Data Sharing Analysis
for a Database Programming Language
via Abstract Interpretation

Giuseppe Amato

Fosca Giannotti

Gianni Mainetto *

CNUCE, Institute of CNR,
Via S.Maria 36, [56126 Pisa, Italy

Abstract

‘This paper presents an experiment in using a formal tech-
nique for static program analysis, based an ahstract interpre-
tation, in the context of persistent programming languages.
‘The aim of the analysis is to detect opportunities for safe
parallelisin for transaction aperation scheduling. Transaction
operations can be safely interleaved when there is no overlap-
ping among their readsets and writesets. A non-standard
interpreter performs the analysis. This interpreter, given
the text of a transaction and a representation of the data
stored in the database, sutomatically derives in a finite time
an approximation of the readset and writeset of the analysed
transaction. Information obtained from the non-standard in-
terpretation is provided to the scheduler before beginning the
execution of transaction operations. In this way, we obtain a
scheduler Lhat realises a conservative two-phase locking pro-
tocol for persistent programming language transactions. We
apply the analysis to a language that is a significant subset
of Galileo. The goal of the analysis is to detect the accesses
solely to shareable and modifiable persistent data.

1 Introduction

The evolution of Data Base Programming Languages
(DBPLs), which provide a unifying formalism for data
definition and manipulation, opens up opportunities
for exchanging ideas, problems and technical solutions
between the two areas of databases and programming
languages. Persistent Programming Languages are the

“email: {fosca,gmsys }@cnuce.cnr.it phone:+39-50-593339
fax:439-50-904052

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VIL.DI? copyright notice and the title of the
publication and its date appear, and nolice is given that copying is
by permission of the Very Large Data Base Fndowment. To copy
otherwise, or lo republish, requires a fee and/or special permission
from the Endowment.

Proccedings of the 19th VLDB Conferenee
Dublin, Ircland, 1993

405

subclass of DBPLs in which the data model of persis-
tent values is completely integrated into a program-
ming language. In fact, the guiding principle of Per-
sistent Programming Languages is the orthogonal per-
sistence: it establishes that persistence is a property
of arbitrary values and all values have the same rights
to persistence [6]. Specifically, if a Persistent Program-
ming Language is designed on the basis of formal se-
mantics, formal methods for designing, transforming
and optimizing database programs can be exploited.
Indeed, it is a challenging research direction to investi-
gate whether, which and how such formal methods can
be successfully put to work in the database context.

In the programming language area, a consolidated
class of formal techniques for static program analy-
sis is known as abstract interpretation (AI) [1,8]). It
is aimed at gathering information on the dynamic se-
mantics of a program or specification to be used by
compilers, partial evaluators and debuggers, or merely
as documentation [9]. For example, logic programming
has successfully used Al for detecting properties such
as groundness and goal independence to provide effi-
cient specialised parallel execution of logic programs
[10]. Functional programming uses Al to detect strict-
ness and reference independence for efficient graph re-
duction and optimised garbage collection [1].

We propose using Al for a novel application, i.e. to
develop a conservative two-phase locking (2PL) pro-
tocol in a persistent system. An aggressive scheduler,
that realises for example a strict 2PL protocol, analyses
transaction operations one at a time, and immediately
decides whether to execute, delay or reject the opera-
tion [7). It has no knowledge of the future operations
of a transaction. For example, it can decide to exe-
cute a write operation that will subsequently risk the
transaction being aborted because of a deadlock. A
conservative scheduler should know a priori the shared
data which concurrently executing transactions are go-
ing to access, so that it can prevent deadlock and abort-

ing due to transaction conflicts. Almost all database
systems traditionally have an aggressive and a conser-
vative version of schedulers, because there is a perfor-
mance tradeoff between the two types of schedulers and
each version performs especially well for certain types
of applications.

The scheduler can know in advance the set of data
that a transaction is going to access, called readsel and
wrilesel, if the transaction progranuner predeclares it.
In Persistent Programining Languages, inferring read-
set and writeset of a transaction is difficult because
persistent data have a complex structure and both
persistent and temporary functions may be involved
in a transaction execution. Thus we propose a tool,
based on Abstract Interpretation, that automatically
performs a static analysis of the program that defines
a transaction, inferring an approximation of its readset
and writeset.

We analyse transactions written in PPL, a language
which is a significant subset of Galileo [3]. PPL is a
higher order functional language, strongly and stati-
cally typed, with single inheritance, which allows an
object-oriented programming style. PPL transactions
can access the most important data structures provided
by Galileo: basic type values, references, records, se-
quences, functions, objects, and classes.

The goal of the analysis is to detect the accesses to
sharable and modifiable data structures such as refer-
ences, classes and objects. In fact, the concurrent exe-
cution of transactions can only create inconsistency in
the case of updates. Our idea has been inspired by Hu-
dak’s proposal [15] that uses reference counting analysis
to reduce the run-time memory management overhead
in a first order functional language. Similar problems of
run-time memory management for a higher-order func-
tional programming language have also been investi-
gated in [11].

The first step of our experiment consists in defining
a non-standard semantics which extends the standard
one by determining the number of accesses to modi-
fiable data. Informally, every time the real execution
accesses a reference or a class or an object, a corre-
sponding access counter is incremented in either read
or write mode according to the executed operation.

The second step consists in defining an abstraction
of the non-standard semantics that guarantees the ter-
mination of the analysis. The termination rclies on the
fact that the abstract execution operates on finite ab-
stract domains of values. The main choice is to use a
finite set of “typed” locations as an abstract domain
where abstract values of the corresponding type are
stored. A special treatment has been proposed for ab-
stract dynamic data structures, i.e. the data struc-

406

tures whose cardinality cannot be determined at com-
pile time: sequences and classes.

The rest of the paper is organized as follows: Section
2 presents the language, the architecture of the sys-
tem and the concurrency control protocol; Sections 3
and 4 introduce the formal framework of non-standard
access counting semantics and its abstract version; in
Section 5 two examples are illustrated; finally Section 6
contains an assessient. of the proposed technique and
directions for future developments.

2 The PPL system

In this section we will sketch the language, the architec-
ture and the concurrency control protocol we are using
for our experiment. Restrictions and simplifications to
the Galileo system have been assumed in order to point
out the crucial issues of the proposed analysis.

The language, which we will refer to as PPL (Per-
sistent Programming Language), is a subset of Galileo
tailored for keeping the most important database con-
structs provided by the original language. More specif-
ically, PPL deals with classes and objects. It is a higher
order functional language strongly and statically typed
which allows side eflects to values of a limited num-
ber of types: relerences, classes and objects. A class
is a modifiable sequence of objects and an ohject is an
instance of a record type with a unique object identi-
fier. Classes can be organised in a taxonomic hierarchy
through single inheritance. Objects can have as com-
ponents both functions which mime methods of classi-
cal object oriented formalisms, and other objects (in-
stances of other classes).

Since the analysis for access counting takes place af-
ter the type checking of the transaction program, the
language deals with well-typed expressions. Like in
Galileo, a transaction in PPL is represcnted by a top-
level expression and starts with the beginning of the
expression evaluation. An expression can be a con-
stant, an identifier, a user defined function application
or the application of a language primitive. The syntax
of an expression of PPL is defined as follows! :

ven)

ex=c | | e(er,....en) | pler,...

'In the remainder of the paper we use the following con-
ventions:

c,p € Con (constants and primitives)
z,lb € Ide,Lab (identifiers and field names)
el, f,e,r,0,1 € Exp (expressions)

Pritnitives are defined for each basic and constructed
type, and allow specific operations on values of that
type, for instance assignment on rclerences, field se-
lection on records and so on. The other primitives are
the language constructs for flow control and declara-
tions such as if — then — else, sequencing, use, etc..

The following are some primitives which play a sig-
nificant role in the counting of access to modifiable and
sharable data structures.

o References:

var(e) : creates and returns a reference value
to the value e.

at(l) : returns the value referred by I.

«—(1,e) : assigns the value e to [.
o Classes and Objects:

class() : creates an empty class.

insert(z,r) : creales an object, inserts it in
the class identified by # and returns the ob-
ject identity. The object is created from the
evaluation of record r.

specialise(o,r,z) : specialises the object o
by adding the fields of record r and inserts it
into the subclass identified by z.

Class creation corresponds to building a repository for
objects independently of its type. We name classes
through declarations. Insertion into a subclass is per-
formed in several steps: first the object is inserted into
the base class, then the object is specialised from the
base class down to the subclass. In according with
the object oriented principles, objects are unique even
if they belong to several classes. Other primitives on
classes are:

remove(o) : removes object o from all classes it
belongs to.

for_class(cl, f) : applies function f to all elements
of class cl, and returns the sequence of results.

obj_of(o,1b) : selects the value associated to field
b of object o.

The shared persistent environment is the result of the
design phase of the database when basic and con-
structed values, including classes, are declared. When
the definition of a shared persistent environment is
completed, it is made persistent and stored in a cen-
tralised server. Afterwards, every client can execute
transactions. PPL transactions are top-level expres-
sions that can access values of identifiers declared in

407

the shared persistent environment. Inside a transac-
tion, local values can be declared for the sake of compu-
tation (construct use_in). Figure 1 shows the architec-
ture underlying PPL. It adopts the client-server model
that is typical of Object Oriented Databases and Per-
sistent Programming Languages architectures [12,13)].
The server handles the shared persistent store, i.e. the
database, and the shared persistent environment that
contains mappings from global identifiers to locations
of the store. The scheduler is the module of the server
devoted to concurrency control. When a client begins a
session, it loads a copy of the shared persistent environ-
ment from the server to solve locally identifier bindings
and to use the communication network only to access
the stored values. A session consists of sequential exe-
cution of many transactions.

The concurrency control protocol used by the trans-
action scheduler running on the server, is the conser-
vative two-phase locking. Briefly, this protocol [7] en-
tails knowing the read and write set of each transaction
before its execution, if all data are available they are
locked till the end of the transaction. This protocol
avoids deadlocks but needs the programmer to declare
the read and write set for each transaction. Our idea is
that the static analysis could supply this information.

The following example shows the population of
class base with the object (a: var(l),b: var(l)) and
the population of the subclass sub with the object
(a:var(2),b: var(2),c:2,d:2) which specialises the
object (a : var(2),b : var(2)) of class base:

use(base,class());

use(sub,class());

insert (base,rec(a,b,var(1),var(1)));

specialise(insert(base, rec(a, b,var(2),var(2)),
rec(c, d, 2,2), sub))

The first two declarations define the Shared Persistent
Environment, i.e. a global environment shared among
all transactions. Once defined, bindings of the Shared
Persistent Environment can never change. Transac-
tions can only affect values stored in locations bound
to global identifiers of an updatable type. The last two
expressions of the previous example are transactions.

3 Exact non-standard semantics

Ezacl non-standard semantics behaves like the stan-
dard one as far as control flow is concerned, whereas it
keeps track of all accesses to modifiable elements. The
non-standard value of a modifiable element allows one
to derive the actual number of read and write accesses
to that element at a certain moment in the transaction

Type checker
PPL static analyser
copy of Shared Persistent Environment

Client n

Shared Persistent Environment

Shared Persistent Store

Transfer unit:
object

Server

Conservative scheduler

Figure 1: Architecture of the PPL system

execution. To this aim we redefine the evaluation of
all the language primitives so that whenever a modi-
fiable element is accessed, its number of read or write
accesses 1s incremented accordingly. In this approach,
the readset and the writeset of a transaction are rep-
resented by the set of elements with a positive number
of accesses.

Exact semantic domains

The following are the semantic domains on which the
mapping between syntactic and semantic denotations

rely:
Bve = Ide — Val
Val = Basic + Rec + Se¢ + Fun + Lfval

Environment
Values

Basic = {none} Basic values
Rec = (Lab —yin Val) Records
Seg = Val* Sequences
Fun = Val®* — St — (Val x St) Functions
Lfval = Loc References
Lfobject = Loc Identity of objects
Lfclgss = Loc Class pointers
Loe = Nat Locations
St = Loc — (Ac + {free}) Store

Ac = Re x We x Rgual Access counters

Re = Nat Read access counters
We= Nat Write access counters
Rgval = Val + Class 4 Object Storabie values
Object = Ree x Lfelass® Objects
Class = Lfobject® Classes

Values of basic types are irrelevant and are eval-
uated to the special value none. Modifiable val-
ues, References, Classes and Objects, are accessed

408

through the locations which refer them. Each loca-
tion is also associated with a read counter and a write
counter. Object identity is established by the location
where the object is stored. Objects also carry the in-
formation on the classes they belong to.

The ezact semantics is defined by the function:

R : Ezp — Bve — St — Ans

where Ans = Val x Bve x St. Function R and its ab-
stract version AR, presented in the next section, are
defined by structural induction on the terms of the ab-
stract syntax of the language. The rest of this section
presents the equations of R which are relevant to the
access counting. Particular emphasis is on the equa-
tions dealing with classes and objects. An exhaustive
presentation of R and can be found in 5].

Exact semantic function

T;m evaluation of at (the reference access primitive)
is*:

R [at()]bve st =
let < loc,buveq, sty >= Riljdve ot
val = sty{loc) { mgwat
sty = styf< (nh(loc) LRe) + 1,8ty (loe) Lwo,
in < val, bve, sty >

val > [loc]

3To select a component from an element of a Cartesian
product, the operator | is adopted, followed by the name of
the component domain; e.g. if ans € Ans then ans |y €
Val. When more than one component have the same domain
name an index is used to solve the ambiguity.

Here the argument of al is a reference. Since the prim-
itive al reads the reference content, we increment the
read counter of the reference.
The assignment primitive is defined as follows:
R [~ (I,e)bve st =
let < val, bvey, sty >= R[ejbve st
< loc, bueg, sty >= R[lJdve sty
stz = sto[< sta(loc) Lre,(sta(loc) lwe) 4 1, val > [loc]
in < none, bve, sty >
The arguments of « are a reference and a value re-
spectively. The store is updated by replacing the value
and by incrementing the write counter of the reference.
The evaluation of this primitive returns none since the
standard evaluation returns the basic constant nil.
R [class)bue st =
let ¢l = new.loc(st)
st' = 51[< 0,0,<>> /el]
in < cl, bve, st’ >
When a class is created, a new location is allocated
with an empty sequence of object identifiers. Read and
write counters of the new class are initialized to 0.
Rlinsert(z, e))bve st =
let ¢l = bue(z)
< tup, bueq, sty >= Rie)dve st
obj =< tup, < ¢l >>
objs = sty(cl) | rguat
loc = new loc(aty)
st’ = st1(< 0,0, 0bj > [loc]
st" = st'[< (at'Sel) lre) + 1,

(st'(el) Lwe) + 1, 0bjs. < loc >> [cl}
in < loc, bve, st >

A new object is composed by a pair which contains
the record returned by the evaluation of e and the class
cl bound to 2. 'This new object is associated with a new
location with zero read/write counters and it is added
to the class ¢l. The read and the write counters of cl
are both incremented.

Rispecialize(e, ea, z)bve st =
let cl = bue(z)
< loc,buey, sty >= RleqJbve st
< tup, bueq, st >= Rles)bue oty
obj = 8‘2(106)],R,,.g
“pd“‘ed-Obj =< ObJ lﬁlc [WP]» Obj 1L]cl¢lu .Lel>>
st’ = sty[< (sta(loc) Lre) + 1,
(st2(loc) bwe) + 1, updatedobj > [loc]
st = st'[< (:t'gcl) ITHESY
(st'(c) Lwe) + 1, (st'(el) LRrguar). < loc >> [el]
in < loc, bve, st" >

The object e, is specialised with the fields of e;. The
temporary variable updated.obj is a pair. The first
elernent contains the extension of the record referred by
¢) with ez3. The second element contains the sequence
of classes to which the object belongs, including the
new class specified by z. The object is stored in its
old location loc, and its identity is also inserted in the
extension of subclass 2. Finally, read/write counters of
both class and object are incremented.

3Record redefinition is obtained using the metafunction

0: f1f)2) = f'(z) if = € dom(f'), f(z) elsewhere

409

Rremove(e)jbve st =
let < loc,buvey, sty >= R[e]bve st
<cely,...,ely >=8t1(l0¢) Lrycians
sty = stq[<sty(cly) LRre +1,
sty(clh) lwe +1,rem(loc, sty(cly) LRgvai) > [ch]
sty = stg[<stx(cla) Lre +1,
sta(cla) lwe +1,rem(loc, sta(elz) Lrgvar) > /€la]

stag ="ui2“n(°'n) lre +1,
‘tn(c’n) lwe +l|rem('°cvul(dn) lev-l) > /C'n]
st! = sty q1[<stogi(loc) Lre +1,
"u-l-'l (‘oc) 1W¢|“u+1(l°c) lev.l) > /Iocl
in < none, bve,st’ >

The object e is removed from all classes
<ely,...,el, > to which it belongs, this task is per-
formed by function rem. The read/write counters of
those classes are both incremented.

Other interesting primitives which operate on classes
and objects are for_class and obj.of. The former al-
lows one to visit the extension of a class, while the
latter allows a component of an object to be selected.
Their semantics, omitted in this paper, is a natural ex-
tension of the correspondent primitives for sequences
and records.

4 Abstract semantics

The primary concern of our analysis is to guarantee the
termination of abstract evaluation which merely entails
guaranteeing that domains of the abstract semantics
are finite. The basic ideas are that each abstract value
is associated with a location of the appropriate type.
Each typed location domain is assumed to be finite and
the size of this domain is statically determined by a
textual analysis of the transaction. In other words,
each location domain is a finite set of indexes of the
corresponding abstract store.

Abstract domains
The domain of abstract values is defined as follows:

Aval = Aloe; + Aloc, + Aloc, 4+ Alocy + {none}

and abstract location domains are:

Alocyype = {1,...,0lddocype,0ld J0Ceype +1,. ..,
oldlociype + mazdociyge}

Here old_loc is the initial number of non-free locations
in the global store; maz_loc is the number of new lo-
cations that are expected to be used during the trans-
action execution. maz_loc is defined as the number
of occurrences of constructors that initialise new lo-
cations. Consequently, there is a one to one corre-
spondence between constructor occurrences and new
locations: whenever the same conpstructor occurrence
is evaluated the abstract evaluation returns the same

location, whereas the exact semantics would initialise
a new location every time.

There are other ways to choose the value of maz_loc.
For instance it could be defined as the product of the
number of occurences of the constructor by the number
of occurences of calls of the function which uses this
constructor. The way we choose maz_loc establishes
the accuracy of the analysis, it is a sort of tuner of
how many concrete values will coincide with the same
abstract value.

The store that in the exact semantics was a func-
tion from locations to storable values, is now a product
of functions from typed locations to a set of abstract
storable values

Ast = Ast; x Ast, x Ast, x Ast;

In the following we discuss every single abstract store.

o The abstract store for references is defined as fol-

lows:
Asty = Aloc; — (Aac+ {free})
where:
Aac = Arcx Awe X Argval
Argval = P(Aval) + Aclass + P(Aobject)
Arc, Awe = {0,00}

An abstract location is associated with its abstract
read and write counters and with either a set of ab-
stract values, or a set of abstract objects or one abstract
class. In fact, in our language classes can be declared
only at top level, so we can have only one application
of a class constructor. Arc and Awc are two-value do-
mains: {0, 00} with the intended meaning not accessed
and accessed one or more limes. The meaning of the
abstract value oo is that the corresponding exact loca-
tions cannot be released before the end of the trans-
action. There might be other interesting abstractions,
for instance the set {1,...,maz_ac, 00} represents ex-
plicitly how many times a data structure is accessed.
In our case the policy used by the scheduler only needs
to know which data have been modified, but other op-
timizations could rely on how many times a structure
has been touched. In [5] the safety of abstract interpre-
tation has been proved with respect to the latter choice
which is more restrictive than using {0, co}.

o The abstract store for records is:

Ast, Aloc, — ((Lab — 4,4 P(Aval)) 4 {free})

We choose not to repeat the labels of the fields of the
abstract records associated with an abstract location
because they never change. In fact a single abstract
record (and not a set of abstract records) is associated
with an abstract record location. Therefore each field

of this record can carry a set of values.

410

o The abstract store for sequences is:

Ast, Aloc, — (P(Aseq) + {/ree})

where an abstract sequence is:

Aseg Len x Pos x (Pos — P(Aval))

To represent sequences we use an array of sets of ab-
stract values. The sequence elements are inserted cir-
cularly in the array. So if, for instance, the length of
the array is n, then the { —th element of the sequence is
stored in the position ((i — 1) mod n) of the array. The
least accurate approximation is the one with an array
of length 1, where all the elements of the sequence are
collected into a single set. Increasing the length of the
array will augment the accuracy of the representation.
The first two fields of the abstract sequences denote
the length and the first free position of the array re-
spectively, while the array is a function from position
to abstract values.

The following are the domains which represent the
sequence length and the next free position respectively.

Len
Pos

i

{0,...maz_seq, 00}
{0,...,maz_pos — 1}

On the Len domain the following operations are de-
fined:

z+'n = if(z+n) < maz_seq then(z 4+ n)
else oo

z-'n = ifz=o00then o
elsex—n

On Pos domain is defined:
z +? n = (2 + n) mod maz_pos
o The abstract store for functions is:
Asty = Alocy — (Afun + {free})

where

Afun = (P(Aval))* ~ Ast — P(P(Aval) x Ast)

The primitive function has a special treatment. In the
exact semantics when the same primitive is executed a
second time, a new closure is generated. In the case
of abstract semantics the second closure abstracts the
previous, so we can store only the last one. As a con-
sequence, only an abstract function will be associated
with a function location and not a set of abstract func-
tions.

o The abstract domains for objects and classes are
defined as follows:

Arecord x Aclasses

Len x Pos x (Pos — P(Aloq))

Aobject =
Aclass =

where the domains:

Arecord
Aclasses

P(Aloc,)
P(Aloc;)

denote the abstraction of the record representing the
object and the set of classes to which the object belongs
respectively. The abstract domain for classes is similar
to the domain for sequences with the difference that a
class can only contain objects.

Notice that we do not need ad hoc abstract stores
for classes and objects. In fact the reference store can
be used because classes and objects are modifiable ele-
ments.

o The abstract environment is defined as follows:

Abve = Ide — P(Aval)

where an identifier is associated with a set of abstract
values.

Abstract semantic function

The abstract evaluation of an expression returns a set
of abstract values, in fact it has to mime all possible
paths of the exact execution. The most intuitive exam-
ple is the execution of the primitive if — then — else,
where the results of both alternatives have to be con-
sidered.

The abstract non-standard semantics is defined by
the following function:

AR : Ezp — Abve — Ast — P(Aans)
where the abstract answers are:
Aans = P(Aval) x Abve x Ast

The next equation defines the abstract evaluation of
the primitive at:

AR [at(e)}abve ast =
{< VAL,abve,ast3 > |
< LOC,, abvey, asty >€ AR[e]adue ast
ast; = asty 14“,
VAL = u{asti(loc) larguet | loc € LOC;}

ast] = asty [< 00,asti(loc) Lare, asti(loc) Largvat> [loc]

Viec € LOC,
asty =< ast},asty Lase,, asts Last,, asty lau,>}

411

AR[at(e)] returns a set of triples whose first compo-
nent VAL is the sum of the values stored in the set of
location LOC, returned from the abstract evaluation
of the argument e. Moreover for each location the read

counter is set to co. . .
The abstract evaluation of the assignment is:

AR [~

Sl, e)]adve ast =
{<

none} ,abve,astz > |
< VAL,abvey, ast) >€ AR|[e]abve ast
< LOC,, abves, asty >€ AR[l)advey asty
ast; = asty 14.,'
ast; =asty[< asty(loc) Larc, o0,
(asti(lo¢) larguat) U VAL > [loc]
Vioc € LOC,
asty =< asty, asty {aus,, a8tz Lase,, a8tz Lase, >}

l is evaluated with respect to all the stores returned
by the abstract evaluation of e; then all the stores are
updated with the evaluation of I and the write counters
are set to oo.

AR[class]adve ast =
{< {cl} ,abve,ast’ > |
ast; = ast LA,.,
uat; = ast; ;< 0,0,< 0,0,[]>> /el]
ast’ =< ast;,ast L aee,, a8t | Ast,, ast lAu,> }

Each occurrence of the primitive class has a loca-
tion cl associated with it. The abstract interpretation
associates an empty class with this location and prop-
agates the previous read/write counters through the
store ast’.

AR[inserti,c(z, e))abve ast =
{< {loc},abve,ast > |
cl € abve(r)
< LOC,,abve;, asty >€ AR[e]abve ast
obj = < LOC,, {cl} >
ast; = asty | Asty
objs = ast;(cl) | Ast,
ast; = if ast;(loc) = free
then as;{< 0,0, {obdj} > /loc]
else ast;[<asti(loc) L Rre, asti(loc) fwe,
asty(loc) Largvat U{0bj} > [loc]
ast]’ = ast}[< o0, 00,in(obss, {loc}) > [el]
ast’ =< asty',ast Laet,, 09t Las, 850 Lase, >)

A new object which contains the set of records LOC,
returned by the evaluation of e is created and inserted
into the class cl. The function in inserts a set of ab-
stract objects in the first free position of the array rep-
resenting the class. The abstract read/write counters
of the class are both set to co, while read/write coun-
ters of the other objects of the class remain the same.
This implies that inserting an object into a class can
be executed in parallel with any other operation on ob-
jects of that class if they are reached from somewhere
else.

AR[specialize(e, eg, £)]abve ast =
{< LOC;,, abve,ast’ > |
¢l € adbve(z)
< LOC,,abvey, asty >€ AR[eq]abve ast
< LOC,, abvey, asty >€ AR[ez]abuve asty
ast, = asty LA,

loc, € LOC,
tup = ast,(loc,)
a“l = asty lA-l
ast,, —aat,[([(tup(lab)u ast (Ioc,_)(lab))/lab]
Viab € Lab)/locl),
Vioc, € (obj latoc,), 0bj € asti(loer),loc; € LOC;
aat, —d.lh[(00, 00, < ((an,(locg) largvat) lAlocr)r
(a'tl('ocl) lArgval) lAloc,.) (7] {CI} >> /'06,]
Vlac. € LOC,
ast]' = ast [< 00,00, in((astj(cl) Largvar, LOCY) > [cl}
ast’ =< a:t, ,a:t,,a.at 14,._,«3! 14..,>

This operation is very expensive. LOC, is the set
of records with which to specialize all the objects in
LOC;: each object will have k new fields with a set of
abstract values for each of them.

AR[remove(e)]adve ast =
{< { none}, abve,ast’ > |
< LOC;, abve,, asty >€ AR[e]abve ast
ast; = asty L.y,
loey € LOC,
obj € aat;(loc.) lArgv-l
ast] = ast;[< 00, 00, arem(asti{cl) l argvar) > /cl]
Vel € ObJ lAclottea

a.lt’ = a:t,[(00, astj(loct) L awe), ast{(loct) Larguar> [loci)

ast’ =< ast)’, asty last,,a8t1 last,, a8ty lass, >

The abstract removal of an object consists in chang-
ing the positions of the elements in the class. The ab-
stract elements in position ¢;, are duplicated in posi-
tion i;5 — 1 because we do not know which element
has really been removed (this task is performed by the
function arem). Correctness is thus preserved, but if a
single transaction requires maz_pos removals, then all
positions contain all abstract elements. In this case the
accuracy of the analysis is poor, but it will not affect
abstract execution of other transactions.

4.1 Correctness and termination

In [5] the correctness is formally proved of an analysis
with the domain of the read/write counters equal to
{0,...,maz_ac, o0} instead of {0,00}. The parameter
maz_ac is an estimation of the maximum number of
accesses a transaction can do on a data structure. This
analysis is more general than the one presented in this
paper, in fact it determines how many times a data
structure has been touched. From a correctness point
of view the results obtained in the general case hold in
our restriction.

Informally, the abstract evaluation AR is correct
with respect to the exact evaluation R, if the num-
ber of accesses to each location obtained with R is less
than or equal to the number of accesses to the corre-
sponding locations obtained with AR. This means that
a scheduler based on this information will lock more or
equal data than those requested by the real execution,
but is granted to be deadlock free.

The proof of correctness is formally developed by
defining a family of typed relations C¢yp. between exact

412

and abstract values of the various types of the language.
Firstly, correctness for basic domains is defined, then it
is defined for structured domains until correctness re-
lation between the functions of semantic interpretation
has been defined. Finally, it is proved that AR and R
applied to PPL sentences are correct.

Def. 1 Consider the functions AF and F

AF . Ezp — Abve — Ast — Aans and

F : Ezp — Bve — St — Ans.

AF Crun F mboziff

(Vabve € Abve,ast € Ast,bve € Bve,st € St,e € l‘:cp
< abve,ast >Cgnpy< bve, st > —

(AF [e]abve ast C4 F [e]bve st))

The above definition says that two functions are re-
spectively correct if applied to the same expression in
environments and stores which are respectively correct
produce results which are respectively correct. Cor-
rectness between results is established by the existence
of at least one abstract result in the set returned by
the abstract evaluation which is correct with respect
to the exact one. This statement is established by the
following:

Def. 2 Let S € P(Aans),t € Ans,
(SCat)iff (s € S such that s Cans)V (t = Lan,))

Finally the following proposition establishes correct-
ness between the abstract and exact semantics:
Proposition 1 AR is correcl respect with R, iff
AR gi‘un R

The termination of the analysis is guaranteed by the
finiteness of the abstract domains and by the mono-
tonicity of the function that performs the analysis on
such domains. In fact, the only condition in which our
analysis might not terminate, is when a fix point op-
erator is involved in the evaluation of a sentence; but
the fix point operator is always used with monotonic
functions defined on finite domains, hence the fix point
is finitely computable.

5 Examples of abstract evalua-
tion

In this section two different examples are shown. The
first uses the construct { f —then—else whose evaluation
returns a set of sets of tuples. The second is concerned
with our real objective: to gather information for the
scheduler of transactions in a database. This example
only illustrates a few steps of the abstract execution
and highlights the final results.

Examplel

Let the following be the abstract evaluation for the
construct if — then — else.

ARif(p,t, e)] abve ast =
U{(AR[tlabve’ ast’ U AR[e]abue’ ast’) |
< {none},abve’, ast’ >€ AR([plabve ast)}

Then abstract evaluation of the expression:
(if(> (at(x), 100), — (z,10), ~ (y, 10))
w.r.t. the environment:

abve = {(=z, {loey,loca}), (¥, {loca})}
and the store:

asty = {(loey, < r1,w1.{none} >),('0¢2,< rﬂl"'li{none} >)'
(loca, < r3, wy, {none} >)}

returns the set of triples:

{ < {none},
{(z,{10cy,10c}). (¥, {loca])},
{(toey, < 00, 00, {none} >), (loca, < 00,00, {none} >),
(’063: < raz,wa, {none) >) >,
< {none}),

{(z, {locy, locy}), (y, {loca))},
{(loey, < 00, wq, {none} >), (loca, < oo, wa, {none} >),
(loca, < r3,00, {none} >)} >}

In this case the conservative scheduler will consider
to sum of the returned triples and will lock locations
locy, locy and locs which contain x and y values.

Example2

Consider the following expressions defining a database
schema:

use rec employees class
employee «
(] name: string
and code; string
and boss: var(manager)
and ...])
managers subset of employees class
manager <
(] is employee
and team: var (seq (employee))
and ...[);

Every employee has one manager, while every man-
ager has a team composed of a modifiable sequence of
employees. The following transactions T1 and T2 pop-
ulate the previous schema with an employee object and
a manager:

(use (mgr, get(managers,cond’));
(use(emp, recy,.4 (name,code,boss,.. .,
’Smith’,1234,var(seq(mgr)),. . .));
insert,osj4(emp employees)))

413

(use (emp, get (employees,cond”));
(use(mngr, recyocq(team,. .. seq(),...));
specialize(emp,mngr,managers)))

The index at the occurrence of each constructor like
insert,p;4 represents the location on which it oper-
ates. The concurrent execution of the above transac-
tions might lead to deadlock because the former reads
the class managers and updates the class employees,
while the latter reads the class employees and updates
the class managers.

Tables 1 and 2 show the initial abstract environment
and the initial abstract store for this example.

The abstract interpretation of transaction T1 re-
turns the store in Table 3. In the table, the identi-
fiers in bold denote items involved by the first trans-
action which reads the locations elp, obj;, and up-
dates the location c¢ly. Table 4 shows the abstract
store returned by the abstract interpretation of the
second transaction. The abstraction of primitive get
returns all objects of class employees, so the transac-
tion reads the locations cly, 0bj;, 0bjs, 0bj3z and updates
cla, 0bjy, 0bjz, 0bjs. Comparing the results the sched-
uler detects the risk of deadlock.

6 Discussion and further work

The results presented in this paper are the first part
of our experiment. They confirm that we can obtain a
correct approximation of the read/write set of a trans-
action by static analysis with respect to a snapshot of
the environment and the store. An implementation of
such an approach must consider that the global store
is affected by the execution of other transactions, i.e.
it has to deal with concurrent accesses to the store.

Two important questions are involved when assess-
ing the applicability of this approach in the Data Base
context:

o what is the cost of the analysis in terms of space
and time, and how much does it affects the effi-
ciency of a transaction execution?

e is the information gathered by the analysis signif-
icant, i.e., is it really useful for realistic optimiza-
tions?

Both the answers to these questions are concerned
with the granularily of the analysis. In fact, the ac-
curacy of the analysis depends on whether the abstract
representation of database is finer or coarser. The
finest abstraction is the one corresponding to the ac-
tual database: each object which is in the Data Base at
the moment of the transaction execution is represented.

abve

employees

{cl1}

managers

1cla}

Table 1: Initial Abstract Envinronment.

ast, asly
ch [{<0,0,<3,3,[{0bj1}/0, {0bja}/1, {0bja}/2] >>} H tlocs
Objl {< 0)0)< “1001}»101,612} >>} uOC2
objs | {< 0,0, < {tloeg}, {cli} >>} tlocs | [...
objs | {< 0,0, < {tlocg},{ch } >>} tlocqy | free
ez | {<0,0,<1,1,[{0bj1}/0] >>}
objy | free

Table 2: Initial Abstract Store.

ast, ast,;
cy [{<0,00,<4,4,[{0b51}/0,{0bsa}/1,{0bjs}/2, {9bja} /3] >>} || tloc,
obj1 | {€ 00,0,< {tloc }, {cl;,clg} >>} tlocy
objz | {< 0,0, < {tloca},{cli} >>} tlocs
objs {< 0,0, < {tlocs}, {cl1} >>} ﬂ tlocy
cl {< 00,0,<1,1,[{0bj1 }/0] >>} I
objs | {<0,0,< {tlocs}, {chi} >>} [
Table 3: Final Abstract Store for T1.
ast, ast;
cly {< ,0,< 3,3,[{0b71}/0, {0bj3}/1,{0bja}/2] >>} I tloc
objy | {< 00,00,< {tlocy }, {cl1,cla} >>} tlocy
objs | {< 00,00,< {tloea}, {cly, cla} >>} tlocs
obj3 | {< 00,00,< {tlocs}, {cly, cla} >>} tlocy
ch 1<0,00,< 2,2, [{ jl)/(), {o‘bjln 033, ObJS}/I] >>}
objs | free

Table 4: Final Abstract Store for T2.

414

The coarsest abstraction is one where only the types
and the classes declared in the global environment are
represented. Between these two extremes there is a
whole range of intermediate possibilities, which corre-
spond to trade-offs between accuracy and cost of the
analysis.

Our analyser provides some tuning mechanisms to
control the granularity of the analysis i.e. the parame-
ters which specify the size of the abstract domains. An
example of such a parameter is the cardinality of the
abstract classes (the length of the array which simu-
lates the extension of the class) which establishes the
ratio between abstract objects and concrete ones. For
instance, an interesting analysis can be obtained by
representing classes (and sequences) with an array wich
contains a single representative object. This choice is
based on the fact that abstraction of search operations
always returns the indistinct set of all objects in the
clags. The resulting analysis is very efficient. In fact,
the abstract locations are statically determined {corre-
sponding to different occurrences of the constructors),
so, the only things that can change in a recursive call
are the counters of the objects. In this case there is
only one object thus yielding to a fast convergence of
the fix-point computation.

Further study is needed to learn how to use these
tuning mechanisms. We believe that this knowl-
edge can be gained from experiments and that the
mechanisms can be correlated with other application-
dependent parameters such as the concurrency rate.

This part of the experiment is currently under study.
The first next step is the development of a prototype
of the analyser and its integration with the existing
PPL system, so that the analysis, the scheduling and
the execution of transactions coexist and interact. The
second step is to test some significant case studies in
order Lo evaluate the performance figures obtained.

References

[] S. Abramsky and C. Hankin (eds), Abstract inter-
pretation of declarative languages, ENis Horwood,
Chichester, UK, 1987.

[2] S. Abramsky, Abstract Interpretation, Logical Re-
lations, and Kan Extensions, Journal of Logic and
Compulation, Vol 1, No.1, 1990.

[3] A. Albano A., L. Cardelli and R. Orsini, Galileo:
A Strongly Typed, Interactive Conceptual Lan-
guage, ACM Transaction on Database Systems,
Vol. 10, No. 2, 230-260, 1985.

415

[4] G. Amato, F. Giannotti and G. Mainetto, Anal-
ysis of Concurrent Transaction in a Functional
Database Programming Language, Proc. Work-
shop on Static Analysis, Bordeaux,174-184,1992.

[6] G. Amato, Definizione di un Interprete Astratto
per lottimizzazione dell’esecuzione di iransazioni,

Tesi di Laurea, Dip. di Informatica di Pisa, 1992.

[6] M.P. Atkinson and O.P. Buneman, Types and

Persistence in Database Programming Languages,
AM Nasme Caseas 17,1 106 N. & 1NR_1QN 1007
Avi vomp. ourv.,, vOou i, 170, &, 1UJ-19V, 1I0i.
P. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database
System, Addison-Wesley, Cambridge, MA, 1987.

(71

P. Cousot and R. Cousot, Abstract interpreta-
tion: An unified lattice model for static analysis
of programs by construction of approximation of
fixpoints, Proc. {th POPL, 238-252, 1977.

(8]

P. Cousot and R. Cousot, Static determination of
dynamic properties of programs, Proc. of the 2nd
Int. Symp. on Programming Languages, Dunod,
Paris, 1976.

(9]

[10] P. Cousot and R. Cousot, Abstract Interpretation

Frameworks, Jour. of Logic and Comp., 1992.

A. Deutsch, On determining lifetime and aliasing
of dynamically allocated data in higher-order func-
tional specifications, ACM Symposium on Prin-
ciples of Programming Languages, San Francisco
CA, 157-168, 1990.

D.J. De Witt, P. Futtersack, D. Maier and F.
Velez, A study of three alternative workstation-
server architectures for Object Oriented Databases
System, Proc. of VLDB ’90,107-121, Brisbane,
Australia,1990.

(11]

[12]

M. Di Giacomo, G. Mainetto and L. Vinciotti,
Gestione della persistenza e delle transazioni nel
Sistema Galileo Distribuito, Sistemi Evoluti per
Basi di Dati, Gizzeria Lido (CZ), I, 1993.

J.V. Joseph, S. M. Thatte, C. W. Thompson and
D. L. Wells, Object-Oriented Databases: Design
and Implementation, Proc. of IEEE, Vol. 79, No.
1, 42-63, 1991.

[13]

[14]

(15] P. Hudak, A semantic model of reference counting
and its abstraction, Proc. of ACM Symposium on

Lisp and Functional Programming, 351-363, 1986.

