
Searching Large Lexicons for Partially Specified Terms using
Compressed Inverted Files

Justin Zobel’ Alistair Moffat+ Ron Sacks- I)aviat

Abstract

There are many advantages to be gained by storing the
lexicon of a full text database in main memory. In this
paper we describe how to use a compressed inverted file
index to search such a lexicon for entries that match a
pattern or partially specified term. This method pro-
vides an effective compromise between speed and space,
running orders of magnitude faster than brute force
search, but requiring less memory than other pattern-
matching data structures; indeed, in some cases requir-
ing less memory than would be consumed by a single
pointer to each string. The pattern search method is
based on text indexing techniques and is a successful
adaptation of inverted files to main memory databases.

1 Introduction

Given the large main memories available on current
computers, it is interesting to ask what additional fa-
cilities might be incorporated in full text retrieval sys-
tems if memory usage is allowed to expand. One pos-
sible application for extra memory is to store a com-
prehensive compression model for the text of the doc-

l CITRI, Department of Computer Science, RMIT, GPO Box
2476V, Melbourne 3001, Australia; jz@cs.rmit.oz.au

t Department of Computer Science, The Utiversity of Mcl-
boume, Parkville 3052, Australia; alistair@cs.mu.oz.au

1 Collaborative Information Technology Research Institute,
723 Swanston St., Carlton 3052, Australia; rsd@kbs.citri.edu.au

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed

for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its dale appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

ument collection, thereby substantially increasing the
effective capacity of the storage devices being used [3].
Another possibility is to store the lexicon of the col-
lection in main memory, eliminating the disk accesses
needed to search for query terms and improving query
performance [24]. Indeed, these two functions might bc:
accomplished using the same structure‘[l5, 231.

Here we examine a further facility that can be pro-
vided if the lexicon is held in memory. The lexicon,
which is part of the index, is a structure containing all
of the words occurring in the database. Queries, which
are used to find documents containing certain words,
are evaluated by finding the words in the lexicon, then
retrieving and merging the postings lists of the words.
Given this organisation, it is natural to consider meth-
ods by which an in-memory lexicon can be used to sup-
port expansion of partially specified query terms, that
is, to support queries on incomplete words or word frag-
ments.

Standard languages for interactive text retrieval in-
clude pattern-matching constructs such as wild charac-
ters and other forms of partial specification of query
terms 1121. Certainly, if the lexicon is available in main
memory it can be scanned using normal pattern rnatch-
ing techniques to locate partially specified terms. For
all but very small lexicons, however, linear search is
prohibitively expensive, and is not a viable option.

We describe a solution that is both fast in operation
and economical of additional storage space. A Icxicon
should be treated as a dat,abase that can be accessed via
an index of fixed-length substrings, or n.-grams, of the
words in the lexicon. To retrieve strings that match a
pattern, all of the n-grams in the pattern are extracted;
the words in the lexicon that contain these substrings
are identified via the index; aud these worda arc chcckccl
against the pattern for false maiches. Using this tech-
nique, index size can be traded against retrieval time
by varying n. However, straightforward application of
n-gram indexing techniques-well known in informa-
tion retrieval folklore as a method of resolving partially
specified query terms-does not give particularly good

290

performancr, and fast retrieval is only achieved by use
of indaxcs that are much larger than the lexicon itself.

In this paper we show how to improve performance
by ust: of several optimisations. First, we describe an
inverted file indexing technique that employs fast com-
pression to reduce space requirements. Second, since
false match checking is very fast in this application, we
reduce time by only checking for some n-grams. Third,
both index size and query time can be further reduced
by considering short blocks of words as a single string.
Fourth, in those applications in which sorting or part ial
sorting of the lexicon is possible, additional saving& in
both size and time can be achievecl. Our experimental
rt*aults demonstrate the effect of each of these optimisa-
t.ions, and show that they make possible fast access to
twm large lexicons such aa that of a multi-gigabyte text
database containing over 800,009 terms. In contrast to
our techniques, previous methods are either very slow
or require large space overheads.

This paper is organised as follows. In the following
section we discuss our test data and the mechanism
used to evaluate different lexicon search schemes. In
Section 3 we discuss previous proposals for searching
lexicons. We provide a description of inverted file in-
dexing techniques in Section 4. Our lexicon indexing
t.cchnique is described, with detailed experiment.al re-
s&s, in Section 5. Conclusions are presented in Sec-
tion 6.

2 Test data

To test the effectiveness of different techniques for
matching a pattern against a lexicon, a query set is
needed. We chose to generate a set of queries by tak-
ing a random selection of 250 words detined in the first
edit ion of Longman’s Dictionary of Contemporary En-
glish. We then used this query set in two ways: as
full, or fully-specified queries (that is, without any wild-
cards); and as part, or partially-specified queries, by
transforming them into patterns that included witd-
cards. This was done by randomly replacing substrings
of these words by *, where the substrings were of one
or more characters and * represents zero or more oc-
currences of ang character. In this transformation, we
ensured that the resulting pattern contained either a
leading or trailing string of length three, or an embed-
ded string of length four; we believe that the result-
ing patterns were representative of patterns that might
be used in practice. For example, frozen might be
transformed to fro*n, which wilt match (among other
things) frogspaan, frogman, and from. Note that the
pattern must match the whole string, not a subpart of
it; for example. to fetch strings containing sub&rings
that match fro*n, such as leapfrogging, the pattern
*fro*n* would be used.

Wta have used three lexicons in our experiments: Rihle,
l.hc! complete lexicon of the 4.4 Mb King James version
of the Bible, with original case preserved; Macy, the set
of lowercase terms used in the 1990 edition of the Mac-
quarie Encyclopedic Thesaurus; and TREC, the Ic,xi-
cou of 742,985 articles totalling 2 Gb extracted from
the ‘I’IPSTER collection [18], again with original c,ase
preserved. The parameters of these lexicons are shown
in Table 1. The ‘Size’ figures in the first row include all
of the characters of the words comprising the lexicon,
plus one overhead byte per word for termination. No
indexing structures of any kind-not even an array of
string pointers to the terms themselves---are included.
Throughout this paper we express all index sizes as
a percentage relative to the raw cost of these strings.
For example, if we decided to index each string in l.he
‘TRSC lexicon with a four byte pointer, we would allow
4 x 805,590 bytes and describe the index aa occupying
an overhead of 42.8%; similarly, a fiO0 Kb index for l#he
537.3 Kb Macq lexicon would have size 111.7%.

Most of the words in the query set contained only
lowercase letters, but a few proper nouns and acronyms
containing uppercase letters were also (by luck) se-
lected. Some strings from the query set, after transfor-
mation into patterns, are shown in Table 2; the reader
may care to guess the word that each string is derived
from. For the part query set, there were an average of
1.6 answers per query in Bible, 14.3 answers per query
in Macq, and 68.2 answers per query in TREC; for the
full query set, the figures were 0.14, 0.84, and 0.89 re-
spectively.

111 pattern matching, features other tban ‘match any
substring’ can be used, such as searching for strings with
repeated patterns, or for strings with any of a given set
of characters in a certain position. We do not demon-

tCuriously, the King James version of the Bible doesn’t use
the uppercase letter ‘X’.

Bible Macq TREC

~~~~ 

Table 1: Parameters of lexicons 

291 



*gger a*t*labe *Woke 
bu*toot* pushcar* tel*nketry 
departmen* a*oured lam* ih* 
min*cu*e *n*ene *it*og*ycerin* 
amen*s *u*west*n vitch*aft 
crene*la*ed *a*e*ous t*opic 
classle*s nut*h*ll *rebook 
*eticence dis*rimin* fruc*f icat ion 

Table 2: Example query strings 

&rate our method with such patterns, but do indicate 
how they would be supported. 

3 Previous lexicon search techniques 

We assume for generality that a lexicon is a series of 
strings, in no particular order, separated by single-byte 
terminators. In practice, other information such as oc- 
currence counts and disk pointers will also be stored, 
but we assume that these are st,ored in parallel arr;rys 
indexed by ordinal string number; we do not considler 
t,hose additional structures in this paper. Some It xi- 
con searching techniques also require that some or all 
of the strings be indexed with a pointer. Where t.hi+ is 
necessary we have counted the space required for this 
as part of the index, allowing pog2 Cl bits for e;rch 
pointer, where C is the total number of c.haracters in 
the lexicon. 

The simplest way to find the strings in a lexicon that 
match a given pattern is to use brute force, that is, 
search the lexicon from beginning fo end. This requires 
only that it be possible to traverse the lexicon in some 
orderly fashion: the lexicon does not have to be sorted, 
and no additional structures are nt:eded. 

To effect the pattern matching it.self, finite automata 
techniques [l] such as the UNIX regec package can be 
used. This package provides reawnably fast pattc:rn 
matching over a rich pattern language. (There are al- 
gorithms that are in general much faster than the re!/ez 
package, but for short patterns and strings these alqo- 
rithms may not be significantly better, because their 
greater initial overheads can dominate the cost.) To 
match a pattern against a series of strings, a functiol~ is 
used to compile the pattern into an internal form, and 
then, for each string, another function is used to ch*,ck 
whether the pattern and string match. 

To test the speed of brute force search on a le.&on, 
we found each string in the lexicon by searching for 

the end-of-string delimiters--recall that. we have not. 
as yet, allowed any string pointers--and used rege+ to 
check whether the string matched the query pattern. in 
the first section of Table 3 we show the average speed 
per query of brute force search on OIW lexicons. The 
evaluation times, as for all the evaluation times given 
in this paper, are average cpu milliseconds per qucbry 
on a 25 MIP Slm SPAR.CI 2, and do uot include any 
input or outpub operations other than the trading of 
the queries themselves. 

As can be seen, reget matches patterns at xrouud 
10 microseconds per word on average, or about one sec- 
ond of processing time for a lexicon of 100,000 words. 
This approach represents one extreme iu the space-tinw 
tradeoff, at which the space overheads are small and in- 
dependent of the size of the lexicon, hut searching is 
slow. For reasonable response, more slructured access 
is needed. 

Bratley & (Zhoueka [II] have proposed a permuted 
diciionaty mechanism for processing partially specified 
terms in database queries. Their method uses a per- 
muted lexicon t,hat consists of all possible rotations of 
each word in t,hc? lexicon, so that, for example, t,hr word 
frozen would contribute the original form I frozen, 
and the rotated forms frozen I, rozenl f, ozen I fr, 
zenlfro, enlfroz, and nlfroze, where the ~yrnhol I 
indicates the beginning of the word. The resulting set 
of strings is then lexicographically ordered. [ising this 
mechanism, all patterns of the form X+, *X, *,Y*, and 
X*Y can be procea.sed by binary search in Ihe permuted 
lexicon. For example, the pattern fro+n would be ro- 
tated to generate n [fro*. A search in the sorted lexi- 
con for this prefix will return, amongst others, the rntry 
n I f raze, from which the word frozen can be recovered. 

Bratley & (Jhoueka discuss prefix-omission mecha- 
nisms by which the space requirements of the permuted 
lexicon can be reduced. Even when compression is used 
the biggest drawback of this method is, nonetheless, the 
space requirement, since a word of n characters con- 
tributes n -t- 1 eutries to the permuted It:xicon. For the 
7,348 Kb TREC lexicon, for example, the permuted lex- 
icon is 84,946 KI), reducing to a minimuln of 41,342 Kb 
after prefix-omission. 

Following the approach of Gonuet Ilt Bacra- 
Yates [ll], WC: uote that it is more Pflective to use a 
variant of this method in which the parmuted lexicon 
is an array of pointers, one to each character position 
in the original lexicon. This array of pointers is sorted 
on the permuted form OS each word; thus a pointer to 
the character e in frozen would be sorted on the value 
enlfroz. The complete permuted form is identified by 

292 



Brute force 

Bible 

pal-l jull 
Evaluation time (ms) 144.5 100.3 

Permuted lexicons 
Size of access structure (%) 212.6 
Creation time (sec‘l 25.7 

. I I 

part full 
Evaluation time (ms) 0.27 0.14 

Pointer array 
I Size of access structure (%) II 26.5 

Macq TREC 

part full Pad full . 
665.5 441.5 10,22&X9 7,513.2 

iig$jq 

26.4 30.8 

Table 3: Parameters of previous search techniques 

searching backwards (when a striug terminator is a?n- 
countered) to locate t,he previous string terminator a.nd 
thus the start of the current word; if additional struc- 
ture is interleaved with the lexicon, each string may 
have to include an explicit code to allow the start of the 
current word to be identified. Space requirements for 
such permuted lexicons are shown in the second sectlon 
of Table 3, assuming a pogl Cl-bit pointer to each of 
the C lexicon characters. (Recall that index size is ex- 
pressed as a percentage of the size of the correspouding 
lexicon.) As can be seen, the search structures require 
roughly two to three times the space of the lexicouti they 
index, and are very large. 

To query the variant of the permuted lexicon method 
to find matches to a partially specified term, we used 
binary search on the pointer array to find, for each frag- 
ment of the term, the range of permuted strings that 
contained the fragment. We then used regex to selt ct, 
from the smallest range of permuted strings, the strings 
that matched the query. For example, in the qut:ry 
q in*cu*e there are two fragments, cu and elmin. In 
the permuted Macq lexicon there are 1,171 penuul;ed 
strings that start with cu (from cul to cuzzi 1 ja) 
and 14 strings that start with elmin (from e lmin to 
elminutia); to find the matches to min*cu*e, the 14 
strings in the shorter range are checked with regex. 

Evaluation times for the variant of the permuted ltbxi- 
con method are shown in the second section of Ta.blc: 3; 
as cau be seen, queries are answered in milliseconds 
rateher than seconds. This scheme! is therefore at I;he 
other extreme to brute force search, with rapid lookup 
but substantial space overheads. 

Patricia tries baaed on the semi-infinite strings in t,he 
lexicon are a generalisation of this approach [l 1, 13, 171. 
In these methods the sequence of words is considered to 
be a contiguous string, and the trie used to determine 

the position iu the string at which a given substring 
occurs. Although more general, these search methods 
are unlikely to be faster than the permuted dictionary, 
since they involve navigation of a lexicographic search 
tree. Moreover, they will, as a minimum, require at 
least one pointer for every character in the lexicon, and 
so will consume at least as much space as the pointer- 
based permuted lexicon described above. 

Owolabi & McGregor have proposed a string search 
mechanism which, like the system we describe, uses an 
n-gram index to locate matching string3 [19]. Their in- 
dex is a form of signature file, with a bitmap in which 
columns correspond to n-grams and rows to lexicon en- 
tries. We discuss the performance of this mechanism 
later. 

For comparison, the third section of Table 3 lists, 
as a percentage of the size of the lexicon, the storage 
required if each word (rather than each character) in 
the lexicon is indexed with a [log2C’l-bit pointer. A 
(sorted) pointer array would be a suitable search struc- 
ture if all query terms were fully specified and if it could 
be binary searched. We shall return to this possibility 
in Section 5.4, when we discuss sorted lexicons. 

4 Inverted file text indexing 

In this section we describe inverted file text indexing 
techniques. 

An index is a structure that is used to map from 
queryable entit.ies to indexed items. For example, in a 
database system an index is used to map from entities 
such aa names and bank account numbers to records 
containing data about those entities. A general inverted 
file index consists of two parts: a set of inverted file 
enfties (sometimes known as postings Us), being lists 

293 



of ordinal item numbers of the items containing each 
queryable entity; and a search structure for mapping 
from an entity to the location of its inverted file entry. 
In a text database system, the search structure would 
typically be a sorted array or search tree, a. hash t.able, 
or, on secondary storage, a B-tree. 

To map ordinal item numbers to addresses there must 
also be an address table. For a main memory database, 
the address table is a list of pointers to it,ems. Candi- 
date answers to conjunctive queries are found by filed- 
ing and merging the inverted file entries of the entilies 
specified in the query and then using the address table 
to locate the answers to the query. This merge takes 
the intersection (rather than the union) of the num- 
bers in the inverted file entry, so that the result of t,he 
merge will be the numbers of the items containing all 
of the entities in the query. In some queries, retrieval 
and merging of a series of inverted file entries may leave 
so few candidate answers that it is cheaper to exa.mine 
those items and check for false matches than to merge 
the remaining inverted file entries, part.icularly if the 
remaining entries are long. We shall exploit this possi- 
bility below. 

One problem with inverted files is that uncompressed 
they can consume a great deal of space, potentially sf:v- 
era1 times as much as the data they index. For this rea- 
son, compression of inverted file entries, or equivalently 
bitmaps, has been analysed by many authors, inchldc 
Fraenkel & Klein [8] and Bookstein & Klein [2]. Our 
presentation is based on that of Moffat & Zobel [16], 
who compare a variety of bitmap compression tech- 
niques. In all of these schemes decompression is fas+ 
about 50-100 Kb of compressed data can be decom- 
pressed in a second on the Sun SPARC 2. 

Rather than compressing the series of item numbers 
in an inverted file entry, it is convenient to compress 
their run length encoding, that is, the series of difl’er- 
ences between successive numbers [9, 101. For examlble, 
the inverted file entry (4,5,9,11,12,17,. . .) has the run 
length encoding (4,1,4,2,1,5,. . .). This does not in 
itself yield any compression, but does expose patterns 
that can be exploited for compression purposes. 

A simple run length compression method is t*o use 
the codes for integers described by Elias [6]. His 
y code represents integer z as [log, zJ + 1 in unary 
(that is, ilog, zJ O-bits followed by a l-bit) followed by 
t - 2l’Oga zJ in binary (that is, z less its most signithnt 
bit); the 6 code uses 7 to code Ilog, zJ + 1, followed by 
the same suffix. The 6 code is longer than the 7 code 
for some values oft smaller than 15, but thereafter h‘ is 
never worse. 

The 7 and 6 codes arc’ inst.anrcs of A more gc:nc.raI 
coding paradigm as follows [8]. Let, 1’ be a (possibly 
infinite) vector of positive integers zli. i 2 1, wllcbrcb 
C Iji 1 N, the number of items being indexed. ‘Ii, 
code integer z 2 1 relative to V we fintl k such t,h:rt. 

k-l 

C -kvj l'j < C < 

j=l j=l 

and code k in some representation folhwcd by the dil’- 
ference 

k-l 
tl = ;(: - c vj - 1 

j=l 

in binary, using either [log2 vt] bits if o! < 21’“~~ llkl -- 
vk or [log, vk] bits otherwise. For example, 1 is ikll 
encoding relative to the vector (1,2,4, N. 16,. . .) with k 
coded in unary. 

Consider anot,her example. Suppose that the coding 
vector is (for some reason) chosen to he (9,27,8 1, . .). 
Then if k is coded in unary, the values 1 through to 7 
would have codes 1000 through to 1110, with 8 and !1 
as 11110 and 111 I1 respectively, where in each cask t,hta 
leading 1 is the code for k and the rem&&r is the code 
ford. Similarly, run Itbngt.hs of 10 through to 36 = 9+27 
would be assigned codes with a 01 prefix and t*it,hcar a, 
4bit or a 5-bit. suffix: 0000 for 10 through to 0100 for 
14, then 01010 for 15 through to 11111 for 36. 

The effectiveness of compression for an invcrr,c>d 
file entry will vary with the choice pi’ vector. OIIV 
scheme, due to Tcuhola [‘tt], is to use 1 IW vector \,:r =r 
(6,26,46,86,166,. . .), where each entry ha.3 an associ- 
ated 6 value. An appropria.te c.hoice of 6 is t.hf> mc%- 
dian run length in the entry [16], again wit(h k coded 
in unary. This scheme gives good compression I)c>causc 
it exploits clustering, a phenomenon that is partim- 
larly likely to happen should the strings in the lexicon 
be sorted, since the same substrings will occur in many 
consecutive strings. Another scheme is to IIS~ t.he vector 
VG = (b,b,b,b, 6,. . .), where 6 = O.f39IV/y and 1) is the 
number of run lengths in the inverted file entry [15]. 
(There is no requirement, for the valut:s tli to bt? dis- 
tinc.t.) This scheme gives good compression when Ihc 
indexed data is randomly distributed, and thus is good 
for unsorted Ipxicons. R.esults of application of lhw 

schemes to lexicon indexing are shown in Section 5. 
None of thc:sc: compression schemes use arithmc~tic 

coding or adaptive mod(dling, neither a>1 which arc’ cbf- 
fective in this application-arithmetic coding should 1)~ 
avoided because it requires significant, compubational 
resources, and adaptive modelling is not viable hccauscb 
it requires long runs of data to he effehivc~. Notrb also 

294 



that in all of the schemes mentioned, entries are com- 
pressed individually and can be elliciently created on 
the fly, and it is uever nrcessary 1.0 rebuild the enlire 
index after update. 

5 Lexicon indexes 

We propose that a lexicon index be used to find those 
strings in a lexicon that match a given pattern. In this 
index, the queryable entities are n-grants, that is. all n 
character substrings of the words in the lexicon. The 
concept of n-grams has been attributed to Shannon [%O], 
and can also be used for tasks such as string distance 
measurement [22]. 

Given an inverted file of n-grams, it is straightlor- 
ward to retrieve strings that match a pattern. First, 
all of the n-grams in the pattern must be extmcted. 
Then the inverted file entries are found by looking up 
the n-grams in a search structure that contains, for e;rch 
n-gram, the characters comprising that n-gram and the 
address in metnory of the corresponding compressed in- 
verted file entry. Next, the inverted file eutries for those 
n-grams must be decompressed and merged, to identify 
the ordinal numbers of the strings that contain all of 
those n-grams. Last, the strings corresponding to those 
nutnbers must be accessed via the address table, and a 
pattern matcher such as regez used to eliminate false 
matches, which can occur even in fully specified pat- 
terns. 

As an example of how n-grams can be used for index- 
ing, consider 2-grams. The string tense contains the 
‘L-grams te, en, ns, and se. The pattern ten* contains 
t,he 2-grams to and en, and the set of strings containing 
both of these 2-grams will include all strings beginmng 
with ten. This set would also include the false match 
enter, which contains both te and en but does not con- 
tain ten; this false match would, however, be eliminated 
by regez. Figure 1 shows this arrangement of n-gram 
lookup table, inverted file entries, string pointers, and 
lexicon, all stored in memory. 

The number of false matches can be reduced if sub- 
strings that start or end a string are marked as such. 
For example, using I to mark the start (and end) of 
strings, tense would have the additional ‘L-grams It 
and e I, and ten* would have the additional a-gram It. 
‘I’he set of strings containing all three of the %-grams 
of ten+ does not include enter, eliminating that par- 
ticular false mat,ch. In the special case of n-grams of 
length 1, this technique of marking start, and end sym- 
bols could not be used. An alternative measure is to 
extend the alphabet to distinguish between occurrences 

of the same character at the beginning, middle, or end 
of a string. 

There is a trade-off to be made in choosing n. For 
large n, such as n = 4, there will be a large number of 
distinct n-grams, and false matches will be rare. Few 
strings, for example, would contain both bein and eing 
but not being-.-.there were no such strings in any of t,he 
test vocabularies. 

Since each 4-gram has few occurrences, the decom- 
pression and processing of index entries can be fast. 
Some query pa.tterns will not contain any 4grams (al- 
though we believe such patterns will be rare), in which 
cast: there is no option but to use brute force search. 
Also, as our results show. large n implie a large index. 
On the other hand, a small value of n, such as n = 1, 
not only leads to a large number of false matches, but 
also leads to high index processing costs. In Table 4 we 
show, for each n from 1 to 5, the number of distinct 
n-grams and the average number of occurrences of each 
n-gram in each of our test lexicons. 

Number 
of 

distinct 
n-grams 

Average 
number 01 
occurrences 

of each 
n-gram 

n 
= 
1 
2 
3 
4 
5 
i 
2 
3 
4 
5 

Bible Macq TREC 

51 26 52 
920 620 2,778 

6,200 6,993 62,647 
19,135 37,541 372.849 
30,282 90,619 1,003;306 

---I 1,882.g l&922.6 129.212.0 
119.3 887.3 2,998.6 

15.5 70.4 120.1 
4.3 11.6 18.0 
2.7 4.8 5.9 

Table 4: Numbers of n-grams 

In the remainder of this section we show how n-grams 
can be used in conjunction with compressed inverted 
files. In our experiments we have only considered n of 
2, 3, and 4; preliminary investigations showed that l- 
grams were unacceptably slow-as would be expected, 
given the length of each inverted file entry and the num- 
ber of false matches to be eliminated--and that the 
space requirements for 5-grams were unacceptably high. 

Note that n-grams can be used to support other kinds 
of pattern matching. For example, if II = 3 and pat- 
terns contain sequences such as abfcdle, where the 
square brackets denote that the character between b 
and e must be either c or d, then matches can be found 
by looking for sl.rings containing either abc and bee or 
abd and bde. 

295 



list of 
n-grams 

n-gram inverted 
file entries 

-__ 
I iI -. 
atring 

pointers 

-.-----) 
..-- 

:Ei 

collection 
vocabulary 

index and text : 
of document : 

collection I 
stored on : 

disk : 

Figure 1: In-memory n-gram index for vocabulary strings 

5.1 Naive inverted file n-gram indexing 

We first investigate indexes for unsorted lexicons, in 
which words appeared in order of first occurrence in the 
source collection, using as the only ‘improvement’ t.he 
compression methods described in the previous section. 
In Table 5 we show sizes of n-gram inverted file indexes 
for unsorted lexicons for n from 2 to 4, using VG euccbd- 
ing. This method was used here because in an unsorted 
lexicon the run lengths for any n-gram are effectively 
random, and the VG code is well suited to the resulting 
geometric distribution. In all of the tables in this sec- 
tion, index sizes include: the space required for an N .n 
byte array of N n-grams; one [log, q-bit pointer from 
each n-gram to its index entry, where I is the size of the 
set of index entries; the compressed index entries them- 
selves; and, for each word in the lexicon, a [log, Cl- bit 
pointer (where the lexicon is C characters long) so that 
a ‘word number’ can be converted to a string for check- 
ing with regez. We also show, for n = 3, the time to 
create the index using an technique similar to the in- 
memory method described by Moffat for databases on 
secondary storage [14]. As n was increased, the creation 
times grew more slowly than did the size of the index, 
and times were dominated by the need to process the 
lexicon, which is independent of n. 

By way of comparison, the sizes of the uncomprm;ed 
indexes for TREC for n of 2, 3, and 4 are 277.9%, 
259.5%, and 266.8% respectively, assuming flog2 IV1 
bits to represent each of the W ordinal word numbt*rs. 

Table 5: Sizes of n-gram indexes for un.sorted lexicons 

Or, from another perspective, the use of compression 
has reduced the space for each word number in the: in- 
verted index from 20 bits to about 10 bits. 

This table shows a steady growth in index size with 
increase in n. A significant part of thin growth, after 
n = 2, is due to the need to store the n-grams and poittt.-- 
ers: for n = 4 the n-grams and corresponding wcaarch 
structure account for about 25% of th(! space require- 
ment. This is partly because the number of n-grams 
is growing, and partly because we have not compressed 
them. Using prefix-omission, for example, the space 
the 4-grams require can be about halved, saving about 
10% of the vocabulary size, but adding to the searching 
complexity. Even more effective would be the use of 
a minimal perfect hash function on the n-grams [S, 71. 
This would allow the N . n space required by the n- 
grams to be reduced to about 4n bits. at little or no 
cost, in lookup time. Wt: did not explore this option, 
but it would be worth considering for a production im- 



Threshold Threshold 

(4 04 

Figure 2: Effect of threshold on retrieval time for ThL!?C: (a) full; (b) part 

plementation on a static lexicon. 5.2 Improving performance: Thresholding 
We show average evaluation times over t,he query set 

of 250 patterns in Table 6. All of these times are for 
unsorted lexicons and Elias’s 6 encoding, which is I,he 
slowest of the codings we have described and therefore 
gives an upper bouud to retrieval time. These timings 
iucorporate a minor optimisation: index entries for n- 
grams are processed in increasing order of length, so 
that throughout the sequence of mergings Ohe number 
of candidate answers is kept as small as possible. 

pi 
Eval. 2 139 92 1244 1119 148;9 15;; 

Table 6: Speed of n-gram indexes for unsorted lexicons 

‘J’hese figures show a clear trade-off between size and 
speed, and this first, implementation shows interim per- 
formance between the extremes of regez on the one hand 
and permuted lexicons on the other. Nevertheless, when 
compared to the permuted lexicon scheme, neither i,he 
3pace nor the time performance is particularly impres- 
sive. In the following sections we show how both (an 
be substJantialty improved. 

Noting that the cost of checking for false matches is low 
in this applicafion, we next investigated met.hods by 
which it might be possible to trade relatively expensive 
index processing against. relatively cheap false match 
checking. 

A simple modification of this kind i:i to use a fixed 
threshold, and when the number of candidate answers 
falls below this threshold, no further index entries are 
merged. All of the remaining candidates are then ac- 
cessed immediately and false matches eliminated with 
regex . This optimisation is effective because short en- 
tries are merged first, so that subsequent entries tend to 
be long and may not substantially reduce the number 
of candidates. That is, when longer entries are being 
processed costly decoding is being used to little effect, 
and so the returns are doubly diminishing. The impact 
of the use of thresholds on retrieval times is shown in 
Figure 2, where, for each combination of n and query 
set, average retrieval time is plotted as a function of the 
threshold value. 

As can be seen, the improvement in retrieval time is 
dramatic, with matches found up to ten times faster 
and surprisingly large thresholds proving effective. The 
effect is particnla.rly marked for fully-specified queries, 
which have many n-grams, the more common of which 
may provide no filtering at all. The different collections 
had, for our query set, different ‘best’ thresholds, which 
were, very roughly, around l%-2% of lexicon size, and 
good performance was generally seen for a wide range 

297 



of thresholds around the ‘best’ mark. Indeed, one: sim- 
ple heuristic would be t,o take as the set of candidates 
the words listed in the shortest inverted file entry, and 
use regez on all words that contained this single most 
discriminating n-gram. 

5.3 Improving performance: Blocking 

Another modification that trades index processmg 
against false match checking is blocking of lexicon en- 
tries. In our description of t,he inverted file indexing 
scheme, each lexicon entry was indexed and alloc~~t.e~l a 
unique number. However, the index will be sma.ller if 
adjacent entries are grouped into blocks. For blockrd 
lexicons, the index into the lexicon would contain IJI~ 
ordinal numbers of the blocks containing each n-gram. 
The size decrease is both because some n-grams will 
occur more than once in a block but. only require one 
reference in the index, and because the run lengt,hs will 
be smaller and can be represented in fewer bits. 

To answer a query, each of the blocks containing all of 
the n-grams is fetched, then searched to see if it contains 
any words that match the query. Figure 3 gives an 
example of a blocked n-gram index. 

A simple blocking scheme is to divide the ordinal 
number of each lexicon entry by a fixed blocking jar tar 
B to give the ordinal number of the conta.ining block. so 
that each block contains B entries; a similar scheme was 
suggested by Owolabi & McGregor [19]. This m&hod 
allows the lexicon entries to be stored individually, and 
a simple deblocking step is required to find individual 
words. This simple blocking scheme also allows the in- 
dex pointers into the compressed inverted entries to be 
stored more economically, since only one pointer per 
block will be required, a total of N [log, 4 /B bits rather 
than the previous Nrlog, 11 bits. [n Figure 4 we show 
the effect of this method of blocking on TREC. In this 
figure, each curve shows the space-time tradeoff gained 
by varying B from 1 (at the right-hand side, because 
indexes with block size of 1 are large) to 1024 (at I,he 
left-hand side). 

As can be seen, there is an almost continuous trade- 
off bet,ween space and time performance--as block sizes 
get larger, less space is required for the index, but ac- 
cess is slower. Figure 4 uses a threshold of 1000, and in 
this case the trade-off between space and time is mono- 
tone. With a threshold of 1 the curves were actually 
‘bathtubs’--= B grew from 1, both space and time de- 
creased until, at B = 16 or B = 32, the time started to 
grow again. 

Table 7 summarises the gains that have been achieved 
by these two optimisations. Indexes of similar size to 

n Bible 

Total 2 35.8 

Mac9 - THtc(’ 

24.9 36.8 .-- 
index 3 103.7 68.1 80.7 

size (%) 4 220.8 136.8 138.X 

Table 7: Index perforrnancc for uusort4 Ivxiwns, I ;; 
conqrossion, lhck size 16, threshold I000 

those of ‘I’ahlc 6 ha.ve better t,ime perforlnaucc. For VX-- 
ample, for TREC the new I-gram i&s is both slllallcr 
and faster than the old 3--gram index. These results arr% 
a substantial inlprovemcnt on those of Owolahi S: Mc 
Gregor, who, for an index of roughly 90!7;, (in our fralll+ 
work) and a lexicon of 20,000 words, rfquirc 0.5 1.0 I sttc- 
ond per query on a Sun 3/60 [19]; on th same hardwarcz, 
our implemenlatioii requires about 40 ins per query for 
a lexicon and index of this size. 

Other blocking schemes are possible. Blocks co111tl 
be lixed length, containing a variable number of words. 
The suitabilit,y of such a schamr would dcpt:nd on t.lw 
kinds of access required to the lexicon. Ahernativcly, 
words with a large proportion of r&-granIs in comnlon 
could be clust.c& into blocks, regardless of block siir,c$. 

5.4 Sorted, static lexicons 

In the previous section WV considered optimisations that. 
could be applied to arbitrary lexicons. If the Icxicon in 
sorl,ed -which, I~~ause of the complexity of upda.t~, is 
only feasible if it is static--further optilnisations apply. 

Indexes for sorted lexicons S~OIIM cornpress well bc,- 
cause short run lengths can br rcbpresentad in only a 
few bits. In particular, a run 1ongt.h of I might t)tt 
represented in a.3 little as I bit, and in sortctl Icxi- 
cons it is the norm for adjacent words to aharc. SVV- 
era1 n-grams. Moreover, the effect. of blocking will t)c 
more pronounced in this case, because of thcb greatc>r fre- 
quency of repetition of n.-grams within blocks and the, 
corresponding decrease in t,lre number cd false matches. 

Another space optimisatSion is that prefix-omission 
can be used within blocks, and the characters of thca 
remaining strings can bc compressed. ‘I’hc Mock point.- 
ers can also be compressc?d, as they can be represcnt,ed 
as a series of run lengths. We have not quantified the 
savings that. these techniques would yicltl, but t,ht:y will 

298 



I 
1 
I 
I 
! 

list of n-gra.m inverted hlo\:k collection L- .-------- .J 
n.-grams file entries poinl.ers vocabulary 

- --.- 

Fignrc 3: In-memory n-gram index with Mocking, U = 3 

IX- in addition to any saving yielded by other optimisa- 
tions. 

Binary search on the lexicon can yield a signifiumt 
timr saving. The sequence of characters up to the first 
wild card, for example the sequence fro in the pat- 
teru fro*n, can be used to identify a range in which all 
matches must lie, and there is no need to examine the 
i&x entries for the t&-grams in this prefix sequence. In 

Bible Macq TREC 

23.6 16.6 20.4 
76.2 41.8 46.9 

1 

t,hct limit, for a fully specified query, there is no na:ed 
to examine the index at all. This time optimisation 

J 

also yields a space optimisation: there is no need to 
iudrx the first n-gram (for example, the 3-gram I fr Table 8: Index performance for sorted lexicons, VT com- 

in frozen) in each string. Although this implies that, pression, block size 16, threshold 1000 

aroulld 10% of index entries can be discarded, the S~:LCC 
saving is in fact marginal, as run lengths of 1 can be 
represented in 1 bit and as a consequence I,hese intlex 

It is worth noting the best times achieved for part 

c*ntries are very small. 
queries and each collection: 0.31 ms on Bible, with n 

In Table 8 we show performance of n-gram indexes for 
of 4, threshold of 10, a block size of 1, and an index of 

sorted lexicons, for a block size of 16 and a threshold of 
244.2%; 2.1 ms on Macq, with n of 4, threshold of 100, 

1000; these figures ca.n therefore be contrast,ed directly 
a block size of 1, and an index of 171.0%; and 12.2 ms 

with ‘l’able 7. We give sizes for the VT encoding, which 
on TREC, with n of 4, threshold of 1000, a block size 

was the superior scheme in this case, and timings for 
of 1, and an iudex of 170.1%. These figures compare 

h. As cau be seen, the indexes for sorted lexicons .ire 
well to the permuted lexicon scheme. 

at least 15% smaller than indexes for unsorted lexicons, 
;md query evaluation is much faster. Note that the 2- 6 Conclusions 

grarlll indexes require even less space than the simple 
IisI. of pointers (section three of Table 3), a rather re- 

We have considered the compressed inverted file ap- 

Illarkable testament to the efficacy of t.he comprlfsslon 
preach that ha3 been previously applied only to sec- 

nlcthods employed. 
ondary storage databases, and shown it to be viable 
in the main memory environment. Our indexing unit 

299 



n=3 
n=4 

, , , , , , . . , , , , , , , . , , , , . , . , , . , , , , 
0 100 200 300 

Space overhead (%) 

(4 

loo0 
I 
K-4 ‘\ *: \ l regex, part 

0 permuted, part 
-\ \ - n=2 
*. \ . . . . . . n=3 

*. 
100 -. \ 

1 
--- 

--__ n=4 

-K \ \ \ 
10 

1 

:I 
0 100 200 300 

Space overhead (%) 

(b) 

Figure 4: Effect of blocking on space and tinle for TREC and threshold of 1000: (a) full; (b) part. 

has been n-grams. While there is no startling novtxlty 
in n-gram indexing, our figures for uncompressed, un- 
optimised n-gram indexing show that performance is 
unacceptably poor. It is the use of compression. thrrah- 
olding, and blocking that results in the superior perl’or- 
mance we have obtained in our experinlents, allowing 
fast access to even large vocabula.ries such ss that of 
the multi-gigabyte TREC collection. The experiments 
that we have undertaken are quite unambiguous in their 
results-that, suitably implemented, n-gram indexmg 
runs orders of magnitude faster than brute force search 
on typical lexicons, and requires less main memory than 
traditional fast search structures such as permuted lex- 
icons and tries. It thus offers a third alternative to the 
system designer charged with choosing a mechanism to 
support partial specification of query terms. 

The techniques we have described are applicable to 
both sorted and unsorted lexicons. an advantage com- 
pared with the extended lexicon approach of Brat.ley 
& Choueka [4]. Our techniques also require substan- 
tially less memory. Moreover, our indexes can be bliilt 
very quickly using an in-memory technique [14]. 

We can obtain a smaller, faster representation for 
sorted lexicons than for unsorted, and using a prelix- 
omission technique the words of the lexicon itself (‘an 
be stored in less space if it is sorted. Thus, for a static 
database, we would prefer a sorted lexicon. Sorted 
lexicons also permit rapid binary search for matching 
strings when any of the initial letters of the string :tre 
provided. For more typical applications in which t,he 

database (and hence thtb lexicon) is dynamic, AII IIII- 
sort.ed lexicon is preferable so that INVV words can Iu> 
easily inserted. 

The single nlost irnl)orlant contribut~or to the. sw- 

cess of our t,cchniques has been l.hc low cosl. of false> 
match checking. This haa allowed us I,() tol~ra.t.c~ fitls(* 
match rates that would be unthinkable fbr a secondary 
storage database, and so at, best the index need ouly 
be a crude filter eliminating most of the non-matching 
records. This flexibility permits the use of n-grams 
for small n, a.1111 allows us to employ blocking to r+ 
duct? both the size of the index and thfa averago query 
times. It would be surprising if similar tradr-offs w(art’ 
not possible in other main metnory databases. MorcB- 
over, if main memory costs continue to fall faster than 
secondary storage costs, we may see the atlvcnt, of an 
age in which ma.in memory databases art: the rule rather 
than the exception. In this case the techniques we have, 
described will prove invaluable. 

Acknowledgmnents 

We would like to thank Abe Bookstcin, Andrew ~IIIIII~, 

Alan Kent, and Ihmi Klrin for thcbir advice and hc~lpl’ul 
discussion. WC: would also like to thank thc~ anonyIIIous 
referees for making many useful suggestions. This work 
was supported by bhe Aust,ralian Research Council. 

300 



References 

PI 

PI 

PI 

[41 

PI 

PI 

[71 

181 

PI 

WI 

WI 

WI 

A.V. Aho and M.J. Corasick. Fast pattern match- 
ing: An aid to bibliographic search. Communrca- 
lions of the ACM, 18(6):333-340, 1975. 

A. Bookstein and S.T. Klein. Generative models 
for bitmap sets with compression applications. In 
Proc. 14Sh ACM-SIGIR Conference on Injorma- 
lion Retrieval, pages 63-71, Chicago, 1991. 

A. Bookstein, S.T. Klein, and D.A. Ziff. A system- 
atic approach to compressing a full-text ret,rieval 
system. Information Processing tY Management, 
28(S), 1992. 

I’. Bratley and Y. Choueka. Processing truncat,ed 
t,errns in document retrieval systems. Information 
Processing tY Management, 18(5):257--266, 1982. 

G.V. Cormack, R.N.!% Horspool, and M. Kaiserw- 
erth. Practical perfect hashing. Computer Journal, 
28( 1):54-55, February 1985. 

P. El&. Universal codeword- sets and representa- 
tions of the integers. IBEE ‘I+ansactions on lnjor- 
mation Theory, IT-21:194-2031, March 1975. 

E. A. Fox, L.S. Heath, Q. Chen, and A.M. 
Daoud. Practical minimal perfect hash functions 
for large databases. Communications of the ACYM, 
35( 1):105-121, January 1992. 

A.S. Fraenkel and S.T. Klein. Novel compres- 
sion of sparse bit-strings-Preliminary report. In 
A. Apostolico and 2. Galil, editors, Combinato- 
rial Algorithms on Words, Volume 12, NATO ASI 
Series F, pages 169-183, Berlin, 1985. Springer- 
Verlag. 

R.G. (iallager and D.C. Van Voorhis. Optimal 
source codes for geometrically distributed alpha- 
bets. IEEE 7kansactions on lnjormation Th.eory, 
IT-.21(2):228-230, March 1975. 

S.W. Golomb. Run-length encodings. IEEE Trans- 
actions on lnjormation Theor,!, IT--12(3):399-401, 
July 1966. 

G. Gonnet and R. Baeza-Yates. Handbook of data 
structures and algorithms. Addison-Wesley, ‘Read- 
ing, Massachusetts, second edition, 1991. 

ISO. Commands for interactive text searchrng, 
1988. Draft International Standard ISO/DIS 8777. 

[I31 

PI 

P51 

P61 

[I71 

PI 

WI 

PO1 

WI 

WI 

P31 

PI 

E.M. McCreight. A space-economical suffix tree 
construction algorit,hm. Journal of the ACM, 
23(2):262..-272, April 1976. 

A. Moffat. Economical inversion of large text files. 
Computing Systems, 5(2):125-139, 1992. 

A. Moffat and J. Zobel. Coding for compression 
in full-text retrieval systems. In Proc. IEEE Data 
Compression Conference, pages 7%-81, Snowbird, 
Utah, March 1992. IEEE Computer Society Press, 
Los Alamitos, California. 

A. Moffat and J. Zobel. Parameterised compression 
for sparse bitmaps. In Proc. ACM-SIGIR Interna- 
tional Con,ference on Research and Development 
in Injorm.ation Retrieval, pages 274-285, Copen- 
hagen, Denmark, June 1992. ACM Press. 

D.R. Morrison. PATRICIA--PraCtid algorithm to 
retrieve information coded in alphanumeric. Jour- 
nal of the .4CM, 15(4):514-534, 1968. 

National Institute of Standards a.nd Technology. 
Proc. Tert Retrieval Conference (TREC), Wash- 
ingt,on, November 1992. Special Publication 500- 
207. 

0. Owolabi and D.R. McGregor. F& approximate 
string matching. Software-Praciice and Experi- 
ence, 18:387-393, 1988. 

C.E. Shannon. A mathematical t.heory of com- 
munications. The Bell Systems Technical Journal, 
27:379-423, 1948. 

J. Teuhola. A compression mc:thod for clus- 
tered bit-vectors. Information Processing Letters, 
7(6):308-3 11, October 1978. 

E. Ukkonen. Approximate string matching with 
q-grams and maximal matches. Theoretical Com- 
puter Scietrce, 92:191-211, 1992. 

I.H. Witten, T.C. Bell, and C.G. Nevill. Indexing 
and compressing full-text databases for CD-ROM. 
Journal of Information Science, li:265-271, 1992. 

J. Zobel, A. Moffat, and R. Sacks-Davis. An ef- 
ficient indexing technique for full-text database 
systems. In Proc. International Conference on 
Very Large Databases, pages 352-362, Vancouver, 
Canada, August 1992. 

301 


