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Abstract 

This paper presents an experiment in nsing n fnrmnl tech- 
niqne for static prngrnm nnnlyais, hnsod an abstract intarpre 
t.ntion, in the context of persistent progrnmming Inngnngw. 
The nim of thn annlysis is to dntoct npportnnities for snfe 
parallelism fnr trnnsnetinn nperatinn sehadnling. Tmnsnctinn 
apcratinns cnn he snfely intarlanved when there is no nverlnp- 
ping among their rends& nnd writ-b. A non-atnndnrd 
interpreter perfnrmcl the nnnlysis. This interpreter, given 
the text of n trnns.actinn nnd n reprascntntinn nf the dntn 
stored in the dntnh.m, oufnmnfica//y derivea in n finite time 
n11 npprnxirnntinn of the randset and writ-t nf the nnnlysed 
lrnnsnclinn. lnfnrmntian ahtnined from the non-atnndnrd in- 
terpret,ntinn is provided to the schodnler hefnra haginning the 
cxrcntion of trnnsactinn operations. In this way, we ohtnin A 
schrdnler thnt renlism n cnnservntive two-phase lacking pro- 
tocol fnr persistent programming Inngnaga trnnsactinncl. We 
npply the nnalysis to n Iangnage thnt is n signiticnnt snhset 
of Gnlilan. The gnnl of the nnnlyh i.s tn &.teet the nccems 
xnlely to shnrc\nhle nnd mnclitinhle persistent dntn. 

1 Introduction 

‘I’hc evolution of Data Base Programming Languages 
(DRPLs), which provide a unifying formalism for data 
tlcfinition and manipulation, opens up opportunities 
For exchanging ideas, problems and technical solutions 
bctwecn tbr two areas of databases and programming 
languages. Persistent Programming Languages are the 
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subclass of DBPLs in which the data model of persis- 
tent values is completely integrated into a program- 
ming language. In fact, the guiding principle of Per- 
sistent Programming Languages is the orthogonal per- 
sistence: it establishes that persistence is a property 
of arbitrary values and all values have the same rights 
to persistence [S]. Specifically, if a Persistent Program- 
ming Language is designed on the basis of formal se- 
mantics, formal methods for designing, transforming 
and optimizing database programs can be exploited. 
Indeed, it is a challenging research direction to investi- 
gate whether, which and how such formal methods can 
be successfully put to work in the database context. 

In the programming language area, a consolidated 
class of formal techniques for static program aualy- 
sis is known as abstract interpretation (AI) [l&3]. It 
is aimed at gathering information on the dynamic se- 
mantics of a program or specification to be used by 
compilers, partial evaluators and debuggers, or merely 
as documentation [9]. For example, logic programming 
has successfully used AI for detecting properties such 
as groundness and goal independence to provide effi- 
cient specialised parallel execution of logic programs 
[lo]. Functional programming uses AI to detect strict- 
ness and reference independence for efficient graph re- 
duction and optimised garbage collection [l]. 

We propose using AI for a novel application, i.e. to 
develop a conservative two-phase locking (2PL) pro- 
tocol in a persistent system. An aggressive scheduler, 
that real&s for example a strict 2PL protocol, analyses 
transaction operations one at a time, and immediately 
decides whether to execute, delay or reject the opera- 
tion [7]. It has no knowledge of the future operations 
of a transaction. For example, it can decide to exe- 
cute a write operation that will subsequently risk the 
transaction being aborted because of a deadlock. A 
conservafive scheduler should know a prioti the shared 
data which concurrently executing transactions are go- 
ing to access, so that it can prevent deadlock and abort- 
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ing due to transaction conflicts. Almost all database 
systems traditionally have an aggressive and a conser- 
vative version of schedulers, because there is a perfor- 
mance tradeoff between the two types of schedulers and 
each version performs especially welt for certain types 
of applications. 

The scheduler can know in advance the set of dat,a 
that a traIlsaction is going to acccs.9, called rrnff.url crud 
mrileuel, if thcr trirIlsfwt.iOll programmer prottccIarc:s it. 
In Persistent Programming Languages, inferring rrad- 
set and writeset of a transaction is difficult because 
persistent data have a complex structure and both 
persistent and temporary functions may be involved 
in a transaction execution. Thus we propose a tool, 
based on Abstract Interpretation, that automatically 
performs a static analysis of the program that defines 
a transaction, inferring an approximation of its readset 
and writeset. 

We anatyse transactions written in PPL, a language 
which is a significant subset of Galileo [3]. PPL is a 
higher order functional language, strongly and stati- 
cally typed, with single inheritance, which allows an 
object-oriented programming style. PPL transactions 
can access the most important datastructures provided 
by Galileo: basic type values, references, records, se- 
quences, functions, objects, and classes. 

The goat of the analysis is to detect the accesses to 
sh.arable and modifiable data structures such as refcr- 
ences, classes and objects. In fact, the concurrent exe- 
cution of transactions can only create inconsistency in 
the case of updates. Our idea has been inspired by Hu- 
dak’s proposal [15] that uses reference counting analysis 
to reduce the run-time memory management overhead 
in a first order functional language. Similar problems of 
run-time memory management for a higher-order func- 
tional programming language have also been investi- 
gated in [l 11. 

The first step of our experiment consists in defining 
a non-standard semantics which extends the standard 
one by determining the number of accesses to modi- 
fiable data. Informally, every time the real execution 
accesses a reference or a class or an object, a corre- 
sponding access counter is incremented in either read 
or write mode according to the executed operation. 

The second step consists in defining an abstraction 
of the non-standard semantics that guarantees the ter- 
mination of the analysis. The termination relies on the 
fact that the abstract execution operates on finite ab- 
stract domains of values. The main choice is to use a 
finite set of “typed” locations as an abstract domain 
where abstract values of the corresponding type are 
stored. A special treatment has been proposed for ab- 
stract dynamic data structures, i.e. the data struc- 

tures whose cardinatity cannot be determined at com- 
pile time: sequences and classes. 

The rest of the paper is organized as follows: Section 
2 presents the language, the architecture of the sys- 
tem and the concurrency control protocol; Sections 3 
and 4 introduce thr format framework of non-standard 
access counting srmauticn and its abstract vl*rsion; in 
Srrtion 5 two cxafnptrs art* illustrat~*d; finally !+ctiou (i 
contains ILII HHnc~ssint~nt of the phlpot8cd tc.c.hniqut* ruitl 

directions for future ctrvelopr~~e~~k~ 

2 The PPL system 

In this section we wilt sketch the language, the architec- 
ture and the concurrency control protocol we are using 
for our experiment. Restrictions and simplifications to 
the Galileo system have been assumed in order to point 
out the crucial issues of the proposed analysis. 

The language, which we will refer to as PPL (Per- 
sistent Programming Language), is a subset of Galileo 
tailored for keeping the most important database con- 
structs provided by the original languagc~. Marc spccif- 
icatty, PPL deals with classes and objects. It is a higher 
order functional language strongly and statically typed 
which allows side effects to values of a limited IIIIIII- 

ber of types: rcfcrences, ctasscn and objrcts. A CIHSS 
is a modifiable sequence of objects and an obj& is an 
instance of a record type with a unique ubject idcnii- 

fier. Classes can be organised in a taxonomic hierarchy 
through single inheritance. Objects ran have it9 rorw 
ponents both functions which mime methods of ctassi- 
cal object oriented formalisms, and other objects (in- 
stances of other classes). 

Since the analysis for access counting takes place af- 
ter the type checking of the transaction program, the 
language deals with welt-typed expressions. Like in 
Galileo, a transaction in 1’1’1, is represrutrd by a lay- 
level expression and starts with the beginning of ttrr 
expression evaluation. An expression can be a COII- 
stant, an identifier, a user defined function application 
or the application of a language primitive. The syntax 
of an expression of PPL is defined as follows’ : 

c,p E con (conatsnts and primitives) 
I, lb E Ide, Lab (identifiers and field names) 
cl, f, e, r, o, 1 E Ezp (expressions) 
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l’riluitivrs arc defined for each b&c and constructed 
type, and allow specific operations on values of that 
type, for instance fwsignment on references, field se- 
leclion on records and so on. The other primitives are 
the language constructs for flow control and declara- 
tions such as if - then - else, sequencing, use, etc.. 

The following are some primitives which play a sig- 
nificant role in the counting of access to modifiable and 
sharablc data structures. 

0 References: 

var(e) : creates and returns a reference value 
to the value e. 

at(l) : returns the value referred by 1. 

+-(1,e) : assigns the value e to 1. 

l Classes and Objects: 

class0 : creates an empty class. 

insert(+, r) : creates an object, inserts it in 
the class identified by z and returns the ob- 
ject identity. The object is created from the 
evaluation of record P. 

specialise(0, T, 2) : specialises the object o 
by adding the fields of record r and inserts it 
into the subclass identified by 2. 

<X+ss creation corresponds to building a repository for 
objects independently of its type. We name classes 
through declarations. Insertion into a subclass is per- 
formed in several steps: first the object is inserted into 
the base class, then the object is specialised from the 
base class down to the subclass. In according with 
the object oriented principles, objects are unique even 
if they belong to several classes. Other primitives on 
classes are: 

rcmove( 0) : removes object o from all classes it 
belongs to. 

for-class(c1, 1) : applies function f to all elements 
of class cl, and returns the sequence of results. 

ohj-of(o, lb) : selects the value associated to field 
lb of object o. 

‘l’he shared persistent environment is the result of the 
design phase of the database when basic and con- 
structed values, including classes, are declared. When 
the definition of a shared persistent environment is 
completed, it is made persistent and stored in a cen- 
tralised server. Afterwards, every client can execute 
transactions. PPL transactions are top-level expres- 
sions that can access values of identifiers declared in 

the shared persistent environment. Inside a transac- 
tion, local values can be declared for the sake of compu- 
tation (construct use-in). Figure 1 shows the architcc- 
ture underlying PPL. It adopts the client-server model 
that is typical of Object Oriented Databases and Per- 
sistent Programming Languages architectures [12,13]. 
The server handles the shared persistent store, i.e. the 
database, and the shared persistent environment that 
contains mappings from global identifiers to locations 
of the store. The scheduler is the module of the server 
devoted to concurrency control. When a client begins a 
session, it loads a copy of the shared persistent environ- 
ment from the server to solve locally identifier bindings 
and to use the communication network only to access 
the stored values. A session consists of sequential exe- 
cution of many transactions. 

The concurrency control protocol used by the trans- 
action scheduler running on the server, is the conser- 
vative two-phase locking. Briefly, this protocol [7] en- 
tails knowing the read and write set of each transaction 
before its execution, if all data are available they arc 
locked till the end of the transaction. This protocol 
avoids deadlocks but needs the programmer to declare 
the read and write set for each transaction. Our idea is 
that the static analysis could supply this information. 

The following example shows the population of 
class base with the object (a : var(l), b : var(1)) and 
the population of the subclass sub with the object 
(a : var(2), b : var(2), c : 2, d : 2) which spccialises the 
object (a : var(2), b : var(2)) of class base: 

use( base,class()); 
use(sub,class()); 
insert (base,rec(a, b,var( l),var( 1))); 
specialisc(insert(base, rec(a, b,var(2),var(2)), 

=(c, 4 21% sub)) 

The first two declarations define the Shared Persistent 
Environment, i.e. a global environment shared among 
all transactions. Once defined, bindings of the Shared 
Persistent Environment can never change. nansac- 
tions can only affect values stored in locations bound 
to global identifiers of an updatable type. The last two 
expressions of the previous example are transactions. 

3 Exact non-standard semantics 

Exact non-standard semantics behaves like the stan- 
dard one as far a8 control flow is concerned, whereas it 
keeps track of all accesses to modifiable elements. The 
non-standard value of a modifiable element allows one 
to derive the actual number of read and write accesses 
to that element at a certain moment in the transaction 
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Shared Persistent Environment Conservative scheduler 

Shared Persistent Store 
Figure 1: Architecture of the PPL system 

execution. To this aim we redefine the evaluation of 
all the language primitives so that whenever a modi- 
fiable element is accessed, its number of read or write 
accesses is incremented accordingly. In this approach, 
the readset and the writeset of a transaction are rep- 
resented by the set of elements with a positive number 
of accesses. 

Exact semantic domains 

The following are the semantic domains on which the 
mapping between syntactic and semantic denotations 
rely: 

Eve = Ide d Vol 
Vd = Bsric + Rae + Set + Pun + L jval 
Beaie = (none) 

Fun = Vol. 4 St - (Vol x St) 
LJvol = Lot 
Ljobjcet = toe 
Lfcl$ws = Lee 
Loe = Nal 

= Re x WC x Rpol 
Rc = Not 
WC = Nat 
Rgvol = Vol + Clara + Object 
Object = Rce x LJelorr’ 
Clorr = Ljobjeet* 

Environment 
V8h# 

Buic v&a 
Ruords 

stqutnca 
Functions 

Ft4ftmllca 
Identity of objectr 

Claw point- 
Location8 

store 
Access countem 

Read accaa count-m 
Write acceu counters 

Stomblt mlua 
Object8 
CIUMW 

Values of basic types are irrelevant and are eval- 
uated to the special value none. Modifiable val- 
ues, References, Classes and Objects, are accessed 

through the locations which refer them. Each loca- 
tion is also associated with a read counter and a write 
counter. Object identity is established by the location 
where the object is stored. Objects also carry the in- 
formation on the classes they belong to. 

The ezact semanlics is defined by the function: 

‘R:Ezp+BvewSt-+Ane 

where Am = Val x Bve x St. Function ‘R and its ab- 
stract version AR, presented in the next section, are 
defined by structural induction on the terms of the ab 
stract syntax of the language. The rest of this section 
presents the equations of R which are relevant to the 
access counting. Particular emphasis is on the equa- 
tions dealing with classes and objects. An exhaustive 
presentation of ‘R and can be found in (51. 

Exact semantic function 
l$e evaluation of at (the reference access primitive) 

‘R [d(t)]bW Jl = 

let < lee, but., ,rll >= R[flbvc rt 
ual = rh(loe) 1R **I 
rta = rtr[< ( at1 be) ld + l,rtl(loe) lwo,vat > /W r 

in < uol, hue, rts > 

‘To rtltct l component from an element of a Cart&en 
product, the operator 1 in adopted, followed by the name of 
the component domain; e.g. if ens E Anr then on8 Jv,lE 
Vol. Wbca more than one component have the same domain 
name an index ir wed to rolve the ambiguity. 

408 



Ilcre the argument of al is a reference. Since the prim- 
itive al reads the reference content, we increment the 
read counter of the reference. 

The assignment primitive is defined ss follows: 
72 [e- (I, c)]bve Jt = 

let < val,bve,,Jtl >= ‘R[e]bue Jt 
< lot, bve2, Jt2 >= R[l]bue at1 
at.3 = st2[< st2(loc) lRc, (st2(loe) Iwo) + 1, vat > /foe] 

in < none, hue, Jt3 > 

The arguments of +- are a reference and a value re- 
spectively. The store is updated by replacing the value 
and by incrementing the write counter of the reference. 
The evaluation of this primitive returns none since the 
standard evaluation returns the basic constant nil. 

R [claJJ]bvc rt = 
let cl = newlocfrt~ 

rt’ = rt[< o,b, o> /cl] 
in < cl, bvc, rt’ > 

When a class is created, a new location is allocated 
with an empty sequence of object identifiers. Read and 
write counters of the new class are initialized to 0. 
R[inJert(o, e)]bve Jt = 

let cl = bve(r) 
< tvp, bucl, Jtl >= ‘R[c]bve at 
obj =< tup, < cl >> 
objr = Jtl(4 1Rpr.l 
IO.2 = newloc(Jtl) 
rt’ = rtr[< O,O, obj > /roe] 
St” = rt’[< ( #t’(d) LR.,) + 1, 

(at (cl) Iwo) t 1,objJ. < foe >> /cl] 
h < lot bvc at” > I , 

A new object is composed by a pair which contains 
the record returned by the evaluation of e and the class 
rl bound to t. This new object is associated with a new 
location with zero read/write counters and it is added 
to the class cl. The read and the write counters of cl 
are both incremented. 
R(Jprcialire(e~ ,e2, s)]bve Jt = 

let cl = but(t) 
< loe,bve, ,Jtl >= 72[c,]bve Jt 

< tup, bveg, Jtg >= 7Z[e2]bve Jtl 
obj = Jt2(loc) lR,,..i 
updated& =< obj hs [tup], obj ALIBI.,, . < cl >> 
st’ = st2[< (st2(loc) he) t 1, 

(Jt2(loc) 1~~) + 1, updotedabj > /foe] 
Jt" = Jt’[< (Jt’(Cf) JRo) + 1, 

(Jt (Cl) lws) t l,(Jt’(Cl) hQ,ral). < IOC >> /Cl] 

in < roe, bve, Jt” > 

The object el is specialised with the fields of e2. The 
temporary variable updatedabj is a pair. The first 
element contains the extension of the record referred by 
el with ea3. The second element contains the sequence 
of clssses to which the object belongs, including the 
new class specified by t. The object is stored in its 
old location lot, and its identity is also inserted in the 
extension of subclass r. Finally, read/write counters of 
both class and object are incremented. 

‘Record redefinition is obtained using the metsfunction 
0: f[f’](z) = f’(s) i/ I E dona( f(s) elsewhere 

R[remoue(a)]bua Jt = 
let < foe, buel, Jt, >= R[e]bue Jt 

< Cll,. . I elm >= Jtl(loc) h~oi.,, 

Jt? = Jtl[<Jtl(Cf, hc i-1, 

Jtr(cll LW. tl,rem(loc, Jtl(Cll) 1RJ.d) > /Cl,] 

Jtn = Jtl[<Jt2(Ch t 1Rc +I, 

Jtdh) 1Wc tl,re”‘(loc, Jb(cl2) 1RJ.d) > /Cl21 

J&+1 =Jt.[< Jt.(&) i~.a tl, 

Jt’ = 
Jt.(cl.) SW. tl,rem(loc, Jt,(clm) 1Rpr.I) > /Cl..] 

Jt,+,[<Jt,+l(loC) 1R.a i-1, 
Jt,+l(lOC) 1W.m Jt,+l(fOC) iRgv.1) > /lOC] 

in < none, bve, Jt’ > 

The object e is removed from all classes 
< Cll,... ,cl, > to which it belongs, this task is per- 
formed by function rem. The read/write counters of 
those classes are both incremented. 

Other interesting primitives which operate on classes 
and objects are for-class and obj-oof. The former al- 
lows one to visit the extension of a class, while the 
latter allows a component of an object to be selected. 
Their semantics, omitted in this paper, is a natural ex- 
tension of the correspondent primitives for sequences 
and records. 

4 Abstract semant its 

The primary concern of our analysis is to guarantee the 
termination of abstract evaluation which merely entails 
guaranteeing that domains of the abstract semantics 
are finite. The basic ideas are that each abstract value 
is associated with a location of the appropriate type. 
Each typed location domain is assumed to be finite and 
the size of this domain is statically determined by a 
textual analysis of the transaction. In other words, 
each location domain is a finite set of indexes of the 
corresponding abstract store. 

Abstract domains 
The domain of abstract values is defined as follows: 

AVd = Aloe, + Aloe, + Aloe, + Aloe, + {none} 

and abstract location domains are: 

Aloe,,,. = (1, ...I oldloc,vra,old_locl,,. t 1,. . . , 
old-loct,,. + mat-foc~,,.) 

Here oldloc is the initial number of non-free locations 
in the global store; maz-lot is the number of new lo- 
cations that are expected to be used during the trans- 
action execution. mazluc is defined as the number 
of occurrences of constructors that initialise new lo- 
cations. Consequently, there is a one to one corre- 
spondence between constructor occurrences and new 
locations: whenever the same cogstructor occurrence 
is evaiuated the abstract evaluation returns the same 
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location, whereas the exact semantics would initialise 
a new location every time. 

There are other ways to choose the value of mazloc. 

For instance it could be defined as the product of the 
number of occurences of the constructor by the number 
of occurences of calls of the function which uses this 
constructor. The way we choose mazloc establishes 
the accuracy of the analysis, it is a sort of tuner of 
how many concrete values will coincide with the same 
abstract value. 

The store that in the exact semantics was a func- 
tion from locations to storable values, is now a product 
of functions from typed locations to a set of abstract 
storable values 

Ad = Astr x Ad, x Ad, x Ad, 

In the following we discuss every single abstract store. 

l z’s abstract store for references is defined as fol- 

where: 
Aat, = Aloq - (Aoc + {/we}) 

Aa.2 = Arc x Awe x Argvol 
Argval = P(Aval) + Aclarr + P(Aobjcct) 
Arc, Awe = to,~l 

An abstract location is associated with its abstract 
read and write counters and with either a set of ab- 
stract values, or a set of abstract objects or one abstract 
class. In fact, in our language classes can be declared 
only at top level, so we can have only one application 
of a class constructor. Arc and Awe are two-value do- 
mains: (0, oo) with the intended meaning not accessed 

and accessed one or more times. The meaning of the 
abstract value 00 is that the corresponding exact loca- 
tions cannot be released before the end of the trans- 
action. There might be other interesting abstractions, 
for instance the set { 1, . . . , mazac, oo} represents ex- 
plicitly how many times a data structure is accessed. 
In our case the policy used by the scheduler only needs 
to know which data have been modified, but other op- 
timizations could rely on how many times a structure 
has been touched. In [5] the safety of abstract interpre- 
tation has been proved with respect to the latter choice 
which is more restrictive than using {O,oo}. 

l The abstract store for records is: 

Ad, = Aloe, * ((Lab +Jie P(Avol)) + {/~cc}) 

We choose not to repeat the labels of the fields of the 
abstract records associated with an abstract location 
because they never change. In fact a single abstract 
record (and not a set of abstract records) is associated 
with an abstract record location. Therefore each field 
of this record can carry a set of values. 

s The abstract store for sequences is: 

Ad, = Aloe, + (P(Aleq) + {Jrcc)) 

where an abstract sequence is: 

Ascq = Len x Par x (Por - P(Avol)) 

To represent sequences we use an array of sets of ab- 
stract values. The sequence elements are inserted cir- 
cularly in the array. So if, for instance, the length of 
the array is n, then the i- th element of the sequence is 
stored in the position ((i- 1) mod n) of the array, The 
least accurate approximation is the one with an array 
of length 1, where all the elements of the sequence are 
collected into a single set. Increasing the length of the 
array will augment the accuracy of the representation. 
The first two fields of the abstract sequences denote 
the length and the first free position of the array re- 
spectively, while the array is a function from position 
to abstract values. 

The following are the domains which represent the 
sequence length and the next free position respectively. 

Len 
1 I:l-m 

matJeg, 00) 
PO8 ,...,maz-pw- 1) 

On the Len domain the following operations are de- 
fined: 

2 +’ n = ij(2 + n) 5 mazseq then(2 + n) 

elee 00 

c- In = ijz = 00 then 00 
else 2 - n 

On Pos domain is defined: 

z +p n = (2 + n) mod mazpos 

l The abstract store for functions is: 

Ad/ = Alec, + (A fun + {free}) 

where 

Ajun = (P(Avol))* - AJt - P(P(Auol) x Aat) 

The primitive junction has a special treatment. In the 
exact semantics when the same primitive is executed a 
second time, a new closure is generated. In the case 
of abstract semantics the second closure abstracts the 
previous, so we can store only the last one. As a con- 
sequence, only an abstract function will be associated 
with a function location and not a set of abstract func- 
tions. 
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l The abstract domains for objects and classes are 
defined as follows: 

Aobject = Arecord x Aclasees 
Aclass = Len x Pos x (Pos + P(Aloq)) 

where the domains: 

Arecord = P(Aloc,) 
Aclaseea = P(Alocr) 

denote the abstraction of the record representing the 
object and the set of classes to which the object belongs 
respectively. The abstract domain for classes is similar 
to the domain for sequences with the difference that a 
class can only contain objects. 

Notice that we do not need ad hoc abstract stores 
for classes and objects. In fact the reference store can 
be used because classes and objects are modifiable ele- 
ments. 

l The abstract environment is defined as follows: 

Abue = Zde -+ P(Aua1) 

where an identifier is associated with a set of abstract 
values. 

Abstract semantic function 

The abstract evaluation of an expression returns a set 
of abstract values, in fact it has to mime all possible 
paths of the exact execution. The most intuitive exam- 
ple is the execution of the primitive if - then - else, 
where the results of both alternatives have to be con- 
sidered. 

The abstract non-standard semantics is defined by 
the following function: 

AR : Exp -+ Abue ---) Ast + P(Aans) 

where the abstract answers are: 

Aans = P(Aual) x Abue x Ast 

The next equation defines the abstract evaluation of 
the primitive at: 

A72 [at(e)]abue aJt = 
{C VAL,abur,aJta > 1 

C LOCI, abuej, aril >E AR[e]abuc aJt 
crtl = aJ:t hi, 
VAL = U{aJtI(tOC) ~A,J..I 1 be E LOC,} 
OJt; = OJtI [< W,aJtl(fOC) hc,OJ:i(tOC) ~,w,,v.I> /lOC] 

Vloc 6 LOCI 

d’R[at(e)] returns a set of triples whose first compo- 
nent VAL is the sum of the values stored in the set of 
location LOCI returned from the abstract evaluation 
of the argument e. Moreover for each location the read 
counter is set to 00. 

The abstract evaluation of the assignment is: 

AR [- f, e)]ObUe 4Jt = 

{< \ none) ,obve,aJt,7 > I 
< VAL, abuq, aJtl >E AR[e]obue art 
< LOCI, obue2, OJta >E AR[l)abue, OJtl 
art, = ‘JJ:a 1A.q 

OJt; =OJt,[< aJt&OC) lArc,m, 

(artt(foe) lAred) U VAL > /lee] 
Vloc E LOCI 

1 is evaluated with respect to all the store-s returned 
by the abstract evaluation of e; then all the stores are 
updated with the evaluation of 1 and the write counters 
are set to 00. 

AR[~la~J.~]abve art = 
{< {et} , abve, art’ > 1 

Each occurrence of the primitive class has a loca- 
tion cl associated with it. The abstract interpretation 
associates an empty class with this location and prop- 
agates the previous read/write counters through the 
store ast’. 

AR[inrertr..(t, e)]abuc art = 
{< {loC),abue,OJt’ > 1 

cl E abvs(o) 
< LOC,, abve,, aJtl >E A8(e]abve art 
obj = < LOG, {cl) > 
ortl = ,JJtl 1 Adi 
objr = OJtl(C/) 1 Ad, 
art; = If art,(loc) = /ree 

then ortl[< O,O, {obj} > /lo-z] 
elm aJt~[coJt~(loc) h, aJtl(loc) lwc, 

a*hW) IA~~+-I u{obi) > /W 
art; = art;[< a~,m,in(objJ, {lee}) > /cl] 
art =< OJty, aJt 1Ad.# aJt iAd, ,aJt lAutl > ) 

A new object which contains the set of records LOG’, 
returned by the evaluation of e is created and inserted 
into the class cl. The function in inserts a set of ab- 
stract objects in the first free position of the array rep- 
resenting the class. The abstract read/write counters 
of the class are both set to 00, while read/write coun- 
ters of the other objects of the class remain the same. 
This implies that inserting an object into a clsss can 
be executed in parallel with any other operation on ob- 
jects of that class if they are reached from somewhere 
else. 

A~[rpeeializc(e~, e,,r)]abue aJt = 
t< Lot,, abut. art’ > 1 

cl E- bbuc(&) 
< LOC~,obuel, art1 >E AR[el]obue ort 
< LOC,, abuq, arta >E A?Z[e&bvc aJtl 
art, = aJt2 lA& 
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he, E tot, 
fUP = arf .(loc,) 
oat1 = a+2 lA*t, 
oaf: =asf,[([(fup(lab)u arf,(foc:)(lab))/lab] 

Vlab E Lab)/loc:], 

asfj’ = o8f;[< ~,m,in((a#f;(d) lArw.a,,,,OC,) > /cl] 
aat =< a#(‘, ‘=*f:,asf JAM,, ad iAd,>) 

This operation is very expensive. LOG’, is the set 
of records with which to specialize all the objects in 
LOCI: each object will have k new fields with a set of 
abstract values for each of them. 

A7Z[remoue(c)]abve art = 
{< { none),ahe,orf > 1 

< LOCI, abvc,, aa11 >E A’R[e]obvc 081 
a--f1 = a.'tl lA,l, 

zoc, E LOCl 

obj E ash(h) Lrgvm~ 

The abstract removal of an object consists in chang- 
ing the positions of the elements in the class. The ab- 
stract elements in position if), are duplicated in posi- 
tion ifh - 1 because we do not know which element 
has really been removed (this task is performed by the 
function arem). Correctness is thus preserved, but if a 
single transaction requires matpos removals, then all 
positions contain all abstract elements. In this case the 
accuracy of the analysis is poor, but it will not affect 
abstract execution of other transactions. 

4.1 Correctness and termination 

In [5] the correctness is formally proved of an analysis 
with the domain of the read/write counters equal to 
(0, *. 1, mat-q oo} instead of (0, 00). The parameter 
mazac is an estimation of the maximum number of 
accesses a transaction can do on a data structure. This 
analysis is more general than the one presented in this 
paper, in fact it determines how many times a data 
structure has been touched. From a correctness point 
of view the results obtained in the general case hold in 
our restriction. 

Informally, the abstract evaluation AR is correct 
with respect to the exact evaluation 12, if the num- 
ber of accesses to each location obtained with R is less 
than or equal to the number of accesses to the corre- 
sponding locations obtained with AR. This means that 
a scheduler based on this information will lock more or 
equal data than those requested by the real execution, 
but is granted to be deadlock free. 

The proof of correctness is formally developed by 
defining a family of typed relations Etypc between exact 

and abstract values of the various types of the language. 
Firstly, correctness for basic domains is defined, then it 
is defined for structured domains until correctness re- 
lation between the functions of semantic interpretation 
has been defined. Finally, it is proved that AR and 72 
applied to PPL sentences are correct. 

Def. 1 Consider the functions A3 and 3 
A3 : Exp + Abue -* Ast + Aans and 
3 : Exp + Bve + St -c Ans. 
A3 spun 3 mboxi f f 
(Vabve E Abue, ast E Ast, bve E Bve, st E St, e E Exp: 
< abve,ast >cE,“< bve,st > + 
(d3[e]abve ast CA 3[e]bve st)) 

The above definition says that two functions are re- 
spectively correct if applied to the same expression in 
environments and stores which are respectively correct 
produce results which are respectively correct. Cor- 
rectness between results is established by the existence 
of at least one abstract result in the set returned by 
the abstract evaluation which is correct with respect 
to the exact one. This statement is established by the 
following: 

Def. 2 Lel S E P(Aans), t E Ans, 
(S CA 1) ifl((3s E S such fhat s ~~~~ t) V(t = LA,,,)) 

Finally the following proposition establishes correct- 
ness between the abstract and exact semantics: 

Proposition 1 AR is correcl respect with 72, ifl 
AR CFun ‘R 

The termination of the analysis is guaranteed by the 
finiteness of the abstract domains and by the monc+ 
tonicity of the function that performs the analysis on 
such domains. In fact, the only condition in which our 
analysis might not terminate, is when a fix point op- 
erator is involved in the evaluation of a sentence; but 
the fix point operator is always used with monotonic 
functions defined on finite domains, hence the fix point 
is finitely computable. 

5 Examples of abstract evalua- 
tion 

In this section two different examples are shown. The 
first uses the construct if-then-else whcee evaluation 
returns a set of sets of tuples. The second is concerned 
with our real objective: to gather information for the 
scheduler of transactions in a database. This example 
only illustrates a few steps of the abstract execution 
and highlights the final results. 

412 



Example1 
Let the following he the abstract evaluation for the 
construct if - then - else. 

AR(iJ(p,t,c)] nbve art = 
u{( AR[r]obue’ ast’ U AR[e]obve’ oat’) 1 

< {none), obve’, osi’ >E ARlp]abve art)) 

Then abstract evaluation of the expression: 

w> (@4z), loo), + (2, lo), - (Y, 10)) 

w.r.t. the environment: 

ahe = {to, th, Wd), (Y, t~wl))) 

and the store: 

o*tr = t( loci 8 < ‘1, Wl, {none) >), (locz, < Q, ws, {none) >), 
(IoQ7, < rs, q3, {none) >)I 

returns the set of triples: 

{ < (none), 
~(~~~~o~l,h4)),(Y, thd)l, 
(( loci. < (0, 00, {none) >), lo-q, < co, co, {none} >), 

(hi, < r3,w {none) 
< {none), 

I >) >, 

tt=n tlocl, rq)),(Y, tloci))), 
(( loci, < m,wl, {none) >), (kd, < m,w2, {none) >), 

(loc3, < ~R,w, {none) >)I >I 

In this case the conservative scheduler will consider 
to sum of the returned triples and will lock locations 
10~1, locz and 10~3 which contain z and y values. 

Example2 
Consider the following expressions defining a database 
schema: 

use ret employees class 
employee H 

(I name: string 
and code: string 
and boss: var(manager) 
and . . . I) 

managers subset of employees class 
manager H 

(I is employee 
and team: var ( seq (employee)) 
and . . . I) ; 

Every employee has one manager, while every man- 
ager hti a team composed of a modifiable sequence of 
employees. The following transactions Tl and T2 pop- 
ulate the previous schema with an employee object and 
a manager: 

(use (mgr, get(managers,cond’)); 
(usc(etnp, rectloe4 (name,code,boss,. . ., 

‘Smith’,l234,var(seq(mgr)),. . .)); 
inSC!rtobj4 (ernp,employees))) 

(use (emp, get (employees,cond”)); 
(us+w3r, -troc4(team,. . .,seq(),. . .)); 

speciaIiae(emp,mng,managers))) 

The index at the occurrence of each constructor like 
insert,bj4 represents the location on which it oper- 
ates. The concurrent execution of the above transac- 
tions might lead to deadlock because the former reads 
the class managers and updates the class employees, 
while the latter reads the class employees and updates 
the class managers. 

Tables 1 and 2 show the initial abstract environment 
and the initial abstract store for this example. 

The abstract interpretation of transaction Tl re- 
turns the store in Table 3. In the table, the identi- 
fiers in bold denote items involved by the first trans- 
action which reads the locations ~12, objl, and up- 
dates the location cl,. Table 4 shows the abstract 
store returned by the abstract interpretation of the 
second transaction. The abstraction of primitive get 
returns all objects of class employees, so the transac- 
tion reads the locations cl1 , objl, objz, objs and updates 
c/a, objl, objz, objs. Comparing the results the sched- 
uler detects the risk of deadlock. 

6 Discussion and further work 

The results presented in this paper are the first part 
of our experiment. They confirm that we can obtain a 
correct approximation of the read/write set of a trans- 
action by static analysis with respect to a snapshot of 
the environment and the store. An implementation of 
such an approach must consider that the global store 
is affected by the execution of other transactions, i.e. 
it has to deal with concurrent accesses to the store. 

Two important questions are involved when assess- 
ing the applicability of this approach in the Data Base 
context: 

l what is the cost of the analysis in terms of space 
and time, and how much does it affects the effi- 
ciency of a transaction execution? 

l is the information gathered by the analysis signif- 
icant, i.e., is it really useful for realistic optimiza- 
tions? 

Both the answers to these questions are concerned 
with the granularily of the analysis. In fact, the ac- 
curacy of the analysis depends on whether the abstract 
representation of database is finer or coarser. The 
finest abstraction is the one corresponding to the ac- 
tual database: each object which is in the Data Base at 
the moment of the transaction execution is represented. 
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Table 1: Initial Abstract Envinronment. 

Table 2: Initial Abstract Store. 

Table 3: Final Abstract Store for Tl. 

Table 4: Final Abstract Store for T2. 
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The coarsest abstraction is oue where only the types 
atlcl th(* classes declared in the global environment are 
rc~prrscnlSc*cl. Brtwcrn these two cxtmmes there is a 
wholr range of intermediate possibilities, which corre- 
spond to trade-offs between accuracy and cost of the 
analysis. 

Our analyser provides some tuning mechanisms to 
control the granularity of the analysis i.e. the parame- 
ters which specify the size of the abstract domains. An 
example of such a parameter is the cardinality of the 
abstract classes (the length of the array which simu- 
lates the extension of the class) which establishes the 
ratio between abstract objects and concrete ones. For 
instance, an interesting analysis can be obtained by 
representing classes (and sequences) with an array with 
contains a single representative object. This choice is 
based on the fact that abstraction of search operations 
always returns the indistinct set of all objects in the 
class. The resulting analysis is very efficient. in fact, 
the abstract locations are statically determined (corre- 
sponding to different occurrences of the constructors), 
so, the only things that can change in a recursive call 
are the counters of the objects. In this case there is 
only one object thus yielding to a fast convergence of 
the fix-point computation. 

Further study is needed to learn how to use these 
tuning mechanisms. We believe that this knowl- 
edge cau be gained from experiments and. that the 
mechanisms can be correlated with other application- 
dependent parameters such as the concurrency rate. 

This part of the experiment is currently under study. 
The first next step is the development of a prototype 
of the analyser and its integration with the existing 
PPL system, so that the analysis, the scheduling and 
the execution of transactions coexist and interact. The 
second step is to test some significant case studies in 
order to evaluate the performance figures obtained. 
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