
Performance of Catalog Management Schemes for Running
Access Modules in a Locally Distributed Database System

Eui Kyeong Hong

Department of Computer Science and Statistics, Seoul City University
Dongdaemoon-Ku, Jeonnong-Dong 8-3, Seoul 130-743, Korea

(also with Center for Artificial Intelligence Research of KAIST)

Abstract

Catalog management schemes affect many aspects of dis-
tributed database systems such as site autonomy, query
optimization, view management, authorization mechanism,
and data distribution transparency. However, the perfor-
mance comparison of various catalog management schemes
has received relatively little attention. Embedded read
queries to the catalogs in a form of data manipulation state-
ments are assumed to be compiled into an access module,
since the module is executed repeatedly with different pa-
rameters. Update queries to the catalogs are assumed to
be interpreted due to their interactive nature. The per-
formance of the catalog management schemes measured in
terms of running access modules is investigated using sim-
ulation approach in a locally distributed database system.
The three alternatives studied include the centralized cata-
logs, the fully replicated catalogs, and the partitioned cat-
alogs.

1. Introduction
In the literature, most researches in distributed
database systems have been concentrated on query op-
timization, concurrency control, recovery, and deadlock
handling.

Although catalog management schemes are of great
practical importance with respect to the site auton-
omy [14], query optimization [15], view management
[l], authorization mechanism [22], and data distribu-
tion transparency [13], the performance comparison of
various catalog management schemes has received rel-
atively little attention [3, 181. Even well-known dis-
tributed database management system (DDBMS) pro-
totypes employ distinct catalog management schemes

Permission to copy without fee all or part of this material is
granted pwvided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the prblication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy othewise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

with one another. For example, SDD-1 [20] and Dis-
tributed Ingres [21] use the fully replicated catalogs,
whereas R’ [13] uses the partitioned catalogs.

Catalogs are regarded as the system databases that
contain information concerning various objects that
are of interest to the database system itself. Rela-
tions, views, indexes, users, access modules (executable
codes), and access privileges are examples of such ob-
jects. Catalogs map the user-specified objects in a
query onto low-level object identifiers and object lo-
cations. Catalogs contain the definition of the schemas
for database objects and the available access paths,
e.g., indexes. They also supply statistics used in query
optimization, and record the authorization of users to
database objects as well as dependency information
among database objects, for example, relationships of
views to relations and of programs to indexes [13].
In a distributed database system environment, cata-
logs themselves become a distributed database, which
should be distributed and managed efficiently.

One important design problem of computer systems
is that of assigning files to possibly different sites in
a computer network for query/update/execution pur-
poses; this is commonly known as the file allocation
problem [S]. Th e research results for the file allocation
problem are not suitable to be applied to the catalog
management schemes. The first reason is that queries
may request data that reside in multiple files, and the
second resson is that catalogs are, unlike user relations,
always referenced whenever a query needs to be pro-
cessed.

Cornell and Yu [4] addressed the relation assignment
problem taking advantage of the knowledge on transac-
tion characteristics and arrival frequencies to each site
so that hardware resource requirement can be balanced.
The research results for the relation assignment prob-
lem do not help due to the second reason mentioned
earlier. In addition, catalogs are not used to join with
other catalogs or user relations, since the contents of
the catalogs only serve as metadata.

Chu [3] analyzed the performance of the different
directory placement strategies in distributed databases
by forming mathematical models. Chu considered com-
munication cost, translation cost, and storage cost, but

194

unfortunately, queuing delay, concurrency control, and
two-phase commit protocol are neglected. Matsushita
et al. [18] p im roved the performance comparison of
the three types of directory management schemes with
concurrency control in mind by forming mathematical
models. However, [18] did not consider I/O cost, CPU
cost, two-phase commit protocol, and queuing delay.
Moreover, [183 did not consider the partitioned cata-
logs and the centralized catalogs. In addition, in [3]
and [18], a directory only means a listing of files avail-
able to the users of the networks, not catalogs used by
queries in real distributed database systems.

The performance of various catalog architectures
can be investigated from two viewpoints: query com-
pilation (access module generation) and running ac-
cess module. The performance of catalog management
schemes from the viewpoint of access module genera-
tion has been addressed in [8, 9, lo]. Access module
currently under execution is kept in the main memory
and the corresponding catalog entries are locked in a
shared mode to prevent any operation that might inval-
idate the access module, such as dropping an index, a
privilege, a relation or view used by the access module.
This means that the shared lock is maintained longer
period, since query execution usually takes longer time
than query compilation. The performance of queries,
in particular, upd& queries to the catalogs, will be
affected by the longer duration of holding the shared
lock. In addition, the number of CPU cycles, disk ac-
cesses, and communication bandwidth needed by each
access module also will be increased to a certain degree.

This paper reports on the simulation study of the
performance of the three catalog management schemes
- the centralized catalogs, the fully replicated catalogs,
and the partitioned catalogs - from another viewpoint
of running access module with CPU cost, I/O cost,
communication cost, concurrency control, queuing de-
lay, and two-phase commit protocol in mind for a lo-
cally distributed database system. The simulation re-
sults in a geographically distributed database system
is described in [lo].

The organization of the remainder of this paper is as
follows. Section 2 presents the classification of queries
according to the access pattern to the catalogs, catalog
names and its functions, and query processing steps.
Section 3 describes the alternative catalog management
schemes that are examined in this paper. Section 4
presents the detailed simulation model and simulation
parameters, and then performance results obtained are
interpreted. Finally, conclusions appear in Section 5.

2. Classification of Queries
User queries usually access the catalogs prior to the
access to the database regardless whether they are em-
bedded queries or ad hoc ones. Conventionally, user
queries have been classified into the read or update
queries depending either on reading the database or on
updating the database. In this paper, we use different
semantics for the definition of read query and update

Table 2.1: Catalog names and functions.

Catalog Name Function
SYSCATALOG Indicates who created the rela-

tion and other statistics about
the data in each relation. These
statistics are used during access
path optimization.

SYSCOLUMNS Indicates the data type and
length of each attribute.

SYSACCESS Records the access modules cre-
ated for user programs.

SYSINDEXES 1 Describes each index currently
in the databse.

SYSSYNONYMS Describes rdl synonyms cur-
rently in effect and indicates who
defined them.

SYSTABAUTH Records the access privileges
owned by users.

SYSUSAGE Records the dependencies that
access modules have on database
objects

query, since we are interested in evaluating the perfor-
mance of catalog management schemes. A read query is
defined to mean a query that causes only read accesses
to catalogs. Note that the read query may include not
only the conventional read query, but also the update
query to the database. Analogously, the term update
query is defined from the viewpoint of the update ac-
cesses to the catalogs. Catalog updating means the
insertion or deletion of entries to or from the related
catalogs. In SQL syntax [ll], according to the classifi-
cation described above, SELECT, INSERT, DELETE,
and UPDATE commands are read queries. That is,
read queries consist of data manipulation statements.
Update queries include the statements such as CRE
ATE TABLE, DROP TABLE, ALTER TABLE, CRE-
ATE INDEX, DROP INDEX, CREATE VIEW, DROP
VIEW, GRANT, REVOKE, CREATE SYNONYM,
DROP SYNONYM, and UPDATE STATISTICS state-
ments, i.e., data definition and control statements.

The catalogs are not same across distinct DBMSs,
since the catalogs for a particular DBMS necessarily
contain information that is interest to that DBMS. We
believe the seven catalogs in Table 2.1 are the minimum
which are needed for any distributed DBMS or central-
ized DBMS.. We take the catalog names from SQL/DS
[ll]. Each of these catalogs has an index on the appro
priate key values, so each access to catalog requires at
most 2 I/OS, and after this first access only one I/O
is required to get the catalog because the index of the
catalog is already in the buffer. Also, some of the cat-
alogs are linked to facilitate the direct access [16].

We postulate that read queries are used as embed-

195

requesting site.
Stored access modules in the catalogs may be exe-

cuted repeatedly with different parameters. Whenever
a request is submitted from a terminal to run the stored
access module, the associated access module is read
from the catalog and kept in the main memory of the
coordinator site (query site). If this site is the central
site, the corresponding catalog entries are locked in a
shared mode to prevent any operation that might in-
validate the access module, such as dropping an index,
a privilege, or a relation, used by the access module. If
this site is not the central site, the lock request should
be sent to the central site to lock the corresponding
catalog entries in a shared mode. When the acknowl-
edgement message indicating that the locks are granted
is returned to the coordinator site, the remote subsec-
tions are invoked and executed.

ded queries that are executed repeatedly with differ-
ent parameters. That is, they are used in an appli-
cation program. Each read query is compiled into a
sequence of access structures, stored as a secfion of an
access module for the application program containing
the query. Each site storing the user relations refer-
enced in a query stores in its access module the access
structures to perform its portion(s) of the work for the
query, called subsections 1151.

An access module is generated by the seven steps:
parsing, name resolution, catalog lookup, authorization
checking, optimization, access module generation, and
dependency recording. More details can be found in
P51.

Update queries are assumed to be interpreted rather
than compiled. That is, no optimization, access module
generation, and dependency recording are performed
[23]. Therefore, an update query is processed through
five steps: parsing, name resolution, catalog lookup,
authorization checking, and updating of related cata-
logs.

3. Catalog Management Schemes
Catalogs can be allocated in distributed databases in
many different ways. The best allocation scheme varies
with the database and the particular access pattern.
The three basic alternatives are the centralized cata-
logs, the fully replicated catalogs, and the partitioned
catalogs.

3.1 Centralized Catalogs (CC)
The whole catalogs are stored exactly at a single cen-
tral site. The centralized catalogs may not enhance
the advantages of distributed database systems, such
as high reliability and availability, and the distribution
of the processing load.

For a read query submitted from the central site, the
access module is generated locally, and then distributed
to the sites which store the relations referenced by the
query. Dependency information is stored at the cen-
tral site. During this time, the catalog entries corre-
sponding user relations are locked in a shared mode at
the central site. When a read query is submitted from
any non-central site, the corresponding catalog entries
are locked in a shared mode at the central site, and
fetched to the requesting non-central site. When the
access module is generated, it is stored at the relevant
sites which store the relations referenced by the query.
Dependency information is always recorded at the cen-
tral site. Then shared locks are released at the central
site. Acknowledgement messages are returned from the
central site and the sites which store the relations ref-
erenced by the query to the requesting site.

An update query submitted from the central site can
be processed only at the central site. During this time,
corresponding catalog entries are locked in an exclusive
mode. When an update query is requested from a non-
central site, it is sent to the central site and processed
there. An acknowledgement message is returned to the

3.2 Nly Replicated Catalogs with Unanimous
Agreement (FRCUA)
The total catalogs are stored entirely at every site. This
catalog architecture enhances locality of reference by
satisfying more read queries locally. This reduces the
response time for a read query, and reduces traffic on
the communication network. A major restriction to
using replication is that replicated copies must behave
like a single copy. SDD-1 [20] and Distributed Ingres
[21] use the fully replicated catalogs.

In this paper, unanimous agreement method (read-
locks-one, write-locks-all) is taken to preserve, the con-
sistency of the fully replicated catalogs. To read cat-
alogs, it suffices to set a read lock on any copy of the
catalogs, so the local copy is locked; to update cata-
logs, write locks are required on all copies. The up-
date queries are blocked until all of the replicas of the
catalogs to be updated have been successfully locked.
All locks are held until the transaction has successfully
committed or aborted.

Fully Replicated Catalogs with Quorum Consensus
(FRCQC) [5] is not considered in this paper, since this
scheme shows the worst performance in almost all sim-
ulated situations [9]. Worse performance of FRCQC
than FRCUA can be explained as follows: since a read
query in FRCQC must collect a read quorum of T votes,
it needs to access remote sites (randomly selected to be
included in a read quorum) to retrieve catalog entries.
Read queries enter several queues and use several phys-
ical resources at all sites which are the members of a
read quorum. Hence the response time of read queries
in FRCQC is worse than that of FRCUA. Furthermore,
read queries in FRCQC increase the queuing delay of
update queries in several queues, making the response
time of update queries in FRCQC also higher than that
of FRCUA. In addition, FRCQC requires too many
messages for the case of update queries which delete
the catalog entries [5].

An access module of read query requested from any
site is generated locally, and then sent to the rele-
vant sites which store the relations referenced by the

196

query, and stored there. Dependency information also
is stored at the same sites. During this time, corre-
sponding catalog entries are locked in a shared mode
at the local site.

An update query submitted from any site is broad-
cast to all sites, and updates of catalogs are performed
at all sites. To treat the processing of an update query
as a transaction, the centralized two-phase commit pro-
tocol [7] is employed. For up&Ge queries, deadlocks
may occur when the write-locks-all is used. We think
that any deadlock handling method would result in
similar performance, since deadlocks occurred very in-
frequently in several our experiments. Thus we choose
the deadlock prevention method based on distributed
wound-wait locking algorithm 1191.

Stored access modules in the catalogs may be exe-
cuted repeatedly too. They are executed in the same
way as in the case of CC, except that the required locks
of access modules are set (in a shared mode) only at
the coordinator site, since catalogs are fully replicated.

3.3 Partitioned Catalogs (PC)
Each site maintains its own catalogs for objects stored
at that site. This scheme preserves individual site au-
tonomy by avoiding centralized or global catalogs, and
by storing catalog entries at the site where the object
was created and at the site where it is stored. To
improve performance without increasing complexity or
compromising site independence, any site is allowed to
cache any catalog entry which it has retrieved from the
remote sites. A query referencing the same site ob-
ject may use the locally cached catalog information.
Locally cached copies of the remote catalog informa-
tion are not kept up-to-date. This catalog management
scheme is used in R’ [13, 151.

Update queries are implemented in R’ by a dis-
tributed recursive call to a single, common routine at
the apprentice remote site. The call passes only the
query statement and the userid (for authorization), and
returns a completion code [23].

Stored access modules in the catalogs may be exe-
cuted repeatedly too. They are executed in the same
way as in the case of CC, except that the required locks
of access modules are set (in a shared mode) at each
apprentice site, since catalogs are partitioned. When
the locks are granted, the subsections stored at the ap-
prentice sites are read from the catalog and executed
under the control of the coordinator site.

The partitioned catalogs can be divided further into
three alternatives according to the caching method:
no caching, incremental caching, and full caching [9].
From the viewpoint of query compilation (access mod-
ule generation), three alternatives of partitioned cat-
alogs show some performance differences [9]. How-
ever, update queries and stored access modules of read
queries in the three partitioned catalogs alternatives
are processed in the same manner. Thus, we do not
further divide the partitioned catalogs according to the
caching method.

4. Performance Study
Lu [17] measured the performance of eight different dis-
tributed two-way join methods in an experimental lo-
cally distributed computer system. He concluded that
pipelined semijoin method is found to be preferable
over a wide range of join queries. Since this paper
intends to investigate the performance of catalog man-
agement schemes when the stored access modules are
executed, rather than presenting yet another perfor-
mance comparison of existing or new query processing
methods, the pipelined semijoin method is employed in
this study.

The primary performance index used throughout the
paper is the response time. Response times are mea-
sured as the difference between when a terminal first
submits a new query and when the query returns to
the terminal following its successful completion. All
response times are given in seconds. Several secondary
performance indexes are used in analyzing the results
of the experiments. Queuing delays measured in the
queues (represented in Figure 4.1) are given in some
cases. The relative importance of several costs are also
given in some cases.

4.1 Simulation Background
For the simulation study, some assumptions are made
as follows. These assumptions are believed to be rea-
sonable, since these approaches are used in real pro-
totypes, or their performance has been demonstrated
good, or at the least they are simple to implement.

(1)

(2)

(3)

(4)

(5)

An application program (access module) contains
a read query.

Concurrency control using the two-phase locking
algorithm [7] is chosen for centralized catalogs and
the partitioned catalogs.

For update queries in the fully replicated catalogs,
deadlocks may occur when the unanimous agree-
ment (read-locks-one, write-locks-all) is used. The
deadlock prevention method based on distributed
wound-wait locking algorithm [19] is chosen.

The centralized two-phase commit protocol [7] is
chosen.

Record-level locking is selected.

4.2 Simulation Model
The simulation model of distributed database system
consists of a set of database sites (DB sites) connected
by a high-speed local area network. In this study, the
local area network is assumed to be a broadcast net-
work. Figure 4.1 shows the detailed model of a DB
site in the distributed database system. This model
is an extended version of the model of Lu [17] and
Carey [2]. The model of Lu has no concurrency con-
trol manager, since it is developed to investigate the

197

I i

performance of only read query processing. Carey’s
model, on the other hand, captures the components re-
lated to concurrency control. Each DB site includes
both terminals (users) and physical resources for stor-
ing and processing the data and messages such as CPU,
disks, and communication network. Queries originate
from terminals and to which the results are returned.
Disks in a DB site are classified into two types: catalog
disks for storing catalogs, and data disks for storing
user relations. Several queues also are represented in
the DB site model. The CPU serves requests from two
queues:

(1) comp~2c~pc queue for query interpretation steps
(for update queries), running access module (for
read queties), concurrency control, and two-phase
commit processing.

(2) msg-cpu queue for message processing.

mNErwoRK

Figure 4.1: DB site model.

A query enters the compxc2pc queue whenever
query interpretation steps, concurrency control, two-
phase commit processing, and execution of an access
module need to consume CPU time, whereas a query
enters the catalog disk queue or data disk queue in order
to read/update catalogs or user relations from/to disk,
or write two-phase log record to disk. If the result of a
concurrency control request is that the query must be
suspended, it enters the blocked queue until it is able
to proceed. In addition to the use of the communica-
tion lines, the messages also consume some CPU time.
Hence all incoming and outgoing messages enter the
msg-cpu queue to receive CPU service. The outgoing
messages then enter the send queue to be served by the
network. Two queues connected to CPU are assumed
to be served alternatively. Each of disk has its own
queue. Bequests in the catalog disk queue, data disk
queue, and send queue in a DB site are served in FCFS
(First-Come, First-Served), whereas two CPU queues

198

are served in a round-robin fashion.
Each catalog architecture has been implemented as

a simulation program using the concurrent, simulation
language Path Pascal [12]. Path Pascal provides fea-
tures for parallel processing of processes.

The various components of the model are used by
read queries a~ follows [17]. To model pipelined semi-
join query execution, the model includes the pipelined
flow of data and the possibility that a read query may
have to block awaiting the arrival of data page. The
dotted lines represent the flow of intermediate results
generated during access module execution. We assume
that a stored access module of a read query is repre-
sented as a sequence of query units. The difference
between subsection described in Section 2.3 and query
unit is as follows. The subsection performs its portion
of the work for the access module. Thus, a subsection
may access more than one relations stored at, one site.
On the other hand, each query unit accesses at most
one relation, and passes accumulated data to the next
query unit in the access module. In this paper, there-
fore, a subsection may constitute more than or equal to
one query unit. Even if the coordinator site does not
store any user relation referenced by the access module,
the access structure in the coordinator site is assumed
to be a query unit,. In this case, the query unit will sim-
ply receive the data transferred from remote site(s).

When a stored access module needs to access at least
one remote site, the remote query unit is called. Before
accessing user relations, corresponding catalog entries
are locked in a shared mode at related site(s) according
to the catalog management schemes. The first, query
unit in the pipelined semijoin begins execution by ac-
cessing the outer relation. The other query units will
enter the data-wait-queue, and start their processing
after receiving the first data page from their predeces-
sors in the pipeline. For each data page received, a
query unit will cycle through CPU and data disks sev-
eral times. Upon finishing this process, the query unit
then checks the local data pool. If the next data page is
already in the data pool, the query unit gets the data
page and continues executing. Otherwise, the query
unit will block awaiting the arrival of the next input
data page. If its predecessors have completed and at
least one predecessor has been processed at a remote
site and this query unit is the last one in the pipeline,
then the centralized two-phase commit protocol is ini-
tiated by the coordinator site (query site). Note that a
read query in this paper may include not only the con-
ventional read query, but also the update query to the
database (user relations). When all of the predecessors
have completed and they are located at the same site
and this query unit, is the last one in the pipeline, the
query unit, will terminate without the two-phase com-
mit protocol. After each cycle through CPU and data
disks, a query unit produces a certain amount of in-
termediate result, data. When one page of result data
has been accumulated, the data page will either be sent
to a remote site via the communication link or placed

in the local data pool depending on the processmg site
of the successor in the pipeline. If an incoming mes-
sage is a data message, it is directed to the data pool.
Otherwise it is routed to the CPU.

Update queries are processed by accessing the cata-
log disk without need to access the data disks at all.
This detailed model seems to be sufficient to investi-
gate the performance of catalog management schemes
in run time case.

4.3 Simulation Parameters
Table 4.1 lists the model associated simulation param-
eters used in this paper. We will describe several simu-
lation parameters which need some additional explana-
tion. rq-ratio parameter means the ratio of the number
of read queries to the sum of the number of read and
update queries, while local-ratio is defined as the ratio
of the number of queries which access the local objects
only to the number of total queries. Here, queries in-
clude both read queries and update queries. Each site
has two types of disks: one for storing catalogs (cata-
log disk), and the other for storing user relations (data
disk). num-cata-disks specifies the number of catalog
disks, while num-data-disks gives the number of data
disks in a DB site. num-reads specifies the mean num-
ber of cycles through CPU and data disks for the query
unit [17]. For the first query unit,, this gives the num-
ber of data pages it reads from the data disks. For the
second query unit, num-reads specifies the mean num-
ber of processing cycles corresponding to the receipt of
one data page from the predecessor query unit in the
pipeline, since its execution is dependent upon the in-
termediate result, data from the predecessor. result-frac
specifies the fraction of a result, page generated by each
page processed.

Table 4.2 gives the values of the simulation param-
eters. The system consists of from 3 to 15 sites. The
number of terminals at each site is varied from 5 to
40. Both the read query ratio and local query ratio are
varied from 0 to 1. num-reads is set to 20 pages for the
first query unit,, and 5 pages for the second query unit.
With a result&ac of 0.2, the mean number of result
data pages for the first, query unit is 4. Thus the total
number of reads for the second query unit, is also 20
(= 4 * 5). Broadcast on the local area network is as-
sumed to have the effective transfer rate of 4M bits/set,
whereas its nominal transfer rate is 24M bits/set (3M
bytes/set). We assume that a given read query has a
50 percent chance of referencing two relations, and a 50
percent opportunity of using one relation. Also, 50 per-
cent, of remote read queries reference relations at two
remote sites, and 50 percent of remote read queries ac-
cess relations at one remote site. The relation collection
(catalog entries) accessed by a query (read or update)
is randomly chosen from the associated catalog entries.

Among the parameters in Table 4.2, num-sites,
num-terms, rq-ratio, and local-ratio are varied over
some ranges. When their fixed values are referenced
in the experiments num-sites = 5, num-terms = 15,

199

Table 4.1: Simulation parameters.

Parameter Name

Table 4.2: Parameters settings for the simulation.

Parameter Name Range

numsites 3 - 15 sites
num-terms 5 - 40 terminals
think-time 3 - 21 seconds
rq-ratio
local-ratio

0.0 - 1.0
0.0 - 1.0

I ro-rotio I read auerv ratio I nun-rels I 100 relations
local-ratio
num-r&r

disk-time
pagesize
num-cota-disks
numdotadisks

local query ratio
number of user relations in a DB
site
mean access time for a disk page
size of a disk page
number of disks storing catalogs
number of disks storing user
relations

1 msg-cpu-time

msg-byte

1 per-message cost such as mes- 1
sage packing and task switching

1 per-byte cost of message needed

I for transferring one byte over the
local area network I

query-msg3ize
dotomsgsite
s+msgsite

lock-time

num-reads

?Wdt-fmC

page-cpu-time

size of a query message in bytes
size of a data message in bytes
size of short messages such as
prepare, and ready in bytes
CPU time needed to perform
concurrency control, and dead-
lock handling (only for FRCUA)
mean number of cvcles through
CPU and disks for-query unit-
fraction
of a result data page generated

1 be each page processing
1 CPU time needed for processing

coto-cpu
I

1 CPU time needed for catalog
I I lookup per relation I

outh-cpu
_ _

1 CPU time needed for authoriza-

name-i0

coto-io

outhio

tion checking per relation
number of I/OS needed for name

I
resolution Der relation

1 number of I/OS needed for cata-
log lookup per relation

1 number of I/OS needed for au-
thorization checking per relation
number of I/OS needed for read-

disk-time
page-size

_ I

num-cata-disks
num-data-disks
msa-cvu-time

25 milliseconds
4096 bytes

- 1 1 disk
1 2 disks
1 16 milliseconds

t

lock-time
I -

1 millisecond
num-reads 20, 5
result-frac 0.2, 0.2
page-cpulime 8 milliseconds
parse-cpu 10 milliseconds
name-cpu 2 milliseconds
cata-cpu 5 milliseconds
auth-cpu 2 milliseconds
name-i0
cata-io

1 1
I3

I auth-io I 1 I
amodule-io
avq-wrt-io

1 1
12

rq-ratio = 0.8, and local-ratio = 0.8 are implied.
think-time, Rum-reads and page-cpu-time parameters
are exponentially distributed. Other parameters rep-
resent constant service time requirements rather than
stochastic ones for simplicity.

4.4 Experiments and Results
In this section, we present the performance of the three
catalog architecture alternatives - the centralized cat-
alogs, the fully replicated catalogs with unanimous
agreement, and the partitioned catalogs - under var-
ious simulation conditions. Four experiments are per-
formed using a detailed simulation model, and their
performance is discussed aLid analyzed.

4.4.1 Experiment 1: Varying Number of Sites
Our first experiment examines the impact of the vary-
ing the number of sites on the performance of the three
catalog architecture alternatives. The number of sites
is varied between 3 and 15. Figures 4.2 and 4.3, re-

200

spectively, show the response time results obtained for
read queries and update queries.

For read queries, Figure 4.2 indicates that PC per-
forms the best, followed by FRCirA, followed by CC,
As the number of sites increases, the performance of
CC for read queries degrades significantly. The expla-
nation lies in the fact that even if the central site does
not store any user relation referenced by a read query,
the read query should access the central site to lock the
associated catalog entries in a shared mode, leading to
the congestion at the central site. The performance
of FRCUA for read queries is little affected by the in-
crease of the number of sites compared to the query
compilation case [9]. This is due to the fact that each
read query accesses catalog disk once to fetch the stored
access module, and then cycles through CPU and data
disks several times to execute the access module. Con-
sequently, the queuing delay in the catalog disk queue
decreases considerably compared to the query compi-
lation case where no data disks are needed. The per-
formance of PC for both read and update queries is
relatively insensitive to the increase of the number of
sites.

The relative ordering that we obtained for update
queries, however, is different than that of read queries.
The ordering between FRCUA and CC is reversed. Fig-
ure 4.3 shows that CC outperforms FRCUA, but it
performs worse than PC. Since updates need to be per-
formed at all sites, the performance of FRCUA for up-
date queries is the worst. For FRCUA, the centralized
two-phase commit protocol is also required to treat an
update query as a transaction. On the other hand, any
update query in CC and PC can be processed without
the two-phase commit protocol. This is due to the fact
that in CC the updates to the catalogs are performed at
the central site which stores entire catalogs, and in PC
the updates to the catalogs can be performed at one site
(local or remote site) where the catalog information to
be updated is currently stored. As the number of sites
increases, the response time of CC for update queries
also increases, since the updates to the catalogs are per-
formed at the central site which stores entire catalogs,
resulting in the increase of queuing delays. Another
minor factor is as follows. Read queries referencing re-
mote user relations need to access the remote sites. As
the number of sites increases, the probability that the
central site is not included in the collection of the r+
mote sites accessed by a read query also increases. As
described before, the central site should be accessed by
any read query to lock the associated catalog entries in
a shared mode. Thus requirements of read queries to
access the central site are increased as the number of
sites increases, causing CC to experience more queuing
delays in the msg-cpu queue and catalog disk queue at
the central site.

4.4.2 Experiment 2: Varying Number of
Terminals

Experiment 2 is conducted to see how the load increase

Table 4.3: Relative importance of read queries
(num,tetms = 40).

1 cc FRCUA PC
CPU cost 5.8% 4.8% 4.8%
disk cost 10.2% 10.6% 10.5%
communication cost 0.2% 0.2% 0.2%
queuing delay 83.8% 84.5% 84.6%

Table 4.4: Relative importance of update queries
(numAerm.9 = 40).

on each site affects the performance of the three cat-
alog management schemes. The level of resource and
catalog entries contention is controlled here by vary-
ing the number of terminals. The number of terminals
is varied from 5 to 40. Figure 4.4 shows the response
time of read queries, and Figure 4.5 is for the update
queries.

For read queries, PC has slightly better performance
than CC, and FRCUA in turn performs marginally bet-
ter than PC. Minor differences among the catalog man-
agement schemes are due to the fact that any read query
in CC needs to access the central site to lock catalog
entries in a shared mode to prevent any operation that
might invalidate the access modules, even when the
central site does not store any user relations accessed
by the read query. For update queries, the ordering
of the performance of CC and FRCUA is reversed be-
cause of the same reasons described in Experiment 1.
As a result, FRCUA presents the worst performance,
followed by CC, and followed by PC.

Tables 4.3 and 4.4, respectively, give the relative
weight of CPU cost, disk cost, communication cost,
and queuing delay (accumulated in all queues) of read
and update queries when the number of terminals is
40. In fact, queuing delay has the highest weight for
two query types, and for all the catalog management
schemes examined. Tables 4.5 and 4.6 summarize the
relative ratio of each queuing delay (associated with
physical resources in Figure 4.1) of read and update
queries, respectively, when the number of terminals is
40. Read queries have the highest queuing delay in
the data disk queue, whereas update queries have the
highest weight in the blocked queue. As anticipated,
queuing delay in the send queue turns out to be neg-
ligible for both read queries and update queries. Note
that update queries do not access data disks at all.

201

Table 4.5: Relative importance of queuing delays of
read queries (num-terms = 40).

CC FRCUA PC

camp-cc-&c queue 15.1% 12.6% 12.1%
4.7% 0.9% 0.3%

Table 4.6: Relative importance of queuing delays of
update queries (nrm-terms = 40).

I 1 CC 1 FRCUA 1 PC]

Figure 4.6 shows the associated queuing delay of read
queries in the data disk queue. For update queries,
Figure 4.7 presents the associated queuing delay in
the blocked queue. The unit used here is milliseconds,
whereas the unit used in the response time curves is
second. In CC, the queuing delay in the blocked queue
is obtained from the central site, because total catalogs
are stored only at the central site. Similarly, the queu-
ing delay of PC for update queries (Figure 4.7) in the
blocked queue is obtained from one site, where the cat-
alog information to be updated is currently stored. On
the other hand, the curve of FRCUA for update queries
(Figure 4.7) is obtained by dividing the total queuing
delay in the blocked queue from all &-by the num-
ber of sites. Other queuing delays represent the aver-
age values obtained from the related sites, even though
the amount of resources used may differ, and thus the
amount of queuing delays incurred may differ between
the coordinator site and apprentice site(s). In addi-
tion, query processing may show some serial execution
pattern between the coordinator site and apprentice
site(s).

4.4.3 Experiment 3: Different Read Query
Ratio

To investigate the effects of the read query ratio on the
performance, this experiment is conducted in a way
that the read query ratio is varied from 0 to 1. The
read query ratio becomes 0 when the number of read
poeties is 0. Reversely, the read query ratio becomes 1

when all queries generated are read queries.
Figures 4.8 and 4.9 show the response time results of

both read and update queries for the alternatives of the
catalog architecture. For low read query ratio, FRCUA
for read queries has inferior performance to CC. How-
ever, as the read query ratio increases, the curves are
reversed, with FRCUA providing better performance
than CC. In Figure 4.8, PC outperforms other catalog
management schemes for all read query ratio ranges.
Even when the read query ratio is 1, where all queries
generated by terminals are read queries, CC has the
highest response time among all of the catalog man-
agement schemes. This is due to the fact that any read
puerJl in CC still needs to access the central site to lock
the associated catalog entries in a shared mode even
when the central site has no user relations referenced
by this read query. The improvement of response time
of FRCUA for read queries for low read query ratio
range is mainly attributed to the decrease of queuing
delay in the catalog disk queue as the read query ratio
increases. As the read query ratio increases, queuing
delay in the data disk queue increases since more ac-
cesses to data disks are needed by query units in the
access modules of read queries. Thus the performance
of all of the catalog management schemes degrades, as
the read query ratio is increased.

Figure 4.9 shows that PC for update queries is in-
sensitive to the different read query ratio, and has the
best performance among the three catalog management
schemes. CC follows PC, and FRCUA has the worst
performance. The response time results of FRCUA and
CC are significantly improved ss the read query ratio
increases. The explanation lies in the fact that queu-
ing delay in the catalog disk queue is considerably de-
creased. In CC, all update queries are processed at the
catalog disk of the central site where whole catalogs are
stored, and in FRCUA all update queries need to ac-
cess the catalog disk at all sites. In addition, FRCUA
needs the centralized two-phase commit protoco!.

4.4.4 Experiment 4: Different Local Query
Ratio

Finally, Experiment 4 is performed to identify how the
performance of the catalog management schemes be-
haves when the local query ratio is varied. The local
query ratio is varied from 0 to 1. Local query ratio of 1
means that all queries access the only relations stored
at local site. Here, queries include both read queries
and update queries.

Figures 4.10 and 4.11 summarize the response times
of read and update qaeries. For read queries, CC prcr
vides the worst performance, since all read queries gen-
erated from any site need to access the central site to
lock the associated catalog entries for all local query
ratio ranges. Thus, even when the local query ratio is
1 where all queries reference only local objects, CC is
still noticeably worse than FRCUA and PC in its per-
formance. Figure 4.10 shows that the performance of
all of the catalog management schemes for read queries

202

Figure 4.2: Response time of Figure 4.3: Response time of Figure 4.4: Response time of
read queries. update queries. read queries.

Figure 4.5: Response time of Figure 4.6: Queuing delay of read Figure 4.7: Queuing delay of update
update queries. queries in the data disk queue. queries in the blocked queue.

‘6
‘A Read q&y ratio

0.b 1

Figure 4.8: Response time of Figure 4.9: Response time of Figure 4.10: Response time of
read queries. update queries. read queries.

-,-
t

- 2.0 -
s
s ::

dl.5 - . .." cc
r+trFIKUA

i

-PC

'Z

$ 1.0 -

s

4

"Uor-

00
0. 0.5

Locool query %tio
o.b

203

Figure 4.11: Response time of update queries.

is improved as the local query ratio increases. The rea-
son is as follows. When a nad que y is generated from
a terminal at a site, its corresponding access module is
invoked at the local site, and its execution is initiated.
As the local query ratio increases, the probability that
the query units of an access module be processed at the
same site increases. Then the probability that the data
messages generated at one site be transmitted to an-
other site to be joined (via pipelined semijoin method)
decreases. Therefore, the queuing delay in the msg-cpu
queue also is reduced.

Figure 4.11 shows that FRCUA for update queries
has the worst performance for all local query ratio
ranges because of the same reasons described in Ex-
periment 1. However, its performance is improved as
the local query ratio increases. This is due to the fact
that more read queries can be processed locally as the
local query ratio increases, leading to the reduction of
queuing delay in the msg-cpu queue. As one would
expect, the performance, of CC for update queries is
relatively little affected by the change of local query
ratio. Its minor improvement is attributed to the fact
that queuing delay in the msg-cpu queue is decreased,
since read queries need to access only local site (and
the central site). The performance of PC for update
queries is also slightly improved because the CPU time
needed to message processing and communication time
are reduced. An access module holds the shared locks
to the associated catalog entries until its completion.
During this period, any update query which wishes to
lock the same catalog entries in an exclusive mode must
await the release of the locks. If some of the query units
of an access module are invoked from the remote sites
and processed there, shared locks are held for longer
periods, leading to the increase of the queuing delay in
the blocked queue. Thus, the queuing delay of update
queries in the blocked queue turns out to be strongly
correlated to the queuing delay in the msg-cpu queue.

5. Conclusions
In this paper, the performance of the three catalog ar-
chitectures measured in terms of running access mod-
ules is examined using simulation in a locally dis-
tributed database system. The effect of several im-
portant parameters on the relative performance of the
three catalog management schemes is studied and an-
alysed.

The three catalog management schemes considered
include the centralized catalogs (CC), the fully repli-
cated catalogs with unanimous agreement (FRCUA),
and the partitioned catalogs (PC). For read queries, in
no situation does CC become the catalog management
of choice. This is due to the fact that all read queries
generated from any site need to access the central site
to lock the associated catalog entries in a shared mode.
It is found that there is only one situation in which FR-
CUA for read queries outperforms PC: the higher num-
ber of terminals. Except this case, the performance of
PC for read queries is better than FRCUA.

For update queries, FRCUA has the worst perfor-
mance for all simulation conditions because of the in-
herent needs to access all sites in a distributed database
system. FRCUA also needs the centralized two-phase
commit protocol to treat an update query as a trans-
action. PC performs best, since updates to the cata-
logs can be performed at one site (local or remote site)
where the catalog information to be updated is cur-
rently stored. CC has in-between performance.

This paper has concentrated primarily on the per-
formance issue of the catalog management schemes.
The main performance metric used to compare the per-
formance among several catalog architectures is the
response time. In certain cases, however, achieving
higher availability would be a major concern rather
than achieving higher performance. It would be useful
to study the performance-availability tradeoffs raised
by the catalog management schemes.

References

[l] E.Bertino, et al., “View Management in Dis-
tributed Database Systems,” IBM Research Re-
port RJ3851, San Jose, Calif., April 1983.

[2] M.J.Carey and M.Livny, “Distributed Concur-
rency Control Performance: A Study of Algo-
rithms, Distribution, and Replication,” Proc. 14th
Int’l Conf. on VLDB, LA, Calif., Sept. 1988,
pp.13-25.

[3] W.W.Chu, “Performance of File Directory Sys-
tems for Data Bases in Star and Distributed Net-
works,” Proc. AFIPS, 1976, pp.577-587.

[4] D.W.Cornell and P.S.Yu, “On Optimal Site
Assignment for Relations in the Distributed

204

PI

PI

PI

PI

PI

WI

Pll

WI

P31

WI

WI

WI

1171

Database Environment,” IEEE Trans. on Software
Eng. SE15,8 (Aug. 1989), pp.1004-1009.

D.Daniels and A.Z.Spector, “An Algorithm for
Replicated Directories,” ACM Annual Symp. on
Principles of Dist. Comput., 1983, pp.104113.

L.W.Dowdy and D.V.Foster, “Comparative Mod-
els of the File Assignment Problem,” ACM Com-
puting Surveys 14,2 (June 1982), pp.287-313.

J.Gray, “Notes on Data Base Operating Systems,”
Operating Systems: An Advanced Course, Lec-
ture Notes in Computer Science:60, Edited by:
R.Bayer, et al., Springer-Verlag, 1979.

E.K.Hong, “Modeling and Evaluation of Three
Catalog Management Schemes in a Distributed
Database System,” Jour. of Korea Information
Science Society 16,2 (March 1989), pp.178-189 (in
Korean).

E.K.Hong and J.W.Cho, “Performance Evalua-
tion of Catalog Management Schemes in Dis-
tributed Database Systems,” Information Systems
16,2 (1991), pp.125-144.

E.K.Hong, “Performance Evaluation of Catalog
Architectures in Distributed Database Systems,”
Ph.D. Thesis, Dept. of Computer Science, KAIST,
Seoul, Korea, Feb. 1991.

IBM Corporation, SQL/Data System Concepts
and Facilities, IBM Reference Manual GH245013-
2, File No. S370/4300-50, Aug. 1983.

R.B.Kolstad, et al., “Path Pascal User Manual,”
2nd Edition, Univ. of Illinois-Champaign, Dept. of
Computer Science, Nov. 1984.

B.G.Lindsay, “Object Naming and Catalog Man-
agement for a Distributed Database Manager,”
IBM Research Report RJ2914, San Jose, Calif.,
Aug. 1980.

B.G.Lindsay and P.G.Selinger, “Site Autonomy
Issues in R': A Distributed Database Manage-
ment System,” IBM Research Report RJ2927, San
Jose, Calif., Sept. 1980.

G.M.Lohman, et al., “Query Processing in R',"
IBM Research Report RJ4272, San Jose, Calif.,
April 1984.

G.M.Lohman, Personal communication, 1987.

H.Lu, “Distributed Query Processing with Load
Balancing in Local Area Networks,” Ph.D. Thesis,
Computer Sciences Technical Report #624, Univ.
of Wisconsin-Madison, Dec. 1985.

WI

WI

WI

WI

P21

P31

Y.Matsushita, et al., “Cost Evaluation of Di-
rectory Management Schemes for Distributed
Database Systems,” Proc. ACM SIGMOD Con-
ference, 1980, pp.117-124.

D.J.Rosenkrantz, et al., “System Level Concur-
rency Control for Distributed Database Systems,”
ACM Trans. on Database Systems 3,2 (June
1978), pp.178198.

J.B.Rothnie,Jr., et al., “Introduction to a System
for Distributed Databases (SDD-l),” ACM Trans.
on Database Systems 5,l (March 1980), pp.l-17.

M.Stonebraker and E.Neuhold, “A Distributed
Data Base Version of INGRES,” 1977 Berkeley
Workshop on Distributed Data Management and
Computer Networks, May 1977, pp.1936.

P.F.WiIms and B.G.Lindsay, “A Database Au-
thorization Mechanism Supporting Individual and
Group Authorization,” IBM Research Report
RJ3137, San Jose, CaIif., May 1981.

P.F.WiIms, et al., ““I wish I were over there” : Dir+
tributed Execution Protocols for Data Definition
in R'," IBM Research Report RJ3892, San Jose,
CaIif., May 1983.

205

