
Data Shariug Analysis
for a Database Programming Language

via Abstract Interpretation

Giuseppe Amato Fosca Giannotti Gianni Mainetto *

CNUCE, Institute of CNR,
Via S.M;rria 36, 156126 Pisa, Italy

Abstract

This paper presents an experiment in nsing n fnrmnl tech-
niqne for static prngrnm nnnlyais, hnsod an abstract intarpre
t.ntion, in the context of persistent progrnmming Inngnngw.
The nim of thn annlysis is to dntoct npportnnities for snfe
parallelism fnr trnnsnetinn nperatinn sehadnling. Tmnsnctinn
apcratinns cnn he snfely intarlanved when there is no nverlnp-
ping among their rends& nnd writ-b. A non-atnndnrd
interpreter perfnrmcl the nnnlysis. This interpreter, given
the text of n trnns.actinn nnd n reprascntntinn nf the dntn
stored in the dntnh.m, oufnmnfica//y derivea in n finite time
n11 npprnxirnntinn of the randset and writ-t nf the nnnlysed
lrnnsnclinn. lnfnrmntian ahtnined from the non-atnndnrd in-
terpret,ntinn is provided to the schodnler hefnra haginning the
cxrcntion of trnnsactinn operations. In this way, we ohtnin A
schrdnler thnt renlism n cnnservntive two-phase lacking pro-
tocol fnr persistent programming Inngnaga trnnsactinncl. We
npply the nnalysis to n Iangnage thnt is n signiticnnt snhset
of Gnlilan. The gnnl of the nnnlyh i.s tn &.teet the nccems
xnlely to shnrc\nhle nnd mnclitinhle persistent dntn.

1 Introduction

‘I’hc evolution of Data Base Programming Languages
(DRPLs), which provide a unifying formalism for data
tlcfinition and manipulation, opens up opportunities
For exchanging ideas, problems and technical solutions
bctwecn tbr two areas of databases and programming
languages. Persistent Programming Languages are the

‘email:(fosca,~msys}Ocnuce.cnr.it phone:+39-50-593339
iax:+39-50-904052

Prrmi,km to copt~ wilhonl fed all or pall of this malcrial D granted
pmnidrd that ihe rnpirs are not made or dirfribwfcd for direct cam-
mrrvial adsnntngr. thr VLDll copyright notice and the lit/r: of the
pnhlirnlion and il.4 dafr appear, and nnlicr ir ghcn that copying is
hy /wrmiasion af thr Iferg I,arJt Data narr: /?ndommcni. To copy
nlhrrwiar. or lo republish, reqsimr e fw and/or rpwial permisrinn
/mm the Endnwmrnf.

Proecwclirlg~ cd the 19th VCDB Cadiircnec
DuMin, Irclnutl, 1993

subclass of DBPLs in which the data model of persis-
tent values is completely integrated into a program-
ming language. In fact, the guiding principle of Per-
sistent Programming Languages is the orthogonal per-
sistence: it establishes that persistence is a property
of arbitrary values and all values have the same rights
to persistence [S]. Specifically, if a Persistent Program-
ming Language is designed on the basis of formal se-
mantics, formal methods for designing, transforming
and optimizing database programs can be exploited.
Indeed, it is a challenging research direction to investi-
gate whether, which and how such formal methods can
be successfully put to work in the database context.

In the programming language area, a consolidated
class of formal techniques for static program aualy-
sis is known as abstract interpretation (AI) [l&3]. It
is aimed at gathering information on the dynamic se-
mantics of a program or specification to be used by
compilers, partial evaluators and debuggers, or merely
as documentation [9]. For example, logic programming
has successfully used AI for detecting properties such
as groundness and goal independence to provide effi-
cient specialised parallel execution of logic programs
[lo]. Functional programming uses AI to detect strict-
ness and reference independence for efficient graph re-
duction and optimised garbage collection [l].

We propose using AI for a novel application, i.e. to
develop a conservative two-phase locking (2PL) pro-
tocol in a persistent system. An aggressive scheduler,
that real&s for example a strict 2PL protocol, analyses
transaction operations one at a time, and immediately
decides whether to execute, delay or reject the opera-
tion [7]. It has no knowledge of the future operations
of a transaction. For example, it can decide to exe-
cute a write operation that will subsequently risk the
transaction being aborted because of a deadlock. A
conservafive scheduler should know a prioti the shared
data which concurrently executing transactions are go-
ing to access, so that it can prevent deadlock and abort-

405

ing due to transaction conflicts. Almost all database
systems traditionally have an aggressive and a conser-
vative version of schedulers, because there is a perfor-
mance tradeoff between the two types of schedulers and
each version performs especially welt for certain types
of applications.

The scheduler can know in advance the set of dat,a
that a traIlsaction is going to acccs.9, called rrnff.url crud
mrileuel, if thcr trirIlsfwt.iOll programmer prottccIarc:s it.
In Persistent Programming Languages, inferring rrad-
set and writeset of a transaction is difficult because
persistent data have a complex structure and both
persistent and temporary functions may be involved
in a transaction execution. Thus we propose a tool,
based on Abstract Interpretation, that automatically
performs a static analysis of the program that defines
a transaction, inferring an approximation of its readset
and writeset.

We anatyse transactions written in PPL, a language
which is a significant subset of Galileo [3]. PPL is a
higher order functional language, strongly and stati-
cally typed, with single inheritance, which allows an
object-oriented programming style. PPL transactions
can access the most important datastructures provided
by Galileo: basic type values, references, records, se-
quences, functions, objects, and classes.

The goat of the analysis is to detect the accesses to
sh.arable and modifiable data structures such as refcr-
ences, classes and objects. In fact, the concurrent exe-
cution of transactions can only create inconsistency in
the case of updates. Our idea has been inspired by Hu-
dak’s proposal [15] that uses reference counting analysis
to reduce the run-time memory management overhead
in a first order functional language. Similar problems of
run-time memory management for a higher-order func-
tional programming language have also been investi-
gated in [l 11.

The first step of our experiment consists in defining
a non-standard semantics which extends the standard
one by determining the number of accesses to modi-
fiable data. Informally, every time the real execution
accesses a reference or a class or an object, a corre-
sponding access counter is incremented in either read
or write mode according to the executed operation.

The second step consists in defining an abstraction
of the non-standard semantics that guarantees the ter-
mination of the analysis. The termination relies on the
fact that the abstract execution operates on finite ab-
stract domains of values. The main choice is to use a
finite set of “typed” locations as an abstract domain
where abstract values of the corresponding type are
stored. A special treatment has been proposed for ab-
stract dynamic data structures, i.e. the data struc-

tures whose cardinatity cannot be determined at com-
pile time: sequences and classes.

The rest of the paper is organized as follows: Section
2 presents the language, the architecture of the sys-
tem and the concurrency control protocol; Sections 3
and 4 introduce thr format framework of non-standard
access counting srmauticn and its abstract vl*rsion; in
Srrtion 5 two cxafnptrs art* illustrat~*d; finally !+ctiou (i
contains ILII HHnc~ssint~nt of the phlpot8cd tc.c.hniqut* ruitl

directions for future ctrvelopr~~e~~k~

2 The PPL system

In this section we wilt sketch the language, the architec-
ture and the concurrency control protocol we are using
for our experiment. Restrictions and simplifications to
the Galileo system have been assumed in order to point
out the crucial issues of the proposed analysis.

The language, which we will refer to as PPL (Per-
sistent Programming Language), is a subset of Galileo
tailored for keeping the most important database con-
structs provided by the original languagc~. Marc spccif-
icatty, PPL deals with classes and objects. It is a higher
order functional language strongly and statically typed
which allows side effects to values of a limited IIIIIII-

ber of types: rcfcrences, ctasscn and objrcts. A CIHSS
is a modifiable sequence of objects and an obj& is an
instance of a record type with a unique ubject idcnii-

fier. Classes can be organised in a taxonomic hierarchy
through single inheritance. Objects ran have it9 rorw
ponents both functions which mime methods of ctassi-
cal object oriented formalisms, and other objects (in-
stances of other classes).

Since the analysis for access counting takes place af-
ter the type checking of the transaction program, the
language deals with welt-typed expressions. Like in
Galileo, a transaction in 1’1’1, is represrutrd by a lay-
level expression and starts with the beginning of ttrr
expression evaluation. An expression can be a COII-
stant, an identifier, a user defined function application
or the application of a language primitive. The syntax
of an expression of PPL is defined as follows’ :

c,p E con (conatsnts and primitives)
I, lb E Ide, Lab (identifiers and field names)
cl, f, e, r, o, 1 E Ezp (expressions)

406

l’riluitivrs arc defined for each b&c and constructed
type, and allow specific operations on values of that
type, for instance fwsignment on references, field se-
leclion on records and so on. The other primitives are
the language constructs for flow control and declara-
tions such as if - then - else, sequencing, use, etc..

The following are some primitives which play a sig-
nificant role in the counting of access to modifiable and
sharablc data structures.

0 References:

var(e) : creates and returns a reference value
to the value e.

at(l) : returns the value referred by 1.

+-(1,e) : assigns the value e to 1.

l Classes and Objects:

class0 : creates an empty class.

insert(+, r) : creates an object, inserts it in
the class identified by z and returns the ob-
ject identity. The object is created from the
evaluation of record P.

specialise(0, T, 2) : specialises the object o
by adding the fields of record r and inserts it
into the subclass identified by 2.

<X+ss creation corresponds to building a repository for
objects independently of its type. We name classes
through declarations. Insertion into a subclass is per-
formed in several steps: first the object is inserted into
the base class, then the object is specialised from the
base class down to the subclass. In according with
the object oriented principles, objects are unique even
if they belong to several classes. Other primitives on
classes are:

rcmove(0) : removes object o from all classes it
belongs to.

for-class(c1, 1) : applies function f to all elements
of class cl, and returns the sequence of results.

ohj-of(o, lb) : selects the value associated to field
lb of object o.

‘l’he shared persistent environment is the result of the
design phase of the database when basic and con-
structed values, including classes, are declared. When
the definition of a shared persistent environment is
completed, it is made persistent and stored in a cen-
tralised server. Afterwards, every client can execute
transactions. PPL transactions are top-level expres-
sions that can access values of identifiers declared in

the shared persistent environment. Inside a transac-
tion, local values can be declared for the sake of compu-
tation (construct use-in). Figure 1 shows the architcc-
ture underlying PPL. It adopts the client-server model
that is typical of Object Oriented Databases and Per-
sistent Programming Languages architectures [12,13].
The server handles the shared persistent store, i.e. the
database, and the shared persistent environment that
contains mappings from global identifiers to locations
of the store. The scheduler is the module of the server
devoted to concurrency control. When a client begins a
session, it loads a copy of the shared persistent environ-
ment from the server to solve locally identifier bindings
and to use the communication network only to access
the stored values. A session consists of sequential exe-
cution of many transactions.

The concurrency control protocol used by the trans-
action scheduler running on the server, is the conser-
vative two-phase locking. Briefly, this protocol [7] en-
tails knowing the read and write set of each transaction
before its execution, if all data are available they arc
locked till the end of the transaction. This protocol
avoids deadlocks but needs the programmer to declare
the read and write set for each transaction. Our idea is
that the static analysis could supply this information.

The following example shows the population of
class base with the object (a : var(l), b : var(1)) and
the population of the subclass sub with the object
(a : var(2), b : var(2), c : 2, d : 2) which spccialises the
object (a : var(2), b : var(2)) of class base:

use(base,class());
use(sub,class());
insert (base,rec(a, b,var(l),var(1)));
specialisc(insert(base, rec(a, b,var(2),var(2)),

=(c, 4 21% sub))

The first two declarations define the Shared Persistent
Environment, i.e. a global environment shared among
all transactions. Once defined, bindings of the Shared
Persistent Environment can never change. nansac-
tions can only affect values stored in locations bound
to global identifiers of an updatable type. The last two
expressions of the previous example are transactions.

3 Exact non-standard semantics

Exact non-standard semantics behaves like the stan-
dard one as far a8 control flow is concerned, whereas it
keeps track of all accesses to modifiable elements. The
non-standard value of a modifiable element allows one
to derive the actual number of read and write accesses
to that element at a certain moment in the transaction

Client 1

Type checker \
PPL static analyser

copy of Shared Persistent Environment . .
Lz

Client 2

I
Transfer unit:

oblect

\
Shared Persistent Environment Conservative scheduler

Shared Persistent Store
Figure 1: Architecture of the PPL system

execution. To this aim we redefine the evaluation of
all the language primitives so that whenever a modi-
fiable element is accessed, its number of read or write
accesses is incremented accordingly. In this approach,
the readset and the writeset of a transaction are rep-
resented by the set of elements with a positive number
of accesses.

Exact semantic domains

The following are the semantic domains on which the
mapping between syntactic and semantic denotations
rely:

Eve = Ide d Vol
Vd = Bsric + Rae + Set + Pun + L jval
Beaie = (none)

Fun = Vol. 4 St - (Vol x St)
LJvol = Lot
Ljobjcet = toe
Lfcl$ws = Lee
Loe = Nal

= Re x WC x Rpol
Rc = Not
WC = Nat
Rgvol = Vol + Clara + Object
Object = Rce x LJelorr’
Clorr = Ljobjeet*

Environment
V8h#

Buic v&a
Ruords

stqutnca
Functions

Ft4ftmllca
Identity of objectr

Claw point-
Location8

store
Access countem

Read accaa count-m
Write acceu counters

Stomblt mlua
Object8
CIUMW

Values of basic types are irrelevant and are eval-
uated to the special value none. Modifiable val-
ues, References, Classes and Objects, are accessed

through the locations which refer them. Each loca-
tion is also associated with a read counter and a write
counter. Object identity is established by the location
where the object is stored. Objects also carry the in-
formation on the classes they belong to.

The ezact semanlics is defined by the function:

‘R:Ezp+BvewSt-+Ane

where Am = Val x Bve x St. Function ‘R and its ab-
stract version AR, presented in the next section, are
defined by structural induction on the terms of the ab
stract syntax of the language. The rest of this section
presents the equations of R which are relevant to the
access counting. Particular emphasis is on the equa-
tions dealing with classes and objects. An exhaustive
presentation of ‘R and can be found in (51.

Exact semantic function
l$e evaluation of at (the reference access primitive)

‘R [d(t)]bW Jl =

let < lee, but., ,rll >= R[flbvc rt
ual = rh(loe) 1R **I
rta = rtr[< (at1 be) ld + l,rtl(loe) lwo,vat > /W r

in < uol, hue, rts >

‘To rtltct l component from an element of a Cart&en
product, the operator 1 in adopted, followed by the name of
the component domain; e.g. if ens E Anr then on8 Jv,lE
Vol. Wbca more than one component have the same domain
name an index ir wed to rolve the ambiguity.

408

Ilcre the argument of al is a reference. Since the prim-
itive al reads the reference content, we increment the
read counter of the reference.

The assignment primitive is defined ss follows:
72 [e- (I, c)]bve Jt =

let < val,bve,,Jtl >= ‘R[e]bue Jt
< lot, bve2, Jt2 >= R[l]bue at1
at.3 = st2[< st2(loc) lRc, (st2(loe) Iwo) + 1, vat > /foe]

in < none, hue, Jt3 >

The arguments of +- are a reference and a value re-
spectively. The store is updated by replacing the value
and by incrementing the write counter of the reference.
The evaluation of this primitive returns none since the
standard evaluation returns the basic constant nil.

R [claJJ]bvc rt =
let cl = newlocfrt~

rt’ = rt[< o,b, o> /cl]
in < cl, bvc, rt’ >

When a class is created, a new location is allocated
with an empty sequence of object identifiers. Read and
write counters of the new class are initialized to 0.
R[inJert(o, e)]bve Jt =

let cl = bve(r)
< tvp, bucl, Jtl >= ‘R[c]bve at
obj =< tup, < cl >>
objr = Jtl(4 1Rpr.l
IO.2 = newloc(Jtl)
rt’ = rtr[< O,O, obj > /roe]
St” = rt’[< (#t’(d) LR.,) + 1,

(at (cl) Iwo) t 1,objJ. < foe >> /cl]
h < lot bvc at” > I ,

A new object is composed by a pair which contains
the record returned by the evaluation of e and the class
rl bound to t. This new object is associated with a new
location with zero read/write counters and it is added
to the class cl. The read and the write counters of cl
are both incremented.
R(Jprcialire(e~ ,e2, s)]bve Jt =

let cl = but(t)
< loe,bve, ,Jtl >= 72[c,]bve Jt

< tup, bveg, Jtg >= 7Z[e2]bve Jtl
obj = Jt2(loc) lR,,..i
updated& =< obj hs [tup], obj ALIBI.,, . < cl >>
st’ = st2[< (st2(loc) he) t 1,

(Jt2(loc) 1~~) + 1, updotedabj > /foe]
Jt" = Jt’[< (Jt’(Cf) JRo) + 1,

(Jt (Cl) lws) t l,(Jt’(Cl) hQ,ral). < IOC >> /Cl]

in < roe, bve, Jt” >

The object el is specialised with the fields of e2. The
temporary variable updatedabj is a pair. The first
element contains the extension of the record referred by
el with ea3. The second element contains the sequence
of clssses to which the object belongs, including the
new class specified by t. The object is stored in its
old location lot, and its identity is also inserted in the
extension of subclass r. Finally, read/write counters of
both class and object are incremented.

‘Record redefinition is obtained using the metsfunction
0: f[f’](z) = f’(s) i/ I E dona(f(s) elsewhere

R[remoue(a)]bua Jt =
let < foe, buel, Jt, >= R[e]bue Jt

< Cll,. . I elm >= Jtl(loc) h~oi.,,

Jt? = Jtl[<Jtl(Cf, hc i-1,

Jtr(cll LW. tl,rem(loc, Jtl(Cll) 1RJ.d) > /Cl,]

Jtn = Jtl[<Jt2(Ch t 1Rc +I,

Jtdh) 1Wc tl,re”‘(loc, Jb(cl2) 1RJ.d) > /Cl21

J&+1 =Jt.[< Jt.(&) i~.a tl,

Jt’ =
Jt.(cl.) SW. tl,rem(loc, Jt,(clm) 1Rpr.I) > /Cl..]

Jt,+,[<Jt,+l(loC) 1R.a i-1,
Jt,+l(lOC) 1W.m Jt,+l(fOC) iRgv.1) > /lOC]

in < none, bve, Jt’ >

The object e is removed from all classes
< Cll,... ,cl, > to which it belongs, this task is per-
formed by function rem. The read/write counters of
those classes are both incremented.

Other interesting primitives which operate on classes
and objects are for-class and obj-oof. The former al-
lows one to visit the extension of a class, while the
latter allows a component of an object to be selected.
Their semantics, omitted in this paper, is a natural ex-
tension of the correspondent primitives for sequences
and records.

4 Abstract semant its

The primary concern of our analysis is to guarantee the
termination of abstract evaluation which merely entails
guaranteeing that domains of the abstract semantics
are finite. The basic ideas are that each abstract value
is associated with a location of the appropriate type.
Each typed location domain is assumed to be finite and
the size of this domain is statically determined by a
textual analysis of the transaction. In other words,
each location domain is a finite set of indexes of the
corresponding abstract store.

Abstract domains
The domain of abstract values is defined as follows:

AVd = Aloe, + Aloe, + Aloe, + Aloe, + {none}

and abstract location domains are:

Aloe,,,. = (1, ...I oldloc,vra,old_locl,,. t 1,. . . ,
old-loct,,. + mat-foc~,,.)

Here oldloc is the initial number of non-free locations
in the global store; maz-lot is the number of new lo-
cations that are expected to be used during the trans-
action execution. mazluc is defined as the number
of occurrences of constructors that initialise new lo-
cations. Consequently, there is a one to one corre-
spondence between constructor occurrences and new
locations: whenever the same cogstructor occurrence
is evaiuated the abstract evaluation returns the same

409

location, whereas the exact semantics would initialise
a new location every time.

There are other ways to choose the value of mazloc.

For instance it could be defined as the product of the
number of occurences of the constructor by the number
of occurences of calls of the function which uses this
constructor. The way we choose mazloc establishes
the accuracy of the analysis, it is a sort of tuner of
how many concrete values will coincide with the same
abstract value.

The store that in the exact semantics was a func-
tion from locations to storable values, is now a product
of functions from typed locations to a set of abstract
storable values

Ad = Astr x Ad, x Ad, x Ad,

In the following we discuss every single abstract store.

l z’s abstract store for references is defined as fol-

where:
Aat, = Aloq - (Aoc + {/we})

Aa.2 = Arc x Awe x Argvol
Argval = P(Aval) + Aclarr + P(Aobjcct)
Arc, Awe = to,~l

An abstract location is associated with its abstract
read and write counters and with either a set of ab-
stract values, or a set of abstract objects or one abstract
class. In fact, in our language classes can be declared
only at top level, so we can have only one application
of a class constructor. Arc and Awe are two-value do-
mains: (0, oo) with the intended meaning not accessed

and accessed one or more times. The meaning of the
abstract value 00 is that the corresponding exact loca-
tions cannot be released before the end of the trans-
action. There might be other interesting abstractions,
for instance the set { 1, . . . , mazac, oo} represents ex-
plicitly how many times a data structure is accessed.
In our case the policy used by the scheduler only needs
to know which data have been modified, but other op-
timizations could rely on how many times a structure
has been touched. In [5] the safety of abstract interpre-
tation has been proved with respect to the latter choice
which is more restrictive than using {O,oo}.

l The abstract store for records is:

Ad, = Aloe, * ((Lab +Jie P(Avol)) + {/~cc})

We choose not to repeat the labels of the fields of the
abstract records associated with an abstract location
because they never change. In fact a single abstract
record (and not a set of abstract records) is associated
with an abstract record location. Therefore each field
of this record can carry a set of values.

s The abstract store for sequences is:

Ad, = Aloe, + (P(Aleq) + {Jrcc))

where an abstract sequence is:

Ascq = Len x Par x (Por - P(Avol))

To represent sequences we use an array of sets of ab-
stract values. The sequence elements are inserted cir-
cularly in the array. So if, for instance, the length of
the array is n, then the i- th element of the sequence is
stored in the position ((i- 1) mod n) of the array, The
least accurate approximation is the one with an array
of length 1, where all the elements of the sequence are
collected into a single set. Increasing the length of the
array will augment the accuracy of the representation.
The first two fields of the abstract sequences denote
the length and the first free position of the array re-
spectively, while the array is a function from position
to abstract values.

The following are the domains which represent the
sequence length and the next free position respectively.

Len
1 I:l-m

matJeg, 00)
PO8 ,...,maz-pw- 1)

On the Len domain the following operations are de-
fined:

2 +’ n = ij(2 + n) 5 mazseq then(2 + n)

elee 00

c- In = ijz = 00 then 00
else 2 - n

On Pos domain is defined:

z +p n = (2 + n) mod mazpos

l The abstract store for functions is:

Ad/ = Alec, + (A fun + {free})

where

Ajun = (P(Avol))* - AJt - P(P(Auol) x Aat)

The primitive junction has a special treatment. In the
exact semantics when the same primitive is executed a
second time, a new closure is generated. In the case
of abstract semantics the second closure abstracts the
previous, so we can store only the last one. As a con-
sequence, only an abstract function will be associated
with a function location and not a set of abstract func-
tions.

410

l The abstract domains for objects and classes are
defined as follows:

Aobject = Arecord x Aclasees
Aclass = Len x Pos x (Pos + P(Aloq))

where the domains:

Arecord = P(Aloc,)
Aclaseea = P(Alocr)

denote the abstraction of the record representing the
object and the set of classes to which the object belongs
respectively. The abstract domain for classes is similar
to the domain for sequences with the difference that a
class can only contain objects.

Notice that we do not need ad hoc abstract stores
for classes and objects. In fact the reference store can
be used because classes and objects are modifiable ele-
ments.

l The abstract environment is defined as follows:

Abue = Zde -+ P(Aua1)

where an identifier is associated with a set of abstract
values.

Abstract semantic function

The abstract evaluation of an expression returns a set
of abstract values, in fact it has to mime all possible
paths of the exact execution. The most intuitive exam-
ple is the execution of the primitive if - then - else,
where the results of both alternatives have to be con-
sidered.

The abstract non-standard semantics is defined by
the following function:

AR : Exp -+ Abue ---) Ast + P(Aans)

where the abstract answers are:

Aans = P(Aual) x Abue x Ast

The next equation defines the abstract evaluation of
the primitive at:

A72 [at(e)]abue aJt =
{C VAL,abur,aJta > 1

C LOCI, abuej, aril >E AR[e]abuc aJt
crtl = aJ:t hi,
VAL = U{aJtI(tOC) ~A,J..I 1 be E LOC,}
OJt; = OJtI [< W,aJtl(fOC) hc,OJ:i(tOC) ~,w,,v.I> /lOC]

Vloc 6 LOCI

d’R[at(e)] returns a set of triples whose first compo-
nent VAL is the sum of the values stored in the set of
location LOCI returned from the abstract evaluation
of the argument e. Moreover for each location the read
counter is set to 00.

The abstract evaluation of the assignment is:

AR [- f, e)]ObUe 4Jt =

{< \ none) ,obve,aJt,7 > I
< VAL, abuq, aJtl >E AR[e]obue art
< LOCI, obue2, OJta >E AR[l)abue, OJtl
art, = ‘JJ:a 1A.q

OJt; =OJt,[< aJt&OC) lArc,m,

(artt(foe) lAred) U VAL > /lee]
Vloc E LOCI

1 is evaluated with respect to all the store-s returned
by the abstract evaluation of e; then all the stores are
updated with the evaluation of 1 and the write counters
are set to 00.

AR[~la~J.~]abve art =
{< {et} , abve, art’ > 1

Each occurrence of the primitive class has a loca-
tion cl associated with it. The abstract interpretation
associates an empty class with this location and prop-
agates the previous read/write counters through the
store ast’.

AR[inrertr..(t, e)]abuc art =
{< {loC),abue,OJt’ > 1

cl E abvs(o)
< LOC,, abve,, aJtl >E A8(e]abve art
obj = < LOG, {cl) >
ortl = ,JJtl 1 Adi
objr = OJtl(C/) 1 Ad,
art; = If art,(loc) = /ree

then ortl[< O,O, {obj} > /lo-z]
elm aJt~[coJt~(loc) h, aJtl(loc) lwc,

a*hW) IA~~+-I u{obi) > /W
art; = art;[< a~,m,in(objJ, {lee}) > /cl]
art =< OJty, aJt 1Ad.# aJt iAd, ,aJt lAutl >)

A new object which contains the set of records LOG’,
returned by the evaluation of e is created and inserted
into the class cl. The function in inserts a set of ab-
stract objects in the first free position of the array rep-
resenting the class. The abstract read/write counters
of the class are both set to 00, while read/write coun-
ters of the other objects of the class remain the same.
This implies that inserting an object into a clsss can
be executed in parallel with any other operation on ob-
jects of that class if they are reached from somewhere
else.

A~[rpeeializc(e~, e,,r)]abue aJt =
t< Lot,, abut. art’ > 1

cl E- bbuc(&)
< LOC~,obuel, art1 >E AR[el]obue ort
< LOC,, abuq, arta >E A?Z[e&bvc aJtl
art, = aJt2 lA&

411

he, E tot,
fUP = arf .(loc,)
oat1 = a+2 lA*t,
oaf: =asf,[([(fup(lab)u arf,(foc:)(lab))/lab]

Vlab E Lab)/loc:],

asfj’ = o8f;[< ~,m,in((a#f;(d) lArw.a,,,,OC,) > /cl]
aat =< a#(‘, ‘=*f:,asf JAM,, ad iAd,>)

This operation is very expensive. LOG’, is the set
of records with which to specialize all the objects in
LOCI: each object will have k new fields with a set of
abstract values for each of them.

A7Z[remoue(c)]abve art =
{< { none),ahe,orf > 1

< LOCI, abvc,, aa11 >E A’R[e]obvc 081
a--f1 = a.'tl lA,l,

zoc, E LOCl

obj E ash(h) Lrgvm~

The abstract removal of an object consists in chang-
ing the positions of the elements in the class. The ab-
stract elements in position if), are duplicated in posi-
tion ifh - 1 because we do not know which element
has really been removed (this task is performed by the
function arem). Correctness is thus preserved, but if a
single transaction requires matpos removals, then all
positions contain all abstract elements. In this case the
accuracy of the analysis is poor, but it will not affect
abstract execution of other transactions.

4.1 Correctness and termination

In [5] the correctness is formally proved of an analysis
with the domain of the read/write counters equal to
(0, *. 1, mat-q oo} instead of (0, 00). The parameter
mazac is an estimation of the maximum number of
accesses a transaction can do on a data structure. This
analysis is more general than the one presented in this
paper, in fact it determines how many times a data
structure has been touched. From a correctness point
of view the results obtained in the general case hold in
our restriction.

Informally, the abstract evaluation AR is correct
with respect to the exact evaluation 12, if the num-
ber of accesses to each location obtained with R is less
than or equal to the number of accesses to the corre-
sponding locations obtained with AR. This means that
a scheduler based on this information will lock more or
equal data than those requested by the real execution,
but is granted to be deadlock free.

The proof of correctness is formally developed by
defining a family of typed relations Etypc between exact

and abstract values of the various types of the language.
Firstly, correctness for basic domains is defined, then it
is defined for structured domains until correctness re-
lation between the functions of semantic interpretation
has been defined. Finally, it is proved that AR and 72
applied to PPL sentences are correct.

Def. 1 Consider the functions A3 and 3
A3 : Exp + Abue -* Ast + Aans and
3 : Exp + Bve + St -c Ans.
A3 spun 3 mboxi f f
(Vabve E Abue, ast E Ast, bve E Bve, st E St, e E Exp:
< abve,ast >cE,“< bve,st > +
(d3[e]abve ast CA 3[e]bve st))

The above definition says that two functions are re-
spectively correct if applied to the same expression in
environments and stores which are respectively correct
produce results which are respectively correct. Cor-
rectness between results is established by the existence
of at least one abstract result in the set returned by
the abstract evaluation which is correct with respect
to the exact one. This statement is established by the
following:

Def. 2 Lel S E P(Aans), t E Ans,
(S CA 1) ifl((3s E S such fhat s ~~~~ t) V(t = LA,,,))

Finally the following proposition establishes correct-
ness between the abstract and exact semantics:

Proposition 1 AR is correcl respect with 72, ifl
AR CFun ‘R

The termination of the analysis is guaranteed by the
finiteness of the abstract domains and by the monc+
tonicity of the function that performs the analysis on
such domains. In fact, the only condition in which our
analysis might not terminate, is when a fix point op-
erator is involved in the evaluation of a sentence; but
the fix point operator is always used with monotonic
functions defined on finite domains, hence the fix point
is finitely computable.

5 Examples of abstract evalua-
tion

In this section two different examples are shown. The
first uses the construct if-then-else whcee evaluation
returns a set of sets of tuples. The second is concerned
with our real objective: to gather information for the
scheduler of transactions in a database. This example
only illustrates a few steps of the abstract execution
and highlights the final results.

412

Example1
Let the following he the abstract evaluation for the
construct if - then - else.

AR(iJ(p,t,c)] nbve art =
u{(AR[r]obue’ ast’ U AR[e]obve’ oat’) 1

< {none), obve’, osi’ >E ARlp]abve art))

Then abstract evaluation of the expression:

w> (@4z), loo), + (2, lo), - (Y, 10))

w.r.t. the environment:

ahe = {to, th, Wd), (Y, t~wl)))

and the store:

o*tr = t(loci 8 < ‘1, Wl, {none) >), (locz, < Q, ws, {none) >),
(IoQ7, < rs, q3, {none) >)I

returns the set of triples:

{ < (none),
~(~~~~o~l,h4)),(Y, thd)l,
((loci. < (0, 00, {none) >), lo-q, < co, co, {none} >),

(hi, < r3,w {none)
< {none),

I >) >,

tt=n tlocl, rq)),(Y, tloci))),
((loci, < m,wl, {none) >), (kd, < m,w2, {none) >),

(loc3, < ~R,w, {none) >)I >I

In this case the conservative scheduler will consider
to sum of the returned triples and will lock locations
10~1, locz and 10~3 which contain z and y values.

Example2
Consider the following expressions defining a database
schema:

use ret employees class
employee H

(I name: string
and code: string
and boss: var(manager)
and . . . I)

managers subset of employees class
manager H

(I is employee
and team: var (seq (employee))
and . . . I) ;

Every employee has one manager, while every man-
ager hti a team composed of a modifiable sequence of
employees. The following transactions Tl and T2 pop-
ulate the previous schema with an employee object and
a manager:

(use (mgr, get(managers,cond’));
(usc(etnp, rectloe4 (name,code,boss,. . .,

‘Smith’,l234,var(seq(mgr)),. . .));
inSC!rtobj4 (ernp,employees)))

(use (emp, get (employees,cond”));
(us+w3r, -troc4(team,. . .,seq(),. . .));

speciaIiae(emp,mng,managers)))

The index at the occurrence of each constructor like
insert,bj4 represents the location on which it oper-
ates. The concurrent execution of the above transac-
tions might lead to deadlock because the former reads
the class managers and updates the class employees,
while the latter reads the class employees and updates
the class managers.

Tables 1 and 2 show the initial abstract environment
and the initial abstract store for this example.

The abstract interpretation of transaction Tl re-
turns the store in Table 3. In the table, the identi-
fiers in bold denote items involved by the first trans-
action which reads the locations ~12, objl, and up-
dates the location cl,. Table 4 shows the abstract
store returned by the abstract interpretation of the
second transaction. The abstraction of primitive get
returns all objects of class employees, so the transac-
tion reads the locations cl1 , objl, objz, objs and updates
c/a, objl, objz, objs. Comparing the results the sched-
uler detects the risk of deadlock.

6 Discussion and further work

The results presented in this paper are the first part
of our experiment. They confirm that we can obtain a
correct approximation of the read/write set of a trans-
action by static analysis with respect to a snapshot of
the environment and the store. An implementation of
such an approach must consider that the global store
is affected by the execution of other transactions, i.e.
it has to deal with concurrent accesses to the store.

Two important questions are involved when assess-
ing the applicability of this approach in the Data Base
context:

l what is the cost of the analysis in terms of space
and time, and how much does it affects the effi-
ciency of a transaction execution?

l is the information gathered by the analysis signif-
icant, i.e., is it really useful for realistic optimiza-
tions?

Both the answers to these questions are concerned
with the granularily of the analysis. In fact, the ac-
curacy of the analysis depends on whether the abstract
representation of database is finer or coarser. The
finest abstraction is the one corresponding to the ac-
tual database: each object which is in the Data Base at
the moment of the transaction execution is represented.

413

Table 1: Initial Abstract Envinronment.

Table 2: Initial Abstract Store.

Table 3: Final Abstract Store for Tl.

Table 4: Final Abstract Store for T2.

414

The coarsest abstraction is oue where only the types
atlcl th(* classes declared in the global environment are
rc~prrscnlSc*cl. Brtwcrn these two cxtmmes there is a
wholr range of intermediate possibilities, which corre-
spond to trade-offs between accuracy and cost of the
analysis.

Our analyser provides some tuning mechanisms to
control the granularity of the analysis i.e. the parame-
ters which specify the size of the abstract domains. An
example of such a parameter is the cardinality of the
abstract classes (the length of the array which simu-
lates the extension of the class) which establishes the
ratio between abstract objects and concrete ones. For
instance, an interesting analysis can be obtained by
representing classes (and sequences) with an array with
contains a single representative object. This choice is
based on the fact that abstraction of search operations
always returns the indistinct set of all objects in the
class. The resulting analysis is very efficient. in fact,
the abstract locations are statically determined (corre-
sponding to different occurrences of the constructors),
so, the only things that can change in a recursive call
are the counters of the objects. In this case there is
only one object thus yielding to a fast convergence of
the fix-point computation.

Further study is needed to learn how to use these
tuning mechanisms. We believe that this knowl-
edge cau be gained from experiments and. that the
mechanisms can be correlated with other application-
dependent parameters such as the concurrency rate.

This part of the experiment is currently under study.
The first next step is the development of a prototype
of the analyser and its integration with the existing
PPL system, so that the analysis, the scheduling and
the execution of transactions coexist and interact. The
second step is to test some significant case studies in
order to evaluate the performance figures obtained.

References

PI

PI

PI

S. Abramsky and C. Hankin (eds), Abstract infer-
prcfolion of declamliue languages, Ellis Horwood,
Chichester, UK, 1987.

S. Abramsky, Abstract Interpretation, Logical Re-
lations, and Kan Extensions, Journal of Logic and
Compulalion, Vol 1, No.1, 1990.

A. Albano A., L. Cardelli and R. Orsini, Galileo:
A Strongly Typed, Interactive Conceptual Lan-
guage, ACM ‘ZIunaaction on Daiabase Systems,
Vol. 10, No. 2, 230-260, 1985.

141

151

PI

PI

PI

PI

PO1

WI

PI

1131

PI

1151

G. Amato, F. Giannotti and G. Mainetto, Anal-
ysis of Concurrent Transaction in a Functional
Database Programming Language, Proc. Work-
shop on Slalic Analysis, Bordeaux,174-184,1992.

G. Amato, Definizione di un Znierprete Astrutio
per I’oitimizzazione dell’esecurione di imnsationi,
Tesi di Laurea, Dip. di Informatica di Pisa, 1992.

M.P. Atkinson and O.P. Buneman, Types and
Persistence in Database Programming Languages,
ACM Comp. Surv., Vol 19, No. 2, 105-190, 1987.

P. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database
System, Addison-Wesley, Cambridge, MA, 1987.

P. Cousot and R. Cousot, Abstract interpreta-
tion: An unified lattice model for static analysis
of programs by construction of approximation of
fixpoints, Pmt. 4th POPL, 238-252, 1977.

P. Cousot and R. Cousot, Static determination of
dynamic properties of programs, Proc. of the 2nd
Znt. Symp. on Programming Languages, Dunod,
Paris, 1976.

P. Cousot and R. Cousot, Abstract Interpretation
Frameworks, Jour. of Logic and Comp., 1992.

A. Deutsch, On determining lifetime and aliasing
of dynamically allocated data in higher-order func-
tional specifications, ACM Symposium on Prin-
ciples of Programming Languages, San Francisco
CA, 157-168, 1990.

D.J. De Witt, P. Futtersack, D. Maier and F.
Velez, A study of three alternative workstation-
server architectures for Object Oriented Databases
System, Proc. of VLDB ‘90,107-121, Brisbane,
Australia,1990.

M. Di Giacomo, G. Mainetto and L. Vinciotti,
Gestione della persistenza e delle transazioni nel
Sistema Galileo Distribuito, Sislemi Euoluti per
Basi di Dali, Gizzeria Lido (CZ), I, 1993.

J.V. Joseph, S. M. Thatte, C. W. Thompson and
D. L. Wells, Object-Oriented Databases: Design
and Implementation, PTWC. of IEEE, Vol. 79, No.
1, 42-63, 1991.

P. Hudak, A semantic model of reference counting
and its abstraction, Proc. of ACM Symposium on
Lisp and Functional Pmgmmming, 351-363, 1986.

415

