
Analysis of Dynamic Load Balancing Strategies for 
Parallel Shared Nothing Database Systems 

Erhard Rahm 
Robert Marek 

University of Kaiserslautem , Germany 
E-mail: ( rahm I marek )@infommtik.uni-kl.de 

Abstract 
Parallel database systems have to support both inter-transac- 
tion as well as intra-transaction parallelism. Inter-uansac- 
tion parahelism (multi-user mode) is required to achieve 
high throughput, in particular for OLTP transactions, and 
sufficient cost-effectiveness. Irma-transaction parallelism is 
a prerequisite for reducing the response time of complex and 
data-intensive transactions (queries). In order to achieve 
both goals dynamic strategies for load balancing and sched- 
uling are necessary which take the current system state into 
account for allocating transactions and subqueries to proces- 
sors and for determining the degree of intra-transaction par- 
allelism. We study the load balancing problem for parallel 
join processing in Shared Nothing database systems. In 
these systems, join processing is typically based on a dy- 
namic redistribution of relations to join processors thus 
making dynamic load balancing strategies feasible. In par- 
ticular, we study the performance of dynamic load balancing 
strategies for determining the number of join processors and 
for selection of the join processors. In contrast to previous 
studies on parallel join processing, we present a multi-user 
performance analysis for both homogeneous and heteroge- 
neous/mixed workloads as well as for different database al- 
locations. 

1 Introduction 
Parallel database systems are the key to high performance 
transaction and database processing [6]. These systems uti- 
lize the capacity of multiple locally distributed processing 
nodes interconnected by a high-speed network. Typically, 
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fast and inexpensive microprocessors are used as processors 
to achieve high cost-effectiveness compared to mainftame- 
based configurations. Parallel database systems aim at pro- 
viding both high throughput for on-line transaction process- 
ing (OLTP) as well as short response times for complex ad- 
hoc queries. To achieve high OLTP throughput, inter-trans- 
action parallelism (multi-user mode) is required in order to 
overlap transaction deactivations for I/O or remote database 
requests. Furthermore, single-user mode would result in poor 
cost-effectiveness since the available processing capacity 
could not fully be utilized. Intra-transaction (inua-query) 
parallelism is needed in order to provide short response times 
for complex queries [23]. OLTP and query performance 
should scale with the number of nodes: ideally adding pro- 
cessing nodes linearly improves OLTP throughput and query 
response times. 
Unfortunately, supporting both high OLTP throughput and 
short query response times are partially contradicting sub- 
goals due to increased resource and data contention between 
the two workload types. Data contention problems may be 
solved by a multiversion concurrency control scheme which 
guarantees that read-only queries do not suffer from or cause 
any lock conflicts [l, 211. Increased resource contention, on 
the other hand, is unavoidable since complex queries pose 
high CPU, memory and disk bandwidth requirements which 
can result in significant delays for concurrently executing 
(OLTP) transactions. Furthermore, intra-query parallelism 
inevitably causes increased communication overhead (com- 
pared to a sequential execution on one node) thereby reduc- 
ing the effective CPU utilization and thus throughput. In 
addition, it may be difficult to find a physical database allo- 
cation supporting both workload types. Efficient OLTP pro- 
cessing can be supported by a clustering of data so that 
selective queries can be processed with a minimum of com- 
munication. Effective parallelization of complex queries, on 
the other hand, requires a declustering of data across many 
disks so that many processors can be utilized in parallel to re- 
duce response time. 
To limit and control resource contention between concurrent 
transactions and queries, there is a clear need of dynamic 
scheduling and load balancing strategies. Within a process- 
ing node, local scheduling components have to be extended 
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to control local resource contention, e.g., by adding support 
for transaction priorities [16, 8, 21. To effectively utilize a 
distributed system, the workload must be allocated among 
the processing nodes such that load balancing is achieved (so 
that the capacity of different processing nodes is evenly uti- 
lized) to limit resource (CPU) contention. At the same time, 
workload allocation should support a compromise with re- 
spect to communication overhead such that both a sufficient- 
ly high throughput and intra-transaction parallelism can be 
achieved. This requires a dynamic query processing ap- 
proach where the degree of intra-query parallelism as well as 
the determination of which processing nodes should process 
a given query are made dependent on the current system state 
at query run time. As we will show, the optimal degree of in- 
tra-transaction parallelism (which yields the best response 
time) is generally the lower the higher the system is utilized. 
This is because the communication overhead associated with 
a high degree of inua-transaction parallelism is less afford- 
able when processors are highly utilized. 
In this paper, we study the performance of several static and 
dynamic load balancing (workload allocation) alternatives 
for parallel query processing in Shared Nothing systems. 
Currently, Shared Nothing represents the major architecture 
for intra-query parallelism and is adopted by several DBMS 
products and prototypes [6]. Unfortunately, the potential for 
dynamic load balancing is limited for Shared Nothing be- 
cause for many operations the execution location is statically 
determined by the partitioning and allocation of the database 
among processing nodes. This is particularly the case for 
scan (selection) operations which are always executed where 
the data to be processed resides. However, for database op- 
erators like join which typically work on derived data (inter- 
mediate results), dynamic load balancing becomes feasible 
by dynamically redistributing the data. 
For this reason, our performance (simulation) study primari- 
ly concentrates on parallel join processing in multi-user 
mode. While several previous studies have analysed the per- 
formance of parallel join processing (see next section), these 
studies were all restricted to single-user mode. This corre- 
sponds to a best-case situation with little or no resource con- 
tention; as a result there is little need for dynamic load 
balancing in this case (see Section 3). For dynamic load bal- 
ancing in multi-user mode, we investigate several heuristics 
for choosing the degree of join parallelism and/or the join 
processors themselves according to the current system state 
at query run time. Multi-user experiments will be presented 
for both homogeneous and heterogeneous (mixed) work- 
loads. We also consider the influence of the database alloca- 
tion, in particular the degree of declustering (full vs. partial 
declustering). For comparison purposes, results for static 
load balancing strategies and single-user mode are also anal- 
ysed. 

The remainder of this paper is organized as follows. The next 
section contains a brief survey of related studies on load bal- 
ancing and parallel join processing. In Section 3 we motivate 
the need for dynamic load balancing strategies by presenting 
some basic simulation experiments demonstrating that the 
optimal degree of join parallelism depends on the current 
system utilization. Section 4 provides an overview of our 
simulation system. In Section 5 we describe and analyse sim- 
ulation experiments that were conducted to study the perfor- 
mance of different load balancing strategies for different 
database and workload configurations. Finally, we summa- 
rize the major findings of this investigation. 

2 Related Work 
A substantial amount of research has been conducted on load 
balancing in general distributed systems and in distributed 
operating systems [4,34,29]. However, these studies usually 
assumed that each job can be equally processed by any node 
and that each job only requires CPU and memory resources. 
Load balancing is much more complex for distributed data- 
base processing since the performance is influenced by addi- 
tional factors like disk I/O, data contention and 
communication frequency. For non-parallel (distributed) da- 
tabase processing, a so-called affinity-based workload allo- 
cation is generally advisable [33,24]. It assigns transactions 
with an affinity to the same database portions to the same 
processing nodes to support locality of reference and to re- 
duce the communication requirements. Such a workload al- 
location is primarily concerned with assigning entire 
transaction requests to processing nodes; a survey of such 
transaction routing strategies can be found in [24]. For dis- 
tributed and parallel database processing, an additional load 
distribution for smaller work granules (subqueries) has to be 
performed by the nodes’ DBMS. As already mentioned, for 
Shared Nothing this load distribution is largely influenced by 
the physical database allocation, but parallel processing of 
some complex query types, in particular join queries, permits 
a dynamic load balancing. 
A number of studies has already addressed load balancing is- 
sues for parallel query processing. However, dynamic load 
balancing was mainly considered for parallel Shared Memo- 
ry (multiprocessor) DBMS so far [14, 15, 13, 181. In this 
case, dynamic load balancing is easily achieved since the op- 
erating system can automatically assign the next ready pro- 
cess/subquery to the next free CPU. Furthermore, the shared 
memory supports very efficient interprocess communication 
so that the overhead for starting/terminating subqueries is 
much lower than for Shared Nothing. On the other hand, the 
number of processors is typically small for Shared Memory 
(I 30) thus restricting the degree of inter-/intra-transaction 
parallelism and the potential for dynamic load balancing. 
For Shared Nothing, physical database design aims at sup- 
porting a static form of load balancing for complex queries 
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by decbering relations across many nodes to support a 
high degree of intraquery parallelism [3, lo]. Such an ap- 
proach is not only static but also limited to intra-query load 
balancing. In multi-user mode, the chosen database alloca- 
tion can easily lead to poor load balancing since the actual 
workload mix may constantly change while physical data- 
base design must be based on an expected average load pro- 
file. Another form of static load balancing has been 
considered in [5] in order to find a processor allocation for 
inter~perator parallelism (processing of multi-way joiis). 
The processor allocation was already determined at query 
compile time assuming single-user mode, thus only intra- 
query load balancing can be achieved. 
Dynamic forms of load balancing have been proposed for 
join processing in or&r to deal with data skew [31,30,7]. 
These approaches dynamically determine the size of inter- 
mediate results in order to redistribute the data among join 
processors such that they have to perform about the same 
join work (in order to minimize execution skew). However, 
this also can only guarantee in&a-query load balancing 
which may easily be destroyed in the case of multi-user 
mode. Other performance studies of parallel join processing 
for Shared Nothing (without data skew) also assumed sin- 
gle-user mode, e.g., [26,27,22]. The only multi-user perfor- 
mance studies of intra-transaction parallelism for Shared 
Nothing we are aware of are [9,19]. However, these papers 
only considered scan (selection) queries and did not address 
dynamic load balancing. 

3 The Need for Dynamic Load Balancing for 
Parallel Join Processing 

In this section, we present some basic simulation results on 
parallel join processing to illustrate the need for dynamic 
load balancing. The results were obtained with a detailed 
simulator of Shared-Nothing systems to be described in Sec- 
tion 4. Join processing is based on a dynamic redistribution 
of the relations to be joined. Typically the input data for the 
join is obtained by scan operations that redistribute their out- 
put to a specified number of join processors by applying a 
hash function on the join attribute. By using the same hash 
function for the two relations to be joined, it is guaranteed 
that all matching tuples arrive at the same join processor 
WI. 
Apparently, the number of join processors (degree of join 
parallelism) is a critical parameter of this approach since it 
determines the maximal response time speedup compared to 
a sequential join processing. To study which degree of join 
parallelism minimizes response time we conducted a num- 
ber of simulation runs for both single-user and multi-user 
environments. For this experiment we assumed a join query 
similar to the Wisconsin joinABprime query 1121, but with 
additional selections on both input relations. One relation 
(A) contains 1 million tuples, the other (Bprime) 100.000 tu- 

pies; the join result has the same size as the scan output on 
the smaller relation. The scans on both relations are support- 
ed by a clustered index. The system was assumed to consist 
of 80 processing nodes; both relations are declustered across 
40 disjoint nodes (disks). 
Fig. 1 shows the average single-user response times for this 
join query and system configuration for different degrees of 
join parallelism (l-80) and scan selectivities. The join pro- 
cessors are selected at random. For each selectivity we have 

# of join 
processors vs. 
scan selectivity 

E 
10 % 

1% 

0.1 % 

40 80 

786 1 741 

219 1 255 

162 1 201 

Figure 1: Single-user response time (in ms) for different 
degrees of join parallelism and scan selectivities 

printed the best response time in boldface in Fig. 1 to indi- 
cate the optimal number of join processors. One observes 
that a high number of join processors is most effective for 
“large” joins, i.e., for high scan selectivity (10%). In this 
case, response times could continuously be improved by in- 
creasing the degree of join parallelism. For small joins (se- 
lectivity 0.1%) response times improved only for up to 10 
join processors. This is because the work per join processor 
decreases with the degree of join parallelism, while the com- 
munication overhead for redistributing the data increases. 
Note that the response time improvements are constrained 
not only by communication delays, but also by the fact that 
the scan portion of the response times is not improved when 
increasing the number of join processors. 

We observed that in single-user mode when the entire system 
is at the disposal of a single query, the optimal degree of join 
parallelism can statically be determined at query compile 
time (if no data skew occurs). This is because the optimal 
number of join processors is mainly determined by the ratio 
of communication overhead and useful work per node and 
thus by rather static parameters such as the cost of message 
passing, CPU speed, network capacity, database allocation, 
relation sizes and scan selectivity. Provided these basic pa- 
rameters are known or can be determined experimentally, we 
can thus use an analytical formula to calculate the approxi- 
mate response time for a given number of join processors. 
This also allows calculation of the optimal degree of join 
parallelism by setting the derivative of the response time for- 
mula to zero, similarly as described in [32]. 
For the multi-user experiment, we varied the arrival rate for 
our join query. The resulting response time results for differ- 
ent degrees of join parallelism and 0.1% scan selectivity are 

184 



shown in Fig. 2. The results show that multi-user mode sig- 
nificantly increases query response times due to increased 
resource (CPU) contention and higher communication over- 
head. Furthermore, the effectiveness of join parallelism in- 
creasingly deteriorates with growing arrival rates (queries 
per second, QPS). As a result, the optimal degree join paral- 
lelism for single-user mode does not yield the best response 
times in multi-user mode. Rather the optimal degree of join 
parallelism depends on the arrival rate and thus on the cur- 
rent system utilization; it becomes the lower the higher the 
system is utilized. This is because the communication over- 
head increases with the number of join processors which is 
the less affordable the more restricted the CPU resources 
are. 
For the join with 0.1% scan selectivity (Fig. 2) the optimal 
join parallelism was only 1 (sequential execution) for an ar- 
rival rate of 55 QPS. For this arrival rate, the single-user op- 
timum of 10 join processors results in a response time that is 
2.7 times higher than for the multi-user optimum. 

z;y 11 182 1 162 1 147 1 141 1 140 1 144 1 

I 15 QPS 11 204 1 184 1 179 1 192 1 198 1 257 1 

35 QPS 249 240 261 338 394 894 

55 QPS 310 325 381 604 856 ---- 

Figure 2: Multi-user response time (in ms) for different degrees 
of join parallelism and arrival rates (selectivity 0.1 %) 

Our experiment shows that the degree of join parallelism 
may be statically determined for single-user mode, but that 
there is a strong need for dynamic load balancing for parallel 
join processing in multi-user mode. This leads to the prob- 
lem of how the degree of join parallelism can be determined 
dynamically? For this purpose, we have implemented a sim- 
ple heuristic in our Shared Nothing simulator. It uses the op- 
timal single-user join parallelism as the default which is then 
dynamically decremented according to the system (CPU) 
utilization at query run time. Apart from dynamically deter- 
mining the degree of join parallelism p, we are also studying 
several alternatives for selecting the p join processors from 
the available processing nodes. In Section 5, the various load 
balancing strategies are described in more detail when we 
present the simulation results. 

4 Simulation Model 
Our simulation system models the hardware and database 
processing logic of a generic Shared Nothing DBMS archi- 
tecture. The system has been implemented using the discrete 
event simulation language DeNet [ 171. Our system consists 
of three main components: workload generation, workload 
allocation and processing subsystem (Fig. 3). The workload 
generation component models user terminals and generates 
work requests (transactions, queries). The workload alloca- 
tion component assigns these requests to the processing 
nodes (processing elements, PE) where the actual transac- 
tion/query processing takes place. We tirst describe work- 
load generation and allocation; in 4.2 we sketch the 
modelling of workload processing. 

4.1 Workload Generation and Allocation 

Database model 

Our database model supports four object granularities: data- 
base, partitions, pages and objects (tuples). The database is 
modeled as a set of partitions. A partition may be used to rep- 
resent a relation, a relation fragment or an index structure. It 
consists of a number of database pages which in turn consist 
of a specific number of objects (tuples, index entries). The 
number of objects per page is determined by a blocking fac- 
tor which can be specified on a per-partition basis. Differen- 
tiating between objects and pages is important in order to 
study the effect of clustering which aims at reducing the 
number of page accesses (disk I/OS) by storing related ob- 
jects into the same page. Furthermore, concurrency control 
may now be performed on the page or object level. Each re- 
lation can have associated clustered or unclustered B+-tree 
indices. 
We employ a horizontal data distribution of partitions (rela- 
tions and indices) at the object level controlled by a relative 
distribution table. This table defines for every partition Pj 
and processing element PEi which portion of Pj is allocated 
to PEi.This approach models range partitioning and supports 
full declustering as well as partial declustering. 

Workload generation 

Our simulation system supports heterogeneous workloads 
consisting of several query and transaction types. Queries 
correspond to transactions with a single database operation 
(e.g., SQL statement). Currently we support the following 
query types: relation scan, clustered index scan, non-clus- 
tered index scan, two-way join queries, multi-way join que- 
ries, and update statements (both with and without index 
support). We also support the debit-credit benchmark work- 
load (TPC-B) and the use of real-life database traces [191. 
The simulation system is an open queuing model and allows 
definition of an individual arrival rate for each transaction 
and query type. 
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For parallel join processing we have implemented a repre- 
sentative strategy based on hash partitioning. It applies a 
hash function on the join attribute to partition both input re- 
lations (scan output relations) to a specific number of join 
processors (dynamic data redistribution). This hash parti- 
tioning guarantees that tuples with the same join attribute 
value are assigned to the same join processor. This approach 
has the advantage that it offers a high potential for dynamic 
load balancing since the number and selection of join pro- 
cessors constitute dynamically adjustable parameters. We 
also support the special cases where one or both relations are 
partitioned on the join attribute so that only one or no rela- 
tion may have to be redistributed (see Section 5). This reduc- 
es the communication overhead for join processing but may 
limit the potential for dynamic load balancing. For local join 
processing we have modelled a sort-merge algorithm. At 
each join processor the input relations are first sorted on the 
join attribute. The sorted relations are then scanned and 
matching tuplcs are added to the output stream. The com- 
plete join result is obtained by merging the results of the dis- 
tributed local joins. 
In the query graphs of our model, parallelism is exprcsscd by 
means of a so-called paruffeliration meta-operator (PA- 
ROP). This operator implements inter- as well as intra-opcr- 
ator parallelism and encapsulates all parallelism issues, 
similar to the exchange operator used in the Volcano proto- 
type [l 11. In particular, the PAROP operator comprises two 
basic parallelization functions: a merge function which 
combines several parallel data streams into a single sequcn- 
tial stream, and a split function which is used to partition or 
replicate the stream of tuplcs produced by a relational opcr- 
ator [6]. 

Workload allocation 
Two forms of workload allocation have to bc distinguished. 
First, each incoming transaction (query) is assigned to one 
PE (acting as the coordinator for the transaction) according 
to a placement strategy. Our simulation system supports dif- 
fcrent placement strategies, in particular a random allocation 

/ 

-b 

Figure 3: Gross structure of the simulation system 

or the use of a routing table’. The second form of workload 
allocation deals with the assignment of suboperations to pro- 
cessors during query processing and depends on the opera- 
tors to be executed. For scan operators, the processor 
allocation is always based on a relation’s data allocation. For 
join processing, we support several static and dynamic strat- 
egies for determining the degree of join parallelism and for 
allocating the join processes to processors (e.g., random al- 
location or based on the current CPU utilization). More de- 
tails are provided in Section 5. 

4.2 Workload Processing 
The processing component models the execution of a work- 
load on a Shared Nothing system with an arbitrary number of 
PE connected by a communication network. Each PE has ac- 
cess to private database and log files allocated on external 
storage devices (disks). Internally, each PE is represented by 
a transaction manager, a query processing system, a buffer 
manager, a concurrency control component, a communica- 
tion manager and a CPU server (Fig. 3). 
The transaction manager controls the (distributed) execution 
of transactions. The maximal number of concurrent transac- 
tions (inter-transaction parallelism) per PE is controlled by a 
multiprogramming level. Newly arriving transactions must 
wait in an input queue until they can be served when this 
maximal degree of inter-transaction parallelism is already 
reached. The query processing system models basic relation- 
al operators (sort, scan, join) as well as the PAROP meta-op- 
erator (see above). 
Execution of a transaction starts with the BOT processing 
&gin of transaction) entailing the transaction initialiiration 
overhead. For each database operation of the transaction, the 
actual query processing is performed according to the rela- 
tional query tree. Basically, the relational operators process 
local input streams (relation fragments, intermediate results) 

1. The routing table specifies for every transaction type T, and 
processing clement PE, which percentage of transactions of 
type T. will bc assigned to PE,. It can be used to achieve an af- 
finity-based transaction routing. 
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and produce output streams. The PAROP operators indicate 
when parallel sub-transactions have to be started and pcr- 
form merge and split functions on their input data streams. 
An EOT step (end of transaction) triggers two-phase commit 
processing involving all PE that have participated during 
execution of the respective transaction. We support the opti- 
mization proposed in [20] where read-only sub-transactions 
only participate in the first commit phase. 
CPU requests are served by a single CPU per PE. The aver- 
age number of instructions per request can be defined sepa- 
rately for every request type. To accurately model the cost 
of query processing, CPU service is requested for all major 
steps, in particular for transaction initialization (BOT), for 
object accesses in main memory (e.g., to compare attribute 
values, to sort temporary relations or to merge multiple input 
streams), I/O overhead, communication overhead, and com- 
mit processing. 
For concurrency control, we employ distributed strict two- 
phase locking (long read and write locks). The local concur- 
rency control manager in each PE controls all locks on the 
local partition. Locks may be requested either at the page or 
object level. A central deadlock detection scheme is used to 
detect global deadlocks and initiate transaction aborts to 
break cycles. 
Database partitions can be kept memory-resident (to simu- 
late main memory databases) or they can be allocated to a 
number of disks. Disks and disk controllers have explicitly 
been modelled as servers to capture I/O bottlenecks. Disks 
are accessed by the buffer manager component of the asso- 
ciated PE. The database buffer in main memory is managed 
according to a global LRU (Least Recently Used) replace- 
ment strategy. 
The communication network provides transmission of mes- 
sage packets of fixed size. Messages exceeding the packet 
size (e.g., large sets of result tuples) are disassembled into 

, the required number of packets. 

5 Simulation Experiments and Results 
Our experiments concentrate on the performance of parallel 
join processing in multi-user mode. For comparison purpos- 
es, single-user experiments have also been conducted. The 
focus of the study is to compare different static and dynamic 
load balancing alternatives for determining the degree of 
join parallelism and for selection of the join processors. For 
this analysis, we consider different database allocations with 
full and partial declustering and the use of dedicated join 
processors with no associated permanent data. These sepa- 
rate join processors may be able to improve load balancing 
since they have no scan operations to execute. Two load pro- 
files are studied for multi-user mode: a homogeneous work- 
load only consisting of join queries that are concurrently 

executed as well as a heterogeneous (mixed) workload with 
both short OLTP transactions and join queries. 
In the next subsection, we provide an overview of the param- 
eter settings that are used for these experiments. In 5.2, we 
describe the single-user experiments. Multi-user experi- 
ments for the homogeneous and heterogeneous workload are 
analyzed in 5.3 and 5.4, respectively. 

5.1 Workload Profile and Simulation Parameter 
Settings 

Fig. 4 shows the major database, query and configuration pa- 
rameters with their settings. Most parameters are self-ex- 
planatory, some will be discussed when presenting the 
simulation results. The join queries used in our experiments 
perform two scans (selections) on the input relations A and 
B in parallel and join the corresponding results. The A rela- 
tion contains 1 million tuples, the B relation 250.000 tuples. 
The selections on A and B reduce the size of the input rela- 
tions according to the selection predicate’s selectivity (per- 
centage of input tuples matching the predicate). Both 
selections employ clustered indices. The join result has the 
same size as the scan output on B. Scan selectivity on both 
relations is set to 0.25%. The number of processing nodes is 
varied between 10 and 80. 
We investigate three different strategies for database parti- 
tioning and allocation: 

- Full Declustering (FD): 
Both relations are uniformly declustered across all PE. 

- Partial Declustering (PD): 
Both relations are uniformly declustered across disjoint 
sets of PE. To support a static load balancing for scan op- 
erations, each PE is assigned the same number of tuples. 
As a result the larger relation A is declustered across 
80% of the PE, while the remaining 20% of the PE hold 
tuplcs of relation B. 

- Separate Join Processors (SJP): 
In this case we reserve 20 processors for join processing 
and use partial declustering for allocating the two rela- 
trons across the remaining PE (i.e., A and B reside on 
disjoint PE). This allocation is only studied for contigu- 
rations with 20 and more PE; in the case of 20 PE only 
10 processors are reserved for join processing. 

The number of dedicated join processors in the SJP alloca- 
tion was set to 20 since this was determined to be the optimal 
degree of join parallelism for our join query in single-user 
mode when both relations have to be redistributed. 
Parameters for the I/O (disk) subsystem have been chosen so 
that no bottlenecks occurred (sufficiently high number of 
disks and controllers). The duration of an I/O operation is 
composed of the controller service time, disk access time and 
transmission time. The parameter settings for the communi- 
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cation network have been chosen according to the EDS pro- 
wpe 1281. 

5.2 Single-User Experiments 
In single-user mode we employed only static strategies for 
allocating the join work. Fig. 5a shows the average response 
times for our join query in the case of full declustering, Fig. 
5b for partial declustering and the use of separate join pro- 
cessors. Parallel join processing is either performed on the 
optimal number of join processors (20 for #PE 2 20,lO oth- 
erwise) or on all PE holding tuples of relation A. Except for 
SJP, join processors are selected at random when not all PE 
are used for join processing; for SJP join ptocessing is per- 
formed on the dedicated join processors. In most cases, the 
scan output of both relations was completely redistributed 
and sent to the join processors. We also considered two spe- 
cial cases permitting a smaller communication overhead for 
data redistribution. For full dechtstering, we additionally 
studied the case when no redistribution is necessary because 
both relations are partitioned on the join attribute and as- 
signed to the same set of PE. For partial declustering, we in- 
cluded results for the case when only the smaller relation B 
needs to be redistributed, assuming relation A is already par- 

titioned on the join attribute and the join is performed on the 
A nodes. 
Fig. 5 shows that the use of intra-query parallelism for scan 
and join processing reduces response times for up to 40 PE 
(20 PE in the case of full declustering when both relations are 
redistributed). However, no linear speedup is achieved since 
the communication overhead for starting/terminating subop- 
erations and data redistribution is comparatively high due to 
the high selectivity; for more than 40 PE the increasing com- 
munication overhead prevents further response time im- 
provements. For full declustering and single-user mode, 
performance is primarily determined by the communication 
overhead and not by the potential for dynamic load balanc- 
ing. Thus the best response times were achieved for the spe- 
cial case where no data redistribution was necessary for join 
processing. In the case when both relations are redistributed, 
choosing the optimal number of join processors (20) outper- 
forms the case where the join is performed on all nodes hold- 
ing fragments of relation A. This is because the latter 
strategy causes more communication overhead for data re- 
distribution for more than 20 PE since the join is then per- 
formed on more than 20 PE (80% of all PE). Similar 
observations hold for partial declustering. However the spe- 
cial case where only relation B is redistributed performs best 

Configuration settings Database/Queries settings 

number of PE (#PE) 10,20,40, 60.80 relation A: (200MB) 
CPU speed per PE 20 MIPS #tuples 1 .OOO.OOO 

tuple size 200 bytes 
avg. no. of instructions: blocking factor 40 
BOT 25000 in&x type clustered B+-tree 
EOT 25000 storage allocation disk 
I/o 3000 allocation to PE FD. PD. SJP 
send message moo 
receive message relation B: WW 
copy 8KB message :EY #tllpics 250.000 
scan object reference 1000 tuple size 200 bytes 
join object referen& 500 blocking factor 40 
sort n tupies n iogz(n) * 10 index type clustered B+-tree 

storage allocation disk 
buffer manager: allocation to PE FD. PD. SJP 
page size 8KB 
buffer size per PE 250 pages (2 MB) intermediate results: 

storage allocation disk 

disk devices: 
controller service time 1 ms (per pa& 

join queries: 
accessmethod via clustered index 

transmission time per page 0.4 ms input relations sorted FALSE 
avg. disk access time 15 ms scan sciectivily 0.25% 

no. of result tuples 625 
communkation 
network: 

size of rcsuit tuples 400 bytes 

packet size 128 bytes 
arrival rate single-user, multi-user (varied) 

avg. transmission time 8 microscc 
query placement random (uniformly over ail PE) 
join parallelism static /dynamic (DIP) 
selection of join 
processors random / dynamic (LUP, ALUP) 

Figure 4: System configuration, database and query profile. 
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only for up to 40 PE, for larger configurations it is outper- 
formed by the strategy redistributing both relations but lim- 
iting join processing to 20 PE. This was because the high 
number of join processors in the former strategy causes a 
comparatively high number of messages for redistributing 
relation B in addition to the high communication overhead 
for startup and termination of join processing. 

a) Full De&s&-ring 
300 F , , , , , , I , I , I 

- opt. # of join PE 

10 20 30 40 SO 60 70 80 

b) Partial Declustering (PD)l 
Separate Join Processors (SJP) 

300’,,,,‘,,,,,,,, 

N PD. join on all A PE 

t I - PD. opt. # of join 1 PE 

#PE 
10 20 30 40 SO 60 70 80 

Figure 5: Single-user results 

The use of separate join processors (SJP) did not prove use- 
ful since all PE were lightly loaded in single-user mode so 
that they are all good candidates, for join processing. How- 
ever, reserving 20 PE for join processing results in a smaller 
degree of scan parallelism since the two relations had to be 
assigned to fewer nodes. Hence, SJP response times were 
substantially worse than for FD or PD and the SJP optimum 
lies at 60 PE rather than 40 PE. Full declustering achieved 
better response times than partial declustering for a lower 
number of nodes, while PD outperforms FD for more than 
20 PE. This is because FD allows a higher degree of scan 
parallelism, but also leads to a higher communication over- 
head for starting the scan operations and redistributing the 
scan output. For a higher number of nodes the reduced com- 

munication overhead of PD is more significant than the low- 
er scan parallelism. This is also due to the comparatively low 
number of tuples to be processed per scan node for a higher 
number of PE. 

5.3 Multi-user experiments with homogeneous 
workload 

The homogeneous workload still consists of a single (join) 
query type, but we employ intra-query parallelism in combi- 
nation with inter-query parallelism. Since we want to support 
not only short response tunes but also good throughput we 
increase the query arrival rate proportionally with the num- 
ber of PE. We first present multi-user results for some of the 
static workload allocation strategies used in the preceding 
section. Afterwards we analyze the effectiveness of four dy- 
namic load balancing strategies. 

Static load balancing experiments 
Fig. 6 compares the single-user with multi-user response 
times for arrival rates of 0.4 and 0.5 QPS per PE in the case 
of full declustering for both relations. With respect to join 
processing, results for the special case with no data redistri- 
bution are shown as well as for a redistribution of both rela- 
tions. In the latter case, we always use the optimal single- 
user join parallelism (20 for #PE 2 20) and randomly select 
the join processors. One observes that for the considered ar- 
rival rates, the multi-user results are not much higher than for 
single-user mode if the joins can locally be performed with- 
out any data redistribution. While the communication over- 
head for redistributing both relations only causes a modest 
response time increase in single-user mode, response times 
rapidly deteriorate in multi-user mode for more than 20 PE. 
This is mainly caused by three factors. First, the use of full 

~---4 0.4 QPS/PE, no data redistribution 

XPE 
10 20 30 40 50 60 70 80 

Figure 6: Multi-user results for full declustering 
(static load balancing) 
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declustering causes a maximal communication overhead for 
scan and data redistribution as discussed above. Second, 
since we increase the total query load proportionally with 
the number of PE the communication overhead even in- 
creases quadratically with more processors. Thus, above a 
certain number of PE excessive resource contention is intro- 
duced. Finally, load balancing is static and does not consider 
the current system utilization, e.g., for determining the de- 
gree of join parallelism. 
To analyse the impact of the database allocation in multi- 
user mode, we compare the full dcclustering results with 
partial declustering and the use of separate join processors 
(Fig. 7). For this purpose, we only consider the general case 
with redistribution of both relations for an arrival rate of 0.5 
QPS per PE. Fig. 7 shows that partial declustering clearly 
outperforms full declustering for more than 10 PE due to its 
lower communication overhead which is much more signif- 
icant in multi-user than in single-user mode. The use of sep- 
arate join processors is slightly more effective than in single- 
user mode, but is still outperformed by PD and FD. The 
smaller number of scan processors for SJP allows for a re- 
duced communication overhead, but this cannot fully com- 
pensate the smaller degree of scan parallelism. SJP also 
suffers from load imbalances between the scan and join pro- 
cessors, in particular for more than 40 PE when the join pro- 
cessors become overIoaded2. 

separate join PE (SJP) 

10 20 30 40 50 60 70 80 

Figure 7: Multi-user results for different database alloca- 
tions (0.5 QPWPE) 

Dynamic load balancing experiments 

The preceding multi-user experiments showed that static 
load balancing leads to poor performance for a higher num- 
ber of PE when both relations are to be redistributed. We 
now study whether performance can be improved by dy- 
namic load balancing. The primary metric we use for dy- 
namically adapting the degree of join parallelism and for 

2. CPU requirements for the join portion of our query are 
slightly higher than for the scan portion. For more than 40 PE 
however, there are more scan than join processors for SJP. 

selecting the join processors is the current CPU utilization of 
the processors. For this purpose we assume that a designated 
control node is periodically informed by the PE about their 
current utilization. During the execution of a query, informa- 
tion on the current CPU utilization is requested from the con- 
trol node in order to support a dynamic load balancing. The 
following four dynamic strategies have been implemented 
for parallel join processing: 

- Dynamic adaptation of the degree of join parallelism 
(DJP) 
This strategy only determines the number of join proces- 
sors dynamically; selection of the join processors from 
the available PE is at random. We use the single-user op- 
timum psu+ as the maximal degree of parallelism for 
multi-user mode and reduce this value according to the 
current system utilization. We tested several alternatives 
for finding a good multi-user degree of join parallelism 
pmu and finally used the following formula: 

P,” = Psuq (1 - u3>. 
In this formula, u denotes the current average CPU utili- 
zation of all PE obtained from the control node. For an 
average CPU utilization of 50% (u = 0.5), this approach 
reduces the single-user value by 12.5%; for u = 0.9 the 
degree of join parallelism is reduced by about a factor 4. 
The formula reflects our observation that for a low CPU 
utilization (u c 0.5), reducing the degree of join parallel- 
ism is more detrimental to performance than the commu- 
nication overhead associated with the optimal single- 
user degree of join parallelism. For u > 0.5, on the other 
hand, communication overhead must be reduced to keep 
resource contention acceptable. 

- Join processing on least utilized processors (LUP) 
In this approach, the degree of join parallelism is statical- 
ly determined (e.g., P,,-+) but the join processors are 
selected dynamically. We simply select the least utilized 
processors as join processors. 

- Adaplive LVP (ALUP) 
This strategy is an adaptive variation of the previous one 
which exhibited an undesirable behavior. We observed 
that the simple LUF’ policy tends to select the same join 
processors for two consecutive queries (causing load im- 
balances) since information on CPU utilization is updat- 
ed only periodically. The ALUP strategy tries to correct 
the problem by artificially increasing the utilization of 
those processors at the control node which have been se- 
lected for join processing. This makes it less likely that 
following queries choose the same join processors. 

- Combined dynamic strategy (DJP + ALUP) 
This combined strategy dynamically determines the de- 
gree of join parallelism pmu according to the DJP policy. 
In addition the p,,,” join processors are chosen according 
to the ALUP approach. 

Simulation results for these strategies are shown in Fig. 8 for 
an arrival rate of 0.5 QPS per PE and partial declustering. For 
comparison, we have also included the result for static load 
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Figure 8: Multi-user results with dynamic load balancing 
for partial declustering (0.5 QPS per PE) 

balancing (random selection of psu+ join processors). Fig. 
8 shows that the dynamic strategies clearly outperform static 
load balancing for more than 40 PE, except the simple join 
processor selection policy LUP. This was due to the above- 
mentioned problem of LUP which prevented a more effec- 
tive load balancing than for random allocation. Note, that 
even the static case allowed for a comparatively good load 
balancing for the homogeneous workload. This is because 
the scan workload is evenly balanced for the chosen data- 
base allocations and random selection of join processors 
also achieves a balanced average CPU utilization. However, 
the actual CPU utilization may still vary significantly for 
different PE and this fact is utilized by the ALUP policy. 
This adaptive strategy could substantially improve response 
times for higher utilization levels (large number of PE) by 
selecting lowly utilized processors for join processing to re- 
duce resource contention. The DJP was even more effective 
since it reduced the communication overhead by selecting 
fewer join processors for a higher number of PE. The com- 
bined dynamic policy was clearly the best load balancing 
strategy. It could actually combine the advantages of the 
DJP and ALUP policies so that communication overhead 
and resource contention are reduced. The fact that response 
times kept comparatively low despite the fact that arrival 
rams increase proportionally with the number of PE shows 
that the combined dynamic strategy was able to support both 
a linear throughput increase as well as short response times. 
In Fig. 9 we compare the effectiveness of the combined dy- 
namic load balancing strategy for full declustering, partial 
declustering and the use of separate join processors. A com- 
parison with Fig. 7 shows that in all three cases the dynamic 
strategy substantially improves response times compared to 
static load balancing. This was particularly the case for the 
use of separate join processors which were overloaded for 
more than 40 PE under static load balancing. The dynamic 
strategy eliminated the join bottleneck by also considering 
the scan processors for join processing so that an even CPU 
utilization could be achieved across all PE. For more than 40 
PE, SJP outperforms partial dcclustering since it incurs a 

100’ WE 
10 20 30 40 50 60 70 80 

Figure 9: Dynamic load balancing (DIP + ALUP) for different 
database allocations (0.5 OPVPE) 

smaller communication overhead-for scan processing. 
Again, full declustering incurs the highest communication 
overhead thus causing a high resource contention for a larger 
number of PE even under optimal load balancing. 

5.4 Multi-user experiments with heterogeneous 
workloads 

In the homogeneous multi-user experiments, a comparative- 
ly good load balancing was already supported by the chosen 
database allocation. Furthermore, the use of a single query 
type resulted in a similar load situation at the different pro- 
cessing nodes (except for SJP). We now study the effective- 
ness of dynamic load balancing for heterogeneous 
workloads consisting of one OLTP transaction type and our 
join query. For OLTP processing, we assume a simple trans- 
action type accessing only one relation (A or B) and that an 
affinity-based routing can achieve a largely local processing 
(similar to debit-credit). For the concurrent execution of join 
queries, we study single-user join processing (only one join 
query is executed at a time concurrently with OLTP) and 
multi-user join processing. 
Fig. 10 shows the average join response times for two mixed 
workloads differing in whether the OLTP transaction type is 
accessing relation A (Fig. 10a) or relation B (Fig. lob). In 
both cases we assume a partial declustering of the relations 
and an OLTP transaction rate of 150 TPS (transactions per 
second) per A (B) node. The OLTP workload causes a CPU 
utilisration of about 50% per A (B) node. For multi-user join 
processing, we use an arrival rate of 0.1 QPS per PE. Static 
load balancing for the join query refers to the case where the 
join is performed on psu+ processors that are randomly se- 
lected. For dynamic load balancing we use the combined 
strategy which dynamically adapts the degree of join paral- 
lelism (DJP) and which selects the join processors based on 
the current CPU utilization (ALUP). 
We observe that for the mixed workloads dynamic load bal- 
ancing is in deed even more effective than for the homoge- 
neous load, in particular for multi-user join processing. 
Again, the differences between static and dynamic load bal- 

191 



a) OLTP on A nodes 

1100 

MO 

700 

500 

300 

zoo1o 20 30 40 50 
b) OLTP on B nodes 

,,M#PE 
10 20 30 40 50 60 70 80 

Figure 10: Static vs. dynamic load balancing (DJP + ALUP) 
for mixed workloads 

ancing increase with the number of PE. This is because the 
communication overhead per join query increases with more 
processors and thus the average CPU utilization. The abso- 
lute join response times are substantially higher for OLTP 
processing on the A nodes (Fig. 1Oa) since we have the four- 
fold OLTP throughput in this case and thus a reduced poten- 
tial for load balancing. For OLTP processing on the B nodes, 
the A nodes are only lightly loaded and therefore ideally suit- 
ed for join processing. This could be utilized by our dynamic 
load balancing strategy and caused a substantial response 
time improvement for more than 20 PE (Fig. lob). For 80 
PE, dynamic load balancing could cut response times by half 
(100% improvement) compared to static load balancing. 

6 Summary 
We have presented a simulation study of parallel join pro- 
cessing in Shared Nothing database systems, In contrast to 
previous studies, we focussed on the performance behavior 
in multi-user modasince we believe this will be the operating 
mode where parallel query processing must be successful in 
practice. Multi-user mode means that only limited resources 
are available for query processing and that both response 
time and throughput requirements must be met. This neces- 
sitates dynamic scheduling and load balancing strategies for 
assigning relational operators during query processing. 

In contrast to scan operations, parallel join strategies offer a 
high potential for dynamic load balancing. This is because 
joins are generally performed on intermediate results which 
are dynamically redistributed among several join processors 
to perform the join in parallel. The number of join processors 
(degree of join parallelism) and the selection of these proces- 
sors represent dynamically adjustable parameters. Our exper- 
iments demonstrated that effectively parallelizing join 
operations is much simpler in single-user than in multi-user 
mode. In single-user mode the optimal degree of join paral- 
lelism is largely determined by static parameters known at 
query compile time, in particular the database allocation, re- 
lation sizes and scan selectivity. Selection of the join opera- 
tors is also easy since all processors are lowly utilized in 
single-user-mode. 
In multi-user mode, the optimal degree of join parallelism de- 
pends on the current system state and is the lower the higher 
the nodes are utilized. Using static load balancing strategies 
is therefore not appropriate for join processing in multi-user 
mode and was shown to deliver sub-optimal performance. 
We therefore studied four simple dynamic load balancing 
strategies for dynamically determining the degree of join par- 
allelism and for selection of the join processors. Most effec- 
tive was a combined strategy which adjusts both parameters 
according to the current load situation. It determines the 
multi-user join parallelism by reducing the optimal single- 
user join parallelism according to the current CPU utilization. 
Join processing is assigned to the least utilized processors. To 
avoid that consecutive queries select the same processors for 
join processing, we found it necessary to artificially increase 
the utilization of newly selected join processors to account for 
the delayed updating of information on the current CPU utili- 
zation. With the dynamic strategy it was possible to keep join 
response times low while increasing throughput linearly with 
the number of nodes. The effectiveness of the dynamic load 
balancing strategy was particularly pronounced for mixed 
workloads consisting of short OLTP transactions and com- 
plex join queries. 
While the dynamic adaptation of the degree of join parallel- 
ism was able to reduce the communication overhead, the 
communication requirements and thus the potential for load 
balancing are largely influenced by the static database alloca- 
tion. We studied different configurations with a full and par- 
tial declustering of relations and the use of separate join 
processors. In multi-user mode, full declustering of relations 
is generally not acceptable for higher number of nodes. This 
is because the increased potential for scan parallelism is then 
outweighed by the high communication overhead which is 
the less affordable the higher the system is utilized. The use 
of separate join processors can improve the potential for dy- 
namic load balancing since these processors have no scan 
work to perform. However, as our results for mixed work- 
loads have shown a similar potential for dynamic load balanc- 
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ing may also be achieved without separate join processors [ 171 Livny, M.: DcNct Users’s Guide, Version 1 S. Computer 
since the current utilization of the nodes may substantially Science Department, University of Wisconsin, Madison, 

differ. 
1989. 

In future work, we will study further aspects of parallel query 
1181 Lu. H., Tan, K.: Dynamic and Load-Balanced Task- 

Oriented Database Query Processing in Parallel Sys- 
Drocessinr! in multi-user mode that could not be covered in terns. Proc. HIB7’. LNCS 580.357-372.1992 
‘,is papery In particular, we plan to investigate the impact of [19] Marck, R., Rahm, E.: Performance Evaluation of Paral- 

data skew in multi-user mode. Furthermore, we will study 
lel Transaction Processing in Shared Nothing Data- 

dynamic load balancing strategies for parallel Shared Disk 
base Systems, Proc. 4th Int. PARLE Cor$ (Parallel Archi- 
tectures and Languages Europe), Springer-Verlag. Lecture 

systems. These systems are not based on a static database al- Notes in Computer Science 605.295-310. 1992 

location among nodes so that there is a high load balancing [20] Mohan. C., Lindsay, B.. Obermarck, R.: Transaction 

potential even for scan processing [25]. Management in the R* Distributed Database Manage- 
ment System. ACM Trans. on Database System II (4). 
378-396, 1986 
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