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Abstract

Several incremental algorithms have been proposed to
evaluate database production rule programs. They all
derive from existing incremental algorithms, like RETE
and TREAT, developed for rule-based systems in the
framework of Artificial Iutelligence. In this paper, we
address a specific but crucial problem that arises with these
incremental algorithms: how much data should be profitably
materialized and maintained in order to speed-up program
evaluation 7 We show that the answer exposes to a well
known tradeofl. Our major contribution is to propose an
adaptive algorithm that takes as input a program of rules
and returns for each rule, the set of most profitable relational
expressions that should be maintained in order to obtain
a good compromise. A mnotable feature of our algorithm
is that it works for both set-oriented and instance-oriented
rules. We compare onr algorithms with existing incremental
algorithms for database production rule programs.

Keywords: incremental algorithms, production rules,
database rule language processing, rule program opti-
mizalion.

1 Introduction

Production rules have demonstrated to be a power-
ful programming paradigm to specify queries, views,
integrity constraints and triggers in a database sys-
tem [DE8S], [SLR88], [KdMS90], [SKdM92], [SIGP90],
[Han92], [WCL91]. However, the problem of efficiently
supporting rules in a database system still constitutes a
inajor challenge to establish the viability of rule-based
technology. A few papers have addressed this problem
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by adapting algorithms that were designed by Al re-
scarchers to optimize OPS5 rule programs in a main
memory environment.

Most database rule systems (see [HW92]) follow a
recognize-act-cycle similar to that of OPS5 [BFKM85].
A production rule consists of an action that must be
executed whenever a condition over the database holds.
In active database rule languages, an event can be
associated with the (condition, action) pair. Usually,
the action is a set of operations on the database, that
is insertions, deletions, and updates. Executing a rule
program proceeds by (i) evaluating rule’s conditions
against the database, (ii) choosing one rule instantiation
whose condition is satisfied, (iii) executing the action of
the selected rule, and repeating the cycle until a fixed-
point is reached (if any). The set of tuples that satisfies
a rule condition in a given database state is called a
salisfying rule instantiation.

A critical part of rule evaluation is the match phase
(phase (i) above), where satisfying rule instantiations
are computed. A naive algorithm would execute the
query associated with each rule’s condition against the
entire database on each cycle. This approach rapidly
becoines intractable as soon as the number of rules and
facts gets large. To overcome this problem, incremental
algorithms that maintain state information from cycle
to cycle have been proposed by Al researchers. The two
main known algorithms that fall into this category are
RETE [For82] and TREAT [Mir87).

The RETE algorithm maintains the result of the first
matching phase into an ad-hoc data structure called a
discrimination network. In this structure, the result of
each select and join operation that occurs in every rule’s
condition is recorded and stored in some node. Results
of selections are stored in alpha-memory nodes and
form the input portion of the discrimination network.
The results of joins are stored in beta-memory nodes.
Nodes corresponding to the select and join operations
that occur in the same rule’s condition are connected



together in the form of a dataflow network. Satisfying
rule instantiations are stored in the output nodes of the
network.

RETE transforms the recognize-act-cycle above as
follows. Phase (i) is removed from the cycle and be-
comes an tnitialization phase during which the discrim-
ination network is built. A new phase is then inserted
in the cycle after phase (iii). It propagates every change
to the database done by a rule’s action, (expected to be
very small compared to the size of the database), to-
wards the appropriate alpha and beta-memories. Thus,
the set of rule instantiations is incrementally (or dif-
ferentially) maintained. The TREAT algorithm essen-
tially differs from RETE by the fact that it does not
maintain beta-memory nodes. TREAT only maintains
alpha-nodes and the set of all the satisfying rule instan-
tiations.

Our starting point for this research is that incremen-
tal algorithms have an inherent tradeoff. Intuitively,
maintaining some node N in a discrimination network
is profitable if the work spent in computing the changes
to the operands involved in the expression that com-
putes N and in updating the current value of N from
its previous value is less than that spent in comput-
ing it directly from its operands. The three important
factors in this type of improvement are, (1) the ability
to efficiently compute the differential change to N for
arbitrary expressions, (2) the boundedness of this dif-
ferential, and (3) the number of times N is used with
regard to the number of times N is changed.

In a sense, RETE and TREAT are two opposite
answers to this tradeoff. RETE must do as much work
to maintain memory nodes whenever tuples are deleted
from the database as it does to maintain memory nodes
whenever tuples are inserted. TREAT does much less
work when tuples are deleted from the database since it
does not have to update the intermediate join results.
Only the final set of rule instantiations has to be
updated. But TREAT does do more work than RETE
when tuples are inserted because rule conditions have
to be reevaluated for these new tuples.

The purpose of this paper is to systematically inves-
tigate this problem of profitability of incremental algo-
rithms for rule-based programs. Our main contribution
is to propose an adaptative algorithm that given a rule
program chooses the better compromise of discrimina-
tion network in between RETE and TREAT. Following
previous work on the design of incremental algorithms
in the framework of high-level programming languages
such as SETL ([PK82], [Pai83]), our algorithm relies
on a heuristic-based characterization of the notion of
profitability. More, our algorithm is based on a careful
analysis of the migration flow of data in a rule program.
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Usually, a rule language has either set-oriented (e.g.,
Ariel, RDL, Starburst) or instance-oriented rules (e.g.,
OPS5, RPL, PRSII). We show that this difference
of semantics greatly influences the choice of a good
discrimination network. A notable feature of our
algorithin is that it works for hoth set-oriented and
instance-oriented rules.

This paper is structured as follows. Section 2 presents
our rule language, introduces useful terminology, and re-
lates our language to OPSH. In Section 3, we describe
RETE and TREAT algorithins and exhibit their inher-
ent tradeoff. In Section 4, we characterize autonomouns
expressions, that can be easily differentiated with re-
spect to some changes to their operands. Then, we de-
fine when a relation is profitable to maintain and give
an algorithm that extracts maximal profitable relations
from a given conjunctive formula. Section 5 presents
our main adaptative algorithm, which given a set of
rules determines the better discrimination network to
build. Section 6 compares our work with other related
work. Finally, Section 7 concludes the paper.

2 The Rule Language

In order to make the presentation of our algorithms
general and independent from a particular rule-based
language syntax, we shall use a Datalog-like notation
for rules. From a semantic point of view, we distingnish
set-oriented rules froin instance-oriented rules.

2.1 Terminology

We briefly review some terminology. A fact over a
predicate @ of arity n is an expression Q(ay,...,q,)
where each a; is a constant. A dalabase schema is a
finite set of predicates. A (database) instance over a
schema S is a finite set of facts over predicates in S. If
Ii is a set of facts and Q a predicate in 8, Q) denotes
the set of facts over Q in Ix. A literalis an expression of
the form (—)Q(z1, ..., Zm) where m > 0, @ is a predicate
of arity m and each z; is either a variable or a constant..
An eg-literal is an expression of the form (-)r, = =3
where z,, T, are variables or constants. We shall use
letters z, y, z, ... to denote variables, and greek letters
to denote constants.

Definition 2.1 A rulc is an expression of the forin
Bi,.yBn— Ay, A (B2 1,02 0),

where each A; is a literal and each 3; is a literal or an
eq-literal. A rule program is a finite set of rules.

We consider that there may exist a partial ordering
between rules where r < v/ means that if r and r’ are
both firable at the same tine, then 7 has priority over



. This ordering is assumed to be available at any
tune during program execution. We denote (I' <) a
rule program with a priority ordering between rules.

2.2 Sect-oriented Rules

A rule can be interpreted using either an instance-
oriented or a set-oriented semantics, We start. with the
last, one.

Effect of a rule on a database instance: Let r be
a rule: body — Ay, ..., Ap,~Dy,...,m By, and I a set of
facts. Let »' be a ground instance of r such that (i) each
positive literal of the body of v is a fact in J and each
negative literal or eq-literal in the body of v’ holds, and
(11) each variable is valuated to some constant occuring
in I. Then v is said to be a satisfying instance of r in
1. Now, the set of ground literals in the heads of all the
sitisfying instances of r in I is called the effect of r on
I, denoted ef feet, (1).

Intuitively, the effect of rule r on [ is the global effect
obtained by considering the actions of all the satisfying
instances of r in I.

Definition 2.2 A rule r is said to be firable in a state
I if there exists a fact A such that either

e A€cffect,(I),"Ageffect,(I)and Ag 1, or

e mA€ effect (1), Ageffect,(I) and A€ [

Thus, a rule is firable if its firing would produce a net
change to the current database state.

Semantics of a rule program: Let (I'y <) be a
rule program. ‘This program defines a relation among
database instances as follows. For each state I, J is
reachable from | using T if there is a firable rule 7 in T
such that no other firable rule has priority over r, and
J consists of the facts A such that:

e Aisin I Ueffect,(I) and =A is not in ef fect, (I)
or

e Aisin I and A, ~A are both in ef fect, (I).

If a sequence of reachable states has a limit, it is called
a fizpoint of the programn. Notice that a program may
have several fixpoints or no fixpoint at all.

Definition 2.3 Given a rule program and a state I,
the conflict set is defined to be the set of all the firable
tules in 1.
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2.3 Instance-oriented Rules

A set-oriented rule is fired for all its instantiations in
one slep whereas an instance-oriented rule is fired for
one instantiation in one step. Thus, the difference is
that we consider the effect of a satisfying rule instance
alone. If v’ is a satisfying instance of r, we denote the
effect of »' on I by effect,(I). We define r as a firable
rule if there exists a satisfying firable instance ' of r that
obeys the conditions of Definition 2.2., where ef fect, (I)
is replaced by ef fect. (I). Then, the semantics of a rule
program is defined as for set-oriented rules except that
r is replaced by a satisfying instance r’ and ef fect,(I)
is replaced by ef fect,:(I). Finally, the conflict set is
defined to be the set of all the firable satisfying instances
of rules in a state I.

2.4 Comparisons with OPS5-like Languages
OPS5H [BFKM85] is the underlying language for which
RETE and TREAT have initially been designed. Com-
pared to our language, OPS5 has three main differences:
facts are timestamped, the language has a refraction-
based semantics, and priorities beetwen rules are dy-
namic.

In spite of these differences of semantics, our final
algorithm is applicable to OPS5-like languages. The
main reason is that we seek to optimize the specific
phase of matching rules against the database, which is
common to all rule-based languages [HW92].

3 Incremental Computation Algorithms

In this section, we describe and compare the discrimina-
tion networks built by RETE and TREAT. We assume
that rules are instance-oriented (as in OPS5).

3.1 RETE Network

Consider the following rule:

rl A(.’l?,(l,l), B(x)y:ﬁ)y C(%y,w) -
("(7)]")"'))7 —'C(‘Yyyyz) .

This rule is compiled by RETE in the dataflow
network depicted in Figure 1. The network has three
alpha-nodes nl, n2, n3, and two beta-nodes pl, p2,
where:

nl = 04.2-a4, n2 = 0p3=pB, and n3 = 0¢.1=,C

pl = M{a1.1,n2.2,n1.3)(n1 Ma11=n2.1 n2), and

P2 = {p1.1,p1.2,p1.3,n3.3}(P1 Mp1.2=n3.2 n3)

where o, 11, and M respectively denote relational select,
project and join.

The incremental evaluation procedure of a rule program
proceeds essentially as follows:



1.1=n2.1

Figure 1: RETE network for rule ri

incremental evaluation of a rule program

state := initial database state;

t match rules against state until a firable rule is found
and record the results into the discrimination network;
while there exists a firable rule! r do

state := result of firing r on state;

for each input node N of the network do
if N has changed then propagate the change
to the successor nodes of N;

1 select a firable rule r;
end while

Compared to the original evaluation procedure used by
RETE and TREAT, there is one main difference. Since
we assume statically-defined priorities between rules,
there is no need to construct the whole conflict set before
entering the while loop. We only need to find one firable
rule (step 1). Thus, selecting a firable rule in step § may
require to match some non-already tried rules against
state in order to compute their set of satisfying instances
and hence, to expand the discrimination network.

3.2 TREAT Network

TREAT compiles rule rl in a dataflow network similar
to RETE. The only difference with RETE’s network is
that the result of the join between n; and ny is not kept.
On the other hand, TREAT maintains for each rule its
set of satisfying instances. This coincides with node p,
in RETE’s network. Calling p this node, we have

P = Min1an22n1.3033){n1 Ma1a=p21 12 My222n32

n3)}.

1if rules have instanceoriented semantics, then r is a firable
satisfying instance
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In fact, TREAT also retnemibers in p the tuple identifiers
of the matching tuples.

3.3 Tradcoff Between RETE and TREAT

The main question raised by the previous example is:
"8 il worthwhile to keep node p; 77, ‘To answer, we
need to compare the work done by each algorithm at
each cycle.

RETE does an extra work to maintain py when a
deletion to ng occurs. But, some iimplementations of
RETE optimize it by recording tuple identifiers in the
nodes (as TREAT does). On the other hand, TREAT

dneg an avira wark tn nranancate incertinne horanes
AN AT vii AVl s LAATZL X Y "y’ I'l \Il’llbl'll‘ FAVO A wI IO LEARA N L AT AA)

the join betwen n; and ny needs to be recomputed
at each cycle. Clearly, on this example, the tradeoff
will favor RETE (even if RETE does not optimize the
maintenance of p; with tuple identifiers).

Now, suppose that the action part of the rule is
changed, yielding the following rule:

r2 A(x,w, z),

: B(r,u,.0), C(y,y,w) -—
~B(y,z,/)

Since the body of ry is the same as ry, the networks
respectively built by RETE and TREAT for ry are as
the networks for r). But this time, TREAT outperforms
RETE because the only effect of the rule is to delete
facts and these deletions require less work with TREA'L'.
Indeed, RETE will update nodes n2, pl and p2 wherecas
TREAT will update n2 and p.

The above examples hopefully make one point.. There
is an inherent tradeoff in incremental algorithms. Maiu-
taining information may help for computing new rule
instantiations but may hurt performance when rule in-
stantiations are deleted fromn the counflict set. In general,
a rule program has a non-monotonic hehavior with re-
spect to its conflict set and solving the tradeoff depends
on the particular rule program.

4 Computation of Profitable Relations

Ideally, an algorithm that chooses a discrituination
network for a set of rules should consider two importaunt
factors:

1. the ability to efficiently compute the differential
change to every node in the network associated with
a relational expression, given the net changes to its
predecessor nodes,

. the profitability of maintaining a node in the net-
work for speeding caleulations that will follow the
materialization of the node.



Both conditions must be met to decide to maintain a
node in the network. The first. problem ts addressed in
Sections 4.1 and 1.2, while the second one is addressed
in Section 4.3,

4.1

Our problem is not totally new. Previous work (e.g.,
[BCL8Y]) has addressed the problem of determining
which data are useful to maintain in order to speed-
up the mamntenance of a materialized view when base
relations change. An interesting case is when the new
value of the view can be computed from its previous
(stored) value and the differential changes applied to its
operand relations. The view is said to be autonomonsly
computable. We generalize this notion.

In what follows, a change to a predicate instance is
cither an inscrtion or a deletion of tuples. The sign
of a predicate in a conjunction of literals indicates if it
oceurs positively or negatively. We also denote ®(*) the
relation defined 2 by a conjunction of literals ®(F) in
state fr. Without loss of generality, we only cousider
formulas @ where cach predicate occurs only once (this
may be achieved by renaming).

Autonomous Expressions

Definition 4.1 Let @ be a (safe) conjunction of literals
and ¢ a change to a predicate P occuring in ®. Then ¢
is autonomous for P wrt ¢ if for any k, ®4+" can only
be computed from @) and ¢

This definition is generalized to a set of changes.
1A 4

Definition 4.2 Let € be a (safe) conjunction of literals
and Cp a set of changes Lo P. ® 1s anlonomous for P
wrt Cp if @ is autonomous for P wrt every change of
Cp. Let € be aset of changes to some predicates of &.
¢ is aulonomous wrt C if for each predicate P and for
each change e of C, either ¢ has no eflect on P, or @ is
antonomous for > wrt c.

Suflicient conditions to detect antonomous expres-
sions are presented below. We shall use the following
notations. Let @ be a (safe) conjunction of literals and
P’ a predicate in @. We partition the variables of ¢ into
thiree sets: SV contains variables shared by P> and some
other predicate of ®, PV contains variables that occur
solely in P, and RV contains the remaining variables.

First and Second Autonomy Criteria: Let I be
a state and [y, the state obtained after applying a
change ¢ to PO,

1. If P is posttive and ¢ is a delete, then & is
autonomous for I’ wrt ¢ and the relation defined

- 2In the sense of [UNRY), p. 107
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by ® in state I is defined by:

{

where APK) = plk) _ plk+1)

AR = SRSV, PV, RV) W APR(SY, PV),

S — k) _ Ak (1)

If P is negative and ¢ is an insert, then ® is
autonomous for P w.r.t ¢ and the relation defined
by & in state Iy is defined by formula (1), in which
APF) — plk+1) _ p(k)

Before introducing the third criteria, we need another

P P e
QEILIIuoOIL.

Decfinition 4.3 Let P(A,, ..., A,) be arelational schema
and S be a subset of {A;,..., A,}. We say that [IsP is
stable wrt a set of changes C, if for any state I, C has
no effect on Mg P,

For instance, P is stable on {z} wrt the changes
induced by rule r: R(x,z), P(x,y) — P(z,2).

Third Autonomy Criteria: If P is positive, c is an
inscrt and Ilgy P is stable wrt T', then @ is autonomous
for P w.r.t ¢ and the relation defined by ® in state I
is defined by

{ A0 = (T sv,rv) ¥ (SV, PV, RV)) W APKYSV, PV),
o+ = (¥ y AGK) (2)

where APK) = plktl) _ plk),

Example 4.1: Take ® = R(z,z) M P(z,y) and rule
R(z,z), P(z,y) — P(x,z). Given a state I, when r
fires, the set of tuples AP*) inserted into P(¥) is such
that l’l{x)AP(") C My P By the third autonomy
criteria, ® is autonomous for P wrt the changes induced
by r, and ®¥*1) can be easily computed using formula
(2).

Remark however, that if r has a set-oriented seman-
tics then the rule can only be fired once because after the
first firing no new tuples can be inserted into P. Thus,
maintaining ®*) will not be profitable. On the other
hand, if r has an instance-oriented semantics then r can
be fired many times before reaching a fixpoint. Hence,
inaintaining ®*) will be profitable.

4.2 Producer-filter Decomposition of an
Expression

In this section, we make use of the notion of producer-
filter view initially introduced in [Bry89]. We provide
a different definition of a producer-filter and relate
this notion to the previous concept of autonomous
expression. We first use a motivating example.

Example 4.2: Take the expression:

P, A(x,y), B(y,2), C(x,u), ~D(z,z), ~E(z,y)



and suppose we have a set of changes C consisting of
deletions from A, insertions into C' that keep Il(¢ ;3¢
invariant, insertions into D, and insertions and deletions
to E. According to the three autonomy criteria, ®; is
autonomous wrt all changes of C but deletious from E.
Now, take formula:

®, = A(z,y), B(y,2), C(z,u), ~D(z,1)

®, is clearly autonomous wrt to C. Suppose that
T(zx,y,2,u) is the relation defined by ®,, and let us
define T(z,y,z,u, fg) as: (T ™ E) x {true} v (T -
E) x {false}. The relation defined by ®, is simply
computed by H{,'y,,,.,,}(ah,._-],,;.e T). Furthermore,
when a tuple ? is deleted from E then all tuples of T
that match with ¢ have their fg attribute set to false.

Thus, maintaining relation T is easy when deletions
to K occur and can be profitable to compute the relation
defined by @, .

Definition 4.4 Let ® be a (safe) conjunction of liter-
als. Assume that & = ¢ A ¢, where ¢ is safe and all
¥ variables are bound by positive literals in ¢. Then ¢
(resp. v) is said to be a producer (resp. a filter) for ®,
and (¢, v¥) is said to be a producer-filter decomposition.

Definition 4.5 Let (¢, ¥) be a producer-filler decom-
position of a formula &. Let v = (-)Bi(F), ...,
(m)Bn(Zn), and T(A,, ...Ax) the relation defined by ¢.
We define the relation T with schema {A;,...A;} U
{f1, ..., fa}, where Dom(f;) = {true, false} as:

T=T i< B,... < B,

where t< denotes the semi-outer join operator [U1189].

Intuitively, for each tuple t of T' (the producer), there
is a tuple in T that indicates whether t satisfies the
condition of the filter (formula v).

Proposition 4.1 Let (¢, ) be a producer filter decom-
position of ® and T the associated relation. Let P be
a predicate of @ and C a set of changes. If either P
occurs in ¥, or ® is autonomous 3 for P wrt C then T
is autonomous for P wrt (.

In the previous example, (3, ~FE) is a producer filter
decomposition of ®; which is autonomous wrt the set
of changes we considered.

4.3 Algorithm to Compute Profitable
Relations

We now characterize profitable relations and provide

an algorithm that computes the maximal profitable

relations from a given conjunction of literals.

3for a sake of simplicity we shall abusively use the word
autonomous for a relation

Definition 4.6 A relation R is said ®-profitable with
respect to a set of changes ¢ if:

o R is defined by a subexpression ¢ of & that is
antonomous wrt C, or R is an antonomous relation
associated with a producer-filter decomposition of ¢
wrt C,

e no cartesian product is used to build R,

Given a formula, there may be many profitable
subexpressions but not all of them will be interesting
to maintain. Take ® = A(x,¥), B(y, 2),C(z,x), and
assume that the set of changes C consists of insertions
into A that keep II 4 24 invariant, deletions from I3, and
insertions into C that keep e O invariant. Then A,
B, ¢, AX B, BXW(C are all ®-profitable subexpressions
wrl C. Nevertheless, memorizing and maintaining all
these relations is clearly not a good compromise. Our
algorithmm only selects wmazimal relations. In our case, it
will randomly choose to maintain either A and B ™ ¢,
or C and AX B,

Maximal Profitable Relations Algorithm

input: a safe conjunction of literals @, and a set of changes €

output: A = a set of $-profitable relations such that every
operand relation belougs to only one expression;

M~ @, /¥ aset of antonomons expressions */

step I :

build a connection graph ¢ where vertices are literals of ¢

and there is an edge between literals 7 and 1% if they

have at least a variable in common;

step 2 :

repeat
P «— choosesource (¢,6,C);
/* return a literal of & that is non marked in G */
mark P in G;
g «— choose_maz_subexpression (G,C, I, P);
/* construct a maximal antonomons expression from > ¢/
M — MU {g};

until all nodes of § with positive literals are marked;

slep 3

F o {unmarked literals in G} U {f € M st [ is a single-
ton and there is some p in M st (p,f) is a producer-filter
decomposition of p A [ and it associated relation is
autonomons wrt C };

P — make_producer (M-F);

/* an element of P is a producer-filter decompaosition (p, f)
s.t. pisin M-F and f is initialized with #. */

for fin F do
(p, f') — seclectproducer-filter (f, P, C);
[* (0, f') € P st (p,f)is a producer-filter decomposi-
tion and its associated relation is antonomons wrt C.
When several elements of P are candidate, we choose
the most selective one; if none p is randowly sclected . */
if p exists then add [ to f';

od
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slep 4

A — @

for (p, f) in P do
if f #0 or pis not a single literal then add the relation
assoctated with (p, f) to A ;
fi

od

return A ;

At Step 2 of the algorithm, we choose a node, called
the source, in the predicate connection graph and then
construct a maximal autonomous expression from this
node. Note that there may be several autonomous ex-
pressions that can be built from a given node. The
heuristics used to choose the source and comnpute the
preferred autonomous expression is detailled in Ap-
pendix A. In general, we are interested in the selectivity
of a literal (some arguments can be constants) because
we want to compute a profitable relation with the small-
est size.

At the end of Step 2, M contains a set of autonomous
expressions but some nodes of G may remain unmarked
(negative literals). In Step 3, F is constructed with
potential filters to some autonomous expressions of M.
Each autonomous expression that is not in F becomes
a producer-filter decomposition in P. Then, we try to
integrate every literal of F within the filter of some
producer-filter decomposition in P.

In the last step of the algorithm, we output relations
that are associated with interesting producer-filter
decompositions, 1.e., those where the filter is not empty
ot the producer is not reduced to a single literal.

5 The COSMA Algorithm

5.1 Output Token Relations

Before presenting our algorithm we need to define
specific relations, called output token relations, that
play a key role in the computation of a rule program.
Intuitively, given a rule r and a literal | = (=) P(Z) in its
head, the output token relation associated with r and
| records the net effect of r on the instance of P, for a
particular database state. Such relations are essential
because they enable to know if a rule is firable: at least
one of its output token relations must be not empty.
More, when a rule fires, output token relations serve to
compute the effect of the rule.

The definition of an output token relation varies
according to the semanties of rules.

Definition 5.1 Let r be a set-oriented rule, [
(=)P(7) aliteral in the head of r, and I a database state.
The output token relation, noted OT(r,[), associated
with r and [ is the set of ground instances of P in
¢f fect, (I) that represent a net change to I(P).
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For instance-oriented rules, the definition slightly
differs because we have to identify to which satisfying
rule instance is associated each tuple of OT. In fact,
every tuple in the relation defined by the body of a
rule, represents a satisfying instance of that rule.

Definition 5.2 Let r be an instance-oriented rule, | =
(-)P(Z) aliteral in the head of r, and I a database state.
Each tuple in OT(r, 1) is the concatenation of two tuples,
t and t’ where t is a tuple in the relation defined by the
body of r that corresponds to a satisfying instance r’ of
r, and ¢’ is a ground instance of P in ef fect,(I) that
represents a net change to I(P).

5.2 Migration Flow of Data in a Program

As we mentioned before, our algorithm relies on the
knowledge of the changes to any predicate that are
induced by the program at a particular point in time.
Extracting this knowledge from a rule program requires
to perform a careful analysis of the migration flow of
data within the rule program. Because we assume
statically-defined priorities between rules, this analysis
can be done statically.

In order to capture the migration flow of data, we
construct a labelled directed graph 7 called an Influence
graph. Rules are the vertices of Z and there is an arc
from r to ' if there are predicates occurring in the head
of r that also occur in r'. In the following, we say that
r has an influence over r'. The label associated with
(r,r') is a set of expressions of the form { 6 I’ where [
(resp. !') is a literal of the head of r (resp. head of
') and 0 is in {+,—}. The expression [ + I’ (resp. [
— {') means that when r fires, its effect wrt [ has for
consequence to add (resp. to remove) tuples into (resp.
from) OT(r,l').

Example 5.1: Consider the following program I':

r1 ¢ A(x,a,y), B(y.8,2), E(z,v,7), "F(x,2} — C(x,2)

r2 : C(x,y), D(y,2,u) — D(z,u,x)

ra : B(x,y,8), ~D(6,y,x), E(z,u,x) — D(8,2,x), ~C(y,x)

ry . A(x,y,2), D(8,x,y), C(z,t), F(z,w) — -A(y.t,x), F(z,y)

Table 5.1 represents the Influence graph of program T',
rows [resp. columns] represent r [resp. r'] :

Definition 5.3 Let Z be the influence graph of a
program I and rory---rp, a path in Z. If there exists
a sequence (lo 8o U)(l1 61 12)...(In—1 On-1 ln) where
(k 6; liy1) is an expression in the label of (r;,riy1),
then this sequence is said to be a propagation path from
ro to r,. If for each i € {0,...,(n— 1)}, 6; = + , then
the propagation path is positive. If 6,1, = —, then the
propagation path is negative.



T r2 T3 re
T {C + D} {C+ -C} {C+-A,C+F ]
T2 {D+D} (D-D,D--C} (D+-A,D+F}
T3 {-C+C} DM+D,-C-D}| (D-D,D-—-C} |[{-C-—-A - C-F,D+-A,D+F)
n |{-A-C,F_C} (A=A -~A-F F+-AF+F]

Table 5.1: Influence graph of I’

The priority ordering between rules enables to simplify
an influence graph by removing some labels. Assume for
instance that r;, ro and rs have priority over r4 in the
previous example. Rule r4 can only be fired when no
other rule is firable. Since OT(r4, ~A) has not yet been
computed any firing of ry, ro and r3 has no effect on
OT(r4,=A). Furthermore, if r4 fires, neither ry or r; or
r3 becomes firable. Thus, r4 has no effect on OT(ry, C).
Hence, the labels of the arcs (ry, rq), (r2, r4), (r3, r4)
and (r4, r) are irrelevant and can be discarded, thereby
changing the propagation paths in Z. This is formalized
below.

Definition 5.4 Let (T', <) be a program, 7 its influence
graph, and p = | 8 I’ an element of the label of (r, ’).
Then p is relevant iff

e r and r’ are not comparable wrt <, or

e 7' has priority over r and p is a positive propagation
path from r to ', or

o r has priority over 1’ and there exist a rule v that
has not priority over ' and a positive propagation
path, p/, from r” to r, such that p’ p is a propagation
path from ' to r'.

Irrelevant portions of the labels can be discarded from
the influence graph. To illustrate, in Table 5.1 bold
characters represent the label expressions that can be
discarded.

5.3 The Algorithm

Given a program (I',<), with either an instance-
oriented or a set-oriented semantics, COSMA is a one-
pass algorithm which produces for each rule, which
relations should be materialized, how to compute these
relations and how to differentially maintain them.

COSMA incrementally builds an influence graph and
simultaneously computes the relevant label expressions.
When all the labels of the edges ending at some rule
r are fully computed, the influence graph provides the
necessary knowledge about the possible set of changes,
say C, to the predicates occuring in r. Then, r is
annotated with two specific sets noted Effect and Subezp
using the Annotate_Rule algorithm.
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COSMA Algorithm :
input: a program (I, <) with a set-oriented or instance-
oriented semantics;
output : T where each rule has been annotated,;

Step 1:
I~9;
/* Initialisation of the influence graph */
Step 2:
while there exists a non annotated rle in T' do
M —~{r el st. V¢ €I if v hax priority
over r then ¢ is annotated }
for r in M do
* N { rules that have an influence over r };
for ' in N do
expand Z with edge (r',1) ;
compute the relevant label expressions of (r', r);
od;
Annotate_Rule (Z, r),
od;
od;

An clement of Subezp is a pair (£, AE/8C) such that
E is a subexpression of the expression associated with
OT(r,1), for some [ in the head of r, and AE/AC denotes
the differential expression that incrementally maintain
the relation defined by E wrl a set of changes €. All
the relations defined by the E-expressions of Subexp will
be materialized. A differential expression consists itsclf
of a pair (JE*/0C, OE~ [/8C), where the first (resp.
second) element computes tuples that must be added
(resp. deleted) to the relation defined by E, say T'. If
no insertions (resp. deletions) can occur to 7' then the
first (resp. secoud) element is said to be undefined.

For every literal [ in the head of r, there is a triple
(E, dE/IC, Mat) in Effect. In each triple, I represents
the expression that computes OT(r,[) in terms of the
materialized relations defined in Subezp and other (non-
materialized) relations. If OT(r,1) is materialized then
OE/8C is the differential expression that maintains Q7'
wrt C. In this case, the differential will consist of
a pair (AEt/AC, AE~ /3C) as we mentioned before.
Otherwise, E/JC is the expression that computes the
new value of OT in terms of the differential changes
to its operand relations. Here, the differential consists



of a single expression.  Finally, Mat is a boolean that
indicates if O'T(r 1) is materialized.

o Sleps 2 and 3 of the Apnotate_Rule algorithm
compute Suberp.  Given a rule r and a literal ! in
its head, our algorithm uses the following simple rule
to decide which subexpressions should be computed in
Subcxp.

R1. W QT'(r,1) is not autonomous wri. € then inemorizing
maximal OT'(r, 1) _profitable relations is useful.

The rationale for this heuristic rule is that when OT(r,l)
is not antonomous wrt C, OT(r, {) needs to be computed
more than once whatever the semantics of the rule is.
Thus, it is useful to memorize subexpressions that may
speed up repetitive computations of OT(r,l).

[}
the annotation, Effect. An important decision taken by
algorithm is io decide if an ouipui token relation
must be materialized. We nse the following heuristic
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Proposition 5.1 Let (I, <) be a program with set
oriented semantics, r a rule, | = (2)P(F) a literal
in head of r. If the formula associated with
Ol (r,1) 18 autonomous wrt the changes to P induced
by the program, then O7'(r, 1) will be compnted once.
Furthermore, if this is the case for every literal in the
head of r, then r s fired at most once.

the

Annotate_Rule Algorithm :
input: an influence graph 7 and a rule r;
output: 7 is annotated with two sets: Effect and Subexp;

Step 1:
r fehanoas o adirato
Lo (CRANRESs Un preaicase

/* € is easily derived from
Step 2:

Siep 4 of the algorithin computes the second part of
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I — ¢

/* H contains ontpnt token expressions which are
not autonomons wrt C ¥/

for each literal { of the head of r do

¥ «— expression associated with OT(r,l)
if ¥ is not antonomous wit Cthenadd ¥ ¢o H-
¥ I8 Noe¢ alLONonmous "l‘d . lllcl' auu ¥ 1o 11,
od ;
Step 3:

if 11 # ¢ then
if H is a singleton {U} then & = ¥
else ¢ = expression associated with the body of r;
fi;
A — Maximal_Profitable_Relation (@, C);
Subezp — {(E, 3E/IC) s.t. E € A};

alea Coulnma

a.
CIS€ VUUETP — Vv,

Step 4:
Effect — @;
for each literal ! of the head of r do
E = expression associated with OT(r,1) in terms of
relations defined by expressions in Subezp;
if r is instance_oriented then
calculate dE/IC for maintaining OT(r, ) ;
Mat — true;
else
Mat — false;
if E is not antonomous wrt
then calculate dE/AC for computing the new
value of OT(r, 1)
else JE/OC — @;
/* OT(r,}) is computed once only */

fi;
fi;
LIS A Al l\ﬂ '\ LAY falsd s
add (E, E£/3C) io Effect;
od;

5.4 An Example

We apply COSMA to the program (I', <) of section
5.2. We assume that rules are set-oriented and that ry,
ry and r3 have priority over ry. The rule annotations
returned by COSMA are as follows :

ri Subexp :
el = M{x, z}( 04.2=0A(x,_,y)) M (6B.2=pB(y, -, 2))
M (0pa=1B(2,9,-)
- p< F(x,z) < C(x,z)
/* T1 is the relation defined by el */
f}(:1+/5(j = (H{,’,} T1 < A~C(x,z)) x false
del=/0C = T1 < A~C(x,2)
Effect :
€2 = H{,',}( Tfc=false (-‘.1)
0¢2/8C = T,y A*T1
Materialize : false

ry Effect :
ed= Iy, v -3 (C(x,y) ¥ D1(y,z,u)) - < D2(z,u,x)
0e3/0C = H{,,.,,,}(A"‘C( ,y)N Dl(y,z,u)) ~D<
D2(z,u,x)



0e3/0D = II{; 403 (C(x,y) X AtDl(yzu)) ~b<
D2(z,u,x)
Materialize : false

r3 Subexp :
ed=(0p3=p(B(x,y,-)) ~P><(0p1=s DI(.yx)) ™
/* T2 is the relation defined by e4 */
deat [0C = (I ,3 T2 < A*C(y,x)) x true
de4~ /0C = T2 b< A*C(y,x)
Effect :
ed = Iy -1( Ogc=true T2)
9e5/9C = Iy ) A*T2
6 =H{z,z}( (UB.azp(B(X,Y,-)) < (UD.lzé Dl(‘jy’x))
™ E(z,u,x))
il > (UD.2=6D2(- ,Z,X))
9e5/8C = undefined

Materialize : false

ry Effect :
eT= Iy 1.2} (Al(x,y,2) ¥ (0p.1=sD(- x,y)) XM C(z,t)
M F1(z,w)) 4 A2(y,t,%)
e8= H{‘»y)(Al(z)y: Z) M (OD.lsz(- ,X,y)) ol (:('I,,')
X Fi(z,w)) = b< F2(z,y)
Materialize : false

In Figure 3, we represent the discrimination network
for every output token relation associated with a rule
of program. In each diagram, there is one input node
per literal in the rule and one output token relation.
Circle boxes denote relational expressions, square boxes
denote materialized relations, and other nodes denote
non-materialized relations.

ABEFC B DI EC B D! E D2
[
OT(r3,D)
]
OT(1,0) OT(r3.C)
C DI D2 Al DCF1 A2 AIDC FIF2
' [} |
OT(r2,D) OT(rd4,A) OT(x4,F)

Figure 2: Discrimination network for Example 5.1

Take rule r;, the only changes on its predicates
consist of deletions from C according to the influence
graph of table 5.2. The expression associated with
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OT(ry, C)is ¥ = A(x,,y), B(y,f.2), E(4,v,7), -F(x,z),
—(}(x,2). Step 2 of the Annotate_Rule algorithi detects
that ¥ is not autonomous wrt deletions in (. Step
3 computes the maximal OT_profitable relations wri
changes to (7 and returns the relation defined by ¢l
which is the relation associated with the producer_filter
decomposition of ¥ ((A(x,vy), B(y,A.z), E(z,v,),
-F(x,2)),(~C(x,2z))). Then del*/AC and del=/0C
are computed. Next, Step 4 proceeds. Since the
rule is set_oriented, its output token relation is not
materialized. The expression that computes the initial
value of OT(ry, C) in teris of T'1 (the relation defined
by el) is calculated and yields ¢2.

Subsequent values of OT(ry, () are then computed
in terms of Tt and A~C using 3e2/8C, where A-(!
represents the delta relation containing deletions to (!
that occurred since last firing of ry. When deletions
occur in C, they are propagated to T1. Deletions to
T'1 are directly performed to T'1 while insertions to T'l
are recorded separately into At T1. In fact, AtTI is
a delta relation, in the sense of [SKdMY2], representing
the net additions to T1.

For rule 7y, ouly one delta relation has to be
maintained: A~ C. Similarly, for the other rules, our
algorithin enables to detect which delta relations are
necessary to maintain. In addition to enable an
incremmental computation of the rules, these relations
play the role of logs. Indeed, delta relations enable to
implement a deferred update strategy for processing the
rules. The idea is that updates to the input level of a
rule network can be logged into delta relations and their
propagation into the network can be delayed until the
rule is tried to fire.

6 Related Work

A few incremental algorithms have been proposed to
evaluate production rules in a database system.
A_TREAT [Han92] uses a TREAT:like discrimination
network to record the resull of matching rule bodies
against the database. However, in order to save miemory
space, A TREAT only memorizes the resnlts of scelection
predicates in «_memory nodes when the selectivity of
the selection is high. If the selectivity the selection is
low, A_LTREAT replaces the corresponding «_memory
by a virtual cv_memory where it memorizes the sclection
predicate of the node instead of the result of the
selection itself. Much attention has been devoted to
the efficient calculation of the new value of the relation
defined by a rule body by taking advantage of the query
optimizer and the use of attribute indexes. On the
other hand, our algorithm focuses on choosing which
appropriate discrunination network should be bailt.
With regard to this problemi A_TREAT only question



the profitability of maintaing a selection node based on
its selectivity.

DBCond [SLR88] maintains a RETE discrimination
network into a flattened data structure. Take a rule r :
A(r, 0, 2),B(z,9,8),C(v,y,2z) — head, and relations
A(Ay, Ay, Aa), B(By, By, By) and C(Cy, Cy, Ca). Then,
DBeond will maintain one relation per literal in the
hody of r, called COND relations. For instance,
COND_.A will coutain the projections Mg (B) and
He,(€7), as well as the projection on By and C3 of
tuples in the join between B and €. The main feature
of this algorithm is that when a change occurs to
A then COND-A suffices to deterinine if rule r is
firable (although it does not compute the effect of the
rule). However, all affected COND _relations have to be
maintained upon a change to A (in our case, COND_B
and COND.C relations). Thus, the tradeofl pointed
out earlier in this paper applies exactly as for RETE.
Our algorithm is able to choose a betier discrimnation
network which could then be implemented using the
DBCond technic.

In [SZ91], the authors propose an efficient technique
to materialize the relation defined by a rule body.
Suppose that the rule body is an expression: E =
Q; X ..., MW Q,. Then the relation, say T', defined by
E has one attribute for every surrogate attribute of Q;
plus all Q;-join attributes that occur in E. The result
of every intermediate join is stored into T'. For instance,
the result of the join between Q, and Q; will yield tuples
in T where the value of every attribute that is neither a
Q) or Q, surrogate attribute or a join attribute between
Q1 and Q3 18 a null value. It is worth noting that such a
relation is autonomous wri any change to the @;’s. Here
again, our algorithin can be used to reduce the size of
T by retaining only those intermediate results that are
profitable to maintain,

7 Conclusion

We have presented an original adaptive algorithm that
takes as input a program of rules and returns a
discrimination network representing an expected good
compromise.  The discrimination network is then
used to perform an incremental evaluation of the rule
program. In order to decide if a subexpression must be
materialized as a node in the discrimination network,
our algorithin analyzes two main factors:

1. the ability to c¢fficiently compute the differential
change to this node, given the net changes to its
predecessor nodes induced by the rule program,

the profitability of maintaining a node in the network
for speediug calculations that will follow its materi-
alization.
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Our algorithm works for set-oriented and instance-
oriented rules which are the two most common kinds of
rules used in database rule langunages.

We believe that our algorithm fills a hole in the
literature on incremental algorithms for production rule
languages in databases. As we said before, most
algorithins are derived either from RETE or TREAT.
Specific implementation tecliniques have been designed
to efficiently process a RETE or TREAT discrimination
network, but we are not aware of any previous work
that questioned the pertinence of building a RETE or
TREAT network. Our algorithm does so and capitalizes
on various database algorithms, in particular in the area
of maintenance of materialized views.
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Appendix

choose_source Algorithm
input: a coujunction P, its predicate connexion graph G,
and a set of changes € ;
output: P = a positive literal of ® st its vertex is
not marked in G;
let P denote an unmarked positive literal ; |
let €p denote the set of changes to P in C
apply the ordered list of statements until one P is found :
[* searches for an invariant wrt € */
1. return the most selective (henceforth, m.s.) P
s.t. € has no effect on P;
/* seek for a literal whose defined relation is stable on
soie attributes ¥/
2. return m.s. P st. @ is autonomons for P wet Cp
by 3"¢ awtonomy criterinm ;
/* seek for a literal whose defined relation can only
decrease due to & */
3. return m.s. P s.t. € is antonomons for P wrt Cp
by 17 autonomy criterium ;
4. return m.s. P s.t. @ is antonomous for P wrt Cp
by any criteria ;
5. return m.s. P ;

choose_max_subexpression. Algorithm

input: a conjunction P, its predicate connexion graph ¢,
a set of chauges C, P a literal of ® |, and
g an antonomous expression wrt C ;

output: ¢ = an antonomous expression wrt ¢ ;
/* the literals of g are marked in G ¥/

if P is positive then compute

Vp = {mumarked literal V st V pode is connected to P

in G and g AV is antonomons wrt C} ;

while Vp # # do

1. choose an adjacent vertex V' in Vp:
et €y denote the set of changes to Vin € ;
apply the ordered list of statements until one V
is fonund :
t. return negative V s.t. ¢ has wo effect on V;

2. return mes. positive V os.t. € has no effect on V

3. returw m.s. V st @ is antonomons for V wrt
€y by 2™ antonomy criterinm ;
4. return m.s. V s.t. ¢ is autonomons for V wrt
Cy by 1** autonowmy criterium ;
5. return m.s. V s.t. @ is antonomous for V wrt
Cy by 3" antonomy criterinm ;
6. return m.s. V ;
2. extend ¢ with V and mark V;
3. visit ¢ from V and expand ¢ :
g +— gh choosemazsubespression (9,6, C, V, g);
update Vp according to ¢ ;
od
endif
return gq;



