

COSMA Algorithm : 
input: a program (r, 5) with a xcl-oriented or iuntnnw- 

oriented nemanticiq 
output : r where each rule hitw beau rnnatatrcl; 

/* Initialisation of the influence graph */ 
step 2: 
while there exists a non annot,atecl rule in I’ do 

M + (r E I’ s.t. V r’ E I’ if r’ hax prioriI,y 
over r then r’ is annotated } 

for r in M do 
N +- { rulen that have an influence over I‘ ); 
for r’ in A/ do 

c:xpnntl Z with edge (r’, r) ; 
compute the rekvailt Inbc:l expreaxioiis of (r’, r); 

od; 
Annotate-Rule (I, r); 

od; 
od; 

An clt!m4 of Subccp is a pair (E, iIfS/&!) serh thrt 

E is a s&expression of the expression associated wil.li 
OT(r, I), for some 1 iu the Ilt~ad of r, and ijE/N! dcrrottw 
the differential expression that incremt!ntnlly tiiaintaill 
the relation defined by E wrl. a se:t of changes C. All 
the relations defined by the E-cxprrssions of S’ttbray will 
be materialized. A tlifferential expression consists il.sc4T 
of a pair (iIE+/X!, iIE’/iX), wbrrt: tbt* first (rip. 
second) element computes tilples that tnllnt. IN* iiXld+!tl 
(resp. deleted) to the relakion tlefinecl by E, say 7’. If 
no insertions (resp. deletions) can occur to I’ thc*n 1.11~ 
first (req. secoud) clemeut is said to Ibe urrdc~~iurd. 

For every litt*rai 1 in the bead of r, Uit!rca is a tril)k 
(E, BE/N, Mat) in E&d. III each trii&!, E reprt!st!nts 
the expression that, computes OT(r, I) in tOc!rlns of I.lw 

materialized rc?lations defined in Submp nutI other (IIOIP 
materializecl) relations. If OT(r, 1) is materialized then 
BE/X is the differt:ntial expression that maintains (I’/’ 
wrt C. In this case, the clifferrntial will consist of 
a pair (8E+/r?C, AE-/X) as we m&,ionrtl before. 
Otherwise, BE/X is the rxpression that computes the 

new value of OT iu terms of the differeutial cIliuIK(*N 
to its opt?raritl rt4atious. lltw, tile clifferriil.i;il c0Iisifil.s 
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of a fiihgh* (~xpr~*ssioii. Firrally, Mal is ;L boolean that 

iiidic~d~c~~ if o’I‘(r,l) is rliiilc:ri;rlizctcl. 
l Slrp 2 Uflfl 3 Of th(! Alll1~~t~~~t~~~~l~.Ill~~ ill@J~it,hII1 
cor~qn~t,c! Scrbcxp. (:ivctn a rule t ancl il literal 1 in 
its hea(I, our algorithm ~HRR the following simple rnle 
to tlocitlt: which snbexpressions sh~ltl he cornp~~tetl in 
skhmp. 

Rl. If o’I’(r, I) is not antonomons wrt. C then memorizing 
nirixiiiial O?‘(r, I)-lwofitaldc relations is useful. 

‘1‘11~~ rationale for this heuristic rnle is that when OT(r,l) 
is not aiitonomoiis wrt C, OT(r, I) ~ieetls to Iw computed 
mote than once whatever the semantics of the rnle is. 
‘~‘IIIw, it is uscftrl to memorize snhexpressions that, may 
xpeeci up repetitive computations of OT(t,l). 
l Wp 4 of the algorithm computes the seconcl part of 
th annotation, Ffleci. An important decision taken by 
th algorithm is to decide if au output token relation 
must be materialized. We use the following hek3tic 
riilct: 

R2. If a rule P is iast,ance-orielltetl then mt:morizing 
o’I’(r, 1) is useful for c:vt!ry lit,c:rnl 1 iri the head of r. 

With iustatrce-orit!tit,i!~t rules, whet1 a rule fires, only 
ant’ instantiation, say t’, i.e., OIIC tupla of 02’ is 
used. Int,llit.ively, the efkct of the rlile may have for 
coiiseqiience to add uew instantiations in 01’ and/or 
1.0 invalidate previous instantiations of OT. If OT is 
not maktialized then it hw to be entirely recomputed 
at. IW:II firing of r because the next, insbantiations 
CiUlllOl~ be compiitetl solely in terms of f’ and its 
~onsequence6. Thus, OT represents the most recent 
computation that can he differentiated before the choice 
of iiu instantktiou to fire. On the other hid, with 
set.-orirtllc:cl rules, the OT relations arc* emptied afker 
wch firirq of the rule and hence there is no need to 
matckalize them. Furthermore, for set-oriented rules, 
WC have: 

Prupositiou 5.1 Let (I’, 5) he a program with set 
oricailtetl scmaritics, r a rule, 1 = (l)P(Tf) a literal 
iu the head of r. If the formula associated with 
O’f’(r, 1) is ailtoriomous wrt the chige8 to P induced 
by t,h~ program, then OY’(r, I) will be cornpnted once. 
Fiirtllc~rniort~, if this is the case for every literal in the 
hc~rul of r, ttwri r is firetl at most4 once. 

Annotate-Rule Algorithm : 
input: nu influcuce graph Z snd it rule r; 
output: t’ is annotated with two sets: E#ec:t r11c1 Sulrqj; 

She’ 1: 
C - (changes on pretlicntes occuring in r); 
/* C is easily &rivet1 from Z l / 

,9q 2: 

II 6 I; 
/* Ii contains output token expressions which are 
not ~iitonomous wrt C */ 
for each literal 1 of the I~eacl of t do 

\k + expression associatetl with OT(r, I); 
if Q is not autonomous wrt C then iuld Q to H; 

od ; 
Sir.]’ .Y: 

if 11 # Y) then 
if H is a singleton { \k) then Cp = @ 
else * = expression associated with the hotly of T; 
fi; 
A + Maximal-Profitable-Relation (a, C); 
Sulezp + {(E, aE/aC) s.t. E E A}; 

else Sulexp + 0; 
step 4: 

Eflf!d + 0; 
for each literal 1 of the heal of r do 

E = expression associated with OT(r, I) in terms of 
relations tlefinecl by expressions in Sulezp; 
if r is instance-orientetl then 

calculate DE/DC for maintaining OT(r, I) ; 
Mut + true; 

else 
Mot + false; 
if E is not autonomous wrt C 
then calculate BE/X for computing the new 

va.lue of OT(r, I) 
else BE/DC + 0; 

/* OT(r,l) is computed once only */ 
fi; 

fi; 
a&l (E, BE/X) to Eflect ; 

od; 

We apply COSMA to the program (I’, 5) of section 
5.2. We ass~~nlt: that3 rules are set-oriented and that q, 
r2 and rg have priority over rd. The rule annotations 
returned by COSMA are as follows : 

fl 

r2 

Subexp : 

fll = fl{r, t}( b~.2=crA(X, --I y)) w (Q?.2=pB(!/, -, 2)) 

w (gE.J=+(Z, II, -)) 

-I bc F(x,z) tz C(x,z) 

/* Tl is the relation tlcfhetl by el */ 
Br:l+/BC = (II{,,,} Tl D( A-C(x,z)) x false 
&l-/K = Tl K A-C(x,z) 
Effect : 
t::! = &,,,)( flf,=fnlse el) 
&2/X = I-It,,,) A+Tl 
Materialize : false 

Effect : 
e3= II {,,,,,&(x,Y) w D~(Y,w)) - c-c Wwx) 
%3/X = l-I{,,,,,,} (A+C(x,y)w Dl(y,z,n)) 1 D< 
D~(z,u,x) 
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f3 

r4 

aWaD = ~{,,,,,) (C(x,y) W A+Dl(y,z,u)) -, D< 
D2(z,u,x) 
Materialize : false 

Subexp : 

e4=(wx+ls(B(x,y,-)) -, D< (uD.I=~ Dl(-,y,x)) W 

%v4 PC C(Y,X) 
/* T2 is the relation defined by e4 */ 
ae4+/8C = (II{,,,) T2 x A+C(y,x)) x true 
b’e4-/dC = T2 TV A*C(y,x) 
Effect : 

e5 = Qy,zj( ufc=true T2) 
8e5/cX = II{,,,) A+T2 

e6 =“{z,z)( (Q.~&~(x,Y,-)) -, IX (Q.M Dl(-,Y,x)) 

w Ehu,x)) 

7 DC (a~.z=aD2(- ,W)) 

de5/BC = undefined 
Materialize : false 

Effect : 
e7= ~{,,~,&WX,Y,Z) w (m.l=sD(- J,Y)) w C(O) 
W Fl(z,w)) W A2(y,t,x) 

e8= fl{z,y)(Al(t, Y, 2) w (oD.I=~D(- AY)) w (~W.) 
w Fl(z,w)) 7 IX FP(z,y) 
Materialize : false 

[n Figure 3, we represent the discrimination network 
for every output token relation associated with a rule 
of program. In each diagram, there is one input node 
per literal in the rule and one output token relation. 
Circle boxes denote relational expressions, square boxes 
denote materialized relations, and other nodes denote 
non-materialized relations. 

ABEFC B Dl E C B Dl E D2 

I 

e4 

8 

T-2 

e5 
I 

~(rl,C) Wr3.C) 

C Dl D2 Al DCFlA2 AIDC FlF2 

8 e3 

I 
8 e7 

I 
25 e8 

I 
OTWP) OT(r4,A) fW&W 

Figure 2: Discrimination network for Example 5.1 

Take rule ~1, the only changes on ita predicates 
consist of deletions from C according to the influence 
graph of table 5.2. The expression associated with 

O’l’(r~, C) is \Ir = A(x,c~,y), R(y$,z), I’:(z,v,r), llJ(x,x), 
-4 :( x,z). Shp 2 of the A tItIot,at,c~-H.lllr~ algori1.htn ~I+Y.I.N 
1J1at \Ir is not aubonomous wrt, tl&l.ion~ it, (:. Stq) 
3 computcw the maximal OT-profitable rc+&ous wrt. 
changes to C and returns tlrc rf:labiwt cl~~firlf~tl by f’l 
which is the relation associated with the I)rotlclrt,r-fiI1.c.r 
decomposition of @ ((A(x,~,y), Jl(y,/f,z), E(z,v,~), 
-F(x,z)),(~C(x,z))). Theu c?cl+/i)C sutl ijc,I.-/iX: 
are compul.ed. Next, Step 4 proceeds. Sitlrc* 1.11~ 
rute is set-oriented, its oe~put. token rc:Iation is IIO~ 
materialized. The expression that cc~rnputes the* iuit.i:rl 
value: of OT(q, C) in terlns of T1 (th(b rc&l.t,iou cl&llc*tl 
by el) is calculated and yields c.2. 

Subsequent values of OT( r 1, (:) are 1.h~ rorul)ul.c*d 
in terms of Tl and A-C using Bf*‘L/HC, wlrerc, A-(! 
represan1,s the delta relation containing deh*tians t.o C 
that occurred since last firing of rl. When tielr!tious 
occur in C, they are propagated to Tl. l)&tions 1.0 
Tl are directly performed to Tl while insertioux to ‘I’1 
are recorded separately iu1.o A+Tl. In fact, A+‘I’l ir, 

a delta relal.ion, iu the sCns(! of [SKtlM!)2], rq)rt*Ht*utiug 
1Jlt: nc*t, aclclil.ions 10 Tl 

For rul(b t-1, ouly oiie tleltR rc*l;l.l.ic~ri liiw to IM- 
maiutaiut:d: A-(:. Similarly, for the othcnr rIIIeH, our 
algorilJ~m cnablrn to tlat~ec1, which tl~l1,;:. rf+&)iis arc* 
necessary to maintain. In acldil.ioi~ 1.0 eri;il+ ;LII 
incremental comput~ation of phi rules, thwv rvliil.i0ns 
play tOha role of logs. Indec?cl, delta rclationr; CII~IJP 1.0 
implement a deferred update stra1.rgy for procc*wsing 1.11~ 
rules. The itha is that upclates to th(: input IIVC*I of ;L 
rule network can be togged into delta rc!lat,ions and t.bc*ir 
propagabiou into thus ne1,work CRII Iw tl~layc~l uuti.1 I.IIV 
rule is tried to fire. 

6 Related Work 
A few incremental algorithms havtt beeu propost:d l,o 
evaluate production rules in a tlal~itb~*~ sysl,fw~. 

A~TH.EAT [Han!)21 uses a ‘I’RKAT-likcb cli.qc.rirllitl;l.l,ior[ 
network to record t,he resell, of mat&ing rult! I)otlic*n 
against l.hr clatabasr. Rownvar, in order I.0 siw: i~wniory 
space, A-TREAT only memorizes the r(lsul1,s of sc:l(*ctiou 
predicates in crmemory nodes whr 1.11~ s&*rtivil.y of 
the selec1:ion is high. Jf the srhcbivi1.y the s&cl.ic~tl is 
low, A-TREAT replaces the correspoucling tr-nlc~rllory 
by a t~ir2w~ rumemory where it, memorize% 1.111: sc&cl.iou 
predicate of the nocle instead of tht* rc!siill. of l.lic~ 
selection itself. Much att,ention ha.3 beru dc~o1.c~l 1.0 
the efficient calculation of the new value of the* relation 
defined by a rule body by taking advantage of l.hc= clut’ry 
optimizer and the use of attril~utr indexes. On lh 

other hand, our algorithm focuses on choosing which 
appropriate discrimination network shc~~~ltl be buill.. 
With regard to this prohltbnl A-TJWAT ouly clu(*stioll 
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Appendix 
choose-source Algorithm 
input: a conjnection a, itw predicate canurxion graph 0, 

and a uet of changes C ; 
output: P = a positive literal of * ut itw vc:rtt!x in 

not marked in Q; 
let P denote at, uamlrrkect positive literal ; 
let 6~ denote the set of changes to P ill c ; 
apply the ordered tint of statements until one P is foutb4 : 

/* search- for an invariant wrt CT */ 
1. returrr the ~~mt)(tc selective (henceforth, tn.t;.) I’ 

s.t. C ban no effect on P; 
/* seek for a literal whose ctt:fiuetl rt!Iatiou ia ~tid&~ ou 
some rttrihutes */ 
2. return uk.6. P s.t. Q, is autouotuottH for P wrt (I.,- 

by 3’d amtoaoury criteriuur ; 
/* xek for a literal whm defined relatiolt catI only 
tlecreast dre to C */ 
3. retiirit u1.x. P s.t. Qr is aiitotlontons for P wrt Cl- 

hy I”’ autoaouly criteriuur ; 
4. return 111.~. I’ w.t. * iw ailtoueutt~us for f’ wrt. (177 

by airy criteria ; 

5. return 111.x. P ; 

choose-maxsubexpression Algorithm 
input: a conjimction @, ita prt&c:rtr rotflff!xiot~ ~rsplt G;. 

a set of cikai~~f~c!x C, P a literal of * , awl 
g an auton0m0iiW t?xprexwioll wrt C ; 

output: g = au ~utouoin~uH expression wrt 1’ ; 
/* the! litrr& of g arc ur:rrkt:cl in ci */ 

if P iw positive then conlpilte 
&J = {unmarked literal V xt V II& is c:cll,ner%:cl to I’ 

in G and g A V in altou0iuous wrl (I) ; 
while V7- # yl do 
1 choose an adjacent vertex V in VP: 

let C&J dellOtt! the set of Cllatlge~ tfJ v iI, c ; 

apply the occlereti list of stateitieutx until WI<: V 
is fou~rcl : 
I. r&urn negativf* V s.t. C ha.3 110 effect on V; 
2. rc:turu u1.s. pixitivtr V s.t. c h 110 efffd 018 V 
3. rettire m.s. V *.B. Q, is afltonolliotls for V wrt 

* .ld 
cv by 2 autowoniy criteriiint ; 

4. rntrirn 1n.s. V r.E. 4 k autollotnoux for V wrt 
CV hy 1”’ autoi~oiuy c:riteriurn ; 

5. return i11.8. V t4.t. * is aiitonoinous for V wrt 

CV h.y 3“” sla toaoluy c.ritariunl ; 
6. return 111.~. V ; 

2. extend q with V and mark V; 
3. visit $ from V a& expand y : 

g + g/x ckoore,llrc~~strbe~~~rrrcsaif~,l (4, cj, c, I’, g). 

update vp accurttirp, to !} ; 
od 

endif 
return 9; 
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