
Hamming Filter:
A Dynamic Signature File Organization for Parallel Stores*

Pave1 Zezula Pa010 Ciaccia and Pa010 Tiberio
Technical University of Brno - Czech Republic DEE - University of Bologna - Italy

zezula@cis.vutbr.cs

Abstract

Partitioning, in general, has become the basic strat-
egy for organizing data files to avoid an exhaustive
search when executing queries. However, hardware
limitations that constrain the performance of query
execution mainly become a problem for partial-match
queries, where the size of the result can equal the size
of the data file. In such situations, a proper application
of parallelism can bring the required breakthrough in
performance. Hamming Filter is a parallel, part,itionetl
organization of signature files that are stored in fixed
size buckets with a guaranteed load and is based on
the idea of linear code decomposition. It can efficiently
manage dynamic data files by means of a partitioned
structure that always grows and shrinks linearly and
is appropriate to multidimensional partitioning and
searching. This paper proves that the organization
yields no expected execution skew for partial-match
queries, provided the data is not skewed and the de-
gree of parallelism is a power of two.

1 Introduction

Users of computer systems can nowadays benefit from
a considerable performance improvement achieved in
the speed of processors. However, the bottleneck for

*This work has been partially supported by the ESPRIT Ba-
sic Research Action Project No. 6309, FIDE2 (Formally Inte-
grated Data Environment), and by the L&data and Mulfidafa
Projects of the Italian National Research Council (C.N.R.).

Permissiou to copy wifhout fee 411 OT pari of lhir maieria/ ia
granted provided that the copies are noi made OT disin'buted for

direct commercial advantage, the VLDB copgright noiice and
the iiile of the publication and its date appear, and notice is
given that copging is by permission of ihe Veq Large D4i4 Bare
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission brn the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993.

{ paolo,tiberio}@deis64.cixwca.it

applications with high l/O activities still remains the
performance of secondary storage that has only btw~

improving at a modest rate.
Recent1 y, several attempts have been made to design

computer architectures capable of meeting the requirc-
men& of applications with high I/O activities, such as
Multiprocessor Database Computers [IO], client-server
systems [3], and disk arrays [17]. As claimed iI1 [:I],
thebe mechanisms form an excellent environment for
distributed, parallel databw technology.

A common implementation problem of all par:dI4
designs is the strategy for data placement and rc-
trieval that should fully exploit capabilities offered by
the hardware. This problem involves distributing dat.a
over several parallel hardware units (e.g. disks that can
be accessed in parallel). in general, good partitioning
must avoid: (1) data skew - much more data is placc~l
in one partition than in the others, and (2) erccu&n
skew - execution time in one partition is much highctr
than in the others.

Three basic approaches to partitioning appear in the
literature: range partitioning, round-robin pnrtitiotl-
ing, and hashed partitioning. Range partitioning snaps

continuous attribute ranges of a file to various part,i-
tions. Round-robin partitioning maps the i-th record
to partition i mod n. Hashed partitioning maps each
record to a disk location based on a hash function.

Recently, a new declustering method for pnrallrl
disk systems called Coordinate Module Distribution
(CMD) has been proposed [15]. Experimental resu1t.s
show that the method achieves near optimum per-
formance for range queries, provided the distribution
of data on each dimension ia stationary. Kamcl and
Faloutsos [II] proposed a parallel organization of R-
trees [9] to design a server for spatial data, maximizing
the throughput of range queries.

The difficult problem of m&i-&l&&e fire disk al-
location for rfficient execution of partial-match qucrics
has been extensively studied for C~arteman prdacl

314

/itrs. I~.c!cc!II~. works have successfully i~pplicd a coding-
I.llc*orc!l.ic rrpprc,ilch for ;rllocutiug buck& on dinkn
[I, 0, 71. Kvcw though thc:rt: is no ntriclly optilrial allo-
cation ~11r4J1od for distributing a Cartesian producl file
with n attributes over p disks, for arbitra.ry values of 11
and 11, the theory of error-correcting codes has shown
to provide schemes which are very close to the optimal
cilse. However, since in the above designs the number
of buckets, as determined by the partitioning scheme,
is a priori fixed, problems arising from files dynami-
cally chimging in size have not been considered.

In this paper, we concentrate on partitioning for par-
allel processing of signature files [5]. We consider sig-
uature files as a way to tackle the problem of multi-
dimcnsionaI partitioning and searching. A signature
file is basically a compressed version of a correspond-
ing data file. Evrn though a signa.ture file typically
CilUSt!S information loss (i.e. the compression is nonre-
vcbrsiblc), it is suitable for searching due to its simple
structure. Signature files contain randomized multidi-
rncusional data and, depending on the signature ex-
traction method used, can eliminate nQn-uniform data
term occurrences and query frequencies [4, 141. We
ace also convinced that ongoing research effort in this
field will bring even better signature extraction designs
thau we can apply today.

Many techniques have been proposed to improve
the search performance of signature files in a single-
processor euvironment. For a survey, see for example
[l/i]. The general idea is to avoid searching the whole
signature file by using a nonsequential storage struc-
ture, typically by applying a tree or a hashitlg tech-
nique. There have also been attempts to make the
schemes run in parallel environments [8, 12, 211. How-
(xx, these designs apply a simple horizontal and/or
vertical siguature file partitioning, thus resulting in
parallel organizations which can rarely avoid execution
skew. The negative fact that some (very often, many)
processors are not activated for a specific query is re-
lic,vc:tl by introducing inter-query parallelism, that is,
by using thtb not active processors for executing other
queries, if possible. In this paper, on the other hand,
we are aiming at maximizing intra-query parallelism,
where elimination of the execution skew is the main
objective.

In general, provided a file is formed by a set of
directly accessible buckets containing data objects
(rcbcords, signatures), there are two ways to improve
query executiou performance: (1) minimize the num-
ber of accessed buckets, and (2) use parallelism. In
other words, the less buckets from the total uumber
of existing buckets that are acces.sed, the shorter the
processing time. Natura.lly, if the needed buckets are

accessed in parallel, performance can ilrlprove further.
Such iI strictly performance-orirnted view of query

l)rocc?ssing requires a siniultancous application of two,
seemingly adverse, data placement st,ratcgirs: &s/w-
ing and declusderiug. Retrieved records should be clus-
tered in buckets so the minimum number of buckets is
accessed. On the other hand, accessed buckets should
be declustered uniformly on all partitions, and in this
way, the power of parallel processing is maximized.

Signature files are advantageous not only because
they represent pieces of simple, structured, binary, and
randomized data but also because many techniques ex-
ist for their organization and management. Two spe-
cific ideas have become fundamental for our work:

l The dynamic partitioning technique to cluster sig-
natures in fixed-size partitions known as Quick
Filter [23];

l The method for declustering binary data based on
linear error correcting codes [6].

Our design, called Hamming Filter, is a new dy-
namic organization for signature files processed in par-
allel environments. It demonstrates very good per-
formance for any partial-match query because it has
practically no execution skew, provided the data is
not skewed. Performance of the organization improves
with the signature file size and the degree of paral-
lelism.

The rest of the paper is organized as follows. In
Section 2, we review the underlying concepts of our
design. In Section 3, we present the Hamming Filter,
and Section 4 contains its performance evaluation.

2 Background

We have built our design on top of the following two
ideas: Quick Filter and linear error correcting codes.
In the following, we will survey their most essential
concepts.

2.1 Quick Filter Organization of Su-
perimposed Signatures

This subsection provides the most essential informa-
tion concerning the superimposed signature file coding
method, partitioned organizations of signatures, and
the main characteristics of the Quick Filter method.

2.1.1 Superimposed Coding

For the sake of simplicity, we assume that each data
object 0; (i = 1, . . . , N) in the file is represented hy a

315

superimposed object signature, Si, with length f, the
signature site. The number of bits with value “l”is the
signature weight. An object signature is generated by
superimposing (OR-ing) signatures of terms that form
the object. A term signature is obtained by hashing
the term onto an f-bit vector so exactly m bits are set
to “1”.

When objects are searched for a term or a set of
terms, a query signature, Q, is generated from the
user’s query in the same way as described for an object
signature above. The object signature, Si, (signature
for short, from now on) satisfies query signature Q iff
for all bit positions of Q that are set to “l”, the cor-
responding bit positions in Si are also set to “I”(the
inclusion condition). Then, we say S; includes Q. For-
mally, the set of qualifying signatures is defined:

{Si 1 Si AND Q = Q}

where bitwise AND is used. Such a way of generating
superimposed signatures is also known as the fired-site
block (FSB) method.

A new way of generating signa.tures, the fixed-weight
block (FWB) method, was introduced recently in [14].
The main objective of FWB is to provide an optimum
method of assigning weights to document terms based
on their occurrence and query frequencies. As a rc-
sult, the FWB method accounts for both uniform and
nonuniform occurrence and query frequencies, the sig-
nat,ure weight is constant,, and the false-drop proba-
bility (i.e. the proba.bility that a signature qualifies
while the actual object does not) is lower than for the
FSB method. However, the storage overhead of FWB
is slightly higher.

2.1.2 Partitioned Signature Files

The basic idea of any signature file partitioning scheme
is simple: while storing a file that contains N sigua-
tures, similar signatures are grouped in partitions, and
when a query is issued, some of the part,itions need
not be accessed because they cannot contain quali-
fying signatures. Signatures stored in partition fJj
(j = 1,. . , b) are characterized by having the same
signature ley, Ii’Pj, with key size (length), 1, where
I 5 f. Obviously, Ii’Pj is also the key of partition
Pj. When a query signature Q is received, its key, de-
noted Ii’&, is obtained by extracting a substring of 1
bits from Q at the sa.me position where the keys of the
object signatures were obtained. The partition Pj is
activated (i.e. accessed) iff I1TPj includes KQ. The set
of partitions a.ctivated by Q is thus defined:

{ Pj 1 I< Pj AND I<& = ICQ} (1)

Let w(.) denote the function that, returns the weight
of its bit vector argument, that is, the number of bits
set to “1”. Then, regardless of the method used to
define signature keys, the basic factor influencing the
performance of partitioned signature file organizations
is clearly the query signature key weight, w(I(Q).

2.1.3 Quick Filter

The Quick Filter (QF) method .-. also called the II!/-
namic Sufiz method because the keys arc tlefid as

suffixes -. partitions a signature file according to a split,
hash function that uses the signaturcr’s suffix a.9 its ar-
gument. Linear hashing [16] has been employed as the
storage structure in [23]. Such organization makes the
signature (and partition) key size, I, closely related to
the number of partitions, b. More precisely, in ilny QF
file, 2’- ’ < 6 < 2’ holds, and the keys of 2’ - b par-
titions have size 1 - 1, whereas the keys of the other
26 - 2’ partitions have size 1. For a given number of
partitions, b, the signature key size, 1, can be computed
as 1 = /log, b] . A s a consequence of the linear hnsliing
implementation, each of the pa.rtitions cmi have t>u(.rics
in an overflow area.

Quick Filter is a fully dynainic, partitionc~d, sig--
nature file organization with a controlled load and R
small space overhead. Partitions, in fact, are physical
buckets of secondary memory (e.g. blocks or pages).
Maiutena.nce is handled easily, and the file can both
grow and shrink linearly. Performance is clepcndcnt
on query signature weight; QF works nnrch bcttcr for
high-weight queries, but even an exhaustive search
it is used when query signatures with zero weights iu
their suffixes are executed - is comparable to a starch
in the sequential file organization. QF is also more
efficient for large rather than for small files. IJsc of IIII-

derlying storage structures other than linear hashing
is discussed in [23].

The yerfornlance of some basic met.hods for J)arti-
tioning of signature files, including Quick Filt.c*r. C~II

be ea.sily evaluated by nleans of a closctl approxim;~t.c~d
formula that introduces no appreciable errors for all
practical purposes [2]. The key performance paranlc-
ter is ca.lled the bucket activation ratio (BAR), which
is defined as the ratio of the number of buckets ac-
tivated by a query (i.e. those buckets that must IK
searched) t,o t,he t(ota.1 number of buckrt,s. The formula
for estimating BAR follows:

HAR(lo(Q)/I, I) = (1-T) (2)

316

2.2 JSillary J,imar Error Correcting
codes

I,iuc,ar codes are used in I9tjo~nralio1~ (19~d Coding The-
oq to detect aud correct errors while transmitting
data. It 11~s been showu by examples and verified
by simulation in [6] that linear codes can be useful
[or building a dcclustcring scheme for binary Carte-
sian product files. The lllc+hod has been mathemati-
cally aualyzcd aud extendc~l to gcncral (i.e., not 011ly
biuary) (hrkHiaII product files in [7]. More reccully,
Al&l-(iI1affa.r aud El Abhadi have also considered the
IIW of uoulinc~ar codt~s antI investigated the optimality
ril9lgcs for I.he dilTererrut alternatives [l]. It should be
rt~nlarketl that our framework differs from that consid-
crud ii9 [I, 6, 71 because partial-match queries 091 sig-
nature files arc actually itrclusiot~ queries (see Eq. (l)),
and the buckets considered for st,ora.ge have a fixed size
alld it coiitrollotl load.

III the following, the most essential priuciples or liri-
tsar coclc~s relatrd to our paper are summa.rized. More
iuli)rrnation call be found in any book dealing with
Information and (boding Theory, e.g. [18, 201.

A linear binary rode, I:, is a subspacc of the vector
sl>ilr”, {O, l}“, of all bit strings of length IL If C is
a suhspacc of dimension LT, we speak ahout a linear
(I(n, k) code. Every binary C(n, k) co& consists of
2” c~~d~words, wlrcrc~ Cil(.II 0r 1h codewords IIW t 29i.-
jormdion nud 119. = II. - k &cc/~ bits. ‘l’he minimum
d&ancc of co&: (:(91, Al) is the I1IinimulIl numhcr of tlif-
fc~r~~ut bits (i.e., Ilaiiiiiliiig distalice) hc~twceti imy two
codcwortls.

Each linc*ar hiuary C(91, L) code can be described by
,a sysbeni of 91) = 91 - 1: homogeneous linear equations.
‘l’he matrix, H, of this system is called the check matrix
of W code. If H is the check matrix of a linear C(n, k)
code, then auy codeword CY = (~1, 202, . . . , w,) is a
solutiou of the system H. WY = O’, where 0 is the zero
hinary vector of dimension m (upperscript ‘7’ denotes
vcbctor transposition). In genera.1, for every word W E
{(A 1 I”, we define the word Y = (yl,yz,. . .,y,,,) as
11. w” = y-I’. ‘I’he word Y is called the syndrome of
1V. Iiccause the dilncusion of Y is rn, the number of
possible syndronics is 2”‘.

‘l‘hc idea of declustering hinary data by means of
1iucn.r cotlcs CWI be formalized by the following defini-
tioii.

Dc!fiuitiou 2.1 (Liuwrr code dc?colnl,ositiol1)
/,tacnr DDE dccol-rrpl~sition of the lin,car space (0, 1)”
is a rlcconrposiliotr.. of the set of 2” binary words of
l(,lrgtb 11 rnto 2”’ pair-wise disjoint groups by using the
(‘(11, k) lrncar code cheek naalrix H, Each. of the groups
~~~/crilts /.hr 2" words with f./t.e swue sydronae uxd ,with 

the minimum dis2uncc gz9le91 by th,e lilaear code C(n, k). 

‘l’lle basic idea is that, by putting t.ogcther signa- 
turcs with the same syndrome (i.e. siguatures with 
high distance), not many signatures in a specific group 
should qualify for a given query, and many groups, if 
not, all, should contain qualifying signatures. 

In the following we consider, without loss of general- 
ity, the specific case of Hamming codes, that are linear 
codes defiued as follows. 

Defiuition 2.2 (Hamming code) A binary linear 
code is a (perfect) Humming code if its check matrix 
is formed by colum.ns of all possible 2m - 1 non-zero 
binary words of lelagth m (with none of them repeated). 
Ham.ming code C(n, k) is a perfect code that can be 
defined for any number of check bits, m 2 2, with 
la = 2” - 1 and k = n - 112. The Hamming distance 
between my two codewords of the code is d >_ 3. 

Example 2.1 Consider the Hamming code G(7,4), 
that is, m = 3, for which the check matrix H can 
be written as: 

H= 

[ 

0111100 
1011010 
1101001 1 

‘I’hcn, the code, i.e. the set of words with syndrome 0, 
includes the following 2k = 16 words: 

(0000000) (0100101) (1000011) (1100110) 
(0001111) (0101010) (1001100) (1101001) 
(0010110) (0110011) (1010101) (1110000) 
(0011001) (0111100) (1011010) (1111111) 

If we complement the first bit of the above codewords, 
we get the words with syndrome Y = (011). In general, 
by complementing the i-th bit, we get words whose 
syndrome Y is the i-th column vector of matrix H 
(i= 1,2 )...) n). 0 

3 Hamming Filter 

IIammin.g Filter is a dynamic organization of super- 
imposed signatures distributed over a number of disks 
that. can be processed in parallel. It is designed for a 
partil,ioned storage structure, defined as follows: 

Defiuitiou 3.1 (Partitioned Storage Structure) 
I’SS(y, bo, bl, . . . , b,-1) is u Partitioned Storage Struc- 
ture that consists ofp parallel partitions where the i-th 
purtition is fornaed by bi buckets. A bucket consists of 
one or more physical pages (blocks) and contains sig- 
natures (a horizontal fragment of the signature file). 

317 



Buckets have a fixed size but can be connected with an 
overflow area. Each signature is stored in exactly one 
bucket. Buckets are directly accessible and, once ac- 
cessed, are searched entirely (i.e. exhaustive search is 
used in buckets). The n,umber of partitioq p > 0, is 
constant for a given store while the number of buckets, 
bi > 0, can change in time. Let Bij designate the j-th 
bucket of the i-th partition, where i = 0, 1, , . ,p - I 
and j = 0, 1, . . . . bi - 1. 

Hamming Filter is based on the idea of horizontal jrag- 
mentation of the signature file and is, in fact, a gener- 
alization of the Quick Filter method to a multiple-disk 
environment. The main difference is that the partition- 
ing space is two-dimensional. Whereas in the Quick 
Filter, the partitions are basically the access units of 
the secondary store (blocks, pages), partitions of the 
Hamming Filter are sets of such units, conveniently 
called buckets. Then, the mapping into partitions is 
performed by using the principle of linear coda &X~III- 
position (see Definition 2.2) while the mapping into 
buckets within partitions is performed by means of the 
Quick Filter. 

3.1 Fragmentation Scheme 

The number of partitions p is related to the Hamming 
code parameter m in the following way: 

p=2”=n+l 

Signatures are assigned to buckets of PSS in two 
steps. In the first step, signatures are declustered, 
and the identification number of the partition where 
a signature will be stored is determined as a function, 
PZ(S,p), of the signature, S, and the number of par- 
titions, p. In the second step, similar siguaturas in 
a partition are cluster4 and the identification I~IJIW 
ber of the bucket for storing a specific signature is de- 
termined by the function BI(S,p, bi). In the follow- 
ing, we will discuss both steps in detail. Finally, the 
address, Ad&(S), for storing the signature S within 
PSS, is obtained by the function I(S, PSS), which 
returns the ordered pair of partition and bucket iden- 
tification numbers: 

Addr(S) = I(S, PSS) = (PI(S,p), BI(S,p, bi)) = (i, j) 

3.1.1 Partition Assignment 

For a given signature S = (cl, ~2,. . .c/), let 
W be its n-bit suffix, that is, W = Sl”1 = 
(Cf-n+l, C/-n+?, . . . ,c,). Then, the partition index, 
i, is determined by the formula: 

,i = PZ(S, p) = [(H WT)T]2 

This formula multiplies the matrix II by thtb trans- 
posed vector WT. considers the ( tmusposecl) rc5ul I, 
vector as a binary number from the set, { 0, 1, . . . ,2”’ - 
l}, and determines the partition in&:x. Thus, a sig- 

nature is allocatt:d in the i-th partition if and only if 
its suffix yields a syndrome with decimal value i. It 
follows tha.t all the signatures in i-th pnrtitiou have 
distance d 2 3. III order to illustrate the partition iis- 
signment function, we designate tlic result of t11~ mul- 
tiplication a.9 Y = (yl, yz, . . ) y,,l). Then, w(’ Cilll writ<* 
H . W’ = YT, where 

n 
yz = c hZ,,W,, t = 1,2, . . . . tt1 

X=1 

All arithmetic operations are taken ~nodulo 2. 

Example 3.1 Consider IIamuliug code C’( 7,/I) (SW 
Example 2. I ), and suppose tllatm th(? II-bit sullix of sig- 
uaturcr S is 91 = (1001001). ‘I‘hc:u: 

[ 

0111100 
1011010 
1101001 I. [ 

I 
= 0 

I 

The decimal value of the binary trmsposed rcxult. is 
(101)~ = 5, ineaning that any signature with 1.h~ suflix 
(1001001) will be stored in the 5-th partition. 0 

3.1.2 Bucket Assignment 

Signatures are assigned to buckets using the Quick I:il- 
tcr principle> iii the following way. ‘1’11~ Ia.ut 111 bits of 81 
fiignaturc bcloilgiiig to the i-th partition arc’ iglioml, 
and only the remaining k = n - m inforlualioii bits of 
the suffix are retained. Such a dcfinitiou of the sigua- 
ture key guarantees the uniforln occurreucc tlistribu- 
tion inside a partition because all possible 2” config- 
urations of bits cau iu suc11 area occur. By coutraqt, 
this would not be true if all n bits were coosiderc4 (SW 
Example 2.1).’ 

Let li = [log:, bi]. Then, the Ii-bit suffix is 11sc:t1 iw 
an argument to store the signature in a bucket. of th(b 
i-th partition. The bucket index, j, in pa.rtitiou i is 
determined as: 

‘In order to guarantee that all the 2k addresses are genernktl, 
the suhmatrix consisting of the last ru columna of H has I.~I 
have m distinct rows. For H amming co&s, the simplest way 
to achieve this is to have the last m columns of H kwming an 
identity matrix. 

318 



3.3 Partitioned Store Evolution 

By definition, PSS has two dimensions: partition and 
bucket. In a given store, the number of partitions is 
fixed (determined by the parameter p), and any re- 
quirement for a change in this dimension results in a 
complete reorganization. On the other hand, individ- 
ual partitions are dynamic; the number of buckets can 
change, but it never becomes zero. Such a feature of 
the store enables dealing with dynamic signature files 
where the number and contents of signatures change 
in time. 

The strategy for load balancing in PSS changes the 
number of buckets, which, even though overflow areas 
can be appended, have primary areas of a fixed size. 
We use the linear hashing principle [16], and the hints 
for store growth or shrink are the bucket overflow or 
underflow, respectively. The specific procedures for 
the i-th partition growth and shrink follow: 

Partition Growth 

1. add a new empty bucket Bi,),; 

2. bi = bi + 1; 

3. li = plog, bil ; 

4. VS E Bi,b,-l-lli-l store the signature in the 
bucket at address I(S, PSS). 

Partition Shrink 

WI~CII bi = 1, tIleI li = 0, and in this case, 
UI(S,p, 6i) = 0 results. 

Example 3.2 Consider the n-bit suffix S[“I = 
(lOlOOOl), and a numher of partitions p = 8. Suppose 
tlw number of buckets in the i-th partition is bi = 10. 
It follows that the maximum bucket key size in par- 
tition i is li = Fog, b;l = Fog2 101 = 4 and the size 
of the ignored suffix of the signature needed to de- 
termine accessed buckets is m = logzp = log28 = 3. 
Then, BZ((. . . lOlOOOl), 8,10) = 2. The explanation is 
easy. By taking 4 bits, li = 4, we get (lOlO) = 10. 
llowcvtr, 10 is not smaller than bi = 10, and there- 
fore, only li - 1 bits must be considered, namely (OlO), 
which, as a binary number, gives 2. cl 

For 1iWg.C files and small Values of 17x (i.c. m < 5), li is 
likely to exceed n - nc = k. III this case, bucket assign- 
IIIWI~ is based on one or more bits that are not used to 
dc*termine the partition index; M a consequence, the 
number of buckets iu the i-th partition is not limited 
to P. 

3.2 Query Processing 

?‘hc task of the query processing algorithm is to deter- 
mine addresses of buckets the Response Sel - that 
must he accessed to execute the query signature Q. 
It is a distinctive feature of the Hamming Filter that 
buckets are determined directly (i.e. without any ad- 
ditional access to the database). The query processing 
argumeuts are PSS and Q, and the algorithm proceeds 
as follows: 

1. Generate all possible signature suffixes, W,, of 
length n, which include Qinl: 

(Q[“l AND Wz) = Qf”’ 

2. 1)ctcrmine the Response Set, RS, for query signa- 
turc Q as a set. of bucket addresses: 

RS = UZ(lv~, PSS) 
.c 

1. li = [log2 bil; 

2. VS E Bi,b,-1 I put the signatures into the bucket 
Bi,b,-l-a’s-l; 

3. bi = bi - 1; 

4. release the bucket Bi,b,. 

The key point of the growth and shrink procedures is 
the management of added and removed buckets. In the 
Hamming Filter, a new bucket is always added at the 
end of a partition, and the content of the bucket with 
index bi - 1 - 2’~~’ (called the split pointer in linear 
knshing) is divided to fill the new bucket. When a 
bucket should be removed from a partition, it is always 
the last one, and its contents are moved to the bucket 
determined again by the split pointer. The value of 
the split pointer increases linearly with the number of 
buckets, bi. 

This .sct contains addresses of buckets tha.t must 
be accessed to check their signatures for qualifica- 
tiou. 

319 



4 Performance Analysis 

In this section, we analyze performance of the Ila~n- 

ming Filter in terms of bucket accesses needed to pcr- 
form a query. For the sa.ke of simplicity, we consider 
that in any of the p = 2” partitions exactly 2” buckets 
are allocated. We further suppose no data skew, which 
is (at least for large files) justified because the signa- 
tures are randomized pieces of data and the bucket 
assignment is, in fact, another randomization fuuction 
imposed on the same dat.a. On the other hand, exe- 
cution skew is the main concern in our performa.nce 
study of the query evaluation, for Hamming Filter re- 
sponse time is determined by the partition with the 
highest execution cost (i.e. the partition where the 
highest number of buckets are accessed). 

We start with examples showing how the number 
of accessed buckets for a given query signature can be 
computed and then generalize the a.pproach for com- 
puting the worsl-case and estimating the average-cnse 
performance for groups of query signat.ures wil,h a sp(‘- 
cific suffix weight. We also compare the perforniancc 
with the optimum case, in which the same number of 
buckets in each partition is always accessed. Finally, 
we extend the analysis to random suffix weights as de- 
termined by the weight of the whole query signature. 

4.1 Analytical Computation of the 
Number of Accessed Buckets 

Given a query signa.ture Q whose n-bit snffix has 
weight w(Q[“]), then Y-~(Q’“I) out of 2” buckets qual- 
ify. Unfortunately, t,his expression says nothing a.bout 
the dist,ribution of the accessed buckets on individual 
partitions - the execution skew. However, the execu- 
tion skew is t(he crucial issue for any parallel system 
because the partition with the highest number of ac- 
cessed buckets determiues the total cost (i.e. response 
time). 

The IIamming Filter computes the partition index 
(represented by the syndrome vector Y) for a sig- 
nature by multiplying the parity check matrix H by 
the transposed signature suffix W E .$“I, specifically 
H . WT = YT. Remember that each signature ma.ps 
into exactly one partit.ion. Now, let, us consider a query 
signature Q, with suffix Q[“], and a specific pa.rtition 
represented by the syndrome Y. Then, H . WT = YT 
defines a set of m linea,r equations in the unknown W. 
Because W must include &[“I, the elements (i.e. the 
bits) of W corresponding to ones in Q[“I are fixed at 
“1”) whereas the others are considered as variables. 
The number of va.riables, which depends on I,he weight 
of Q[“], is exactly n - w(Q[“]). It is clear that this sys- 

t,cnl of 911 linenr eqllations Cilli, in g+Ylt~rill, IlilVt' lliort~ 

I,han one solution; rach solution reprcscuts a qualifying 
bucket in the I)a,rt,ition tlctcr~niuctl by the syntlronlc> 1’. 

4.1.1 Some Examples 

Consider the parity check matrix H for ht~ (,(7, I) 
IIamming code a.nd partition 0, represented by vector 
Y = (000). To dcternline suffixes of signatures (huck(*t 
keys) in partition 0 that qualify for a quc*ry sig:llaturc 
with suffix Q L7] = (lOOlOOl), the task is charactcrixc~tl 
by the following matrix equation: 

1 I J 
‘I’llis ca.11 t)(b tr;~.iisforinctl iiito 111~ sysl.~~iii of liiwilr tv~ii:~- 

tions: 

I:‘1 : 21~2 + w3 + lug + I = 0 
E2 : 9fl3 + 94; + 0 = 0 
I?3 : 1112 + 1 = 0 

We get three equations with four unique variablrs. 
Because the variables are binary illl(l h cbcluations 
li9learly independent (due to the consl.ruction of II), 
thv systrm has *24-3 1 I, = 2 solutions. According I.0 
equation IC3, w2 = 1. It follows from equation f:“L 
that 2113 aiid 11~s are simultaneously 0 or 1. Fiually, 
Wi = 0 (provided wg = W6 = 0) or w5 = 1 (pro- 
vided wg = ’10s = 1). Our example, tlierc+)rc~, has 

the two solutions (1101001) and (1111111). Using ~IIP 

bucket assignmmlt proccdurc, bucket indexes are ~I~II 

obtained by dropping the last m = 3 bits, thus yirldiug 
1 101 and I 1 1 1 , respectively. Only thc~ t,wo huc.kc>ts 
in partition 0 can contaiu qualifying signal.urcas, illlCl 

only they must be accessed during query cbxc>cutiou. 
TO compute the necessary bucket ;ZCCCSSCS of ilIly ot1lc.r 
partition, the left-hand sides of equations 61, 1;:2, antI 

E3 remain the same, and only the right-h;ultl sides 
change. It, can be easily ch(~cketl that for ally otllc>r 
pa.rtition the result is still 2. No excc.ution sk(>w caxists 
for our saniple query. 

If we cha.nge the query signature Q nnd suppose 1.11;\1. 

Q17] = (1101001), WC get the following systeni of tqllil- 

tions: 

El : w3 + w5 + 0 = j/l 

E2 : 203 + 2u6 + 0 = y:! 

f+;:i : 0 = y.1 

320 



Ih~c’i~~uw lhfw arc no vibriilhh in /<3, 111~ nyslcrn Ollly 

has solul,ion for !jzI = 0, irliplying that only tlie parti- 
tious with ilithcs 0 - (000)2,, 2 = (010)x, 4 = (100)2, 
illld (i = (I IO) 2 contribute to the Response Set. In 
these partitions, 2 3-2 = 2 buckets can contain qua.li- 
fying signatures, for the system of equations induced 
by the query is reduced to two equations with three 
variables. 

For this query, WC have execution skew because par- 
titions are divided in two groups. No buckets are 
accessed in partitions of the first, group whereas two 
buckets are accessed in partitions of the second group. 
It follows that the query execution is agaiu equal to the 
cost of accessing two buckets even though the weight 
has incrcascd. 

However, performance of the Hamming Filter does 
not depend merely on the number of “1” bits in the 
query signature sllffix. This can be easily illustrated 
by considering another query signature suffix, Qi71 = 
(I IlOOOl). It IIW the same weight as in the previous 
example, but the system of equations is now: 

El : wq + w5 + 0 k y] 
E2 : ut4 + 2116 + 0 = 2/z 
E3 : It)4 + 1 = ?/3 

A syskw of three equatious with three variables has 
c*xact.ly oiic solutioii, which implies a siiiglc access iu 
all partitions, i.e. no execution skew. 

4.1.2 Generalization 

According lo the above discussion, we can precisely 
tlcrfinc~ the: res~~o~e ~GGE, n(Q), of the Hamming Filter 
with resl)(act to query Q. 

Definition 4.1 Givell a query signature Q, whose n- 
bit suflix, Q[“I, h.as weigM w(Q[“l), the response time, 
R(Q), of the H amming Filter is the maximum number 
of accessed buckets in a partition, expressed as: 

if V 2 E 
if V<E 

where V is the number of variables, V = n - w(Q[“l), 
and .E is the number of equatiolas with at least one 
variable. 

IA. Iii designate the i-th row of the matrix H for i = 
1,2,..., TM. ?‘IwII, the number of equations, E, can be 
coinprilcd: 

,,l 
E = &i(Q) 

where 
i=l 

!/i(Q) = 
I if w((NOT @“I) AND Hi) > 0 
0 otherwise 

‘l’wo ilnportant obsorvatiolls concerning V and ,?S can 

IW tnaclc: 

1. 

2. 

The number of variables only depends on the 
query signature suffix weight; 

The number of equations with at least one variable 
depends on the specific setting of bits in the query 
signature suffix. Thus, for a given query signature 
suffix weight, we can have a varying number of 
equations, depending on the specific configuration 
of bits in the suffix. Note that gi(Q) = 1 iff Ql”I 
does not include Hi. In this case, there exists 
at least one bit position where Hi has the value 
“1”and Ql”] has the, value “0”; this ensures that 
the variable corresponding to such a position will 
appear in the equation. 

4.2 Response Time for Query Signa- 
tures with Specific Suffix Weights 

We first consider the problem of determining the max- 
imum response time, designated R$, over all query 
signatures Q whose suffix Q[“I has the weight w = 
w(Q[“l): 

R$ = max{ R(Q) : w(Q[“]) = w} 

In order to derive an analytic expression for Rz, we 
take advantage of Definition 4.1 and write: 

R+ = 2V-E; - y-w-El, w - 

where l?, is the minimum number of equations that 
can arise from a query signature suffix with weight w. 
Note that, in general, the number of equations can 
vary from 1 to m. 

The following observation and lemma are fundamen- 
tal for our purpose. 

Observation 4.1 Given the parity check m.atrix H of 
the C(n, k) Hamming code, the bilwise OR of any 
r rows (r = 1,2,..., m) of H yields a binary vector 
whose weight is 2” - 2”‘-‘. 

For instance, for the C(7,4) Hamming code, the OR 
of any r = 2 rows results in a vector with weight 23 - 
23-2 = (i, 

Lemma 4.1 Consider Ihe system of linear equations 
H.WT = YT. Independently of the specific setting of 
bits in the query signature sufix, at least E,,, equations 
with variables are obtained if the su#ix query weight 
does not exceed the value 

w = n - 2’3,--1 E, E {1,2, . . ..m} 

321 



Proof: To get E, equa.tions from Q[“], it is necessary 
that E, rows of H are not included in Q[“l. If w is 
not less than 2” - 2”-‘, then, according to Observa- 
tion 4.1, there exists a query signature suffix Q[“I with 
weight w that can include P rows, (r = 1,. . . , m), thus 
leaving m - T equations with variables. Consequently, 
w=p- 2”+’ - 1 is the maximum weight that al- 
ways guarantees at least m - r + 1 equations. The 
result follows after substituting E,,, for m - r + 1 and 
n for 2m - 1. 0 

For instance, to get at least ‘E, = 2 equations with 
the C(7,4) Hamming code, w must not exceed 5 be- 
cause the OR of any 3-2+ 1 = 2 rows of H has weight 
6. 

Theorem 4.1 (Maximum Response Time) The 
m.aximum response time, Rl, for a query signalure 
Q whose sufix Q inI has weight w is calculated: 

R;= _ p-E; _ 

= 2”-‘u-~log~(ll-w)J-1 = 

= f-[log, VJ-1 
(3) 

where: 
E,- = [log,(n - w)J + 1 

Proof: It follows from Lemma 4.1 after solving for E, 
and taking the integer part of the result. 0 

Corollary 4.1 If V < 3, then R$ = 1. 

Proof: From Equation (3), we’ get R$ = 1 if 

v = [log2 VJ + 1 

Obviously, the equation only has a solution for V = 1 
or 2, confirming Theorem 4.2 from [6], which states 
that declustering by the Hamming codes enjoys a re- 
sponse time of 1 for w > n - 3, that is, V < 3. 0 

4.2.1 Optimum Performance of Hamming Fil- 
ter 

The aim of this subsection is to investigate if and under 
which conditions the Hamming Filter behaves in the 
optimum way, producing no execution skew. 

Definition 4.2 (Optimum Response Time) The 
optimum response time, Rapt, for a query signature 
whose sufix has weight w is defined as the number of 
qualifying buckets, 2”~“, divided by the number ojpar- 
titions, p = 2”: 

y-w 

R 

i- 
2” 

= pm-l-m-w 

opt = 
ijn-w>m 

I ofhrrwise 

Table 1: Example of the range of query signatures suflix 
weights in which the Hamming Filter cannot gnnrantcc> 
optimum response time for the case m = 5. 

From this definition, we can derive the following ha- 
sic results concerning the Hamming Filter’s worst-ca.sc> 
performance. 

Corollary 4.2 ?le worst-case response time of the 
Hamming Filter is eqyal to the optirn.um rrspouse time, 
112 = ROP,, if I;:; = m. 

Proof: Immediate from Theorenr 4.1 and Dcfinitiou 
4.2. 0 

Theorem 4.2 (Optimnlity) The worst-case rc- 
sponse tinre of the Hamming Filter is equal to the op- 
timum. response time if one of th.e following conditions 
on the query signature sufix weight is satisfied: 

R$ = Rapt if w > n - 3 = 2” - 4 (4) 
or w < Zm-’ (5) 

Proof: The case w > n - 3 has already been proven to 
lead to optimum response time in Corollary 4.1. The 
case w < 2”‘-l follows from Lemma 4.1 and Corol- 
lary 4.2 because t,he maximum value of w tha.t always 
guarantees &; = 10 equations is IL-~"'-' = 2"'-' - 1. 
0 

To summarize, the Hamming Filter is optimum if 
w > n - 3 or if less than approximately 50% of the hits 
in the query signature s&ix are set to 1.2 Note that, 
when tn = 2, Hamming Filter performance is always 
optimum and gives response 1 for any query signature 
with w > 0. Furthermore, in the case 111 = 3, the only 
value of w for which optimality cannot be guaranteed 
is w = 4. In the case m = 5, the values of w for 
which optimality camlot be guaranteed are considered 
in Table 1. Although a precise characterization of the> 
likelihood of Hamming Filter suboptimal behavior is 
given in the next section, it is important to notice that 
the case w 2 2m-1 IS not very likely to occur because: 

322 



1. The weight of thy whole query signature (not just 
of it,s sullix) ucvcr exceeds f/2 and, in practical 
casw, is nluch lower [‘L2]; 

2. The hits set to “l”in (#he signature query are uui- 
formly distSributetl over the J positions; therefore, 
it is very unlikely that nlore thau 50% of the n 
suflix bits are WA. to “I”(sw Sf*ction 1 .:I). 

4.2.2 Avoragc Performance of Hamming Fil- 
ter 

The maximum response time, R$, for a query signa.- 
ture whose suffix has weight zu can be quite higher 
than the optimum response time, R+,t, as shown in 
Table 1, but the average case is much better. For in- 
stance, when m = 3 and w = 4, for which Ri = 2 and 

R,6 = 1, only 3 out of ; 
0 

= 35 queries with suffix 
weight ‘UJ = 4 yield a response time of 2. In this case, 
the avcmge response time is only 1.08. 

The average response time, designated -&, is com- 
puted by considering all query signatures whose suf- 
fix has weight UI and depends on the distribution of 
the response time, R(Q), over the set of such queries. 
‘4’0 characterize this distribution, the related problem 
of dcterluiuing how many queries with a given suffix 
weight w lead to exactly E equations with variables 
(E = I, . . , m) can be considered. 

Lemma 4.2 Th.e probability that a query signature 
whose sufFx has weight w, and thus V = n - w “O”S, 
leads to exactly E rquations is: 

f’r{ E) = (j21) $-lF (7) (“; ‘) 

v - 

(6) 
Proof: Given in [24]. 0 

Lemma 4.3 The num.ber of equations produced by a 
query signature whose su@+ has weight w is a random 
variable with. the expected value: 

(7) 

Proof: Consider the i-th row, Hi, of the check matrix. 
It yields an equation with variables iff there exists at 
least one bit position where Hi has the value “1”and 
f$“l has the value “0”. The number of different Qlnl 
with weight w is ,,z, 

( > 
Because the weight of Hi is 

2”‘-l, there are exactly query suffixes such 
that their 11 - w “0”s do not correspond to any “1”of 
Hi. The result then follows.3 0 

Theorem 4.3 (Average Response Time) Th.e au- 
erage response tin&e, RW, for a query signature whose 
suffix bus UI “1”s and V = n - w “O”s, given the con- 
dition that w 5 n - m, which implies V > m, is cal- 
Aated: 

Proof: It suffices to consider the expression of Pr{E} 
given by Eq. (6). Due to the condition V 1 m, it is: 

Ti, = 2 2V-E Pr{E} 
E=l 

(9) 

and the result follows after some combinatorial manip- 
ulation. cl 

The condition V 2 m allows 2V-E to be used in 
place of pvWEl in Eq. (9), and thus to derive a simpler 
formula for the average response time. Note, however, 
that this leaves out from analysis only [rn - 31 cases 
from the total number of V cases and, consequently, 
[t7& - 31 values of w (e.g. w = 27 and 28 in the case 
m = 5). As Figure 1 indicates, -& is very close to the 
optimum response time, Rapt, and in the worst case 
(w = 26), overhead is about 8%. On the other hand, 
in all the other cases, it is completely negligible. 

W 

16 17 18 19 20 21 22 23 24 25 26 

lE+O .' 

lE-1 

lE-2 .' 

Figure 1: Average percentage execution overhead, that 
is (% - Ropt)lRop~ * 100, of Hamming Filter for m = 5. 
Only the values of w 5 n - m = 26 for which R$ > 
Rapt are considered. 

3The result can also be derived by explicitly computing 
c, J3 Pr{W. 

323 



Pr{w c 2”(m-1)) 

3 4 5 6 7 

m 

Figure 2: Probability that the suffix weight, w, is less than 2”‘-‘, as a function of m. Different curves corrrspontl 
to different values of the ratio w(Q)/f. 

4.3 Performance for a Given Query 
Signature Weight 

It is a well-known fact that query signatures camlot 
have arbitrary weights. Theoretically, the weight of a 
specific query, w(Q), cannot be greater than one half 
of its size, f, because this is the weight of the object 
signatures. However, the weights of query signatures 
are usually much lower. Intuitively, the query signa- 
ture suffix weight should also be quite low and, conse- 
quently, the performance of Hamming Filter optimum. 

According to [2], the weight of a suffix of length 9a is 
a random variable, w, which follows a hypergeometric 
distribution that can be reliably approximated by the 
binomial distribution: 

Pr{w} = (t) (y)w (I- y)“ew 

For a given value of the signature weight, w(Q), the cu- 
mulative proba.bility that the suffix weight is less than 
2”‘-’ and, consequently, that performance is optimuln 
can be computed. The most unfavorable case is, intu- 
itively, when w(Q) = f/2. In this case, we have: 

Pr{w} = (z) 2-” = (““i ‘) 2-2m+1 

Therefore, the probability that w < 2”” equals: 

pr{w < r&P’-1) = 2me-1 (“5 1) 2-2”1+1 = f 

w=o 

When w(Q) < f/2, this probability grows as shown 
in Figure 2. The result strongly supports confidence 
in optimum, or very near to opti~llum, perforniancc, 

of the Hamming Filter because typical signa.t.urc file 
applications have w(Q) < f/2. 

A second kind of analysis can be done by cousidcring 
the expected number of equations with variables, ??, 
resulting for a given signature weight. We have proven 
in Corollary 4.2 that Hamming Filter performance is 
optimum when the number of such equations is tn., so a 
high value of the ratio E/972 indicates that the avcar;bgo 
performance is very close to the optimum. 

Given by definition: 

F = CEw Pr{w} 
w 

then, taking advantage of Equation (7) and the bino- 
mial approximation, we obtain: 

h(l- (9i!92m-‘) (10) 

In the most unfavorable caqe, specifically w(Q)/f = 

E=97$ l-0.52”‘-’ 
( > 

Apart from the case na = 2 (where the pcrformancr of 
Hamming Filter is always optimum), F is vrry close 
to nr (for 972 = 3, r/m = 0.9375) as Figure 3 shows. It - 
should be observed that the ratio E/t~r is an incrcaq- 
ing function of 9n and, consequently, of the degree of 
parallelism. 

In order to evaluate the average response time of the 
Hamming Filter, it suffices to observe: 

72 = CEw Pr{w} 

324 



The main original contributions of the paper in- 
clude: 

\ 
3 

0.9 1 ------c-----------c----- 

0 0.1 0.3 0.2 0.4 0.5 

w(Q)/t 

Figure 3: The ratio E/m as a function of the ratio 
w(Q)// f or I crcxnt values of parameter rn. d’ff 

to the optimum response time, R,,(w(Q)), for a given 
query signature weight. Given 2” buckets, Ropl (w( Q)) 
is the* expected uumber of accessed buckets in each 
partition, assuming no executiou skew. Ijy means of 
Eq. (2) that defines the bucket activation ratio (IMIt), 
optimum response time can be evaluated: 

R,,,(w(Q)) = RAR(w(Q)/f,n) 2k = (I- y)’ 2’ 

Figure 4 plots the perceiitage of execution over- 
head of the Ilammiug Filter, that is (R - 
Ropt(u~(Q)))/Rop~(w(Q)) * 100. The overhead is Iess 
than 10% even in the cxtrerne case when w(Q)/f = 0.5 
and tn = 3. For tn > 3, the overhead never exceeds 
0.1% autl, in most cases, is some orders of magnitude 
lower. 

5 Conclusions 

The IIanltlling Filter is a partitioned parallel organiza- 
tiou for signature files. Signatures are stored in fixed 
size buckets of parallel partitions by means of a dy- 
namic fragmentation scheme. The bucket assignment 
and the query cxccution are performed in a direct ac- 
CWH IIW~~~ (i.e. without any additional acc(‘ss to aux- 
iliary data). ‘I’hc Ilammiug Filter can be considered 
as all cxtcusion of the Quick Filter by the application 
of the principle of linear code decomposition. In this 
way, the desired data distribution effect of simultane- 
ous declustoring and clustering of signatures has been 
achieved in a single design. However, the Hamming 
Filter is not oiily a fragmentation scheme for signa- 
tures but also a complete integrated organization for 
parallel secondary stores. 

design of the dynamic partitioning scheme for a 
persistent store consisting of a specific number of 
parallel partitions conta.ining a variable number of 
storage buckets; 

design of the query processing and the store evolu- 
tion algorithms able to provide high performance 
for retrieval and control of data load at a very low 
cost ; 

performance analysis: 

- analytical computation of the number of ac- 
cessed buckets; 

- explicit formulas for determining the maxi- 
mum, optimum, and average response time 
for query signatures with specific suffix 
weights; 

- analytical formalization of the query signa- 
ture weight effect on the performance of the 
Hamming Filter. 

It has been proven that for most of the possible queries, 
optimum performance can be guaranteed. Provided 
w > 2m - 4, the response time is exactly 1. However, 
the optimum performance is also achieved if w < 2m-1. 
The average performance is (if not optimum) always 
very near to the optimum, and queries for which the 
optimum performance cannot be guaranteed are not 
likely to occur. The relative execution overhead is a 
decreasing function of the code parameter m, and thus, 
the performance of Hamming Filter improves with the 
degree of parallelism. 

In our design we have only considered Hamming 
codes. However, the extension to other linear error 
correcting codes is straightforward in that it suffices 
ouly to consider a different parity check matrix. Our 
analytical results are valid for codes with minimum 
distance d = 3. If codes with larger distance are used, 
an even better performance can be expected. 

Our future plans will extend the analysis to the ef- 
fect of using other linear codes. A proper comparison 
of the analytical results with a prototype system that 
we have just implemented will be done, and will allow 
us to consider the effects of data skew on the perfor- 
mance. Then, we want to concentrate our research 
effort on application of the Hamming Filter in other 
data environments, namely complex object stores com- 
bining attribute and reference data. The possibility of 
managing parallel environments where the number of 
disks is not limited to a power of 2 will also be inves- 
tigated. 

325 



lE+l 

1 E-l 

1 E-3 

1 E-5 

lE-7 

1 E-9 

t m 

Figure 4: Average percentage execution overhead as a function of the ratio w(Q)/f for different values of paraineter 
m. 

References 

[l] Abdel-Ghaffar, K. A., and El Abbadi, A. “Opti- 
mal Disk Allocation for Partial Match Queries”. 
ACM TODS, Vol. 18, No. 1, March 1993, pp. 132- 
156. 

[2] Ciaccia, P., and Zezula, P. “Estimating Ac- 
cesses in Partitioned Signature File Organiza- 
tions”. ACM TOIS, Vol. 11, No. 2, April 1993, 
pp. 133-142. 

[3] Dewitt, D., and Gray, J. “Parallel Database Sys- 
tems: The Future of High Performance Database 
Systems”. Com.m. of ACM, Vol. 35, No. 6, June 
1992, pp. 85-98. 

[4] Faloutsos, C., and Christodoulakis, S. “Design of 
a signature file method that accounts for non- 
uniform occurrence and query frequencies”. Proc. 
ojthe 11th VLDB Conj., Stockholm, Sweden, Au- 
gust 1985, pp. 165-170. 

[5] Faloutsos, C., and Christodoulakis, S. “Descrip- 
tion and Performance Analysis of Signature File 
Methods for Ofhce Filing”. ACM TOIS, Vol. 5, 
No. 3, July 1987, pp. 237-257. 

[G] Faloutsos, C., and Metaxas, D. “Declustering Us- 
ing Error Correcting Codes”. Proc. of the 8th 
ACM SIGACT-SIGMOD-SIGART Symposium 
on Principles of Database Systems, Philadelphia, 
Pennsylvania, March 1989, pp. 253-258. 

(71 Fujiwara, T., Ito, M., Kasami, T., Kataoka, M., 
and Okui, J. “Performance Analysis of Disk AJ- 
location Method Using Error-Correcting Codes”. 

IE;EE Trans. on Information Theory, Vol. 37, No. 
2, March 1991, pp. 379-384. 

[8] Grandi, F., Tiberio, P., and Zezula, P. “Framc- 
Sliced Partitioned Parallel Signature Files”. f’roc. 
of the 15th ACM SIGIR., Copenhagen, Denmark, 
June 1992, pp. 286-297. 

[9] Guttnnm, A. “I~,-tree: a dynamic iudcx structure 
for spatial sen.rching”. I’tac. ef ACM Sf(;MOIJ, 
J3osto11, Massaclu~sscts, .Junv 1984, pp. 47-57. 

[lo] Hua, K.A., and Lee, C. “Handling Data Skew in 
Multiprocessor Database Computers Using Parti- 
tion Tuning”. Proc. of the 17th VLDB, Harcelona, 
Spain, September 1991, pp. 525-535. 

[ll] J<amel, I., and Faloutsos, C. “Parallel J-trees”. 
Proc. of ACM SIGMOD, San Diego, California, 
June 1992, pp. 195-204. 

[12] Lee, D.L. “A Word-Parallel, Hit-Serial Signature 
Processor for Superimposed Coding”. Proc. of the 
2nd International Conference on Data Engiueer- 
ing, Los Angeles, California, February 1986, pp. 
352-359 . . 

[13] Lee, D.L., and Leng, C.-W. “Partitioued Signa- 
ture Files: Design Issues and Perfornlance I’:valu- 
ation”. ACM TOIS, Vol. 7, No. 2, April IOH!), pi). 
158-180. 

[14] Leng, C.-W., and Lee, D.L. “Optimal Weight 
Assignment for Signature Generation”. ACM 
TODS, Vol. 17, No. 2, June 1992, pp. 346373. 

326 



[15] Li, .I., Srivtisbitvit, J., and Rotem, D. “CMD: A 
Mllltitlitllerlsiollal I)eclustering Method for Paral- 
lel Database Syst.cw”. hoc. of /he 181/t, VLDB, 
Vancouver, Canada, August 1992, pp. 3-14. 

[lG] Litwin, W. “Linear Ili4li~~g: A New ‘l’ool for Files 
and Table Addressing”. hoc. of the 6th VLDB, 
Montreal, Canada, August 1980, pp. 212-223. 

[17] Patterson, D.A., Gibson, G., and Katz, R.H. “A 
Case for Redundant Arrays of Inexpensive Disks 
(RAID)“. Proc. 01 ACM SIGMOD, Chicago, Illi- 
nois, June 1988, pp. 109-116. 

[18] Peterson, W.W., and Weldon, E.J. “Error Cor- 
recting Codes”, MIT Press, 1972. 

[I91 Rabitti, F., and Zczula, I’. “A Dynamic Signature 
Technique for Multimedia Databwes”. Proc. of 
the 191h ACM SIGIN., Brussels, Belgium, Septem- 
bcr 1990, pp. 193-210. 

[20] Rosa, F.M. “An Int,roduction to Information The- 
ory”. McGraw-Hill, 1961. 

[21] Stanfill, C., and Kahle, B. “Parallel Free-Text 
Search on the Connection Machine System”. 
Comm. of ACM, Vol. 29, No. 12, December 1986, 
pp. 1229-1239. 

(221 Tiberio, P., and Zezula, P. “Selecting Signature 
Files for Specific Applications”. Proc. of the 5th 
IEEE Computer European Conference, Bologna, 
Italy, May 1991, pp. 718-734. 

[23] Zezula, I’., Rabitti, F., and Tiberio, P. “Dynamic 
Partitioning of Signature Files”. ACM TOZS, Vol. 
9, No. 4, Oct.ober 1991, pp. 336-369. 

[24] Zexula, P., Ciaccia, I’., and Tiberio, P. “Ham- 
ming Filter”. Technical Report No. 92, CIOC- 
CNR, Bologna, January 1993. 

327 


