Searching Large Lexicons for Partially Specified Terms using
Compressed Inverted Files

Justin Zobel*

Abstract

There are many advantages to be gained by storing the
lexicon of a full text database in main memory. In this
paper we describe how to use a compressed inverted file
index to search such a lexicon for entries that match a
pattern or partially specified term. This method pro-
vides an effective compromise between speed and space,
running orders of magnitude faster than brute force
search, but requiring less memory than other pattern-
matching data structures; indeed, in some cases requir-
ing less memory than would be consumed by a single
pointer to each string. The pattern search method is
based on text indexing techniques and is a success{ul
adaptation of inverted files to main memory databases.

1 Introduction

Given the large main memories available on current
computers, it is interesting to ask what additional fa-
cilities might be incorporated in full text retrieval sys-
tems if memory usage is allowed to expand. One pos-
sible application for extra memory is to store a com-
prehensive compression model for the text of the doc-

*CITRI, Department of Computer Science, RMIT, GPO Box
2476V, Melbourne 3001, Australia; jz@cs.rmit.oz.au

tDepartment of Computer Science, The University of Mel-
bourne, Parkville 3052, Australia; alistair@cs.mu.oz.au

{Collaborative Information Technology Research Institute,
723 Swanston St., Carlton 3052, Australia; rsd@kbs.citri.edu.au

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

Alistair Moffat!

Ron Sacks-Davis?

ument collection, thereby substantially increasing the
effective capacity of the storage devices being used [3].
Another possibility is to store the lexicon of the col-
lection in main memory, eliminating the disk accesses
needed to search for query terms and improving query
performance [24]. Indeed, these two functions might be
accomplished using the same structure {15, 23}.

Here we examine a further facility that can be pro-
vided if the lexicon is held in memory. The lexicon,
which is part of the index, is a structure containing all
of the words occurring in the database. Queries, which
are used to find documents containing certain words,
are evaluated by finding the words in the lexicon, then
retrieving and merging the postings lists of the words.
Given this organisation, it is natural to consider meth-
ods by which an in-memory lexicon can be used to sup-
port expansion of partially specified query terms, that
is, to support queries on incomplete words or word frag-
ments.

Standard languages for interactive text retrieval in-
clude pattern-matching constructs such as wild charac-
ters and other forms of partial specification of query
terms [12]. Certainly, if the lexicon is available in main
memory it can be scanned using normal pattern match-
ing techniques to locate partially specified terms. For
all but very small lexicons, however, linear search is
prohibitively expensive, and is not a viable option.

We describe a solution that is both fast in operation
and economical of additional storage space. A lexicon
should be treated as a database that can be accessed via
an index of fixed-length substrings, or n-grams, of the
words in the lexicon. To retrieve strings that match a
pattern, all of the n-grams in the pattern are extracted;
the words in the lexicon that contain these substrings
are identified via the index; and these words are checked
against the pattern for false matches. Using this tech-
nique, index size can be traded against retrieval time
by varying n. However, straightforward application of
n-gram indexing techniques—well known in informa-
tion retrieval folklore as a method of resolving partially
specified query terms—does not give particularly good

290

performance, and fast retrieval is only achieved by use
of indexes that are much larger than the lexicon itself.

In this paper we show how to improve performance
by use of several optimisations. First, we describe an
inverted file indexing technique that employs fast com-
pression to reduce space requirements. Second, since
false match checking is very fast in this application, we
reduce time by only checking for some n-grams. Third,
both index size and query time can be further reduced
by considering short blocks of words as a single string.
Fourth, in those applications in which sorting or partial
sorting of the lexicon is possible, additional savings in
hoth size and time can be achieved. Qur experinmental
results demonstrate the effect of each of these optimisa-
tions, and show that they make possible fast access to
even large lexicons such as that of a multi-gigabyte text
database containing over 800,000 terms. In contrast to
our techniques, previous methods are either very slow
or require large space overheads.

This paper is organised as follows. In the following
section we discuss our test data and the mechanism
used to evaluate different lexicon search schemes. In
Section 3 we discuss previous proposals for searching
lexicons. We provide a description of inverted file in-
dexing techniques in Section 4. Our lexicon indexing
technique is described, with detailed experimental re-
sults, in Section 5. Conclusions are presented in Sec-
tion 6.

2 Test data

We have used three lexicons in our experiments: Bible,
the complete lexicon of the 4.4 Mb King James version
of the Bible, with original case preserved; Macq, the set
of lowercase terms used in the 1990 edition of the Mac-
quarie Encyclopedic Thesaurus; and TREC, the lexi-
con of 742,985 articles totalling 2 Gb extracted from
the TIPSTER collection (18], again with original case
preserved. The parameters of these lexicons are shown
in Table 1. The ‘Size’ figures in the first row include all
of the characters of the words comprising the lexicon,
plus one overhead byte per word for termination. No
indexing structures of any kind—not even an array of
string pointers to the terms themselves-—are included.
Throughout this paper we express all index sizes as
a percentage relative to the raw cost of these strings.
For example, if we decided to index each string in the
TREC lexicon with a four byte pointer, we would allow
4 x 805,590 bytes and describe the index as occupying
an overhead of 42.8%; similarly, a 600 Kb index for the
537.3 Kb Macq lexicon would have size 111.7%.

[[Bible Macg TREC]

Size (Kb) 107.1 537.3 17,3483
Number of words 13,688 58.164 805,590
Av. word length (chars)] 7.02 846 8.34
Size of alphabet 51t 26 52

Table 1: Parameters of lexicons

To test the effectiveness of different techniques for
matching a pattern against a lexicon, a query set is
needed. We chose to generate a set of queries by tak-
ing a random selection of 250 words defined in the first
edition of Longman’s Dictionary of Contemporary En-
glish. We then used this query set in two ways: as
full, or fully-specified queries (that is, without any wild-
cards); and as part, or partially-specified queries, by
transforming them into patterns that included wild-
cards. This was done by randomly replacing substrings
of these words by *, where the substrings were of one
or more characters and * represents zero or more oc-
currences of any character. In this transformation, we
ensured that the resulting pattern contained either a
leading or trailing string of length three, or an embed-
ded string of length four; we believe that the result-
ing patterns were representative of patterns that might
be used in practice. For example, frozen might be
transformed to fro*n, which will match (among other
things) frogspawn, frogman, and frown. Note that the
pattern must match the whole string, not a subpart of
it; for example. to fetch strings containing substrings
that match fro*n, such as leapfrogging, the pattern
*fro*n* would be used.

Most of the words in the query set contained only
lowercase letters, but a few proper nouns and acronyms
containing uppercase letters were also (by luck) se-
lected. Some strings from the query set, after transfor-
mation into patterns, are shown in Table 2; the reader
may care to guess the word that each string is derived
from. For the part query set, there were an average of
1.6 answers per query in Bible, 14.3 answers per query
in Macq, and 68.2 answers per query in TREC; for the
full query set, the figures were 0.14, 0.34, and 0.89 re-
spectively.

In pattern matching, features other than ‘match any
substring’ can be used, such as searching for strings with
repeated patterns, or for strings with any of a given set
of characters in a certain position. We do not demon-

tCuriously, the King James version of the Bible doesn’t use
the uppercase letter ‘X".

291

*gger a*t*labe *n*oke
bu*toot# pushcar* tel*metry
departmen* a*oured lam*ik*
min*cuxe *n*ene *it*og*ycerin#
amen*s *u*yest*n witch=aft
crene*la*ed *a*e*ous t*opic
classlex*s nut+h+*1l *rebook
*eticence dis*rimin* fruc*fication

Table 2: Example query strings

strate our method with such patterns, but do indicate
how they would be supported.

3 Previous lexicon search techniques

We assume for generality that a lexicon is a series of
strings, in no particular order, separated by single-byte
terminators. In practice, other information such as oc-
currence counts and disk pointers will also be stored,
but we assume that these are stored in parallel arrays
indexed by ordinal string number; we do not consider
those additional structures in this paper. Some lexi-
con searching techniques also require that some or all
of the strings be indexed with a pointer. Where this is
necessary we have counted the space required for this
as part of the index, allowing [log, C] bits for eich
pointer, where C is the total number of characters in
the lexicon.

The simplest way to find the strings in a lexicon that
match a given pattern is to use brute force, that is,
search the lexicon from beginning to end. This requires
only that it be possible to traverse the lexicon in some
orderly fashion: the lexicon does not have to be sorted,
and no additional structures are nceded.

To effect the pattern matching itself, finite automata
techniques [1] such as the UNIX reger package can be
used. This package provides reasonably fast pattern
matching over a rich pattern langnage. (There are al-
gorithms that are in general much faster than the regezr
package, but for short patterns and strings these algo-
rithms may not be significantly better, because their
greater initial overheads can dominate the cost.) To
match a pattern against a series of strings, a function is
used to compile the pattern into an internal form, and
then, for each string, another function is used to check
whether the pattern and string match.

To test the speed of brute force search on a lexicon,
we found each string in the lexicon by searching for

the end-of-string delimiters—recall that we have not,
as yet, allowed any string pointers-—and used reger to
check whether the string matched the query pattern. In
the first section of Table 3 we show the average speed
per query of brute force search on our lexicons. The
evaluation times, as for all the evaluation times given
in this paper, ate average cpu milliseconds per query
on a 26 MIP Sun SPARC 2, and do not include any
input or output operations other than the reading of
the queries themselves.

As can be seen, regex matches patterns at around
10 microseconds per word on average, ot about one sec-

“ond of processing time for a lexicon of 100,000 words.

This approach represents one extreme in the space-time
tradeoff, at which the space overheads are small and in-
dependent of the size of the lexicon, but searching is
slow. For reasonable response, more structured access
is needed.

Bratley & Choueka [4] have proposed a permuted
dictionary mechanism for processing partially specified
terms in database queries. Their method uses a per-
muted lexicon that consists of all possible rotations of
each word in the lexicon, so that, for example, the word
trozen would contribute the original form |frozen,
and the rotated forms frozen|, rozenlt, ozen|fr,
zen|fro, enifroz, and nlfroze, where the symbol |
indicates the beginning of the word. 'The resulting set
of strings is then lexicographically ordered. Using this
mechanism, all patterns of the form X*, *X, *X* and
X*Y can be processed by binary search in the permuted
lexicon. For example, the pattern fro*n would be ro-
tated to generate nlfro*. A search in the sorted lexi-
con for this prefix will return, amongst others, the entry
nlfroze, from which the word frozen can be recovered.

Bratley & Choueka discuss prefix-omission mecha-
nisms by whicl the space requirements of the permuted
lexicon can be reduced. Even when compression is nsed
the biggest drawback of this method is, nonetheless, the
space requirement, since a word of n characters con-
tributes n + 1 entries to the permuted lexicon. For the
7,348 Kb TREC lexicon, for example, the permuted lex-
icon is 84,948 Kb, reducing to a minimum of 41,342 Kb
after prefix-omission.

Following the approach of Gonnet & Bacza-
Yates {11}, we note that it is more eflective to use a
variant of this method in which the permuted lexicon
is an array of pointers, one to each character position
in the original lexicon. This array of pointers is sorted
on the permuted form of each word; thus a pointer to
the character @ in frozen would be sorted on the value
enlfroz. The complete permuted form is identified by

292

| B I Bible | Macg | TREC |
Brute force part full | part full part Sull
Evaluation time (ms) 144.5 100.3|665.5 441.5[10,228.9 7,513.2
Permuted lexicons

Size of access structure (%) 212.6 250.0 287.5
Creation time (sec) 25.7 157.9 2,970.1

part full | part full part full

Evaluation time (ms) 0.27 0141095 021 3.81 0.33
Pointer array

Size of access structure (%) 26.5 26.4 30.8

Table 3: Parameters of previous search techniques

searching backwards (when a string terminator is en-
countered) to locate the previous string terminator and
thus the start of the current word; if additional struc-
ture is interleaved with the lexicon, each string may
have to include an explicit code to allow the start of the
current word to be identified. Space requirements for
such permuted lexicons are shown in the second section
of Table 3, assuming a [log; C-bit pointer to each of
the C lexicon characters. (Recall that index size is ex-
pressed as a percentage of the size of the corresponding
lexicon.) As can be seen, the search structures require
roughly two to three times the space of the lexicons they
index, and are very large.

‘To query the variant of the permuted lexicon method
to find matches to a partially specified term, we used
binary search on the pointer array to find, for each frag-
ment of the term, the range of permuted strings that
contained the fragment. We then used regez to select,
from the smallest range of permuted strings, the strings
that matched the query. For example, in the query
min*cu*e there are two fragments, cu and eimin. In
the permuted Macq lexicon there are 1,171 perinused
strings that start with cu (from cul to cuzzil ja)
and 14 strings that start with elmin (from elmin to
eiminutia); to find the matches to min*cuse, the 14
strings in the shorter range are checked with regez.

Evaluation times for the variant of the permuted lexi-
con method are shown in the second section of Table: 3;
as can be seen, queries are answered in milliseconds
rather than seconds. This scheme is therefore at the
other extreme to brute force search, with rapid lookup
but substantial space overheads.

Patricia tries based on the semi-infinite strings in the
lexicon are a generalisation of this approach [11, 13, 17].
In these methods the sequence of words is considered to
be a contiguous string, and the trie used to determine

the position in the string at which a given substring
occurs. Although more general, these search methods
are unlikely to he faster than the permuted dictionary,
since they involve navigation of a lexicographic search
tree. Moreover, they will, as a minimum, require at
least one pointer for every character in the lexicon, and
so will consume at least as much space as the pointer-
based permuted lexicon described above.

Owolabi & McGregor have proposed a string search
mechanism which, like the system we describe, uses an
n-gram index to locate matching strings [19]. Their in-
dex is a form of signature file, with a bitmap in which
columns correspond to n-grams and rows to lexicon en-
tries. We discuss the performance of this mechanism
later.

For comparison, the third section of Table 3 lists,
as a percentage of the size of the lexicon, the storage
required if each word (rather than each character) in
the lexicon is indexed with a [log, C-bit pointer. A
(sorted) pointer array would be a suitable search struc-
ture if all query terms were fully specified and if it could
be binary searched. We shall return to this possibility
in Section 5.4, when we discuss sorted lexicons.

4 Inverted file text indexing

In this section we describe inverted file text indexing
techniques.

An index is a structure that is used to map from
queryable entitics to indexed items. For example, in a
database system an index is used to map from entities
such as names and bank account numbers to records
containing data about those entities. A general inverted
file index consists of two parts: a set of inverted file
entries (sometimes known as postings lists), being lists

293

of ordinal item numbers of the items containing each
queryable entity; and a search structure for mapping
from an entity to the location of its inverted file entry.
In a text database system, the search structure would
typically be a sorted array or search tree, a hash table,
or, on secondary storage, a B-tree.

To map ordinal item numbers to addresses there must
also be an address table. For a main memory database,
the address table is a list of pointers to items. Candi-
date answers to conjunctive queries are found by find-
ing and merging the inverted file entries of the entilies
specified in the query and then using the address table
to locate the answers to the query. This merge takes
the intersection (rather than the union) of the num-
bers in the inverted file entry, so that the result of the
merge will be the numbers of the items containing all
of the entities in the query. In some queries, retrieval
and merging of a series of inverted file entries may leave
so few candidate answers that it is cheaper to examine
those items and check for false matches than to merge
the remaining inverted file entries, particularly if the
remaining entries are long. We shall exploit this possi-
bility below.

One problem with inverted files is that uncompressed
they can consume a great deal of space, potentially sev-
eral times as much as the data they index. For this rea-
son, compression of inverted file entries, or equivalently
bitmaps, has been analysed by many authors, include
Fraenkel & Klein [8] and Bookstein & Klein [2]. Our
presentation is based on that of Moffat & Zobel [16],
who compare a variety of bitmap compression tech-
niques. In all of these schemes decompression is fast—
about 50-100 Kb of compressed data can be decom-
pressed in a second on the Sun SPARC 2.

Rather than compressing the series of item numbers
in an inverted file entry, it is convenient to compress
their run length encoding, that is, the series of differ-
ences between successive numbers [9, 10]. For example,
the inverted file entry (4,5,9,11,12,17,..) has the run
length encoding (4,1,4,2,1,5,...). This does not in
itself yield any compression, but does expose patterns
that can be exploited for compression purposes.

A simple run length compression method is to use
the codes for integers described by Elias [6). His
v code represents integer z as [log, | + 1 in unary
(that is, {log, | 0-bits followed by a 1-bit) followed by
z —2U°8:%] ip binary (that is, = less its most significant
bit); the é code uses v to code |log,]| + 1, followed by
the same suffix. The § code is longer than the 4 code
for some values of x smaller than 15, but thereafter 4 is
never worse.

The v and & codes are instances of a more gencral
coding paradigm as follows [8]. Let V be a (possibly
infinite) vector of positive integers v;. i > I, where
Y v; > N, the number of items being indexed. ‘To
code integer 2 > 1 relative to V we find k such that

k-1 k
Z v < < Zvj
ji=1 i=1

and code k in some representation followed by the dif-

ference
k-1

d:xr—Zvj—-l

j=1i

in binary, using cither |log, vi| bits if d < 20'o8avsl _
v or [log, vi] bits otherwise. For example, 7 is an
encoding relative to the vector (1,2,4,8.16,...) with &
coded in unary.

Consider another example. Supposc that the coding
vector is (for some reason) chosen to be (9,27,81,...).
Then if k is coded in unary, the values | through to 7
would have codes 1000 through to 1110, with 8 and 9
as 11110 and 11111 respectively, where in cach case the
leading 1 is the code for k and the remainder is the code
for d. Similarly, run lengths of 10 through to 36 = 9427
would be assigned codes with a 01 prefix and either a
4-bit or a 5-bit suffix: 0000 for 10 through to 0100 for
14, then 01010 for 15 through to 11111 for 36.

The effectiveness of compression for an inverted
file entry will vary with the choice of vector. One
scheme, due to Teuhola [21], is to use the vector Vyp =
(b,2b,4b,8b,16b, ...), where each entry has an associ-
ated b value. An appropriate choice of b is the me-
dian run length in the entry [16], again with k coded
in unary. This scheme gives good compression because
it exploits clustering, a phenomenon thal is particu-
larly likely to happen should the strings in the lexicon
be sorted, since the same substrings will occur in many
consecutive strings. Another scheme is to use the vector
Ve = (b,6,b,b,5,...), where b = 0.69N/p and p is the
number of run lengths in the inverted file entry [15].
(There is no requirement for the values v; to be dis-
tinct.) This scheme gives good compression when the
indexed data is randomly distributed, and thus is good
for unsorted lexicons. Results of application of these
schemes to lexicon indexing are shown in Section 5.

None of these compression schemes use arithmetic
coding or adaptive modelling, neither of which are of-
fective in this application—arithmetic coding should be
avoided because it requires significant computational
resources, and adaptive modelling is not. viable because
it requires long runs of data to be effective. Note also

294

that in all of the schemes mentioned, entries are com-
pressed individually and can be efficiently created on
the fly, and it is never necessary to rebuild the entire
index alter update.

5 Lexicon indexes

We propose that a lexicon index be used to find those
strings in a lexicon that match a given pattern. In this
index, the queryable entities are n-grams, that is, all n
character substrings of the words in the lexicon. The
concept of n-grams has been attributed to Shannon [20],
and can also be used for tasks such as string distance
measurement {22].

Given an inverted file of n-gramns, it is straightior-
ward to retrieve strings that match a pattern. First,
all of the n-grams in the pattern must be extracted.
Then the inverted file entries are found by looking up
the n-grams in a search structure that contains, for eich
n-gram, the characters comprising that n-gram and the
address in memory of the corresponding compressed in-
verted file entry. Next, the inverted file entries for those
n-grams must be decompressed and merged, to identify
the ordinal numbers of the strings that contain all of
those n-grams. Last, the strings corresponding to those
numbers must be accessed via the address table, and a
pattern matcher such as regez used to eliminate false
matches, which can occur even in fully specified pat-
terns.

As an example of how n-grams can be used for ind=x-
ing, consider 2-grams. The string tense contains the
2-grams te, en, ns, and se. The pattern ten* contains
the 2-grams te and en, and the set of strings containing
both of these 2-grams will include all strings beginning
with ten. This set would also include the false match
enter, which contains both te and en but does not con-
tain ten; this false match would, however, be eliminated
by regex. Figure 1 shows this arrangement of n-gram
lookup table, inverted file entries, string pointers, and
lexicon, all stored in memory.

The number of false matches can be reduced if sub-
strings that start or end a string are marked as such.
For example, using | to mark the start (and end) of
strings, tense would have the additional 2-grams |t
and el, and ten* would have the additional 2-gram |t.
'The set of strings containing all three of the 2-grams
of ten* does not include enter, eliminating that par-
ticular false match. In the special case of n-grams of
length 1, this technique of marking start and end sym-
bols could not be used. An alternative measure is to
extend the alphabet to distinguish between occurrences

of the same character at the beginning, middle, or end
of a string.

There is a trade-off to be made in choosing n. For
large n, such as n = 4, there will be a large number of
distinct n-grams, and false matches will be rare. Few
strings, for example, would contain both bein and eing
but not being—there were no such strings in any of the
test vocabularies.

Since each 4-gram has few occurrences, the decom-
pression and processing of index entries can be fast.
Some query patterns will not contain any 4-grams (al-
though we believe such patterns will be rare), in which
casc there is no option but to use brute force search.
Also, as our results show, large n implics a large index.
On the other hand, a small value of n, such as n =1,
not only leads to a large number of false matches, but
also leads to high index processing costs. In Table 4 we
show, for each n from 1 to 5, the number of distinct
n-grams and the average number of occurrences of each
n-gram in each of our test lexicons.

[[n]] Bible Macqg TREC|
Number |1 51 26 52
of 2 920 620 2,778
distinct |3]| 6,200 6,993 62,647
n-grams (4| 19,135 37,541 372,849
5| 30,282 90,619 1,003,306

Average |1([1,882.9 18,922.6 129.212.0
number of |2 119.3 887.3 2,998.6
occurrences | 3 15.5 70.4 120.1
ofeach |4 4.3 11.6 18.0
n-gram |5 2.7 4.8 5.9

Table 4: Numbers of n-grams

In the remainder of this section we show how n-grams
can be used in conjunction with compressed inverted
files. In our experiments we have only considered n of
2, 3, and 4; preliminary investigations showed that 1-
grams were unacceptably slow—as would be expected,
given the length of each inverted file entry and the num-
ber of false matches to be eliminated-—and that the
space requirements for 5-grams were unacceptably high.

Note that n-grams can be used to support other kinds
of pattern matching. For example, if n = 3 and pat-
terns contain sequences such as ablcdle, where the
square brackets denote that the character between b
and e must be either ¢ or 4, then matches can be found
by looking for strings containing either abc and bce or
abd and bde.

295

] 1 TR LT

———TTN N o :

NN 1 . |

en | ——=[| 7]] N\ index and text |

N '\\"" — > [bend | — > of document :

| e 1| enter N-—> ' collection '

— =1 [P N : stored on \

| 7 7 . disk !

=71 \ — | :

te | —=1 [[~T] = 7= tense N> 1

J \\¥*'> “T>] texture N _ '

\-~- T T—>| water N e :

list of n-gram inverted string collection G
n-grams file entries pointers vocabulary

Figure |: In-memory n-gram index for vocabulary strings

5.1 Naive inverted file n-grain indexing

We first investigate indexes for unsorted lexicons, in
which words appeared in order of first occurrence in the
source collection, using as the only ‘improvement’ the
compression methods described in the previous section.
In Table 5 we show sizes of n-gram inverted file indexes
for unsorted lexicons for n from 2 to 4, using V¢ encod-
ing. This method was used here because in an unsorted
lexicon the run lengths for any n-gram are effectively
random, and the Vg code is well suited to the resulting
geometric distribution. In all of the tables in this sec-
tion, index sizes include: the space required for an N -n
byte array of N n-grams; one [log, I'1-bit pointer from
each n-gram to its index entry, where I is the size of the
set of index entries; the compressed index entries them-
selves; and, for each word in the lexicon, a [log, C]-bit
pointer (where the lexicon is C characters long) so that
a ‘word number’ can be converted to a string for check-
ing with regez. We also show, for n = 3, the time to
create the index using an technique similar to the in-
memory method described by Moffat for databases on
secondary storage [14]. As n was increased, the creation
times grew more slowly than did the size of the index,
and times were dominated by the need to process the
lexicon, which is independent of n.

By way of comparison, the sizes of the uncompres:ed
indexes for TREC for n of 2, 3, and 4 are 277.9%,
259.5%, and 266.8% respectively, assuming [log, V]
bits to represent each of the W ordinal word numbers.

t _ {n]| Bible Macq TREC|
Total 2[113.9 1027 119.9
index 31174.3 139.8 158.0
size (%) 4(1283.8 201.8 209.9
Creation time (sec) |3[{ 7.4 36.9 608.9

Table 5: Sizes of n-gram indexes for unsorted lexicons

Or, from another perspective, the use of compression
has reduced the space for each word nuinber in the in-
verted index from 20 bits to about 10 bits.

This table shows a steady growth in index size with
increase in n. A significant part of this growth, after
n = 2, is due to the need to store the n-grams and point-
ers: for n = 4 the n-grams and corresponding scarch
structure account for about 25% of the space require-
ment. This is partly because the number of n-grams
is growing, and partly because we have not compressed
them. Using prefix-omission, for exarnple, the space
the 4-grams require can be about halved, saving about
10% of the vocabulary size, but adding to the searching
complexity. Even more effective woull be the use of
a minimal perfect. hash function on the n-grams [5, 7).
This would allow the N - n space required by the n-
grams to be reduced to about 4n bits. at little or no
cost in lookup time. We did not explore this option,
but it would be worth considering for a production im-

Time (ms)

1 10

100 1000
Threshold

(@)

10000 100000

Time (ms)

1 10

100 1000
Threshold

()

10000 100000

Figure 2: Effect of threshold on retrieval time for TREC: (a) full; (b) part

plementation on a static lexicon.

We show average evaluation times over the query set
of 250 patterns in Table 6. All of these times are for
unsorted lexicons and Elias’s § encoding, which is the
slowest of the codings we have described and therefore
gives an upper bound to retrieval time. These tirnings
incorporate a minor optimisation: index entries for n-
grams are processed in increasing order of length, so
that throughout the sequence of mergings the number
of candidate answers is kept as small as possible.

[In]l Bible | Macg | TREC |

part fullt part full| part full
Eval. 2139 9.2{1244 111.9]1,489.9 1,579.:}
times(3] 2.3 1.2(205 16.9] 188.8 226.1
(ms) |4]| 06 03[49 38| 381 43.1

Table 6: Speed of n-gram indexes for unsorted lexicons

These figures show a clear trade-off between size and
speed, and this first implementation shows interim per-
formance between the extremes of regez on the one hand
and permuted lexicons on the other. Nevertheless, when
compared to the permuted lexicon scheme, neither the
space nor the time performance is particularly impres-
sive. In the following sections we show how both (an
be substantially improved.

5.2 Improving performance: Thresholding

Noting that the cost of checking for false matches is low
in this application, we next investigated methods by
which it might be possible to trade relatively expensive
index processing against relatively cheap false match
checking.

A simple modification of this kind i3 to use a fixed
threshold, and when the number of candidate answers
falls below this threshold, no further index entries are
merged. All of the remaining candidates are then ac-
cessed immediately and false matches climinated with
regez. This optimisation is effective because short en-
tries are merged first, so that subsequent entries tend to
be long and may not substantially reduce the number
of candidates. That is, when longer entries are being
processed costly decoding is being used to little effect,
and so the returns are doubly diminishing. The impact
of the use of thresholds on retrieval timnes is shown in
Figure 2, where, for each combination of n and query
set, average retrieval time is plotted as a function of the
threshold value.

As can be seen, the improvement in retrieval time is
dramatic, with matches found up to ten times faster
and surprisingly large thresholds proving effective. The
effect is particularly marked for fully-specified queries,
which have many n-grams, the more common of which
may provide no filtering at all. The different collections
had, for our query set, different ‘best’ thresholds, which
were, very roughly, around 1%-2% of lexicon size, and
good performance was generally seen for a wide range

297

of thresholds around the ‘best’ mark. Indeed, one sim-
ple heuristic would be to take as the set of candidates
the words listed in the shortest inverted file entry, and
use regez on all words that contained this single most
discriminating n-gram.

5.3 Improving performance: Blocking

Another modification that trades index processing
against false match checking is blocking of lexicon en-
tries. In our description of the inverted file indexing
scheme, each lexicon entry was indexed and allocated a
unique number. However, the index will be smaller if
adjacent entries are grouped into blocks. For blocked
lexicons, the index into the lexicon would contain the
ordinal numbers of the blocks containing each n-gram.
The size decrease is both because some n-grams will
occur more than once in a block but only require one
reference in the index, and because the run lengths will
be smaller and can be represented in fewer bits.

To answer a query, each of the blocks containing all of
the n-grams is fetched, then searched to see if it contains
any words that match the query. Figure 3 gives an
example of a blocked n-gram index.

A simple blocking scheme is to divide the ordinal
number of each lexicon entry by a fixed blocking factor
B to give the ordinal number of the containing block. so
that each block contains B entries; a similar scheme was
suggested by Owolabi & McGregor [19]. This method
allows the lexicon entries to be stored individually, and
a simple deblocking step is required to find individual
words. This simple blocking scheme also allows the in-
dex pointers into the compressed inverted entries to be
stored more economically, since only one pointer per
block will be required, a total of N [log, I'/B bits rather
than the previous N [log, I] bits. [n Figure 4 we show
the effect of this method of blocking on TREC. Iu this
figure, each curve shows the space-time tradeoff gained
by varying B from 1 (at the right-hand side, becanse
indexes with block size of 1 are large) to 1024 (at the
left-hand side). A

As can be seen, there is an almost continuous trade-
off between space and time performance-—as block sizes
get larger, less space is required for the index, but ac-
cess is slower. Figure 4 uses a threshold of 1000, and in
this case the trade-off between space and time is mono-
tone. With a threshold of 1 the curves were actually
‘bathtubs’—as B grew from 1, both space and time de-
creased until, at B = 16 or B = 32, the time started to
grow again.

Table 7 summarises the gains that have been achieved
by these two optimisations. Indexes of similar size to

[[n]l Bible | Macg | TREC]
Total |2 35.8 24.9 36.8
index |3 103.7 68.1 80.7
size (%) |41 220.8 136.8 138.8

part full| part full| part full
Eval. |2(153 7.1/102.6 48.9|934.4 646.5
times |31 42 1.6| 23.0 5.7[1563.2 40.7
(ms) |41 2.0 04] 198 25[1299 98

Table 7: Index performance for uusorted lexicons, 1,
compression, block size 16, threshold 1000

those of 'Table 6 Lave better time performance. For ex-
ample, for TREC the new 4-gram index is both smaller
and faster than the old 3-gram index. 'T'hese results are
a substantial improvement on those of Qwolabi & Mc¢

Gregor, who, for an index of roughly 90'% (in our fraine-
work) and a lexicon of 20,000 words, require 0.5 to | sec-
ond per query on a Sun 3/60 [19]; on the same hardware,
our implementation requires about 40 s per query for
a lexicon and index of this sizec.

Other blocking schemes are possible. Blocks could
be fixed length, containing a variable number of words.
The suitability of such a scheme would depend on the
kinds of access required to the lexicon. Alternatively,
words with a large proportion of n-grams in common
could be clustered into blocks, regardless of block size.

5.4 Sorted, static lexicons

In the previous section we considered optimisations that
could be applied to arbitrary lexicons. If the lexicon is
sorted - -which, because of the complexity of update, is
only feasible if it is static-—further optimisations apply.

Indexes for sorted lexicons should compress well be-
cause short run lengths can be represented in only a
few bits. In particular, a run length of 1 might be
represented in as little as 1 bit, and in sorted lexi-
cons it is the norm for adjacent words to share sev-
eral n-grams. Moreover, the effect of blocking will be
more pronounced in this case, because of the greater fre-
quency of repetition of n-grams within blocks and the
corresponding decrease in the number of false matches.

Another space optimisation is that prefix-omission
can be used within blocks, and the characters of the
remaining strings can be compressed. The block point-
ers can also be compressed, as they can be represcented
as a series of run lengths. We have not quantified the
savings that these techniques would yield, but they will

298

block
pointers

list of
n-grams

n-gram inverted
file entries

index and text

bend N = of document
enter N - collection
stored on

t
|
t
1
1
1
.
1
1
disk '
1
.
‘
1
1
t
'
1
1
1

collection L
vocabulary

Figure 3: In-memory n-gram index with blocking, B =3

be in addition to any saving yielded by other optimisa-
tions.

Binary search on the lexicon can yield a significant
time saving. 'The sequence of characters up to the first
wild card, for example the sequence fro in the pat-
tern fro*n, can be used to identify a range in which all
matches must lie, and there is no need to examine the
index entries for the n-grams in this prefix sequence. In
the limit, for a fully specified query, there is no nc-ed
to examine the index at all. This time optimisation
also yields a space optimisation: there is no need to
index the first n-gram (for example, the 3-gram |fr
in frozen) in each string. Although this implies that
around 10% of index entries can be discarded, the space
saving is in fact marginal, as run lengths of 1 can be
represented in 1 bit and as a consequence these index
entries are very small.

In Table 8 we show performance of n-gram indexes for
sorted lexicons, for a block size of 16 and a threshold of
1000; these figures can therefore be contrasted directly
with ‘T'able 7. We give sizes for the Vr encoding, which
was the superior scheme in this case, and timings for
6. As can be seen, the indexes for sorted lexicons are
at least 15% smaller than indexes for unsorted lexicons,
and query evaluation is much faster. Note that the 2-
gram indexes require even less space than the simple
list. of pointers (section three of Table 3), a rather re-
markable testament to the efficacy of the compression
methods employed.

[[n]] Bible | Macq [TREC |
Total |2 23.6 16.6 204
index |3 76.2 41.8 46.9
size (%) {4 175.7 98.7 96.0

part full[part full| part full

Eval. {21 4.9 0.1[{41.8 0.1]|229.2 0.4

times |3 0.8 0.1 74 0.1| 61.2 0.4

(ms) |4} 03 0.1} 28 0.1] 49.6 0.4

Table 8: Index performance for sorted lexicons, V7 com-
pression, block size 16, threshold 1000

It is worth noting the best times achieved for part
queries and each collection: 0.31 ms on Bible, with n
of 4, threshold of 10, a block size of 1, and an index of
244.2%: 2.1 ms on Macg, with n of 4, threshold of 100,
a block size of 1, and an index of 171.0%; and 12.2 ms
on TREC, with n of 4, threshold of 1000, a block size
of 1, and an index of 170.1%. These figures compare
well to the permuted lexicon scheme.

6 Conclusions

We have considered the compressed iaverted file ap-
proach that has been previously applied only to sec-
ondary storage databases, and shown it to be viable
in the main memory environment. Our indexing unit

299

Time (ms)

Space overhead (%)
(@)

@ regex, part
® permuted, part
n=2

Space overhead (%)
()

Figure 4: Effect of blocking on space and time for TREC and threshold of 1000: (a) full; (b) part

has been n-grams. While there is no startling novelty
in n-gram indexing, our figures for uncompressed, un-
optimised n-gram indexing show that performance is
unacceptably poor. It is the use of compression, thresh-
olding, and blocking that results in the superior perfor-
mance we have obtained in our experiments, allowing
fast access to even large vocabularies such as that of
the multi-gigabyte TREC collection. The experiments
that we have undertaken are quite unambiguousin their
results—that, suitably implemented, n-gram indexing
runs orders of magnitude faster than brute force search
on typical lexicons, and requires less main memory than
traditional fast search structures such as permuted lex-
icons and tries. It thus offers a third alternative to the
system designer charged with choosing a mechanism to
support partial specification of query terms.

The techniques we have described are applicable to
both sorted and unsorted lexicons, an advantage com-
pared with the extended lexicon approach of Bratley
& Choueka [4). Our techniques also require substan-
tially less memory. Moreover, our indexes can be built
very quickly using an in-memory technique [14].

We can obtain a smaller, faster representation for
sorted lexicons than for unsorted, and using a prefix-
omission technique the words of the lexicon itself can
be stored in less space if it is sorted. Thus, for a static
database, we would prefer a sorted lexicon. Sorted
lexicons also permit rapid binary search for maitching
strings when any of the initial letters of the string are
provided. For more typical applications in which the

database (and hence the lexicon) is dynamic, an un-
sorted lexicon is preferable so that new words can he
easily inserted.

The single most important contributor to the suc-
cess of our techniques has been the low cost of false
match checking. This has allowed us to tolerate false
match rates that would be unthinkable for a secondary
storage database, and so at best the index need only
be a crude filter eliminating most of the non-matching
records. This flexibility permits the use of n-grams
for small n, and allows us to employ blocking to re-
duce both the size of the index and the average query
times. It would be surprising if similar trade-offs were
not possible in other main memory databases. More-
over, if main meinory costs continue to fall faster than
secondary storage costs, we may see the advent of an
age in which main memory databases are the rule rather
than the exception. In this case the techniques we have
described will prove invaluable.

Acknowledgements

We would like to thank Abe Bookstein, Andrew Hume,
Alan Kent, and Tomi Klein for their advice and helpful
discussion. We would also like to thank the anonymous
referees for making many useful suggestions. This work
was supported by the Australian Research Council.

300

References

{11 A.V. Aho and M.J. Corasick. Fast pattern match-
ing: An aid to bibliographic search. Communica-
tions of the ACM, 18(6):333-340, 1975.

[2] A. Bookstein and S.I. Klein. Generative models
for bitmap sets with compression applications. In
Proc. 14'th ACM-SIGIR Conference on Informa-
tion Retrieval, pages 63-71, Chicago, 1991.

[3] A. Bookstein, S.T. Klein, and D.A. Ziff. A system-
atic approach to compressing a full-text retrieval
system. Information Processing €& Management,
28(5), 1992.

[4] P. Bratley and Y. Choueka. Processing truncated
terms in document retrieval systems. Information
Processing & Management, 18(5):257--266, 1982.

[5] G.V. Cormack, R.N.S. Horspool, and M. Kaiserw-
crth. Practical perfect hashing. Computer Journal,
28(1):54-55, February 1985.

(6] P. Elias. Universal codeword sets and representa-
tions of the integers. IEEE Transactions on Infor-
mation Theory, I'T-21:194-203, March 1975.

[7] E.A. Fox, L.S. Heath, Q. Chen, and A.M.
Daoud. Practical minimal perfect hash functions
for large databases. Communications of the ACM,
35(1):105-121, January 1992,

[8] A.S. Fraenkel and S.T. Klein. Novel compres-
sion of sparse bit-strings—Preliminary report. In
A. Apostolico and Z. Galil, editors, Combinato-
rial Algorithms on Words, Volume 12, NATO ASI
Series F, pages 169-183, Berlin, 1985. Springer-
Verlag.

[9] R.G. Gallager and D.C. Van Voorhis. Optimnal
source codes for geometrically distributed alpha-
bets. IEEE Transactions on Information Theory,
I'1-21(2):228-230, March 1975.

[10] S.W. Golomb. Run-length encodings. IEEE Trans-
actions on Information Theory, I'T-12(3):399-401,
July 1966.

[11] G. Gonnet and R. Baeza-Yates. Handbook of date
structures and algorithms. Addison-Wesley, Read-
ing, Massachusetts, second edition, 1991.

[12] ISO. Commands for interactive tezt searching,
1988. Draft International Standard ISO/DIS 8777.

301

[13] E.M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM,
23(2):262--272, April 1976.

(14]) A. Moffat. Economical inversion of large text files.
Computing Systems, 5(2):125-139, 1992.

[15] A. Moffat and J. Zobel. Coding for compression
in full-text retrieval systems. In Proc. IEEE Daia
Compression Conference, pages 72-81, Snowbird,
Utah, March 1992. IEEE Computer Society Press,
Los Alamitos, California.

[16] A.Moffat and J. Zobel. Parameterised compression
for sparse bitmaps. In Proc. ACM-SIGIR Interna-
tional Conference on Research and Development
tn Information Retrieval, pages 274-285, Copen-
hagen, Denmark, June 1992. ACM Press.

(17] D.R. Morrison. PATRICIA—Practical algorithm to

retrieve information coded in alphanumeric. Jour-

nal of the ACM, 15(4):514-534, 1968.

(18] National Institute of Standards and Technology.
Proc. Text Retrieval Conference (TREC), Wash-
ington, November 1992. Special Publication 500-

207.

[19] O. Owolabi and D.R. McGregor. Fast approximate
string matching. Seftware—Practice and Ezxperi-
ence, 18:387-393, 1988.

[20] C.E. Shannon. A mathematical theory of com-
munications. The Bell Systems Technical Journal,
27:379-423, 1948.

[21] J. Teuhola. A compression method for clus-
tered bit-vectors. Information Processing Letters,

7(6):308-311, October 1978.

[22] E. Ukkonen. Approximate string matching with
¢-grams and maximal matches. Theoretical Com-
puler Science, 92:191-211, 1992,

(23] L.H. Witten, T.C. Bell, and C.G. Nevill. Indexing
and compressing full-text databases for CD-ROM.
Journal of Information Science, 17:265-271, 1992.

[24] J. Zobel, A. Moffat, and R. Sacks-Davis. An ef-
ficient indexing technique for full-text database
systems. In Proc. International Conference on
Very Large Databases, pages 352-362, Vancouver,
Canada, August 1992.

