
An Adaptive Algorithm for Incremental Evaluation of
Production Rules in Databases

Fraqoise Fabret, Mireille Regnier and Eric Simon
INRIA - 78153 Le Chesnay, FRANCE

Abstract

Several incremental algorithms have been proposed to
evaluate database production rule programs. They all
derive from existing incremental algorithms, like RETE
and TREAT, developed for rule-barred systems in the
framework of Artificial Iutclligence. In this paper, we
addreati a specific but crucial problem that, arises with these
incrcmcutal algorithms: how much data should be profitably
materialized aud maiutaiued in order to speed-up program
c:virluation ? We show that the answer exposf!s to a well
kuown tradeoff. Our major contributiou is to propose an
adaptive dgorithtu that takes as input a program of ruleH
aud raturun fur each rule, the xat of most profitable relational
expreseious that should be maintained in order to obtain
a good compromise. A notable feature of our algorithm
iw that it works for both set-oriented and instance-oriented
rules. We compare our irlg0ritlhrlls with existing incremental
algorithms for dntabine production rule programs.

Kuywordn: incremcnlul ulgordlbms, pmluciion rules,
dutubusr rule lungungc proccssitrg, rule progrum opii-
tnirulifm.

1 Introduction

I’rfductiorl rules h;ivfa flenifmdmtxd to be a power-
ful programming paradigm to specify quf!riffs, views,
intqrity constraints id triggers in a database sys-
tcm [DE88], [SLRBB], [KdMSDO], [SKdM92], [SJGP90],
[Haa92], [WCL91]. H owever, the problem of efficiently
Hupporting rules in a database system still constitutes a
major challenge to entablixh the viability of rule-based
tc:chuology. A few papers have addressed this problem

t’crmiarion to copy wiihout jet all or part a/ this material ia
yrantrd provided that thr coyiea are no% made o’r diatribuied for
dirwt wmmrrcial advantage, the VLDB copyright notice and the
llllr of the ptrbliralion and itr duie appear, and nviice in given ihat
rvpying IS by prmrirrion of ihc Very Large Duta Base Endow-
I,rrnt. I; copy oiherwiar, UC to republiuh, requirea u Jee and/or
sprrial prrmirrion from ihe Endowment.

Procr!eclingr of the 10th VLDB Conference
Duldin, Irelarrtl 1003

by adapting algorithms that were designed by AI re-
searchers to optimize OPS5 rule programs in a main
memory environment.

Most database rule systems (see [HW92]) follow a
recognize-act-cycle similar to that of OPS5 [BFKM85].
A production rule consists of an action that must be
executed whenever a condition over the database holds.
In active database rule languages, an event can be
associated with the (condition, action) pair. Usually,
the action is a set of operations on the database, that
is insertions, deletions, and updates. Executing a rule
program proceeds by (i) evaluating rule’s conditions
against the database, (ii) choosing one rule instantiation
whose condition is satisfied, (iii) executing the action of
the selected rule, and repeating the cycle until a fixed-
point is reached (if any). The set of tuples that satisfies
a rule condition in a given database state is called a
sutisfying rule instun2iation.

A critical part of rule evaluation is the match phase
(phase (i) above), h w ere satisfying rule instantiations
are computed. A naive algorithm would execute the
fl~ery associated with each rule’s condition against the
entire database on each cycle. This approach rapidly
becomes intractable as soon as the number of rules and
facts gets large. To overcome this problem, incrementul
algorithms that maintain state information from cycle
to cycle have been proposed by AI researchers. The two
main known algorithms that fall into this category are
RETE [For821 and TREAT [Mir87].

The RETE algorithm maintains the result of the first
matching phase into an ad-hoc data structure called a
discrimination network. In this structure, the result of
each select and join operation that occurs in every rule’s
condition is recorded and stored in some node. Results
of selections are stored in ulphu-memory nodes and
form the input portion of the discrimination network.
The results of joins are stored in beta-memory nodes.
Nodes corresponding to the select and join operations
that occur in the same rule’s condition are connected

455

together in the form of a dataflow network. Satisfying
rule instantiations are stored in the output nodes of the
network.

RETE transforms the recognize-act-cycle above as
follows. Phase (i) is removed from the cycle and be-
comes an iniiialiralion phase during which the discrim-
ination network is built. A new phase is then inserted
in the cycle after phase (iii). It propagates every change
to the database done by a rule’s action, (expected to be
very small compared to the size of the database), to-
wards the appropriate alpha and beta-memories. Thus,
the set of rule instantiations is incrementally (or dif-
ferentially) maintained. The TREAT algorithm essen-
tially differs from RETE by the fact that it does not
maintain beta-memory nodes. TREAT only maintains
alpha-nodes and the set of all the satisfying rule instan-
tiations.

Our starting point for this research is that incremen-
tal algorithms have an inherent tradeofi Intuitively,
maintaining some node N in a discrimination network
is profitable if the work spent in computing the changes
to the operands involved in the expression that com-
putes N and in updating the current value of N from
its previous value is less than that spent in comput-
ing it directly from its operands. The three important,
factors in this type of improvement are, (1) the ability
to efficiently compute the differential change to N for
arbitrary expressions, (2) the boundedness of this dif-
ferential, and (3) the number of times N is used with
regard to the number of times N is changed.

In a sense, RETE and TREAT are two opposite
answers to this tradeoff. RETE must do aa much work
to maintain memory nodes whenever tuples are deleted
from the database as it does to maintain memory nodes
whenever tuples are inserted. TREAT does much less
work when tuples are deleted from the database since it
does not have to update the intermediate join results.
Only the final set of rule instantiations has to be
updated. But TREAT does do more work than RETE
when tuples are inserted because rule conditions have
to be reevaluated for these new tuples.

The purpose of this paper is to systematically inves-
tigate this problem of profitability of incremental algo-
rithms for rulebased programs. Our main contribution
is to propose an adaptative algorithm that given a rule
program chooses the better compromise of discrimina-
tion network in between RETE and TREAT. Following
previous work on the design of incremental algorithms
in the framework of high-level programming languages
such as SETL ([PK82], [Pai83]), our algorithm relies
on a heuristic-baaed characterization of the notion of
profitability. More, our algorithm is baaed on a careful
analysis of the migration flow of data in a rule program.

IJsually, a rule language 11,~ either set,-oricwtfd (tug.,

Aricl, RDL, Starburst) or illat,allcc:-oricntrtl rules (~,g.,
OPS5, R.PL, PRSII). W. I e 8 low that0 lollis tlifferfw2:

of semantic.9 greatly influences the clmicc of a Kfmfi

discrimination network. A llotal)l~~ feat#llrf? of or1r

algorithm is tllat, it, works for I~,f.h xc+oric~ntc:d and
instance-oriented rules.

This paper is structured.as follows. !+rtion 2 prfwfvt.H

our rule language, introduces useful tfvlliIiology, and r(*-
lates our language to OPS5. In Section 3, wc tlrscriho
RETE and TR.EAT algo&hms and c:xhihit thc*ir illhcar-
ent t,radeoff. In Section I, WV rharar,tcqizc a~~tmf~lr~fmf

exprrBsions, that can be tasily cliffi!rc,llt,iat.cIcI with rt:-
spoct to some changes to their operauds. ‘lhw, wt. tlf*-
fine when a relation is profitable to maintain and givcb
an algorithm that, extracts maximal profitable relations
from a given conjunctive formula. Section 5 presrnts
our main adaptative algorithm, which given a set of
rules determines the better discrimination nc*twork to
build. Section 6 compares our work with other related
work. Finally, Section 7 concludes the paprr.

2 The Rule Language
In order to make the prestsntation of our algorithnls
general and independent from a particular rule-lbasrtl
language syntax, we shall use a Datalog-like notation
for rules. From a semantic point of view, WC* distiuguish
set-oriented rules from inst,ance-orierit,ecl r&s.

2.1 Terminology
We briefly review some terminology. A fncf over it
predicate Q of arity n is an expression Q(u~, ..,, (I,,)
where each (ii is a constant. A dnlabase s&ma is a
finite set of pretlicatcs. A (dahbnsu) inalnncc over a
achema S is a finite set of facts over predicates in ,.. If
Ik is a set of facts and Q a predicntc in ,$, Q(“) cif!md.r*w

the set, of facts over Q in 4. A lilcrul is RII exprf?ssioe of
the form (~)Q(tl, ,.., z,) where rrr 2 0, Q is a predicatc~
of arity m and each ti ia either a variable or a constant.
An eg-lilernl is an expression of the form (~)el = $1
where ~1, “2 are variables or constants. We shall 11s~
letters 2, y, 2, . . . to denote variables, and grrek lettc~m
to denote constants.

Definition 2.1 A ralc is an expression of thcb form

where each Aj is a literal and each Ri is a literal or au
eq-literal. A rth program is a finite set, of rules.

We consider that there may exist a partial ordering
between rules where r i r’ means that if r nutI r’ arc:
both firahlr at the same timca, then r IIW priority ovc’r

456

1.‘. ‘I’llis ortlorirtg i8 m4s1rnif~l t,o lw av;iiI;il~le at, ally
l.illlcr (luring program execution. We tlenot,c (r, 5) a
rlllc lm)granl with a priority ordering between rules.

2.2 Set-orieutcd Rdes

A rule Cilll be int~t~rl~rc:tacl using either aii instance-
oric:ut,c*d or a sc:t-orit*nt,t:tl seluantics. We st.art. with thr
IilSb Oll(!.

Effect of II rule 011 a database hetance: Let, P be
a nrla: body - A,, A,,, ~fil, -B,, and I a set of
facts. Let r’ be a ground instance of r euch that. (i) each
positive literal of the body of r’ iH a fact. in I and each
negative literal or eq-literal in the body of I“ holds, and
(ii) t!ilCll variable is valuated to some conetaut occuring
in I. ‘l’hc:n r’ is #aid to be a ~~linjyiny inslance of r in
1. Now, the set. of ground literals in the heads of all the
niitisfying innt.aucc~s of r iii I is called Climb cJrf:ct fjj r 011
I (clVnot.t!d c j jE(‘& (I).

Intuitively, the effect of rule r on I is the global effect.
nblaiucd by considering the actions of all the satisfying
instances of r in I.

Definition 2.2 A rule r is said to be fir&e in a state
I if there exists a fact, A suc.h that either

l IA E cjjt~$.(f), A e e/j&(f) and A E I

Thus, a rule is firable if its firing would produce a net
change to the current databaae state.

Summrticw of u rule l~ogram: Let (I’, 5) be a
rule program. ‘I’his program defines a r&lion among
database instances as follows. For each state I, J is
rtxr/rublt: from I using I’ if there is a firable rule r in r
SII& that, no other firable rule has priorit,y over r, and
.I cousirits of tile facts A HI& that.:

l A is in I U c / jwt, (I) and -A is not in e jjeclr (I)
or

l A is in I and A, -A are both in (: jjt!cl,(Z).

If a srquence of reachable states has a limit, it is called
a jiq)&nt of the program. Notice that a program may
IIHVP scvc~ritl fixpoints or no fixpoiut, at all.

Dejhition 2.3 (liven a rule program and a state 1,
t,hca cotrflict srt is defined to be the set of all the firable
rules in I.

2.3 Instance-oriented Rules

A set-oriented rule is fired for all its inst,ant,iations in
one step whereas an instance-oriented rule is fired for
one instantiation in one step. Thus, the difference is
that, we consider the effect, of a satisfying rule instance
alone. If r’ is a satisfying instance of r, we denot,e the
effect of r’ on I by e jject,., (I). We define r as a firable
rule if there exists a satisfyingfirable instance r’ of r that
obeys the conditions of Definition 2.2., where e j ject, (I)
is replaced by e j ject,, (I). Then, the semantics of a rule
program is defined as for set-oriented rules except that
r is replaced by a satisfying instance r’ and e j ject, (I)
is replaced by e j ject,, (I). Finally, the conflict set is
defined to be the set of all the firable satisfying instances
of rules in a state I.

2.4 Comparisons with OPS5-like Languages

OPS5 [BFKM85] is the underlying language for which
RETE and TREAT have initially been designed. Com-
pared to our language, OPS5 has three main differences:
facts are timestamped, the language has a refraction-
based semantics, and priorities beetwen rules are dy-
namic.

lu spite of these differences of semantics, our final
algorithm is applicable to OPSS-like languages. The
main reason is that we seek to optimize the specific
phase of matching rules against, the database, which is
common to all rule-based languages [HW92].

3 Incremental Computation Algorithms

In this section, we describe and compare the discrimina-
tion networks built. by RETE and TREAT. We assume
that, rules are instance-oriented (as in OPS5).

3.1 RETE Network

Consider the following rule:

1.1 : A(~,u,z), B(z,y,P), C(r,xro) ---,
[X7, z, 4, -C(r, Y, 2) .

This rule is compiled by RETE in the dataflow
network depicted in Figure 1. The network has three
alpha-nodes nl, n2, n3, and two beta-nodes yl, ~2,
where:

nl = UA.~=~A, n2 = UB.~+B, and n3 = uc.l&
pl = H{nl.l,n2.2,n1.q(nl Wnl.lzn2.1 n2), and
112 = n{pl.l,pl.2,pl.3,n3.3)(yl Wp1.2=n3.2 n3)

where 6, H, and w respectively denote relational select,
project, and join.

The incremental evaluation procedure of a rule program
proceeds essentially as follows:

457

I P2

Figure 1: RETE network for rule rl

incremental evaluation of a rule progm7n

state := initial database state;
match rules against state until a firahle rule is fouutl
and record the results into the discrimination setwork;
while there exists a firable rule’ r do

slate := result of firing r ou stute;
for each input node N of the uetwork do

if N has changed Ihen propagate the chauge
to the successor nodes of N;

select a firable rule r;
end while

Compared to the original evaluation procedure used by
RETE and TREAT, there is one main difference. Since
we assume statically-defined priorities between rules,
there is no need to construct the whole conflict set before
entering the while loop. We only need to find one firable
rule (step t). Thus, selecting a firable rule in step $ may
require to match some non-already tried rules against
sue in order to compute their set of satisfying iustances
and hence, to expand the discrimination network.

3.2 TREAT Network
TREAT compiles rule rl in a dataflow network similar
to RETE. The only difference with RETE’s network is
that the result of the join between nl and nz is not kept.
On the other hand, TREAT maintains for each rule its
set of satisfying instances. This coincides with node 1~2
in RETE’s network. Calling 1’ this node, we have

p = ~{nl.l,nz.z,n1.3,n3.3}{~~ %l.l=nZ.l n2 %K!=n3.2

nW.

In fact, TREAT also retnembrrs in JJ the t.uplt* iclc*ut.ifit~rs
of the matching tuples.

3.3 Traclc:off l3ctwcx!ll RETE nd TREAT

TIIP lnain qu&ion r;&tl I,y the tm%viour; c*x;rmpl~~ is:
“is il. worl,hwhih* t,o kqb INJde pl '!'I. 'ii) aiisw(‘r, WC
need to compare! thtb work tlonc* by c~clr algorit.hru at.
each cycle.

RETE does an extra work to maintain 1~ when a
deletion to ns occurs. But, some ilnl)lt~~~l~~tlt~at.ion.u 01
RETE optimize it by recording tuple iclentifirrs in the
nodes (as TREAT does). On the othc*r hand, ‘I’R.EA1
does an extra work to prolmgatc in.ur*rtions ht*caun~~
the join bc?tSwcn rrl and n2 needs to be rc~rom~u~l.t~tl
at, each cycle. Clearly, on this example, the t.rath!olf
will favor RETE (avc?n if RETE doen not. opt.iluixc* t.h(*
maintenance of 1~2 with tuple iclent&rs).

Now, suppose that the act.iou t)art of tllc~ rult! ix
changed, yicMing the following rule:

Since’ t11c~ hotly of P~ is t,htb S;UIW ;I.‘I rl, t,hc* ntbt.workx
rmq~ectivrly built, by RX’I’E and TR.Eh’l’ for 1’2 ;brr* ;w
the networks for ~1 ISub ihis t.imcs, ‘I‘RlSA’l’ outpc*rforll~?c
R.ETE bacaurrc: IJIV o111y c:lli~~. CA t.11~ rl11(- is 1~0 ~l~+~t.~~
facts and these dt:let,ionx require. IWS work wi1.h ‘l’l~.EA’l’.
Indeed, RE’I’E will ut)(lJ.e II~&*N 112, 1’1 aatl 112 whc?ro;w
TREAT will update n’L and 1’.

The abovc~ examples 1~op~f1111y make one point.. Th(%ro
is au inhereut ISradeoff in incremcnlal algorithms. Mniu-
tainirq infomation may help for coqmt.in~ 1it:w rult!
instantiations hiit4 Illity hurt0 pA-mnanct! whrti rulr ill-
st8ant.iations are dt:lc~l~etl from the conflict, sat.. III general,
a rule progritm 11,~r a notI-taonot,oili~ I~c+avior wiCIi rt*-
spect, to its conflict. Wt. iUlC1 solvillg t.li(* t.riitlt& drpt~lids
on the* particular rule prograIn.

4 Computation of Profitable Relations

Idt!ally, an algoriChiil tJi;tt. clioo~t~x in cli.qc~ri~~~ilial.ic~~i
network for a set, of rllltwi s11o111t1 coIIsid(*r I.WO illrport.;rllt.
factors:

1. the abili1.y to fi/LGtrlly conipu1.1~ 1.11~ tlilf~rc*rlt.iiil
change to (Avery tmlt~ in the nabwork a.ys()ciat.ml with
a relat,ional expression, given tht! 1114 chaug~ to its
predecessor nodes,

2. the p~~~~filnhilil~ of mniulaiuing a node in thcb ur+-
work for speeding calrul;&mrc thl.1, will follow thtr
nlirl,arinli~al.iotI of l.htl no&*.

458

It0t.h ~~ondit.ioi~s mnst, IM* mc*t. I.0 tlc!cidc: to ItIaintain a
IIO~IV ~II t.htb Ilc+work. ‘I%! IirNt, prol)lc~t~ is addressed in
S7t.ioiix I. I ;ui(I 1.2, whih* tht* XI~U~II~ 011v is iuldr(:Ns(:~l
III St*c*t.ioii 1 .:I.

Our ~COI&YII is 110t, totally new. Previous work (e.g.,
[I)(!L8!)]) has atltlrc~ssed the problem of tlct.crniining
which data arc useful to maintain in order t,o speed-
lip t,hc: llliliIll~:lliUlCC of a materialized view when base
rc+rt.ionx change. AII int,oreating case is wlicn t,he new
value of the view can be computed from its previous
(slort~tl) value and t.hct tliffc~rt~ulial changes applied to its
cq~~rirritl rolirt,iotls. The view is said to be iirloi~omoauly
coii~l~ul.al~le. We genc~ralize this notion.

III wlial follows, a c*/raiq to a predicat.o inst.ance is
c*it.hc!r ill1 iaswliorl or a flclelion of tuples. The sign
of il. pr~~dicate in a conjunction of liMaIs inclicat,es if it.
occurs positively or nc!gat,ively. We also dt~not~f: +(lc) the

rtrlirt.ioll ffc/itrVd ’ by a conjunct.ion of lilt*rals Q(5) in
st.at.c: /k. Without, lo ‘Y f h. o gc~norality, wt: ouly consider
foriiiiil~rx 4 where! ~acli predicate occurs only once (this
iiiay INS iichicvcd hy renaming).

D~diuitiou 4.1 I,& Q, bc: a (safe) conjunctiou of litcrals
;in~l r ii rhangc~ 1.0 a predicate P occuring in a. Then ct,
is f~~~l~~~~f~n~ot~s for I’ wrt. r if fbr any A:, cP(‘+‘) can oiily
IN: c*oilil)iitc:d from a(‘) and C.

‘l’his cl&ition is generiilizt~d to a wt, of rliairges.

l)c!fimit.iou 4.2 I,& Q, IN! a (safe) conjunct,iou of literals
illl(I (lp ;L sc4. of Cllilllgf?H LO P. @ is 1111h~J1110119 for P
wrt. C!.p if 4 is aiit.onom0us for P wrt, (*very change of
(I,. I,c*l. C I)e il scrt, of rhanges to some prcdirates of Q.
4) is ~~lon0~J1.s wrt. C if for each predicate P ilKId for
13ch chi~igt: c of C, eil.ht:r r hm no effect. on P, or 4 is
a111.01101110us for P wrb C.

Sullicicqit, conditions to &tect. aut,ononious expres-
sious ill?! prcsc:ntc:d I)t!loW. We shall use t,he following
llot.ilt,iOllS. I,crt. ct, bts a (safe) conjunction of literals and
I’ a pr~Vli(:ilt,e in Cp. WC partition the Vilrial)les of Qr into
t.lirt*c: wt,s: SV C0lltAllN variables .hwcd by 1’ and SONle

Ot.ht!r ~)r~Y~icat~t! (Jf 0, Pv cOllt4hH Variablfs that OCCllr

xol~ly in P, and I1V cont.ains the rr:nrf1i71ir1y variables.

First rmcl Socw~~d Autonomy Criteria: Let. It be
il SLiltA’ illl(l lk+l the shtf! d)t#aind after applying a
clla,l~‘~ (’ t.0 P(k).

I. If I’ in positiac, ant1 c is a fffhlc, lheu * is
aut~on(mmus for I’ wrb c and the relation defined

2.

by 4 in state II, is d&led hy:

{

A+“) = dk)(SV, PV, RV) W AP(k)(SV, PV),
,l)(k+l) _ a,(k) _ AQ,‘k’ (1) -

wl,ttrrf &p(k) = p(k) _ p(k+‘)

If P is rreyutitre and c is an insed, then Cp is
autonomous for P w.r.t, c and the relation defined
by @ in state Ik is defined by formula (l), in which
A.p(k) = p(k+l) _ p(k).

&fore introducing the third criteria, we need another
definition.

Ddinition 4.3 Let P(A1, A,,) be a relational schema
and S be a subset of {Al, A,,}. We say that IIsP is
stable wrt, a set of changes c, if for any state Ik, C has
no effect on IIsP(“).

FOr inskance, P is stable on {x} wrt. the changes
induced by rule f: R(x, z), P(x, y) - P(r, z).

Third Autonomy Criteria: If P is posi2ive, c is an
irrscri and I&P is stable wrt r, then 0 is autonomous
for P w.r.t c and the relation defined by Cp in state Ik
is defined by

1
Adk) = (JJ~sv,riv~ @(k)(SV, PV, RV)) W AP(‘I)(SV, PV),
,#,(“+I) = a(k) u L\@(k)

(2)

where AI’(‘) = Ptkt’) - Pck).

Example 4.1: Take Cp = R(z, z) W P(r, y) and rule
11.(3!, z), P(x, y) + P(x,z). Given a state Ik, when r
fires, the set, of t.uples APck) inserted into Pck) is such
that III,)AP(~) c I-I,,, Pck). By the third autonomy
criteria, @ is autonomous for P wrt, the changes induced
by r, and Q(k+l) can be easily computed using formula

(2).
Remark however, that if r has a set-oriented seman-

tics then the rule can only be fired once because after the
first firing no new tuples can be inserted into P. Thus,
maintaining Qck) will not, be profitable. On the other
hand, if r has an instance-oriented semantics then r can
IN? fired many times before reaching a fixpoint. Hence,
maintaining @tk) will be pwjituble.

4.2 Producer-filter Decomposition of an
Expression

In this section, we make use of the notion of producer-
filter view initially introduced in [Bry89]. We provide
a different, definition of a producer-filter and relate
this notion to the previous concept of autonomous
expression. We first+ use a motivat,ing example.

Example 4.2: Take the expression:

459

and suppose we have a se!t of changes C consisting of
deletions from A, insertions into C that keep I1(c,l)C
invariant, insertions into D, and insertions and deletions
to E. According to the three autonomy criteria, @I is
autonomous wrt all changes of C hut, deletions from E.
Now, take formula:

02 = 42, Y), B(Y,z), C(z,u), -D(z, ~1

GZ is clearly autonomous wrt to C. Suppose that.
T(z, y, 5, U) is the relation defined by @z, and let us
define T(z, y,z, u,f~) as: (T W E) x {true) U (T -I W

E) x {false}. Th e relation defined_ by 4q is simply
computed by n{,,,,,,,,,(a,,=l.~,~ T). Furthermore,
when a tuple t is deleted from E then all tuples of ?
that match with 1 have their fE attribute set, to frr1.w.

Thus, maintaining relation ? is easy when deletions
to E occur and can be profifable to compute t,he rdatkm

defined by @I.

Definition 4.4 Let Cp he a (safe) conjnnction of liter-
als. Assume that @ = t$ A $J, where 4 is safe and all
1/, variables are bound by positive literals in 4. Then I$
(resp. 111) is said to be a prodtrcer (resp. a filler) for a,
and (4, $J) is said to be a prodaccr-jilter decomposition.

Definition 4.5 Let (4, $J) be a prodrccr-filter decom-
position of a formula *. Let, rl, = (-t)Bl(Zl), . .,
(7)B,,(Zn), and T(A1, . ..&) the relation defined by 4.
We define the relation T with schema {Al, . ..At} U

{fi, fn}, where Dom(fi) = {true, false} as:

where b< denotes the semi-outer join operator [1JM!)].

Intuitively, f?r each tuple 1 of T (the producer), there
is a tuple in T that indicates whether t satisfies the
condition of the filter (formula $).

Proposition 4.1 Let (4, $J) be a producer filter decom-
position of Qp and X? the associated relation. Let P he
a predicate of 0 and C a set of changes. If either P
occurs in $J, or * is autonomous 3 for P wrt C then ?
is autonomous for P wrt C.

In the previous example, (a~, YE) is a prodwer filter
decomposition of 01 which is autonomous wrt the set,
of changes we considered.

4.3 Algorithm to Compute Profitable
Relations

We now characterize profitable relations and provide
an algorithm that computes the maximal profitable
relations from a given conjunction of literals.

3for a sake of simplicity we sldl nbusively use the word
imtonmnous for a relation

Given a forrnnln, there niay IN many l~rolil.;ilJ~~

snbexpmclsions l)ntO not. all of tticarn will be int.crcat.ing

to maintain. Take 4 = A($, y), B(y, z), C:(z, T), and
assume that t.he set, of changes C consist,s of inst!rt.ions

into A that, keep 11 A,~A invariant,, clclcCons from Ij, antI

instbrbions int,o C that knep 11(7.1(: invariant.. ‘I’IIw A,

Ij, C:, A W B, B W C arc all @profitnblc snl)c.xprc:ssions

wrt C. N~~vc*rth&ss, memorizing ancl nlaillt.;rining all

thcsv relations is clearly not, a gaocl cornl~rotnisc*. 011r

algorit~lirn only strlt:rl.s rnfrrinrrtl rdat,ions. in mr cm’, it

will randomly rhoost! t*o rnaint.ain t4l.llc*r fl nntl f3 W (,I,

or C ancl fI W B.

Maximal Profitable Relations Algorithm
input: R safe coli,jrluc:l.iou of lit.c4s Cp, irncl in se1 of c:h:ru~~ C

output: A = a set of @-profitable rrlations NIICII that covey

operaid r4atiou I&my;x to only out! crxprewsion;

M - R; /* :I wt. of iautOiionioiis rxprt4c,ux ‘/
strp 1 :
(,irilfl a counrction graph cj wlitrre vt:rtic:c+s ilrc’ li(.c*r;rls of 4’
aucl there is ilu eilge bt!twet*n lit.er;rls 1’1 ;rid P2 if tlic-y

have at least a variable iii c0111niou;

rtrp 2 :

repeat
P + f-hoo.~edqolrrff! (q%‘g’c);
/* retucu a literal of 0 that is NOII markecl in cj */
mark P in 9;
g + choo.~~_rrrtrx_rrr1~!~:~~rrs,tsio~~ (G, C, I’, I’);

/* coustriic4. r maximal aul.on0ntous c*xprc:wsiou from I’ ‘/

M - M u {!I);
until all IIO~W of cj wilh positive* lit.c.r;rls art! markt4;
rtrp 3 :
7 +- {unmarkecl litc:rals in 0) U (j E M s.1. j is ;L singh*-

LOII ;ud tlmrc! ix SCNIIC 11 itI M w.1. (I’,/) iw a producer-lillvr

tlr:colliI)r)silioll of 1, A j amI its ;Lssoc:i;rl.c*tl rt4atioti is
aiiloitonioiis wrt C);

P + rr&wqwrltrccr (M-T);
/* an element of P is a proclucrr-filter clecoliii,ositioil (p, j)

s.t. p is in M-T and f is inihaliscxl with H. */

for / in 7 do

b’ f’) + rc:fect-lJn,fftrcc,r-Ffter (j, P, C);

/* (P, f’) 6 p n.t. (P, f 1 is a protlucer-filter clecornposi-
tioli aid ils associated relation is aiitonomom4 wrl C.

When several ele~nents of P are canclithtr-, WC clroostr

the riiost scktk onr; if 1101ii: p is rancloidy s&cGtl.*/
if p cxist.s then aclcl j to j’;

Od

460

dcp 4:

A - C;
for (p, /) in ‘P do

if / f Y) or y in uot a siugle lilcrnl then ;rtlcl the relrtiou
a.qnoc:i;rtcxi with (p, f) to A ;
fi

od
return A ;

At St.q 2 of the algorithm, we choose a node, called
the search:, in the predicate connection graph and then
construct a maximal autonomous expression from this
node. Note that there may be several autonomous ex-
prcssions that can be built from a given node. The
hc!uristics used to choose the source and compute the
l’rcfcrrcd autonomous expression is detailled in Ap-
pcsndix A. Jn general, we are interested in the selectivity
of it literal (some arguments can be constants) because
we want to compute a profitable relation with the small-
t!sb size.

At the end of Step 2, M contains a set of autonomous
expremions but some nodes of 0 may remain unmarked
(negative literals). In Step 3, T is constructed with
[MJtelltial fibers to some alltononlous expressions of M.
Each autonomous expression that is not in F becomes
a producer-filter decomposition in P. Then, we try to
integrate every literal of F within the filter of some
producer-filter decomposition in P.

In the la& step of the algorithm, we output relations
that arc! associated with in2erdiny producer-filter

decompositions, i.e., those where the filter is not empty
or the producer is not reduced to a single literal.

5 The COSMA Algorithm
5.1 Output Token Relation8
Before presenting our algorithm we need to define
specific relations, called output foEen relations, that
play a key role in the computation of a rule program.

Intuitively, given a rule r and a literal 1 = (y)P(q in its
head, the output token relation associated with r and
1 records the net effect of r on the instance of P, for a
particular database state. Such relations are essential

because they enable to know if a rule is firable: at least
one of its output token relations must be not empty.
More, when a rule fires, output8 token relations serve to
compute the effect of the rule.

The definition of an output8 token relation varies
according to the semantics of rules.

Definition 5.1 Let r be a set-oriented rule, 1 =
(y)P(Z) a literal in the head of r, and I a database state.
The output token relation, noted OT(r,I), associated
with r and 1 is the set of ground instances of P in
c:ffcc&(I) that represent a net change to Z(P).

For instance-oriented rules, the definition slightly
differs because we have to identify to which satisfying
rule instance is associated each t,uple of OT. In fact,
every triple in the relation defined by the body of a
rule, represents a satisfying instance of that rule.

Defiuition 5.2 Let r be an instance-oriented rule, 1 =
(l)P(Z) a literal in the head of r, and I a database state.
Each tuple in OT(r, 1) is the concatenation of two tuples,
t and t’ where t is a tuple in the relation defined by the
body of r that corresponds to a satisfying instance r’ of
r, and 1’ is a ground instance of P in ef feet,, (I) that
represents a net change to Z(P).

5.2 Migration Flow of Data in a Program

As we mentioned before, our algorithm relies on the
knowledge of the changes to any predicate that are
induced by the program at, a particular point in time.
Extracting this knowledge from a rule program requires
to perform a careful analysis of the migration flow of
data within the rule program. Because we assume
statically-defined priorities between rules, this analysis
can be done statically.

In order to capture the migration flow of data, we
construct a labelled direct,ed graph Z called an Influence
gruph. Rules are the vertices of Z and there is an arc
from r to r’ if there are predicates occurring in the head
of r that also occur in r’. In the following, we say that
r has an influence over r’. The label associated with
(r, r’) is a set, of expressions of the form 1 0 1’ where 1
(resp. 1’) is a literal of the head of r (resp. head of
r’) and 0 is in {+, -}. The expression 1 + 1’ (resp. 1
- 1’) means that, when r fires, its effect wrt 1 has for
consequence to add (resp. to remove) tuples into (resp.
from) OT(r, 1’).

Example 5.1: Consider the following program J?:

rl : A(x,(r,y), B(y,@), E(z,v,y), ~F(x,z) -+ C(x,z)
rz : C(X,Y), D(Yw) - WAX)
r3 : B(x,Y$), -D(&Y,x), E(v,x) - D(b,x), -C(YJ)
~4 : A(x,Y,z), D(&x,Y), C(O), F(z,w) - -W,x), WY)

Table 5.1 represents the Infrtrence graph of program r,
rows [resp. columns] represent r [resp. r’] :

Defiuition 5.3 Let Z be the influence graph of a
program I’ and rot-1 . . .r, a path in 1. If there exists
a sequence (lo 40 11)(11 81 1~). . . (L-1 0,-l I,,) where
(li Bi li+l) is an expression in the label of (ri,ri+l),
then this sequence is said to be a propagation path from
ro to r,. If for each i E (0, . . . , (n - 1))) t$ = + , then
the propagation path is positive. If 0,-l = -, then the
propagation path is negutiue.

461

r1

--^- Tl (&) (c+L } { C + YT;;, C+F)

72 U'+D} {D-D,D--C} ID+-A,D+F)
23 {-c-kc} {D t D, -C - D) {D - D, D -4:) { -42 - -A, -C - F , D + -IA, D + F) _- .-_
~4 { -A - C, F - C } (-A - -A, -A - F, F + -A, Y + 1:) -.. .-_

Table 5.1: Inflnencc ~rapl~ of I‘

The priority ordering between rules enables to simplify
an influence graph by removing some labels. Assume for
instance that rl, ~2 and rs have priority over r4 in the
previous example. Rule r4 can only be fired when no
other rule is firable. Since OT(r4, ‘A) has not yet been
computed any firing of rl, r2 and r3 has no effect on
OT(r4,lA). Furthermore, if v-4 fires, neither rl or PJ or
t-3 becomes firable. Thus, t-4 has no effect on OT(rl, C).
Hence, the labels of the arcs (rl, rq), (r2, rd), (r3, r4)
and (r4, q) are irrelevant and can be discarded, thereby
changing the propagation paths in 1. This is formalized
below.

Definition 5.4 Let (I’, 5) be a program, Z its influence
graph, and p = 1 8 1’ an element, of the label of (r, r’).
Then p is relevant iff

l r and r’ are not comparable wrt 5, or

l r’ has priority over r and p is a positive propagation
path from r to r’, or

l r has priority over r’ and there exist a rule r” that
has not priority over r’ and a positive propagation
path, p’, from r” to r, such that p’ p is a propagation
path from r” to r’.

Irrelevant portions of the labels can be discarded from
the influence graph. To illustrate, in Table 5.1 bold
characters represent the label expressions that can be
discarded.

5.3 The Algorithm

Given a program (I’, <), with either an instance-
oriented or a set-oriented semantics, COSMA is a one-
pass algorithm which produces for each rule, which
relations should be materialized, how to compute these
relations and how to differentially maintain them.

COSMA incrementally builds an injluencc pup/~ and
simultaneously computes the relevant label expressions.
When all the labels of the edges ending at some rule
r are fully computed, the influence graph provides the
necessary knowledge about the possible set of changes,
say C, to the predicates occuring in r. Then, r is
annotated with two specific sets noted Effect and Subezp
using the Annotate,Rule algorithm.

COSMA Algorithm :
input: a program (r, 5) with a xcl-oriented or iuntnnw-

oriented nemanticiq
output : r where each rule hitw beau rnnatatrcl;

/* Initialisation of the influence graph */
step 2:
while there exists a non annot,atecl rule in I’ do

M + (r E I’ s.t. V r’ E I’ if r’ hax prioriI,y
over r then r’ is annotated }

for r in M do
N +- { rulen that have an influence over I‘);
for r’ in A/ do

c:xpnntl Z with edge (r’, r) ;
compute the rekvailt Inbc:l expreaxioiis of (r’, r);

od;
Annotate-Rule (I, r);

od;
od;

An clt!m4 of Subccp is a pair (E, iIfS/&!) serh thrt

E is a s&expression of the expression associated wil.li
OT(r, I), for some 1 iu the Ilt~ad of r, and ijE/N! dcrrottw
the differential expression that incremt!ntnlly tiiaintaill
the relation defined by E wrl. a se:t of changes C. All
the relations defined by the E-cxprrssions of S’ttbray will
be materialized. A tlifferential expression consists il.sc4T
of a pair (iIE+/X!, iIE’/iX), wbrrt: tbt* first (rip.
second) element computes tilples that tnllnt. IN* iiXld+!tl
(resp. deleted) to the relakion tlefinecl by E, say 7’. If
no insertions (resp. deletions) can occur to I’ thc*n 1.11~
first (req. secoud) clemeut is said to Ibe urrdc~~iurd.

For every litt*rai 1 in the bead of r, Uit!rca is a tril)k
(E, BE/N, Mat) in E&d. III each trii&!, E reprt!st!nts
the expression that, computes OT(r, I) in tOc!rlns of I.lw

materialized rc?lations defined in Submp nutI other (IIOIP
materializecl) relations. If OT(r, 1) is materialized then
BE/X is the differt:ntial expression that maintains (I’/’
wrt C. In this case, the clifferrntial will consist of
a pair (8E+/r?C, AE-/X) as we m&,ionrtl before.
Otherwise, BE/X is the rxpression that computes the

new value of OT iu terms of the differeutial cIliuIK(*N
to its opt?raritl rt4atious. lltw, tile clifferriil.i;il c0Iisifil.s

462

of a fiihgh* (~xpr~*ssioii. Firrally, Mal is ;L boolean that

iiidic~d~c~~ if o’I‘(r,l) is rliiilc:ri;rlizctcl.
l Slrp 2 Uflfl 3 Of th(! Alll1~~t~~~t~~~~l~.Ill~~ ill@J~it,hII1
cor~qn~t,c! Scrbcxp. (:ivctn a rule t ancl il literal 1 in
its hea(I, our algorithm ~HRR the following simple rnle
to tlocitlt: which snbexpressions sh~ltl he cornp~~tetl in
skhmp.

Rl. If o’I’(r, I) is not antonomons wrt. C then memorizing
nirixiiiial O?‘(r, I)-lwofitaldc relations is useful.

‘1‘11~~ rationale for this heuristic rnle is that when OT(r,l)
is not aiitonomoiis wrt C, OT(r, I) ~ieetls to Iw computed
mote than once whatever the semantics of the rnle is.
‘~‘IIIw, it is uscftrl to memorize snhexpressions that, may
xpeeci up repetitive computations of OT(t,l).
l Wp 4 of the algorithm computes the seconcl part of
th annotation, Ffleci. An important decision taken by
th algorithm is to decide if au output token relation
must be materialized. We use the following hek3tic
riilct:

R2. If a rule P is iast,ance-orielltetl then mt:morizing
o’I’(r, 1) is useful for c:vt!ry lit,c:rnl 1 iri the head of r.

With iustatrce-orit!tit,i!~t rules, whet1 a rule fires, only
ant’ instantiation, say t’, i.e., OIIC tupla of 02’ is
used. Int,llit.ively, the efkct of the rlile may have for
coiiseqiience to add uew instantiations in 01’ and/or
1.0 invalidate previous instantiations of OT. If OT is
not maktialized then it hw to be entirely recomputed
at. IW:II firing of r because the next, insbantiations
CiUlllOl~ be compiitetl solely in terms of f’ and its
~onsequence6. Thus, OT represents the most recent
computation that can he differentiated before the choice
of iiu instantktiou to fire. On the other hid, with
set.-orirtllc:cl rules, the OT relations arc* emptied afker
wch firirq of the rule and hence there is no need to
matckalize them. Furthermore, for set-oriented rules,
WC have:

Prupositiou 5.1 Let (I’, 5) he a program with set
oricailtetl scmaritics, r a rule, 1 = (l)P(Tf) a literal
iu the head of r. If the formula associated with
O’f’(r, 1) is ailtoriomous wrt the chige8 to P induced
by t,h~ program, then OY’(r, I) will be cornpnted once.
Fiirtllc~rniort~, if this is the case for every literal in the
hc~rul of r, ttwri r is firetl at most4 once.

Annotate-Rule Algorithm :
input: nu influcuce graph Z snd it rule r;
output: t’ is annotated with two sets: E#ec:t r11c1 Sulrqj;

She’ 1:
C - (changes on pretlicntes occuring in r);
/* C is easily &rivet1 from Z l /

,9q 2:

II 6 I;
/* Ii contains output token expressions which are
not ~iitonomous wrt C */
for each literal 1 of the I~eacl of t do

\k + expression associatetl with OT(r, I);
if Q is not autonomous wrt C then iuld Q to H;

od ;
Sir.]’ .Y:

if 11 # Y) then
if H is a singleton { \k) then Cp = @
else * = expression associated with the hotly of T;
fi;
A + Maximal-Profitable-Relation (a, C);
Sulezp + {(E, aE/aC) s.t. E E A};

else Sulexp + 0;
step 4:

Eflf!d + 0;
for each literal 1 of the heal of r do

E = expression associated with OT(r, I) in terms of
relations tlefinecl by expressions in Sulezp;
if r is instance-orientetl then

calculate DE/DC for maintaining OT(r, I) ;
Mut + true;

else
Mot + false;
if E is not autonomous wrt C
then calculate BE/X for computing the new

va.lue of OT(r, I)
else BE/DC + 0;

/* OT(r,l) is computed once only */
fi;

fi;
a&l (E, BE/X) to Eflect ;

od;

We apply COSMA to the program (I’, 5) of section
5.2. We ass~~nlt: that3 rules are set-oriented and that q,
r2 and rg have priority over rd. The rule annotations
returned by COSMA are as follows :

fl

r2

Subexp :

fll = fl{r, t}(b~.2=crA(X, --I y)) w (Q?.2=pB(!/, -, 2))

w (gE.J=+(Z, II, -))

-I bc F(x,z) tz C(x,z)

/* Tl is the relation tlcfhetl by el */
Br:l+/BC = (II{,,,} Tl D(A-C(x,z)) x false
&l-/K = Tl K A-C(x,z)
Effect :
t::! = &,,,)(flf,=fnlse el)
&2/X = I-It,,,) A+Tl
Materialize : false

Effect :
e3= II {,,,,,&(x,Y) w D~(Y,w)) - c-c Wwx)
%3/X = l-I{,,,,,,} (A+C(x,y)w Dl(y,z,n)) 1 D<
D~(z,u,x)

463

f3

r4

aWaD = ~{,,,,,) (C(x,y) W A+Dl(y,z,u)) -, D<
D2(z,u,x)
Materialize : false

Subexp :

e4=(wx+ls(B(x,y,-)) -, D< (uD.I=~ Dl(-,y,x)) W

%v4 PC C(Y,X)
/* T2 is the relation defined by e4 */
ae4+/8C = (II{,,,) T2 x A+C(y,x)) x true
b’e4-/dC = T2 TV A*C(y,x)
Effect :

e5 = Qy,zj(ufc=true T2)
8e5/cX = II{,,,) A+T2

e6 =“{z,z)((Q.~&~(x,Y,-)) -, IX (Q.M Dl(-,Y,x))

w Ehu,x))

7 DC (a~.z=aD2(- ,W))

de5/BC = undefined
Materialize : false

Effect :
e7= ~{,,~,&WX,Y,Z) w (m.l=sD(- J,Y)) w C(O)
W Fl(z,w)) W A2(y,t,x)

e8= fl{z,y)(Al(t, Y, 2) w (oD.I=~D(- AY)) w (~W.)
w Fl(z,w)) 7 IX FP(z,y)
Materialize : false

[n Figure 3, we represent the discrimination network
for every output token relation associated with a rule
of program. In each diagram, there is one input node
per literal in the rule and one output token relation.
Circle boxes denote relational expressions, square boxes
denote materialized relations, and other nodes denote
non-materialized relations.

ABEFC B Dl E C B Dl E D2

I

e4

8

T-2

e5
I

~(rl,C) Wr3.C)

C Dl D2 Al DCFlA2 AIDC FlF2

8 e3

I
8 e7

I
25 e8

I
OTWP) OT(r4,A) fW&W

Figure 2: Discrimination network for Example 5.1

Take rule ~1, the only changes on ita predicates
consist of deletions from C according to the influence
graph of table 5.2. The expression associated with

O’l’(r~, C) is \Ir = A(x,c~,y), R(y$,z), I’:(z,v,r), llJ(x,x),
-4 :(x,z). Shp 2 of the A tItIot,at,c~-H.lllr~ algori1.htn ~I+Y.I.N
1J1at \Ir is not aubonomous wrt, tl&l.ion~ it, (:. Stq)
3 computcw the maximal OT-profitable rc+&ous wrt.
changes to C and returns tlrc rf:labiwt cl~~firlf~tl by f’l
which is the relation associated with the I)rotlclrt,r-fiI1.c.r
decomposition of @ ((A(x,~,y), Jl(y,/f,z), E(z,v,~),
-F(x,z)),(~C(x,z))). Theu c?cl+/i)C sutl ijc,I.-/iX:
are compul.ed. Next, Step 4 proceeds. Sitlrc* 1.11~
rute is set-oriented, its oe~put. token rc:Iation is IIO~
materialized. The expression that cc~rnputes the* iuit.i:rl
value: of OT(q, C) in terlns of T1 (th(b rc&l.t,iou cl&llc*tl
by el) is calculated and yields c.2.

Subsequent values of OT(r 1, (:) are 1.h~ rorul)ul.c*d
in terms of Tl and A-C using Bf*‘L/HC, wlrerc, A-(!
represan1,s the delta relation containing deh*tians t.o C
that occurred since last firing of rl. When tielr!tious
occur in C, they are propagated to Tl. l)&tions 1.0
Tl are directly performed to Tl while insertioux to ‘I’1
are recorded separately iu1.o A+Tl. In fact, A+‘I’l ir,

a delta relal.ion, iu the sCns(! of [SKtlM!)2], rq)rt*Ht*utiug
1Jlt: nc*t, aclclil.ions 10 Tl

For rul(b t-1, ouly oiie tleltR rc*l;l.l.ic~ri liiw to IM-
maiutaiut:d: A-(:. Similarly, for the othcnr rIIIeH, our
algorilJ~m cnablrn to tlat~ec1, which tl~l1,;:. rf+&)iis arc*
necessary to maintain. In acldil.ioi~ 1.0 eri;il+ ;LII
incremental comput~ation of phi rules, thwv rvliil.i0ns
play tOha role of logs. Indec?cl, delta rclationr; CII~IJP 1.0
implement a deferred update stra1.rgy for procc*wsing 1.11~
rules. The itha is that upclates to th(: input IIVC*I of ;L
rule network can be togged into delta rc!lat,ions and t.bc*ir
propagabiou into thus ne1,work CRII Iw tl~layc~l uuti.1 I.IIV
rule is tried to fire.

6 Related Work
A few incremental algorithms havtt beeu propost:d l,o
evaluate production rules in a tlal~itb~*~ sysl,fw~.

A~TH.EAT [Han!)21 uses a ‘I’RKAT-likcb cli.qc.rirllitl;l.l,ior[
network to record t,he resell, of mat&ing rult! I)otlic*n
against l.hr clatabasr. Rownvar, in order I.0 siw: i~wniory
space, A-TREAT only memorizes the r(lsul1,s of sc:l(*ctiou
predicates in crmemory nodes whr 1.11~ s&*rtivil.y of
the selec1:ion is high. Jf the srhcbivi1.y the s&cl.ic~tl is
low, A-TREAT replaces the correspoucling tr-nlc~rllory
by a t~ir2w~ rumemory where it, memorize% 1.111: sc&cl.iou
predicate of the nocle instead of tht* rc!siill. of l.lic~
selection itself. Much att,ention ha.3 beru dc~o1.c~l 1.0
the efficient calculation of the new value of the* relation
defined by a rule body by taking advantage of l.hc= clut’ry
optimizer and the use of attril~utr indexes. On lh

other hand, our algorithm focuses on choosing which
appropriate discrimination network shc~~~ltl be buill..
With regard to this prohltbnl A-TJWAT ouly clu(*stioll

[KdMSYO]

[Mir87]

[Pai83]

[PK82]

[SJGPSO]

[SKdM92]

[SLR88]

[SZ91]

[U1189]

[WCLSl]

6. Kiernan, Ch. de Maindreville, and E. Si-
mon. Making Deductive Database a Practi-
cal Technology: a Step Forward. In Proc.
ACM SICMOD Irtlernuiionul Conference
on Management of Dutu, Atlantic City, May
1990.

D.P. Miranker. Treat: A better match
algorithm for AI production systems. In
Proceedings of the National Conference on
Artificial ZntedCigence, Seattle, Washington,
1987.

R. Paige. Transformational programming-
applications ta algorithms and systems. In
Proc. Tenth ACM Symp. in Principles vj
Programming Language, Jan 1983.

R. Paige and S. Koenig. Finite differencing
of computable expressions. ACM Transuc-
lions on Proyrumming Languages and Sys-
tems, 4(3), 1982.

M. Stonebraker, A. Jhingran, .J. Goh, and
S. Potamanios. On Rules, Procetlurrs,
Caching and Views in Data Base Sys-
tems. In Proc. Iiiternutionul Cvujt:reucc
SIGMOD, Atlantic City, May I!NO.

E. Simon, J. Kiernan, and C. de Mairrdrc-
ville. Implementing Aigh Level Active Rules
on top of a Relational DBMS. In Proc.
International Conference on Very Larye
Databases, Vancouver, British Columbia,
Aug. 1992.

T. Sellis, C. Liu, and L. Raschid. Im-
plementing large production systems iii a

DBMS environment: Concepts and algo-
rithms. In Proc. bternutiot~al Cvnjtwnw
SIGMOD, Chicago, May 1988.

A. Seguev and J. Leon Zhao. Data Manage-
ment for Large Rule Systems. In Seventh
International Conference on Data Enginccr-
ing, kobe, Japan, April 1991.

J. IJllman. Principles of Dctubuse and
Kno&edge-Base Systems, volume 1. Com-
puter Science Press, 1989.

J. Widom, R.J. Cochrane, and B.G. Lind-
say. Implemenffing set-oriented produc-
tion rules as an extension to &arhurst.
In Proc. Znternutional Cf~ujwr7w on Very
Large Dutubuaes, IlurceIonu, Spain, 1991.

Appendix
choose-source Algorithm
input: a conjnection a, itw predicate canurxion graph 0,

and a uet of changes C ;
output: P = a positive literal of * ut itw vc:rtt!x in

not marked in Q;
let P denote at, uamlrrkect positive literal ;
let 6~ denote the set of changes to P ill c ;
apply the ordered tint of statements until one P is foutb4 :

/* search- for an invariant wrt CT */
1. returrr the ~~mt)(tc selective (henceforth, tn.t;.) I’

s.t. C ban no effect on P;
/* seek for a literal whose ctt:fiuetl rt!Iatiou ia ~tid&~ ou
some rttrihutes */
2. return uk.6. P s.t. Q, is autouotuottH for P wrt (I.,-

by 3’d amtoaoury criteriuur ;
/* xek for a literal whm defined relatiolt catI only
tlecreast dre to C */
3. retiirit u1.x. P s.t. Qr is aiitotlontons for P wrt Cl-

hy I”’ autoaouly criteriuur ;
4. return 111.~. I’ w.t. * iw ailtoueutt~us for f’ wrt. (177

by airy criteria ;

5. return 111.x. P ;

choose-maxsubexpression Algorithm
input: a conjimction @, ita prt&c:rtr rotflff!xiot~ ~rsplt G;.

a set of cikai~~f~c!x C, P a literal of * , awl
g an auton0m0iiW t?xprexwioll wrt C ;

output: g = au ~utouoin~uH expression wrt 1’ ;
/* the! litrr& of g arc ur:rrkt:cl in ci */

if P iw positive then conlpilte
&J = {unmarked literal V xt V II& is c:cll,ner%:cl to I’

in G and g A V in altou0iuous wrl (I) ;
while V7- # yl do
1 choose an adjacent vertex V in VP:

let C&J dellOtt! the set of Cllatlge~ tfJ v iI, c ;

apply the occlereti list of stateitieutx until WI<: V
is fou~rcl :
I. r&urn negativf* V s.t. C ha.3 110 effect on V;
2. rc:turu u1.s. pixitivtr V s.t. c h 110 efffd 018 V
3. rettire m.s. V *.B. Q, is afltonolliotls for V wrt

* .ld
cv by 2 autowoniy criteriiint ;

4. rntrirn 1n.s. V r.E. 4 k autollotnoux for V wrt
CV hy 1”’ autoi~oiuy c:riteriurn ;

5. return i11.8. V t4.t. * is aiitonoinous for V wrt

CV h.y 3“” sla toaoluy c.ritariunl ;
6. return 111.~. V ;

2. extend q with V and mark V;
3. visit $ from V a& expand y :

g + g/x ckoore,llrc~~strbe~~~rrrcsaif~,l (4, cj, c, I’, g).

update vp accurttirp, to !} ;
od

endif
return 9;

466

