
A Cost-Effective Method for Providing Improved Data
Availability During DBMS Restart Recovery After a Failure

C. MOHAN

Data Base Technology Institute, IBM Almaden Research Center, San Jose, CA 95120, USA
mohank lmaden . f bm. corn

Abstract We present a cost-effective method for
improving data availability during restart recovery
of a data base management system (DBMS) after
a failure. The method achieves its objective by
enabling the processing of new transactions to be-
gin even before restart recovery is completed by
exploiting the Comnlt-rs~V concept. It supports fine-
granularity (e.g., record) locking with semantically-
rich lock modes and operation logging, partial roll-
backs, write-ahead logging, and the steal and
no-force buffer management policies. The over-
head imposed by this method during normal trans-
action processing is insignificant. We require very
few changes to an existing DBMS in order to sup-
port our method. Our method can be implemented
with different degrees of sophistication depending
on the existing features of a DBMS.

1. Introduction

Increased demands are being placed on data base
management systems (DBMSs) to provide improved
data availability to user transactions [Moha93c].
Our motivation for designing the algorithms pre-
sented in this paper stems from our knowledge of
some customers who very regularly produce many
tapes worth of log records as a result of the exe-
cution of a stngle transactfon! As can be easily
imagined by the reader, if such a transaction’s ex-
ecution were to be interrupted by a DBMS failure,
then even after the DBMS is restarted it would be
a very long time before the processing of new trans-
actions will begin, assuming that the DBMS does
not start handling new transactions until all of re-
start recovery (i.e., both the redo and the undo

Permlsslon to copy without fee a// or part of this materlar Is
granted provided that the copies are not made or distributed for
direct cornmerck/ advantage, the VLDB copyright notke and the
UUe of the publlcatlon and Its date appear, and not/co Is given
that copying is by permlsslon of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, requires a fee
and/or special psrmlsslon from the Endowment

Proceedinga of the 19th VLDB Conkrmca
Dublin, Ireland, August 1993

passes) is completed. Today, in almost all DBMSs,
all restart recovery work is done by a single process
and, at least, all read I/OS are performed
synchronously, one page at a time!

Over the years, various solutions to provide im-
proved data availability have been proposed with
different continual system operational costs and
DBMS development costs. One of the solutions is
the concept of hot standby as implemented in Tan-
dem’s NonStopn architecture [Tand87], and IBM’s
XRF (extended Recovery Facility) for IMS [IBM871
and CICS [IBM89, ScRi88]. More recently, propos-
als have been made which exploit nonvolatile mem-
ory to improve data availability [CKKS89, LeCa87,
Levygl]. Compared to them, our solution is much
cheaper to implement for the DBMS implementers.
It is also much more cost effective to operate and
support for the users of the DBMS. We desired a
solution which supports the ARIES [MHLPS92] re-
covery method’s features like fine-granularity (e.g.,
record) locking with semantically-rich lock modes
and operation logging, partial rollbacks, write-
ahead logging, and the steal and no-force buffer
management policies. The no-force buffer manage-
ment policy states that it is not required that before
a transaction is allowed to commit, all pages mod-
ified by that transaction must be forced to disk.
The steel policy states that a page with unconmtltted
updates may be written to disk. We did not want
a solution that required that all data be versioned
and that the force policy be followed, as [Ston87]
does for POSTGRES. The numerous advantages of
no-force and steal are discussed in detail in
[MHLPS92].

The rest of this paper is organized as follows. In
the remainder of this section, we discuss the prob-
lems that need to be dealt with in permitting new

n Nonstop, Nonstop SQL and Tandem are trademarks of Tandem
Computers, Inc. DE2, DB2/2, DB2/StJW and IBM are trademarks
of the Internatlonal Business Machlnes Corp. DEC and RdbiVMS
arstrademarks of Dlgltal Equlpmentcorp. lnformlx Is a reglstered
trademark of lnformlx Software, Inc. Oracle Is a trademark of
Oracle Corp.

368

transaction processing to begin before the comple-
tion of restart recovery and the assumptions that
we make in proposing our method. Section 2
presents our method in two parts. The first sub-
section presents the method for permitting new
transaction processing to be initiated only after the
undo pass of restart recovery begins. The second
subsection extends the method to permit the pro-
cessing of new transactions to begin even earlier
- from the start of the redo pass itself. The third
subsection discusses the applicability ofour method
to the shared disks (data sharing) environment.
Section 3 discusses related work as implemented
in systems like IMS/XRF, CICS/XRF and Tandem’s
Nonstop. We conclude with section 4.

I. I. hproving Data Availability

One way to improve data availability would be to
permit new transaction processing to start as soon
as the DBMS is brought up after a failure, instead
of waiting for all of the DBMS recovery to be com-
pleted. The latter is the case in almost all DBMSs
(e.g., DB2n, Informixn, Oraclen, . ..). The difficulty
in permitting new transaction activity to occur even
before restart recovery is completed comes from
the fact that some of the pages that the new trans-
actions want to access might be in such states that
permitting those accesses may lead to data incon-
sistencies. The undesirable states are:

Undesirable State I A page on disk at restart may
not contain some updates for which log records
exist. These updates might be the ones that were
performed by uncommitted and/or committed trans-
actions. Permitting accesses to such a page might
lead to a new transaction reading an older version
of a piece of data (e.g., a record) to which one or
more log records written by one or more ccnmitted
transactions remain to be applied. Assuming that
record locking is being used with flexible storage
management,’ even if the new transaction were to
access the page for updating or inserting some
record for which no unapplied log records exist,
permitting that operation to proceed before com-
pletion of recovery might result in some space on
the page being consumed. The latter might result
in a state in which it is impossible to redo some
of the unapplied log records’ changes relating to
other records on the sene puge. With ARIES, redo

is not performed logically across pages [MHLPS92],
but is page oriented (i.e., the same page as the
originally updated page gets updated during redo
also). Whether a particular log record’s update
needs to be redone is determined by comparing
the LSNs of the log record and the data base page
referred to in the log record. Given these proper-
ties, it is an unacceptable situation to allow a new
transaction to read or modify a page to which some
log records remain to be applied.

Undeshble State 2 A page on disk may contain
some uncommitted updates. Such a page may not
require any redo since it may contain all the updates
logged for that page. Even if redo is not required,
inconsistencies may be caused if the DBMS were
to allow access by a new transaction to such a
page. This is because the page may contain up-
dates of (1) some transactions which are to be
rolled back as part of restart (i.e., the so called
h-fl/ght transactions) or (2) those transactions
which will remain in the In-dodt state (oftwo-phase
commit [MoL086]) at the end of restart recovery
and for which locks will be reacquired during the
course ofthe redo pass to protect their uncommitted
updates (i.e., the so called In-doubt transectlonr).
Allowing an access under these conditions might
result in a new transaction reading some uncom-
mitted data even though the new transaction will be
acquiring locks. Of course, the second point would
not be a concern if the new transaction’s access
is happening during the undo pass since by then
the in-doubt transactions would have reacquired
locks to protect their uncommitted updates. Per-
mitting updates by new transactions might make it
impossible to undo updates of some in-flight trans-
actions due to lack of space [MoHa93].

At the time of initialization of restart recovery, a
given page on disk may be in both of the above
undesirable states. Our method allows us to cost
effectively determine when the above conditions
could possibly exist for a given page in order to
disallow access to such a page by a new transaction
before one or more passes of restart recovery are
completed. We require very few changes to an
existing DBMS in order to support our method. Our
method can be implement%d with different degrees
of sophistication depending on the existing features
of a DBMS.

I Flrxfblr storuge nunagrnmnt meane that a given record may exist anywhere on the page. At different times, it may exist in different
locations on the page. If the record is moved around within the page, then there is no need to lock it or log its movements. This
allows efficient support of garbage collection which brings together to a contiguom area all the free space on the page. A# a
consequence, varying length records can be managed efficiently. It also means that logging is logical within a page [MHLF’S92]. This
ir the approach taken in System R, DB2, DB2/2, DB2/6000 and SQL/DS [Moha93b].

369

1.2. Assumptions

We assume that the DBMS supports distributed
transactions and implements the write-ahead log-
ging (WAL) based ARIES recovery method de-
scribed in [MHLPSOP, MoLe92, MoNa93, MoPi91,
RoMo89] or a similar method. ARIES has become
very popular. It has been implemented in IBM’s
DB2 family of products (082, DB2/2”, DB2/6000”)
[Mohaglb], Starburst, Quicksilver, WDSF/VM and
Message Queue Manager, Transarc’s Encina, and
University of Wisconsin’s Gamma and EXODUS.
ARIES has been extended by others also [FZTCD92,
Lome92]. When ARIES is used, every data base
page has a page_LSN field which contains the log
sequence number (LSN) of the log record that de-
scribes the most recent update to the page. Since
LSNs monotonically increase over time, by com-
paring at recovery time a page_LSN with the LSN
of a log record for that page, we can unambiguously
determine whether that version of the page contains
that log record’s update. That is, if the page_LSN
is Zess than the log record’s LSN, then the effect
of the latter is not present in the page. ARIES
supports fine-granularity (e.g., record) locking with
semantically-rich lock modes (e.g., increment/
decrement-type locks), partial rollbacks, nested
transactions, write-ahead logging, and the steal
and no-force buffer management policies.

In ARIES, restart recovery consists of three passes
ofthe log: unoZys~s, redo and undo. While recovering
from a system failure, ARIES first scans the log,
starting from the first log record of the last complete
checkpoint and continuing up to the end of the log.
During this analysk pass, the information included
in the checkpoint record about pages that were
more up to date in the buffers than on disk (the
so-called dirty pages) and about transactions that
were in progress is brought up to date as of the
end of the log by analyzing the log records in that
interval. For each page in the dirtypages ht(DPL),
the LSN of the log record (call it the dirty LSN)
from which redo might have to be performed is
also determined based on information in the check-
point log record and the subsequent log records.
DPL from the analysis pass determines the starting
point (i.e., the RedoLSN = the minimum of the
LSNs in DPL) for the log scan of the next pass, and
acts as a filter to determine which log records and
consequently which data base pages have to be
examined to see if some updates need to be re-
done. The analysis pass also provides the list of
in-flight and in-doubt transactions, and the LSN of
the latest log record written by each such transac-
tion.

Before Failure

During Restart

..-----..---.-_ -.--_ _ -.-..........................-...-...-..... 41
I’ is the CLR for I. Only UndoNxtLSN chain fs shown (1’ has
a NULL pointer). PrcvLSN chain should be obvious.

Flgura 1: ARIES R~covwy Scanarlo - Log Records of a
Single Transactlon

In the redo pass, ARIES repeats h/story with respect
to those updates logged on stable storage but
whose effects on the data base pages did not get
reflected on disk before the crash. This is done for
the updates of all transactions, Lncludfng the
updotes of fn-f Zfght trunsuctfons. This essentially
reestablishes the state of the data base as of the
time of the crash, as far as the actions represented
in the log on stable storage as of the crash time
are concerned. The redo pass also reacquires the
locks needed to protect the uncommitted updates
of the W-doubt transactions.

The next pass is the undo pass during which all
in-flight transactions’ updates are rolled back, in
reverse chronological order, in a single sweep of
the log. This is done by continually taking the max-
imum of the LSNs of the next log record to be
processed for each of the yet-
to-be-completely-undone transactions, until no
transaction remains to be undone. ARIES also logs,
typically using compensation log records (CLRs),
updates performed during partial or total rollbacks
of transactions during both normal and restart pro-
cessing. In ARIES, CLRs have the property that
they are redo-only log records. By appropriate
c/wining of the CLRs written by a rolling-back trans-
action to log records written by that transaction
during forward processing, a bounded amount of
logging is ensured during rollbacks. The latter will
be the case even in the face of repeated failures
during restart recovery or of nested rollbacks.
When the undo of a log record (nonCLR) causes a
CLR to be written, the CLR is made to point, via
the UndoPhtLSN field of the CLR, to the predecessor
(i.e., setting it equal to the PrevLSN value) of the
log record being undone (see Figure 1).

370

Log and its Contents

13{ Pl

Tl { Pl P2 p3 1 T4 { P4 s2 1

LSW 18 29 30 49 58 66 78 1013 110 128 138 158 168

I I > Log

T2 Sl
\ I

I I
CaRtt~Lsn

File P

I czy
I

6ZokZ
cait~Lsn

Trensactlon Table

(- Begin-Transaction Log Record
) - End-Transaction Log Record
Pl, P2, . . . - Log Records of File P's Pages
51, 52, *.. - Log Records of File S's Pages
Active Update Transactions: T2, T3
Terminated Transactionsr Tl, T4

*'a'"

61obal C#rit-LSw: 48

Flgura 2: Commit-LSN Example

We assume that when a system failure occurs, all 2. A Cost-Effective Solution
the locks held by the in-flight and in-doubt trans-
actions are lost. That is, we do not assume that
nonvolatile main memory is available to preserve
the lock and buffer pool states across the DBMS
failure. We are not assuming that during the redo
pass locks are obtained to protect the uncommitted
updates of in-flight (not in-doubt) transactions
also. This means that the redo pass need not ex-
amine all the log records of the in-flight transac-
tions for locking purposes. We assume that latch-
ing* of pages is performed as part of page accesses
during the redo and undo passes, just as it is done
during normal (forward and undo) processing in
ARIES.

There are two parts to our cost-effective solution
for the improved data availability problem. We dis-
cuss them in the next two subsections. Depending
on the existing features of a DBMS, our method
can be implemented to different degrees of sophis-
tication with minimal changes to the DBMS.

We use a global flag, called Restart, in the DBMS
which can be tested to see if restart recovery is in
progress. Restart is equal to ‘Y’ if restart recovery
is still in progress; otherwise, Restart is equal to
‘N’. When Restart is equal to ‘Y’, the system holds
the Restart latch in the X mode and another field
called Pass can be checked to see which pass of
restart recovery is in progress (Analysis, Redo or
Undo). When Pass is equal to ‘Redo’, the system
holds the Redo latch in the X mode. The latter is

2 A latch is like a semaphore and it is a cheaper implementation of a short-duration lock. It is typically used for ensuring the physical
consistency of some object (typically, a page) that icr about to be read or modifted. Latch waits are not communicated to the deadlock
detector and hence latch usage must be such that deadlocks are avoided. For more details on the differences between locks and latches,
see [MHLPS92].

371

released once the system completes the redo pass.
The Restart latch is released only after restart re-
covery is completed. We assume that at the end
of the analysis pass, the current end-of-log LSN,
call it tiBl/-LSrV (FLSN), is determined and the global
variable FLSN is set to that value.

2.1. Executing New Transactions Duving
the Undo Pass

First, we deal with the case where we admit new
transactions into the system only after the DBMS
finishes the redo pass. The first undesirable state
described in the section “1.1. Improving Data Avail-
ability” will no longer be a problem since the redo
pass would have been completed. When new trans-
actions’ read and write accesses to pages are pro-
cessed, we use the Commit-LSN idea from
[MohaSOa] in a novel way to determine efficiently
when they are encountering pages in the second
undesirable state. Commit_LSN is the mlntmum of
the LSNs of the Begin-Transaction log records of
all the in-flight transactions (see Figure 2). The
interpretation of Commit-LSN is that no page with
an LSN less than Commit-‘LSN can contain any
uncommitted updates belonging to in-flight trans-
actions. Originally, Commit-LSN was proposed to
reduce or eliminate locking under certain condi-
tions. It has been implemented in DB2 for those
reasons [MohagBb]. Here, we use it to know when
it is safe to let a new transaction read or modify a
page before recovery is completed.

For the purposes of this paper, the Commit-LSN
value is computed at the end of the unuZysls pass.
We need not worry about the in-doubt transactions’
uncommitted updates since those updates will be
protected by locks. The needed locks would have
been reacquired on behalf of those transactions by
the time the undo pass starts. If new transaction
activity is going to be permitted even during the
redo pass (see the next subsection), then, durtng
the redo pass alone, the Commit LSN that is used
should be computed by taking-into account the
in-doubt transactions also. The latter is necessary
because, durfng the course of the redo pass, locks
might not yet have been reacquired to protect the
uncommitted updates of the in-dioubt transactions.

Basically, any time a page access is attempted by
a new transaction in forhfurd processing (i.e., not

rolling back), V Resturt = ‘Yl* then the transaction
is allowed to access the page (for read or write)
only if the following condition, called the Undo-Pass
Condition, holds:

page_LSN < Comtt-LSN

If the above condition does not hold, then the trans-
action requests the Restart latch in the S mode,
thereby waiting for restart recovery to finish.3 The
reason for waiting in this case is that it is possible
that the page has some (uncommitted) changes
which are not yet undone. Note that the action that
is taken in this case is a conservative one. Just
because the page_LSN is not smaller than
Commit-LSN it does not mean that the page defi-
nitely has some uncommitted changes.

We can do better than the above conservative ap-
proach if we log at checkpoint time, as 082 does
for example, for each active transaction, the list of
objects (e.g., at the gross granularity of file or ta-
ble) that have its uncommitted updates. We call
the union of these lists the Uncommitted Objects
List (UOL). During the analysis pass, this list could
be brought up to date as of the end of the log. In
fact, although durtng the redo pass UOL has to
contain even objects for which there are uncom-
mitted updates by only in-doubt transactions (i.e.,
objects for which there are no uncommitted updates
by W-flight transactions), at the end of the redo
pass such objects may be safely removed from
UOL since by then the in-doubt transactions would
have reacquired their locks on such objects. Fur-
thermore, as the undo pass progresses, UOL could
be kept up to date. That is, once 022 the in-flight
transactions which had, as of the failure of the
system, uncommitted updates in a particular object
are completely undone, that object can be removed
from UOL.

Assuming UOL is available, ff Restart = ‘Y’, then
a new transaction in forward processing is allowed
to access a page (for read or write) only if the
following (modfffed) Undo-Pass Condition holds:

(puge belongs to object not fn UOL) OR

((page belongs to object In UOL) AND
(page_LSN (Comnt t_LSN))

Instead of using the above (global) Commit-LSN,
an even better method would be to compute, for
each object in UOL, the object-specific Commit-LSN

3 In order to avoid deadlocks involving the restart latch, any other latches that are held (e.g., on the page that has been accessed and,
in the case of an index access, possibly the latch on the parent of the current page [Moha90b, MoL.e92]) must be released L~forr
waiting on the Restart latch. Once the Restart latch is obtained, the previously released page latches must be reacquired and the
previously inferred information must be revalidated. Such revalidations are discussed in [Moha90b, MoLe921.

372

[MohaSOa]. That is, for each object, consider only
those transactions that have uncommitted updates
on it and compute the minimum of the
Begin Transaction LSNs of only those transactions.
Then,% the Undo-Pass Condition, use the object-
specific Commit-LSN for that object, instead of the
global Commit LSN. The advantage of an object-
specific Commc-LSN over the global Commit-LSN
is that in general the former will be greater than
the latter (in the worst case they will be equal),
thereby allowing more page accesses by new trans-
actions. The former reduces the negative impact
of some long running transactions accessing private
or semi-private data [MohaSOa]. It has been im-
plemented in DB2. Object-specific Commit-LSNs
can also be computed at the end of the unolysis
pass. Similar to what was said earlier with reference
to UOL, note that for computing the object-specific
Commit-LSN for thts purpose, during the redo
pass, we must take into account, apart from the
in-flight transactions, even those transactions that
were in the in-doubt state at the time of the failure.
On the contrary, during the undo pass, we need to
consider only the in-flight transactions that are be-
ing undone as part of that pass.

The unfortunate aspect of the above mentioned test
involving the Commit-LSN is that once a page of
an object in UOL is found to have its page_LSN <
Commit-LSN and the ftrst updute to that page is
performed by a new transaction, no subsequent
update or read by new transactions in forward pro-
cessing will be possible on that page until restart
recovery is finished or the object is removed from
UOL, whichever happens first. This is because that
first update would make the page_LSN be greuter
than Commit LSN (global or object-specific),
thereby violating the Undo Pass Condition that
must be satisfied for permit&g access by a new
transaction in forward processing. Unfortunately,
as a result of that first update, we lose track of the
fact that the page does not contain any uncommitted
updates of the transactions being rolled back in
the undo pass. Preserving the latter information
requires having a bit called the
un/ocked_uncommltted_dclts_blt (UUO-Sit) on ev-
ery page of the data base. If the bit is ‘1’ then that
means that the page may contain some uncommitted
updates which are not protected by locks. If the
bit is ‘0’ then the page definitely does not contain
any uncommitted updates which are not protected
by locks. Note that if the bit is ‘0’ the page may
still contain some unccHrmf tted updates. The crucial
distinction is that in the latter case the uncommitted
updates will definitely be protected by locks.

The following are the rules for manipulating the
UUD-Bit:

WonnaZ transaction updates (forward processing or
normal undo (i.e., not undo during restart recovery))

Set to ‘0

It is not incorrect to do this since we would allow
an update to this page by a new transaction only if
the page was definitely known not to have any
unlocked uncommitted updates. If a system failure
were to occur, thereby causing the loss of the lock
information, the setting of the bit by the buffer man-
ager during reads from disk (see below) will ensure
the existence of the desired state for the bit at the
appropriate time during restart.

@Restart redo of an fn-flight transaction’s log
record (assuming that in-doubt transactions reac-
quire their locks before the start of the undo pass)

Set to ‘1’

This is necessary since an update which is not
being protected by a lock is being redone. As of
this time, the UUD-Bit on the page may have the
value ‘0 and in that case this update will be the
first unprotected one for the page.

*Restart redo of structure modification (page split
and page delete) related log records for leaf pages
in an index or record relocations in a hash-based
storage method for all transactions

IF log record’s LSN >= Comntt-LSN THEN
Set to ‘1’

The above is needed because, with the high con-
currency supported by index protocols like ARIES/
IM [MoLe92] and ARIEWKVL [MohaSOb], and hash-
based storage’s recovery methods like ARIEWLHS
[Moha93a] , one transaction’s uncomt tted updates
on a certain page may be moved to a totally dif-
ferent page by mother transaction. The second
transaction may terminate or get into the in-doubt
state even as the first transaction remains in the
fn-flight state. Under these conditions, after a
failure, the only way to ensure that the first trans-
action’s uncommitted updates remain protected is
to ensure that the mover of the uncommitted data
to a different page causes the UUD-Bit to get set
to ‘1’ on the second page. Again, Commit-LSN is
taken advantage of to determine whether such a
situation is a possibility.

@Restart redo for a non-tn-f2lght transaction and
the log record does not relate to structure modifi-
cation as described in the last item

373

IF existing poge_LSN (i.e., page_LSN before redo
is perfomd) < Comnit-LSN THEN Set to ‘0’

Here, we are trying to take advantage of the facts
that the page is known to contain only committed
updates before this update is redone (since
page_LSN is less than Commit_LSN) and that this
update itself is either a commltted update or an
uncommitted update, by an in-doubt transaction,
which will be protected by locks by the time the
undo pass starts. Note that after the current log
record’s update is redone, the page’s LSN may
become greater than Commit-LSN since page_LSN
will be set to the log record’s LSN.

*Buffer manager when reading into the buffer pool
a page from disk

IF Restart = ‘Y’ THEN
IF (puge_LSN >= Comit-LSN) AND

(poge_LSN c FLSN) THEN Set to ‘1’

Setting the UUD-Bit to ‘1’ under the above condi-
tions is a conservative action since the fact that
the page is in that range does not necessarily
mean that there is some uncommitted data on the
page that is not protected by locks. Since a system
failure could happen anytime, the burden is placed
on the buffer manager to ensure that the correct
UUD bit setting is present on a page when the
page-is read from disk and restart recovery is still
in progress. This is important since, during recov-
ery after a failure, it is the disk version of the data
base that recovery processing and new transactions
will be dealing with. The buffer manager can use
in this check the global Commit-LSN or, better still,
the object-specific Commit-LSN. As mentioned be-
fore, an object-specific Commit-LSN is always bet-
ter than or at least as good as the global
Commit-LSN [MohaSOa]. In any case, the impor-
tant point to note is that the computation of those
Commit LSN values must take into account only
those tr&sactions that were active at the time of
the last failure.

The setting of the UUD-Bit, if required, by the buffer
manager does not cause the page to become dirty.
The buffer manager does not disturb the existing
UUD-Bit setting on the page if the condition in the
above test is not satisfied. If the page_LSN is
greater than FLSN then it is incorrect to always
assume that there is no uncovnnltted data on the
page that is not protected by a lock and set the
UUD-Bit to ‘0’. This is because this may be the
second time that the page is being read from disk
during this restart recovery and when it was read
from disk (and before it was .subsequently written
to disk) the first time, some t&flight transaction’s

undo might have been performed on the page
which caused the page_LSN to become greater
than FLSN due to the writing of a CLR and the
assignment of the CLR’s LSN to the page_LSN.
Under these conditions, it is essential that the
UUD-Bit remains at the value of ‘1’ since the page
may still contain some uncommitted updates which
are not protected by locks. If, on the other hand,
the page LSN is greater than FLSN because, during
the first time it was read in, a new transaction had
modified it, then we would like to retain the UUD-Bit
value of ‘0’ that would exist as a result.

With the introduction of the UUD-Bit, the Undo-Pass
Condltlon becomes:

(page belongs to object not in LIOL) OR

((pope belongs to object in UOL) AND
(UUD-8ft = ‘0’)) OR

((page belongs to object in UOL) AND
(paggc_LSN < Comf t_LSN))

With the introduction of the UUD-Bit, in the unfor-
tunate scenario discussed earlier, the first update
by the new transaction will cause the UUD-Bit to
be set to ‘0’ and so the condition for allowing ac-
cesses to new transactions will still be true.

2.2. Executing New Transactions During
the Redo Pass

Allowing new transaction activity concurrently with
redo processing also requires that we deal with
both undesirable states described in the section
“1.1. Improving Data Availability”. We do that by
taking advantage of some information that typically
gets logged at the time of a checkpoint. As in
ARIES, first we assume that at the time of a check-
point the dirty pages list (DPL) is logged and that
during the analysis pass this DPL is brought up to
date as of the end of the log. Many advantages of
logging DPL are discussed in [MHLPS92]. DPL
includes only those pages that might potentLaZZy
be involved in redo operations. In particular, DPL
may not include any (or some) pages on which undo
may have to be performed (i.e., pages of objects
in UOL).

Assuming DPL is available, If Restart = ‘Y’ and
Pass = ‘Redo’, then a new transaction is allowed to
access a page (for read or write) only if the following
RedoJbss Condition holds:

(Undo-Pass Condition) AND (page not in DPL)

Basically, these checks ensure that the page does
not contain any uncommitted data and that it will
not be modified in the redo pass, respectively. If

374

the Redo--Pass Condition does not hold, then the
transaction requests the Redo latch in the S mode
for instant duration, thereby waiting for the redo
pass to finish. Once the Redo latch is granted, the
new transaction has to check the Undo-Pass Con-
dition.

If, unlike in ARIES but like in DB2 [TeGu84], the
buffer manager logs at checkpoint time the dirty
object information only at the granularity of a file
which is then brought up to date during the analysis
pass, thereby providing the system with the dirty
06Jects list (DOL), then the Redo-Pass Condition
becomes

(Undo-Pass Condf tion) AND
(page belongs to object not in DOL)

Even in those systems which do not log DPL during
checkpoint time, if we would like to get the benefit
of what something like DPL could provide, then we
could implement a more expensive solution which
involves scanning the log from the RedqLSN to
the end ofthe log. This extra pass can be performed
by a separate process. It is initiated when the redo
pass is initiated and it uses DOL to determine what
pages of the objects in DOL might need some log
records’ updates to be redone on them. This is
done just by noting the page numbers in the log
records relating to the objects in DOL. Since no
data page accesses are made, this extra pass
would be completed long before the redo pass
completes. As soon as this extra pass is finished,
new transactions can be let into the system. DPL
generated in this fashion will be equal to or be a
superset of DPL that we would have obtained if the
system were to log it at checkpoint time and bring
it up to date during the analysis pass, as in ARIES.

Since processing new transactions will result in
the log growing continuously, in order to make sure
that the redo pass terminates, we should terminate
the redo pass when the FLSN point is reached.

2.3. SJtared Disks Environment

What we have discussed so far is usable in the
single-system and partitioned (also called shared
nothing) DBMS environments. In addition, our
method is also usable in the shared disks (SD -
also called the data sharing) environment [Haer88,
Lome90. MoNa91, MoNagPa, MoNa92b, Rahm91,
Reut86]. With SD, all the disks containing the data
base are shared amongst the different systems.
Every system that has an instance of the DBMS
executing on it may access and modify any portion
of the data base on the shared disks. Since each
DBMS instance has its own buffer pool and because

conflicting accesses to the same data may be made
from different systems, the interactions amongst
the systems must be controlled via various syn-
chronization protocols. This necessitates global
locking and protocols for the maintenance of buffer
coherency. SD is the approach used in IBM’s IMS/
VS Data Sharing product and TPF, and in DEC’s
Rdb/VMSn [ReSW89]. Fujitsu, Hitachi, INGRES and
Oraclen Parallel Server have also adopted this ap-
proach.

In the SD context, when a system fails, the locks
needed to protect the failed systems’ uncommitted
updates may be retained in one or more other
systems [MoNaSl, MoNaOSa]. In such an event,
the still-operational systems will continue to be
able to access the rest of the data. By using our
method, even as the failed system is recovering,
we would be able to allow new transaction pro-
cessing to begin on the recovering system. De-
pending on the level of sharing that was in effect
at the time of the system failure, the granularity at
which the other systems retain the failed system’s
locks may vary all the way from table level to the
record level, even if the locking being done by the
transactions at the failed system was at the record
level. The coarser the granularity at which the
locks are retained the more beneficial our method
would be.

It should be noted that typically the locks are re-
tained by the other systems with the failed system
being identified as the owner of those locks rather
than by using the identifiers of the individual
trunsuctfons which caused those locks to be ac-
quired [MoNaSl, MoNagPa]. As a result, the re-
tained Zogtcul locks cannot be released until the
failed system finishes its undo pass and the retained
physica locks cannot be released until the failed
system finishes its redo pass [MoNaSl]. Physical
locks are acquired to ensure that at any given time
only one system is modifying a given page. That
is, the physical locks are used to assure coherency
of the data in the different systems’ buffer pools.
Logical locks are used to perform the more tradi-
tional concurrency control amongst the different
transactions.

If the physical locks are retained at the page level,
then the list of such locks can be used to generate
DPL and our method can be applied to allow new
transaction processing during the redo pass. DPL
will consist of exactly those pages for which physical
locks have been retained. Under these conditions,
if the logical locks had been retained at the same
granularity at which the transactions were acquiring
those locks, then we can use our method by pre-

375

tending that all the retained logical locks were ac-
quired by a system transaction at the failed system
and by treating the Undo-Pass Condition to be
TRUE. What this means is that a new transaction
will be able to access a page and make progress
during the redo pass if the page is not in DPL and
if the lock needed by the new transaction is not
one of the retained locks. If either condition is not
true, then the new transaction would wait for the
retained locks to be released by the system trans-
action.

On the other hand, if the logical locks had been
retained at a coarser granularity than the granu-
larity at which the transactions were acquiring
those locks, then we can use our method by using
the techniques (Commit-LSN, UOL, DOL, generat-
ing DPL via log analysis, . ..) described earlier for
the single system (nonSD) case.

2.4. Discussion

The overheads of our method during normal pro-
cessing are:

l the extra check on every page access to see if
restart is in progress

l the manipulations of the UUD-Bit

We consider these overheads to be insignificant
since only simple comparisons of values are in-
volved.

The extent of the benefit of our method for executing
new transactions during the undo pass would de-
pend on the particular mix of transactions that is
run by the users of a given DBMS installation. This
is something that the DBMS would have no control
over. The higher the number and the longer the
duration of update transactions, the more would be
the benefit to be derived. Under these circum-
stances, new transaction processing will start much
earlier with our method than otherwise. As we
mentioned in the introduction, our motivation for
doing the work reported here stems from our knowl-
edge of some customers who very regularly pro-
duce many tapes worth of log records as a result
of the execution of a single trunsaction! For such
users, our method would be of immense value.

The extent of the benefit of our method for executing
new transactions during the redo pass would de-
pend on the speed at which the buffer manager

writes dirty pages to disk. Of course, there is a
trade-off here between reducing restart redo work
versus impacting in a negative manner normal
transaction processing work. The more quickly the
buffer manager writes the pages, the lesser would
be the amount of redo work to be performed in
case of a system failure. But then, if there is any
locality of reference amongst a set of pages across
different transactions, then the quick writing of dirty
pages would not allow us to amortize the cost of
disk write of a page across multiple updates to the
same page by different transactions or by a single
long transaction. Frequent writing of hot spot pages
would also cause concurrency problems if a page
is not going to be allowed to be modified when it
is being written to disk. Frequent writes may also
impact negatively on being responsive to read I/O
operations. Systems like DB2 delay doing writes
also in order to accumulate multiple dirty pages
for a single file so that the capability of the operating
system to write multiple pages using a single start
I/O command could be exploited to reduce the CPU
and I/O overheads [TeGu84]. For reasons like
these and also to reduce the lock holds times, all
the IBM RDBMSs and many others follow the no-
force buffer management policy.

3. Related Work

In [MHLPSg2], we discussed some techniques to
reduce the time spent in restart recovery process-
ing.4 Basically, they involved exploiting parallelism
during the redo pass and subsequently during the
undo pass. Essentially, these permitted I/O paral-
lelism during the numerous I/OS that have to be
performed during the redo and undo passes, and
CPU parallelism during the processing of log
records for different pages (during redo) and for
different transactions (during undo). Unfortunately,
during the undo pass, all the log records of a single
transaction have to be processed by a single pro-
cess in order to chain the CLRs properly. Similarly,
during the redo pass, all the log records relating
to a particular page must be processed by a single
process to ensure that redo actions are performed
in chronological sequence. To lessen the impact
of these unfortunate situations and to improve data
availability even further, in this paper, we intro-
duced ways to permit parallelism between recovery
processing and new transaction processing.

4 Those techniques were extended to the remote backup context in [MoTOPJ].

376

In IBM’s IMS/XRF [IBM871 and Tandem’s Nonstop
architecture [Tand87], on the failure of a primary
system, a hot standby (the backup system) takes
over and it first reacquires, as part of the redo
pass, the necessary locks to protect all the un-
committed updates. This is possible since the
backup system on a continuous basis keeps mon-
itoring the primary, keeps analyzing the log records
written by the primary and accumulates in virtual
storage information about the transactions that are
active in the primary and their update activities.
Of course, the cost of doing this is very high in
terms of extra processing capacity needed in the
backup and in the primary. In Nonstop, the primary
sends the log records directly to the backup,
thereby imposing extra overhead in the primary
system. In IMS, the backup reads directly from disk
the log records written by the primary. This in-
creases the contention on the log disk, thereby
impacting the processing on the primary.

When the XRF support was introduced in IMS, ex-
isting log records’ contents had to be enhanced to
identify what lock had to be reacquired in order to
protect a given log record’s update. The previously
existing contents were not sufficient to infer the
lock name. In 082, on the other hand, from the
beginning there was enough information available
in the log records to determine the lock names. In
fact, for in-doubt transactions, DB2 reacquires locks
by accessing all their log records during the redo
pass [Crus84, MHLPS921. In contrast, in SQUDS
and R’ [MoL086], locks held by in-doubt transac-
tions are included in their prepare log records. The
information available in the update log records is
not good enough to reacquire all the locks (e.g.,
no log records are written for index page changes
and the next key lock names (see [MohaSOb,
MoLe92]) cannot be computed using solely the in-
formation in the log records for the data page
changes). Even in ARIES/IM, which is implemented
in DBU2 and DB2/6ooO, and which does log index
changes, such information is not available in the
index log records.

On a takeover, in IMS/XRF and Nonstop, once the
redo puss LS completed, the backup then starts pro-
cessing new transactions in parallel with the undo
pass. If no backup system is defined or it is not
currently operational, then new transaction activity
is begun only after the failed system is completely
recovered (i.e., only after the undo pass is also
completed). In spite of all the extra developmental
and run-time expenses incurred in supporting the
concept of hot standby in IMS/XRF and Nonstop, it
should be noted that neither system allows the

processing of new transactions during the redo
pass, unlike in our much more cost-effective
method. Since we are not reacquiring locks to
protect the uncommitted updates, naturally we can-
not support as much concurrency during the undo
pass as IMS or Nonstop can. Of course, if one is
willing to pay the price of reacquiring locks for
in-flight transactions’ updates during the redo pass,
which may involve starting the redo pass from an
earlier point in the log and scanning many more
log records, in our method also we can support
the same amount of concurrency during the undo
pass. Our method would still be better since it
would support new transaction processing during
the redo pass.

In CICSIXRF [IBM89, ScRi88], the backup system
does not continuously monitor the log records writ-
ten by the primary. It only tracks the states of the
terminals that are connected to the primary so that
on a takeover the terminals can be quickly switched
to use the backup sessions established to the
backup system. As a result, on a takeover, the
backup performs data recovery cmpZete2y before
permitting new transaction activity. Since CICS fol-
lows the force policy, the recovery work involved
is just rolling back the in-flight transactions (i.e.,
there is no redo pass). In spite of that, in some of
the measurements presented in [ScRi88], it has
been reported that on an IBM 4381-2 machine 11%
of the takeover time involved the undo pass and
on an IBM 3084QX it was 19%. One of the primary
reasons for these high percentages is that undo
activities are highly I/O bound. Typically, the I/OS
would be random ones necessitating significant
disk arm movements. Also, opening all the files
on which recovery needs to be performed takes a
significant amount of time. These numbers should
allow us to conclude that in a system which has to
perform redo also, the percentage of time spent
on data recovery would be more and that our
method could be beneficial in a significant manner
in the hot standby context as well as in the no-
standby context. More modern systems like the
DB2 family of products [Moha93b] follow the no-
force policy. Hence the need for performing redo
in those systems. Even in IMS, for Fast Path data,
redo may be necessary since for such data a force
ufter commit policy is followed [MHLPSgP].

4. Conclusions

We presented a cost-effective method for improving
data availability during restart recovery of a DBMS
after a failure. The method achieves its objective

377

by enabling the processing of new transactions to
begin even before restart recovery is completed.
A partial implementation of the new method would
enable new transaction processing to begin only
at the start of the undo pass. A more complete
implementation would enable it to begin at the start
of the redo pass itself. The overhead imposed by
our method during normal transaction processing
is insignificant since very little additional processing
is needed. The method does not require nonvolatile
memory to accomplish its goals. Our method has
applicability even if the DBMS supports the hot
standby concept and/or the shared disks environ-
ment. It supports fine-granularity (e.g., record) lock-
ing with semantically-rich lockmodes and operation
logging, partial rollbacks, write-ahead logging, and
flexible buffer management policies. The method
is easy to implement and requires few changes to
an existing DBMS that uses the ARIES recovery
method or a similar method. It is flexible in the
sense that, depending on the affordable develop-
ment cost, it can be implemented to different de-
grees of sophistication. It takes advantage of the
information which is logged by the buffer manager
at the time of a checkpoint and the Commit-LSN
concept which we developed originally for reducing
locking overhead and for increasing concurrency
during normal processing. We compared our
method with the techniques employed in IBM’s
IMS/XRF and CICS/XRF, and Tandem’s Nonstop
architecture.

We can extend our method’s effectiveness during
the redo pass even further by associating with each
page in the dirty page list (DPL) the LSN of the last
log record (LastLSN) for that page. This information
can be brought up to date during the analysis pass.
With this additional information in hand, during the
redo pass, a page can be removed from DPL when
the page_LSN is found to have become equal to
LastLSN.

We have extended the results of this paper to the
remote backup context in [MoT093]. As a result,
when the primary system fails, even as a remote
backup is taking over, processing of new transac-
tions can be initiated.

Acknowledgements I would like to convey my
thanks to Hamid Pirahesh and Julie Watts for their
feedback and discussions.

5. References

CKKS89 Copeland, G., Keller, T., Krishnamurthy, R.,
Smith, M. The Case for Safe RAM, Proc. 15th

Crua84

FZTCD92

Haer88

IBM87

IBM89

LeCa87

Levy91

Lome

Loma

MHLPS92

Moha9Oa

MohaSOb

Moha93a

InternatIonal Conference on Very Large Data
Bases, Amsterdam, August 1989.
Crus, R. Data Recovery in IBM Database 2,
IBM System8 Journal, Vol. 23, No. 2, 1984.
Franklin, M., Zwilling, M., Tan, C.K., Carey,
W DeWm, D. Crash Recovery in
Client-Server EXODUS, Proc. ACM SICMOD
Internatlonal Conference on Management of
Data, San Diego, June 1992.
Haerder, T. Handling Hot Spot Dota in
D&Sharing Systems, lnformatlon Systems,
Vol. 13, No. 2, ~159166, 1988.
IMSIVS Extended Recovery Fact Z t ty (XRF) :
Technical Reference, Document Number
GG24-3153, IBM, April 1987.
CZCS/MVS Version 2.1 XRF Guide, Document
Number SC33-0522-1, IBM, March 1989.
Lehman, T., Carey, M. A Recovery AZgortthm
for a High-Perfornwnce Memory-Resident
Database System, Proc. ACM-SIGMOD Inter-
natlonal Conference on Management of Data,
San Francisco, May 1987.
Levy, E. Incremental Restart, Proc. 7th In-
ternatlonal Conference on Data Engineering,
Kobe, April 1991.
Lomet, D. Recovery for Shared Disk Systems
Using MultipIe Redo Logs, Technlcal Report
CRL 90/4, DEC Cambridge Research Labora-
tory, October 1990.
Lomet, D. Mu): A Recovery Method for
Multi-Level Systems, Proc. ACM SIGMOD In-
ternatlonal Conference on Manrgement of
Data, San Diego, June 1992.
Mohan, C., Haderle, D., Lindsay, B., Pirahesh,
H., Schwarz, P. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead
Loggt ng, ACM Tranaactlons on Database Syr-
temr, Vol. 17, No. 1, March 1992. Also avail-
able as IBM Reaearch Report RJ8849, IBM
Almaden Research Center, January 1989; Re-
vised November 1990.
Mohan, C. Comnit-LSN: A Novel and Simple
Method for Reducing Locking and Latching in
Transaction Processing Systems, Proc. 16th
Internatlonal Conference on Very Large Data
Baser, Brisbane, August 1990. Also available
as IBM Reuarch Report RJ7344, IBM
Almaden Research Center, February 1990.
Mohan, C. ARIESIKVL: A Key-Value Locking
Method for Concurrency Control of
Multiaction Transactions Operating on
B-Tree Indexes, Proc. 18th Internatlonal Con-
ference on Vary Large Data Barer, Brisbane,
August 1990. A different version of this paper
is available as IBM Research Report RJ7008,
IBM Almaden Research Center, September
1989.
Mohan, C. ARIESILHS: A Concurrency Control
and Recovery Method Using Uri te-Ahead

378

MohaS3b

MohaS3c

MoHa93

MoLe92

MoL088

MoNaSl

MoNa92a

MoNaS2b

logging for Linear Hashing with Separators,
Proc. 9th International Conkrenco on Data
Englneerlng, Vienna, April 1993. A longer
version is available as IBM Research Report
RJ8682, IBM Almaden Research Center,
March 1992.
Mohan, C. IBM’s Relational DBMS Products:
Feotures ond Technologies, Proc. ACM
SIGMOD International Conference on Man-
agement of Data, Washington, D.C., May 1993.
Mohan, C. A Survey of DBMS Research Issues
to Support Large Tables, To appear in Proc.
4th International Conference on Foundations
of Data Organization and Algorithms, Chicago,
October 1993.
Mohan, C., Haderle, D. AZgori thms for Space
Management in Transaction Sys terns

Supporting Fine-Granularity Locking, IBM
Research Report, IBM Almaden Research
Center, June 1993.
Mohan, C., Levine, F. ARIESJIM: An Efficient
ondHigh Concurrency IndexMonogementMethod
Using Write-Ahead Logging, Proc. ACM
SIGMOD Intarnatlonal Conference on Man-
agement of Data, San Diego, June 1992. A
longer version of this paper is available as
IBM Research Report RJ6846, IBM Almaden
Research Center, August 1989.
Mohan, C., Lindsay, B., Obermarck, R.
TronsoctionMunogement fn theR*Distrtbuted
Data Bose Management System, ACM tranaac-
tlonr on Database Systama, Vol. 11, No. 4,
December 1988. Also available as IBM Re-
search Report RJS037, IBM Almaden Ra-
search Center, February 1988.
Mohan, C., Narang, I. Recovery and
Coherency-Control Protocols for Fost
Intersystem Page Transfer and
Fine-Granularity Locking in a Shored Disks
Tronsoction Environment, Proc. 17th Interna-
tional Conference on Vary Large Data Bases,
Barcelona, September 1991. A longer version
is available as IBM Raaaarch Report RJ8017,
IBM Almaden Research Center, March 1991.
Mohan, C., Narang, I. Efficient Locking ond
Caching of Data in the Multisystem Shored
Disks Tronsoction Environment, Proc. Inter-
natlonal Confarance on Extending Data Baaa
Technology, Vienna, March 1992. Also avail-
able as IBM Research Report RJ8301, IBM
Almaden Research Center, August 1991.
Mohan, C., Narang, I. Data Bose Recovery in
Shored Disks and Client-Server
Architectures, Proc. 12th Internatlonal Con-
ference on Didrlbuted Computing Systems,
Yokohama, June 1992. Also available as IBM
Research Report RJ8685, IBM Almaden Ra
search Center, March 1992.

MoNaS3

MoPISl

MoT093

RahmSl

ReSW89

Reut86

RoMo89

ScRl88

Ston87

land87

TeGu84

Mohan, C., Narang, I. ARIESICSA: A Method
for Data Bose Recovery in Client-Server
Architectures, IBM Research Report, IBM
Almaden Research Center, June 1993.
Mohan, C., Pirahesh, H. ARIES-RRH:
Restricted Repeating of History in the ARIES
Transaction Recovery Method, Proc. 7th Inter-
national Conference on Data Engineering,
Kobe, April 1991. Also available as IBM Re-
search Report RJ 7342, IBM Almaden Re-
search Center, February 1990.
Mohan, C., Treiber, K., Obermarck, R.
Algorithms for the Management of Remote
Backup Data Bases for Disaster Recovery,
Proc. 9th Internatlonal Conference on Data
Englneerlng, Vienna, April 1993. A longer
version is available as IBM Reaaarch Report
RJ7885, IBM Almaden Research Center, De-
cember 1990; Revised June 1991.
Hahm, E. Recovery Concepts for Doto Shoring
Systems, Proc. 21at Internatlonal Symposlum
on Fault-Tolerant Computing, Montreal, June
1991.
Rengarajan, T.K., Spiro, P., Wright, W. High
Availability Mechanisms of VAX DBMS
Softwore, Digital Technical Journal, No. 8,
February 1989.
Reuter, A. Load Control and Load Balancing
in a Shored Database Monogement System,
Proc. International Conference on Data Engl-
nearing, February 1988.
Rothermel, K., Mohan, C. ARIES/NT: A
RecoveryMethodBosedonUrite-AheadLogging
for Nested Transactions, Proc. 15th Interna-
tional Conference on Very Large Data Bases,
Amsterdam, August 1989. A longer version
of this paper is available as IBM Research
Report RJ6650, IBM Almaden Research Cen-
ter, January 1989.
Scott, J.W., Richards, A.J.M. CICSlMVS
Extended Recovery Facility CW
Performance, Document Number GGBB-0281,
IBM ‘Washington Systems Center, June 1988.
Stonebraker, M. The Design of the POSTGRES
Storage System, Proc. 13th International Con-
ference on Very Large Data Barer, Brighton,
September 1987.
The Tandem Database Group Nonstop SOL: A
Distributed, High-Perfomwnce,
Htgh-Avoi lability Implementation of SQL, In
Lecture Notes In Computer Science Vol. 359,
D. Gawlick, M. Haynie, A. Reuter (Eds.),
Springer-Verlag, 1989.
Teng, J., Gumaer, R. Managing IBM Database
2 Buffers to Maximize Perfornwnce, IBM Sys-
terns Journal, Vol. 23, No. 2, 1984.

379

