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Abstract 

This paper considers the problem of detecting indepen- 
dence of a queries expressed by datalog programs from 
updates. We provide new insight into the independence 
problem by reducing it to the equivalence problem for dat- 
alog programs (both for the case of insertion and deletion 
updates). Equivalence, as well as independence, is unde- 
cidable in general. However, algorithms for detecting sub- 
classes of equivalence provide sufficient (and sometimes 
also necessary) conditions for independence. We consider 
two such subclasses. The first, query-reachability, general- 
izes previous work on independence [BCL89, E190], which 
dealt with nonrecursive programs with a single occurrence 
of the updated predicate. Using recent results on query- 
reachability [LS92, LMSS93], we generalize these earlier 
independence tests to arbitrary recursive datalog queries 
with dense-order constraints and negated EDB subgoals. 
The second subclass is uniform equivalence (introduced 
in [S&S]). We extend the results of [SaSSI to datalog 
programs that include dense-order constraints and strati- 
fied negation. Based on these extensions, we present new 
cases in which independence is decidable and give algo- 
rithms that are sound for the general case. Aside for their 
use in detecting independence, the algorithms for detect- 
ing uniform equivalence are also important for optimizing 
datalog programs. 
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1 Introduction 

We consider the problem of detecting independence of 
queries expressed by datalog programs from updates. 
Detecting independence is important for several 
reasons. It can be used in view maintenance to 
identify that some views are independent of certain 
updates. In transaction scheduling, we can provide 
greater flexibility by identifying that one transaction 
is independent of updates made by another. Finally, 
we can use independence in query optimization by 
ignoring parts of the database for which updates do 
not affect a specific query. 

In this paper, we provide new insight into the in- 
dependence problem by reducing it to the equiva- 
lence problem for datalog programs. Equivalence, 
as well as independence, is undecidable in general. 
However, algorithms for equivalence provide sufficient 
(and sometimes also necessary) conditions for inde- 
pendence. We consider two such conditions, query 
reachability [LS92] and uniform equivalence [Sa88]. 

Earlier work by Blakeley et al. [BCL89] and 
Elkan [El901 focussed on cases for which independence 
is the same as query reachability. Essentially, these 
are the cases where the updated predicate has a single 
occurrence in the query. Blakeley et al. [BCL89] 
considered only conjunctive queries. Elkan [El901 
considered a more general framework, but gave 
an algorithm only for nonrecursive rules without 
negation; that algorithm is complete only for the case 
of a single occurrence of the updated predicate. Elkan 
also gave a proof method for recursive rules, but its 
power is limited. 

Query reachability has recently been shown decid- 
able even for recursive datalog programs with dense- 
order constraints and negated EDB subgoals [LS92, 
LMSS93]. We show how query-reachability algo- 
rithms generalize the previous results on indepen- 
dence. 

In order to use uniform equivalence for detecting in- 
dependence, we extend the algorithm given in [SaSSI 
to datalog programs with built-in predicates and 
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stratified negation. As a result, we show new decid- 
able cases of independence; for example, if the update 
is an insertion, and both the query and the update are 
given by datalog program with no recursion or nega- 
tion, then independence is decidable (note that the 
updated predicate may have multiple occurrences). 
Our algorithms also provide sufficient conditions for 
independence in the general case. Aside from their 
usage in detecting independence, the algorithms we 
present for uniform equivalence are important for op- 
timizing datalog programs. 

Finally, we also characterize new cases for which in- 
dependence of insertions is the same as independence 
of deletions. Since the former is, in many cases, eas- 
ier to detect, these characterizations are of practical 
importance. 

2 Preliminaries 
2.1 Datalog Programs 
Datalog programs are collections of safe horn-rules 
with no function symbols (i.e., only constants and 
variables are allowed). We allow the built-in predicates’ 
<, > , =, #, 5, and > that represent a dense order. 
Programs may also have stratified negation. Both 
negation and built-in predicates must be used safely 
(cf. [Ull88]). 

We distinguish between two sets of predicates 
in a given program: the extensional predicates 
(EDB predicates), which are those that appear only 
in bodies of rules, and the intensional predicates 
(IDB predicates), h’ 1 w lc 1 are the predicates appearing 
in heads of rules. The EDB predicates refer to 
the database relations while the IDB predicates 
are defined by the program. We usually denote 
the EDB predicates as el, . . . , e, and the IDB 
predicates as il, . * ..,tn. The input to a datalog 
program is an extensional database (EDB) consisting 
of relations El, . . . , E,,, for the EDB predicates 
el,...,e,, respectively. Alternatively, the EDB may 
also be viewed as a set of ground atoms (or facts) 
for the EDB predicates. Given a datalog program 
P and an EDB El,.. . , E,,, as input, a bottom-up 
evaluation is one in which we start with the ground 
EDB facts and apply the rules to derive facts for 
the IDB predicates. We continue applying the rules 
until no new facts are generated. We distinguish one 
IDB predicate as the query (or goal) predicate, and 
the output (or answer) of program P for the input 
El,..., E,,,, denoted P(E1, . . , Em), is the set of all 
ground facts generated for the query predicate in the 
bottom-up evaluation. The query predicate is usually 
denoted as q. Note that the bottom-up evaluation 
computes relations for all the IDB predicates, and 

‘The phrase “built-in predicates” refers in this paper just 
to those listed above. 

11,. . , , I,, usually denote the relations for the IDB 
predicates il, . ..,bl, ’ respectively. 

We say that the query predicate is monotonic (anti- 
monotonic) in the input if whenever D1 I, Dz then 
P(D1) _> P(Dz) (P(D1) c P(Dz)). Note that a 
datalog program without negation is monotonic. 

2.2 Containment and Equivalence 

Independence of queries from updates can be ex- 
pressed as an equivalence of two programs: one pro- 
gram that computes the answer to the query before 
the update and a second program that computes the 
answer after the update. 

Definition 2.1: (Containment) A datalog pro- 
gram PI contains a program P2, written P2 5 PI, 
if for all EDBs El, . . . , E,,,, the output of PI contains 
that of P2, i.e., P,(El,. . ., Em) G P,(El,. . ., E,). I 

Two programs PI and P-J are equivalent, written 
PI G P2, if P2 C PI and PI E P2. Containment 
of datalog programs is undecidable [Sh87], even for 
programs without built-in predicates or negation. 

A sufficient condition for containment is uniform 
containment, which was introduced and shown to 
be decidable in [Sa$8] for programs without built- 
in predicates or negation. In defining uniform con- 
tainment, we assume that the input to a program P 
consists of EDB relation El, . . . , E, as well as initial 
IDB relations I:, . . . ,I: for the IDB predicates. The 
output of program P for El,. . . , E,, If,. . , Ii, writ- 
ten P(El,, . . , E,,,, IF,. . . , I,“), is computed as earlier 
by applying rules bottom-up until no new facts are 
generated. When dealing with uniform containment 
(equivalence), we assume that the output is not just 
the relation for the query prediccl.,c: but rather all the 
IDB relations 11, . . . ,I, computed for the IDB pred- 
icates il, . ’ ..,&a, respectively. An output II, . . . , I, 
contains another output Ii,. . . , IA if I; c Ij (1 5 
j 5 n). A program PI uniformly contains P2, writ- 
ten P2 C” PI, if for all EDBs El, . . , E, and for all 
initialIDBs IF,...,IE, 

P,(l$,..., &,I; ,...( I:)cP,(El ,...I E,,I; ,...I I:):,. 

Uniform containment can also be explained in 
model-theoretic terms [Sa88]. For programs without 
negations, the uniform containment P2 c” PI holds 
if and only if M(Pl) 2 iId( where M(Pi) denotes 
the set of all models of Pi. Furthermore, for programs 
having only EDB predicates in bodies of rules, 
uniform containment is the same as containment. 
Note that a program with no recursion (and no 
negation) can be transformed into this form by 
unfolding the rules. 

Query reachability is another notion that provides 
a sufficient condition for equivalence of programs. 
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Definition 2.2: (Query Reachability) Let p be 
a predicate (either EDB or IDB) of a program P. 
The .predicate p is query reachable with respect to 
P if there is a derivation d of a fact for the query 
predicate from some EDB D, such that predicate p is 
used in d. 1 

Algorithms for deciding query reachability are 
discussed in [LS92, LMSS93] for cases that include 
built-in predicates and negation. 

2.3 Updates 

Given a Datalog program P, which we call the 
query program, we consider updates to the EDB 
predicates of P, denoted el, . . . , e,. In an update, we 
either remove or add ground facts to the extensional 
database. To simplify notation, we assume that 
updates are always done on the relation El for the 
predicate el . To specify the set of facts that is 
updated in El, we assume we have another datalog 
program, called the update progmm and denoted as 
P”. The query predicate of P” is u and its arity is 
equal to that of el. The relation computed for u will 
be the set of facts updated in el. 

We assume that the IDB predicates of P” are 
different from those of P. The EDB predicates of 
Pa, however, could be EDB predicates of P as well 
as predicates not appearing in P. To distinguish 
the two sets of EDB predicates, from now on the 
phrase “EDB predicates” refers exclusively to the 
EDB predicates el, . . . , e, of the query program P; 
the other extensional relations that may appear in 
the update program are referred to as base predicates, 
denoted by bl, . . . , bl. We denote the output of the 
update program P* as P“ (El, . . . , E,,,, B1, . . . , BI), 
even if P“ does not use all (or any) of the EDB 
predicates. Sometimes we refer to its output as U. 

An update is either an insertion or a deletion and 
it applies to the relation El for the EDB predicate el . 
The tuples to be inserted into or deleted from El are 
those in the relation computed for U. A large class of 
updates consists of those not depending on the EDB 
relations, as captured by the following definition: 

Definition 2.3: (Oblivious Update) An update 
specified by an update program P” is oblivious with 
respect to a query program P if P” has only base 
predicates (and no EDB predicates). An update is 
nonoblivious if the update program P“ has some EDB 
predicates (and possibly some base predicates). I 

To define independence, suppose we are given a 
query program P and an update program P’. The 
program P is independent of the given update if the 
update does not change the answer to the query pred- 
icate. More precisely, program P is independent of 

the given update if for all EDB relations E1 : . . , E,,, 
and for all base relations B1, . . . , B1, 

P(.&, E2, . . . ,&)=P(E;,&,...,En) 

where E[ is the result of applying the update to E1; 
that is, Ei = El U U if the update is an insertion 
and E{ = El - II if the update is a deletion, where 
U=P”(El ,..., Em,B1 ,..., BI). 

We use the following notation. In+(P, P”) means 
that program P is independent of the insertion 
specified by the update program P”. Similarly, 
In-(P, P”) means that program P is independent 
of the deletion specified by the update program P”. 

Several properties of independence are shown by 
Elkan [E190]. In particular, he showed the following. 

Lemma 2.4: Consider a query program P and 
an update progmm P“. If P” is monotonic in the 
EDB predicates and P is either monotonic or anti- 
monotonic in the EDB predicates, then 

In-(P, P”) * In+(P, P”). 

Similarly to the above lemma, we can also prove 
the following. 

Lemma 2.5: Consider a query program P and an 
update program P”. If P” is anti-monotonic in the 
EDB predicates and P is either monotonic or anti- 
monotonic in the EDB predicates, then 

In+(P, P”) * In- (P, P”). 

Proof: Consider an EDB El,. . , E,, denoted as E, 
and relations B1, . . . , B,, denoted as B, for the base 
predicates. The tuples of the update are given by 
U = P”(,!?,@. A deletion update transforms the 
EDB E into the EDB El - U, . . . , E,,, denoted ss 
I?. We have to show the following. 

P(lY) = P(lq 

So, consider the EDB ,!? with the relations fi for 
the base predicates. Let U’ = P”(l? , B). Since P” 
is anti-monotonic in the EDB, U C U’. 

We now apply the insertion update specified by 
U’ = P(,??, fi) to ,?? yielding the following EDB. 

(El - U) U U’, E2,. . . , E,, 

Since In+(P, P”) is assumed, we get the following. 

P(l?) = P((El - U) u U’, E2,. . . , En) (1) 

Moreover, U E U’ implies the following. 

El - U c El C (El - U) U U’ (2) 
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If P is monotonic in the EDB, then (2) implies 

P(k) c P(E) c P((E1- U) UU’,Ez,. . .,E”) 

and, so, from (1) we get the following. 

P(F) = P(E) 

Similarly, if P is anti-monotonic in the EDB, 
then (2) implies 

P(E’-) 1 P(E) _> P((Ex- U) UU’,E2,. . .,En) 

and, so, from (1) we get the following. 

P(l?) = P(E) 

Note that if an update is oblivious, then it is both 
monotonic and anti-monotonic. Therefore, the above 
two lemmas imply the following corollary. 

Corollary 2.6: Consider a query progmm P and 
an update progmm P”. If the update is oblivious 
(i.e., EDB predicates of P do not appear in P”), and 
P is either monotonic or anti-monotonic in the up- 
dated EDB predicates, then the following equivalence 
holds: 

In- (P, P”) u In+(P, P”). 

The importance of Lemma 2.5 and Corollary 2.6, 
as we will see in the next section, lies in the fact 
that testing In+ (P, P”) is usually easier than testing 
In-(P, P”). 

3 Detecting Independence 
To develop algorithms for detecting independence, we 
will show that the problem can be reformulated as 
a problem of detecting equivalence of datalog pro- 
grams. Like independence, detecting equivalence of 
datalog programs is in general undecidable; however, 
algorithms that provide sufficient conditions for de- 
tecting equivalence can also serve as sufficient con- 
ditions for independence. In contrast, previous work 
reduced the independence problem to satisfiability. 
The following example illustrates the difference be- 

’ tween the approaches. 

Example 3.1: Consider the following program PI. 
An atom canDrive(X, Y, A) is true if person X can 
drive car Y and A is the age of X. According to the 
rule for canDrive, person X can drive car Y if X is 
a driver and there is someone of the age 18 or older 
in the same car. An adult driver, as computed by the 
IDB predicate ad&Driver, is anyone who can drive 
a car and is of the age 18 or older. 

canDrive(X, Y, A) :- inCar(X, Y, A), driver(X), 

inCar(Z,Y, B), B 2 18. 

adultDriver :- canDrive(X, Y, A), A 2 18. 

Let the update program consist of the rule 

ul(X, Y, A) :- inCar(X, Y, A), ldriver(X), 

A < 18. 

and suppose that the deletion defined by ui is applied 
to inCar; that is, non-drivers under the age of 18 are 
removed from inCar. 

Let the query predicate be adultDriver and note 
that adultDriver is equivalent to the following 
conjunction, denoted as C. 

inCar(X, Y, A) A driver(X) A inCar(Z, Y, B) A 

A>18~B218 

An algorithm for detecting independence based on 
satisfiability (e.g., [E190, BCL89]) checks whether 
an updated fact may appear in any derivation of 
the query. In our example, an updated fact may 
appear in a derivation of adultDriver if either 
the conjunction 

CA Tdriver(X) A A < 18 

or the conjunction 

C A ydriver(Z) A B < 18 

is satisfiable. Since none of the above is satisfiable, 
the algorithm would conclude that the query is 
independent of the update. 

Now consider the following update program 

142(X, Y, A) :- inCar(X, Y, A), ldriver(X). 

and suppose that the deletion defined by u2 is applied 
to inCar. In this case, the conjunction 

C A -driver(Z) 

is satisfiable and the algorithm would not detect 
independence. However, to see that the update 
is independent, observe that after the update, PI 
computes for adultDriver the same relation as the 
one computed by the following program, P2, before 
the update. 

canDrive(X, Y, A) :- inCar(X, Y, A), driver(X), 

inCar(Z,Y, B), B 2 18, 

driver(Z). 

adultDriver :- canDrive(X, Y, A), A 2 18. 

Since PI and P2 are equivalent (when the query pred- 
icate is adultDriver), the deletion update defined by 
‘112 is independent of the query predicate. I 
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3.1 Independence and Equivalence 

As stated above, the independence problem can be 
formulated as a problem of detecting equivalence of 
datalog programs. To show that, we construct a 
new program that computes the new value of the 
query predicate q from the old value of the EDB 
(i.e., the value before the update). One program, P+, 
is constructed for the case of insertion, and another 
program, P- , is constructed for the case of deletion. 
Each of P+ and P- consists of three parts: 

The rules of P, after all occurrences of the 
predicate name el have been replaced by a new 
predicate name s. 

The rules of the update program P”. 

Rules for the new predicate s. 

P+ and P- differ only in the third part. In the 
case of insertion, the predicate s in P+ is intended 
to represent the relation El after the update, and 
therefore the rules for s are: 

s(X1,. . . , Xk) :- el(X1,. . . , Xk). 

S(Xl,~~~,&) :- “(Xl,. . . ) Xk). 

In the case of deletion, the predicate s in P- is 
intended to represent the deletion update to El, and 
the rule for defining it is 

s(X1,. . .,Xk) :- el(X1, . . . . Xk), 7u(Xl,. . .,Xk). 

The following propositions are immediate corollaries 
of the definition of independence. 

Proposition 3.2: In+(P, P”) _ P E Pt. 

Proposition 3.3: In- (P, P”) _ P E P- . 

Proof: Both propositions follow from the observa- 
tion that the relation computed for s is the updated 
relation for El. Therefore, since ei is replaced by s in 
the rules of the program, the new program will com- 
pute the relation for q after the update. Clearly, the 
independence holds if and only if the new program is 
equivalent to the original program. 1 

Example 3.4: Consider the following program PO 

with q as the query predicate: 

i-1 : P(XY Y) :-- p(X,Y), -a(X,Y). 
i-2 : p(X, Y) :- el(X,Y), 7e(X). 

7-3 : P(X,Y) :- el(X,Y), X > 1. 

7-4 : p(X,Y) :- e(X), e(W), p(W,Y), W > X. 

Let the update program P“ consist of the rule: 

r” : 4x, Y) :- b(X,Y), x 5 1. 

The program for the insertion update P+ would 
be: 

ri : 4x7 Y) :- p(X, Y), lS(X,Y). 

4 : P(X, Y) :- s(X,Y), Te(X). 

4 : P(X,Y) :- s(X,Y), x > 1. 

ri : P(X, Y) :- e(X), e(W), p(W,Y), W > X. 

ri : SW, Y) :- el(X, Y). 

‘6 ’ : s(X,Y) :- u(X,Y). 

9 ’ : u(X,Y) :- b(X,Y), x 5 1. 

This program is equivalent to the original one, PO, 

and indeed In+ (PO, P”) does hold. I 

In Section 4, we describe algorithms for deciding 
uniform equivalence for datalog programs with built- 
in predicates and stratified negation. Based on 
these algorithms, we get the following decidability 
results for independence. Note that in the following 
theorem, the updated predicate may have multiple 
occurrences, and so, this theorem generalizes earlier 
results on decidability of independence. 

Theorem 3.5 : Independence is decidable in the 
following cases: 

1. In+(P,P”) (In-(P,PU)) is decidable if both P+ 

(P-) and P have only built-in and EDB predicates 

(that may appear positively or negatively) in 
bodies of rules.2 

2. Both In+(P, P”) and In-(P, P”) are decidable if 
P has only built-in and EDB predicates (that may 
appear positively or negatively) in bodies of rules, 
and P” has only rules of the form 

Ql,.~.,&) :- el(X1,. . .,Xk), c. 

where c is a conjunction of built-in predicates. 

The theorem follows from the observation that for 
these classes of programs, uniform equivalence is also 
a necessary condition for equivalence. The algorithms 
of Section 4 also apply to arbitrary programs P, 

P+ and P-, but only as a sufficient condition for 
independence. 

3.2 Independence and Satisfiability 
Detecting independence based on satisfiability is 
based on the observation that if none of the updated 
facts can be part of a derivation of the query, then 
clearly, the query is independent of the update. This 
is made precise by the following lemma, based on 
query reachability. 

2We prefer to describe this case in terms of P and P+, 
rather than P and ‘P”, since it is clearer. Note that if P 
and P” are nonrecursive then in some, but not all cases, P+ 
and P can be converted by unfolding into forms satisfying this 
condition. 
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Lemma 3.6: Suppose that neither P nor P” has 
negation. If predicate u is not query reachable in P+, 

then both In+(P, P”) and In-(P, P”) are true. 

Query reachability is decidable for all datalog pro- 
grams with built-in predicates and negation applied 
to EDB (and base) predicates [LS92, LMSS93]. If 
negation is also applied to IDB predicates, then a 
generalization of the algorithm of [LMSS93] is a suf- 
ficient test for query reachability. Thus, the above 
lemma provides a considerable generalization of pre- 
vious algorithms for detecting independence. 

It should be realized that the independence tests 
of Elkan [El901 and of Blakely et al. [BCL89] are just 
query reachability tests. Both essentially character- 
ized special c-s in which independence is equiva- 
lent to query reachability. The result of Blakely et 
al. [BCL89] applies just to conjunctive queries with 
no repeated predicates. The work of Elkan [El901 
entails that, in the case of recursive rules, indepen- 
dence is equivalent to queiy reachability provided 
that the updated predicate has a single occurrence; he 
also required that an insertion update be monotonic. 
For testing independence, Elkan [El901 gave a query- 
reachability algorithm for the case of nonrecursive, 
negation-free rules, and suggested a proof method for 
the recursive case; there is no characterization of the 
power of that proof method, but it should be noted 
that it cannot capture all cases detected by the algo- 
rithms of [LS92, LMSS93]. 

Example 3.7: The following example shows how 
query reachability can be used for detecting inde- 
pendence in the case of a recursive datalog program. 
Consider the following rules: 

r1 : goodPath(X, Y) :- badPoint( 

PaWX, Y), 
goodPoint( 

r2 : PaWf, Y) :- link(X, Y). 

r3 : path@, Y) :- fink(X, Z), path(Z, Y). 

r.j : fink(X, Y) :- step(X, Y). 

r5 : link(X, Y) :- bigStep(X, Y). 

The predicates step and bigStep describe single 
links between points in a space. The predicate 
path denotes the paths that can be constructed by 
composing single links. The predicate goodPat h 
denotes paths that go from bad points to good ones. 
Furthermore, the following constraint are given on 
the EDB relations: 
badPoint + 100 < I < 200. 
step(r, y) * 2 < y. 

goodPoint 3 150 < z < 170. 
bigStep(+, y) 3 I < 100 h y > 200. 

Figure 1 show the query-tree representing all 
possible derivation of the query goodPath(X, Y). 
The query-tree shows that ground facts of the relation 
step which do not satisfy 100 < x and y < 170 cannot. 
be part of a derivation of the query. Similarly, facts 
of the relation bigStep cannot be part of derivations 
of hhe query. Consequently, the query goodPath will 
be independent of removing or adding facts of that 
form. I 

4 Uniform Equivalence 

In this section, we describe algorithms for deciding 
uniform equivalence of programs that have built-in 
predicates and stratified negation. This extends a 
previous algorithm [Sa88] that dealt with datalog 
programs without built-in predicates or negations. 

As shown in [SaSSI, uniform containment (and 
equivalence) can be given model-theoretic character- 
ization, namely, the uniform containment P2 s” PI 

holds if and only if M(P1) c M(P,), where M(Pi) 

denotes the set of all models of Pi. We note that 
M(P1) E M(P2) holds if and only if M(P1) C M(r) 
for every rule r E P2, since a database D is a model of 
P2 if and only if it is a model of every rule r E P2. Our 
algorithms will decide whether M(P1) c M(P2) by 
checking whether M(P1) C M(r) for every r E P2. 

We first discuss programs with only built-in predi- 
cates. 

4.1 Uniform Containment with Built-in 
Predicates 

When the programs have no interpreted predicates, 
the following algorithm (from [SaSSI) will decide 
whether a given rule r is uniformly contained in a 
program P. Given a rule r of the form 

P :- 91, . ..> %a. 

where p is the head of the rule and 91,. . . , q,, are its 
subgoals, we use a substitution 0 that maps every 
variable in the body of r to a distinct symbol that 
does not appear in P or r. We then apply the 
program P to the atoms 918,. . . , q,fl. In [SaSSI 
it is shown that the program P generates pB from 
f&e,. . .,qnc9 if and only if M(P) 5 M(r). 

However, there is a problem in applying this 
algorithm to programs with interpreted predicates. 
First, the constants used in the input to P, i.e., 
those that appear in qlf?, . . . , q,,B, are arbitrary, and 
therefore, order relations are not defined on them. 
Consequently, the interpreted subgoals in the rules 
(that may involve <, 5, etc.) can not be evaluated. 
Moreover, some of the derivations of p0 by P depend 
on the symbols satisfying the interpreted constraints, 
and so these cannot be discarded. 
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goodPath(z, y) (100 < x < y < 170,y > 150) 

badPoint ------- goodPoint 

I 
step(x, Y) step 2,~) I (100 < I < z < 170) 

{loo < 2 < y < 170,y > 150) 

Figure 1: Detecting independence using query reachability 

We address this problem by associating a con- 
straint with every fact involved in the evaluation of 
P. The constraints for a given fact f represent the 
conditions on qlfl, . . . , q,,O under which f is derivable. 
We manipulate these constraints as we evaluate P. 
Formally, let r be the rule: 

P :- 91, ‘*a, $3, cr. (3) 

We denote the set of variables in r by Y. The subgoal 
c7 is the conjunction of the subgoals of interpreted 
predicates in r. We assume that all subgoals in r 
have distinct variables in every argument position. 
Note that this requirement can always be fulfilled by 
introducing appropriate subgoals in rules using the = 
predicate. As in the original algorithm, we define a 
mapping 0 that maps each variable in r to a distinct 
symbol not appearing in P or r. Instead of evaluating 
P with the ground atoms q10,. . . , qntl, we evaluate P 
with facts that are pairs of the form (q, c), where q is 
ground atom and c is a constraint on the symbols in 
YB. The input to P will be the pairs (q#,c,O), for 
i = 1, 2, . . . , 72. 

An application of a rule 4 :- gr , . . . , gl, c proceeds 
as follows. Let (or, cl), . . . , (al, c’) be pairs generated 
previously, such that there is a substitution r for 
which gir = ai (1 5 i 5 6). Let ch be the conjunction 
C’A . . . A c1 A CT. ‘If ch is satisfiable, we derive the 
pair (hr, ch). In words, the constraint of the new fact 
generated is the conjunction of the constraints on the 
facts used in the derivation and the constraints of the 
rule that was applied in that derivation. We apply the 
rules of P until no new pairs are generated. Note that 
there are only a finite number of possible constraints 

for the generated facts and,, therefore, the bottom-up 
evaluation must terminate. 

Finally, let (PO, cl), . . . , (PO, c,) be all the pairs 
generated for p0 in the evaluation of P; recall that p 
is the head of Rule (3) and 0 is the substitution used 
to convert the variables of that rule to new symbols. 
The containment M(P) C M(r) holds if and only if 
c, b Cl v . ..vcm. where c, is the conjunction of 
interpreted predicates from the body of Rule (3). 

Example 4.1: Let PI be the program: 

f-1 : P(X,Y) :- 0, Z), P(Z,Y). 

f-2 : q(X,Y) :- e(X,Y). 

Let P2 be the program: 

31 : P(X,Y) :- P(X,Z), P(Z,Y). 

32 : P(X,Y) :- e(X,Y), X 5 Y. 

33 : q(X,Y) :- e(X,Y), Y 5 X. 

s4 : q(X,Y) :- p(X,Y). 

For a variable X of r, we denote the constant X0 
by 20. True denotes the constraint satisfied by 
all tuples. To check the uniform containment of 
r1, the input to P;r would be (e(ze, ze), True) and 
(p(zo, yo), True). Rule s2 will derive (p(xo, ZO), x0 < 
ze) and rule si will then derive (p(xo, yo), x0 5 
~0). Since p(xo, ys) was only generated under the 
constraint x0 < ZO, we say that rule ri is not 
uniformly contained in P2. 

To check the uniform containment of rule r2, we 
begin with (e(xs,ye), True). Rule sa will then 
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derive (q(zo, yo), yo 5 20). Rule s2 will derive 
(p(z0, ye), 20 5 ys) and rule s4 will use that to derive 
(q(xo,~o), ~0 I YO). Since q(zo,m) w= derived 
for both possible orderings of 20 and ye, rule ~2 is 
uniformly contained in P2. I 

The correctness of the algorithm is established by 
the following theorem. 

Theorem 4.2 M(P) C M(r) w cr b clV.. .Vc,. 

The theorem is proved by showing the following. 
Let r be the rule p :- ql,...,qmrcr and Y be the 
variables appearing in r. If Y ?r is a valid instantiation 
of the rule r that satisfies c,, then pn is derivable 
from the database containing the atoms q17r, . . . , q,,” 
and the program P if and only if Yn satisfies one of 
Cl,. . .,c,. 

Our bottom-up evaluation of a program with a 
database containing facts tha are pairs is reminiscent 
of the procedure used by Kanellakis et al. [KKRSO]. 
In their procedure, an EDB fact may be a generalized 
tuple specified in the form of a constraint on the 
arguments of its predicate. However, there is a key 
difference between the two methods. In [KKRSO], 
every tuple is a constraint only on the arguments 
of the predicate involved. In our procedure, the 
constraint appearing in a pair is a constraint on all 
the constants that appear in the database, i.e., all 
the constants of Ye, where Y is the set of variables 
of rule r. Thus, the constraint of a pair may 
have constants that do not appear in the atom of 
that pair. The following example illustrates why 
this difference between ,the methods is important for 
detecting uniform containment. 

Example 4.3: Consider rules T and s, and let ‘P 
consist of rule s. 

r : p(X,Y) :- !?l(X,Y), Q2(& v. 

s : P(X,Y) :- Ql(X,Y), Q2(K V), u I v. 

To show M(P) E M(r), we begin with the pairs 
(ql(m,~~), True) and (duo,v~), True), and apply 
S. If we use the procedure of [KKRSO], the 
result is the pair (p(zo, ye), True), which has no 
recording of the fact that its derivation required 
that ~0 5 ~0. Consequently, we will conclude 
erroneously that M(P) E M(r) holds. In contrast, 
when our procedure applies rule s to the pairs 
(ql(zo,yo), True) and (q2(uo,v0), True), the result 
is the pair (p(to, yo), us 5 VO), making it clear that 
s does not contain P, because True k ug 5 vg. 1 

The complexity of the algorithm depends on the 
number of pairs generated during the evaluation of 
P. In the worst case, it may be exponential in 

the number of variables of r. A key component in 
the efficiency of the algorithm is the complexity of 
checking whether c, b cl V. . .Vc, holds. In [Levy931 
we describe how to reduce this problem to a linear 
programming problem. The result is an algorithm 
that decides the entailment in time that is polynomial 
in the size of the disjunction and exponential in the 
number of f’s that appear in cr, cl,. . , cm. 

An interesting special case is containment of con- 
junctive queries with built-in predicates. Klug [K188] 
showed that if all constraints are left-semiinterval or 
all constraints are right-semiinterval, then contain- 
ment of conjunctive queries can be decided by finding 
a homomorphism from one query to the other. For 
general conjunctive queries, he pointed out that it 
could be done by finding a homomorphism for every 
possible ordering of the variables and constants in the 
queries (recently, van der Meyden [vdM92] has shown 
that the containment problem of conjunctive queries 
with order constraints is II;-complete). In our algo- 
rithm, the complexity depends only on the number 
of orderings that are actually generated during the 
evaluation of P. More precisely, our algorithm gen- 
erates partial rather than complete orderings of the 
variables and constants in the queries. Essentially, it 
lumps together complete orderings that need not be 
distinguished from each other in order to test contain- 
ment. Therefore, our algorithm is likely to be better 
in practice, albeit not in the worst case (of course, our 
algorithm also applies to more than just conjunctive 
queries). 

4.1.1 Beyond Uniform Containment 
For testing uniform containment of PI in P,, it 
is enough to check the containment separately for 
each rule of PI. Consequently, uniform containment 
completely ignores possible interactions between the 
rules, interactions that may imply containment of PI 
in P2. Consider the following example. 

Example 4.4 : Consider the following programs 
whose query predicate is p. Let PI be: 

rl : p(X) :- q(X), X < 5. 

r2 : q(X) :- e(X), X > 0. 

And let P2 be the program: 

r3 : P(X) :- q(X), X < 6, X > 0. 

r4 : q(X) :- e(X), X > 0. 

The program PI is contained in P2, because 
whenever 0 < X < 5, the atom p(X) will be derived 
from P2 if e(X) is in the database. However, r1 
is not uniformly contained in P2 (and, therefore, 
Pi g” P2). For example, the model consisting of 

is a model of P2 but not a 
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The weakness of uniform containment stems from 
the fact that it considers all models while for proving 
(ordinary) containment it is sufficient to consider just 
minimal models.3 We may, however, try to transform 
Pi into an equivalent program P’ with a larger set 
of models (but, of course, the same set of minimal 
models, since equivalence must be preserved). One 
way of doing it is by propagating constraints from one 
rule to another. The query tree of [LS92] is a tool for 
doing just that; for the type of constraints considered 
in this paper the propagation is complete, i.e., each 
rule ends up having the tightest possible constraint 
among its variables. In our example, the result of 
constraint propagation is the following program P’. 

4 : P(X) :- q(X), x < 5, x > 0. 

7-a : cl(X) :- e(X), X > 0. 

Now we can show that PI s“ P2, and since PI E P’, 
it follows that PI c” P2. 

4.2 Uniform Equivalence with Stratified 
Negation 

In this section, we describe how to test uniform 
equivalence of datalog programs with safe, strati- 
fied negation. We begin with the case of stratified 
programs with neither constants nor built-in predi- 
cates. By definition, two programs Pi and P2 are 
uniformly equivalent, denoted PI 2‘ Pz, if for ev- 
ery database D (that may have both EDB and IDB 
facts), PI(D) = Pa(D). Note that applying a strati- 
fied program to a database that may also have IDB 
facts is done stratum by stratum, as in the usual case; 
in other words, P(D) is the perfect model of the pro- 
gram P and the database D (cf. [UllSS]). 

Suppose that that PI and P2 are not uniformly 
equivalent. Hence, there is a database Do such that 
PI (DO) # Pz(Do); Da is called a counterexample. 
We may assume that PI (DO) g P2( DO) (the case 
P2 ( DO) e PI (Do) is handled similarly). 

We assume that both PI and P2 have the same 
set of EDB predicates and the same set of IDB 
predicates, and moreover, there is a partition of the 
predicates into strata that is a stratification for both 
PI and P2. In particular, we assume that the lowest 
stratum consists of just the EDB predicates and we 
refer to it as the zeroth stratum. We denote by Pi 
the program consisting of those rules of PI with head 
predicates that belong to the first i strata; similarly 
for Pj. Note that Pf is an empty program (i.e., it 
has no rules). By definition, P:(D) = D for every 
database D; similarly for P:. 

31n our formalism, a set of relations for the EDB and IDB 
predicates is a minimal model if the IDB part is a minimal 
model once the EDB facts are added to the program as rules 
with empty bodies. 

We now assume that for some given i, Pi 2 Pi 
and we will show how to test whether P;+’ 2’ Pi+‘. 
The algorithm is based on the following two lemmas. 

Lemma 4.5: Suppose that there is an i, such that 
p; su Pi. If there is a counter-example database Do, 
such that P;+’ (DO) e PitI( then there is some 
rule r of PI+’ with a head predicate from stratum i+l 
and a database D, such that 

1. D is a model of Pj+’ but not a model of r. 

2. The number of distinct constants in D is no more 
than the number of distinct variables in r. 

Proof: Let D’ = Pi(Do); note that D’ = Pi(D’). By 
the assumption in the lemma, Pf’(Do) = Pi(Da) and, 
hence, D’ is also a counterexample, i.e., P;+‘(D’) e 
PitI( Now let D = Pi+‘(D’). Observe that D 
and D’ have the same set of facts for predicates of 
the first i strata, since D’ = Pi(D’). In addition, 
observe that D: C 0. These observations imply that 
P;+‘(D’) s P,+‘(D). Thus, P,‘+‘(D) g P;+‘(D), 
because Pi+’ 
P;+‘(D). 

(D’) e Pi+‘(D’) and Pi+‘(D’) = 

So, we have shown that P:+‘(D) e Pi+‘(D) and 
D is a model of Pi+l. Therefore, there is a rule r in 
p;:+1 of the form 

h :- ql, . . . , q,,,, lsl,. . . , 7s1 

and a substitution 0, such that 

l the predicate of h is from stratum i + 1, 

l 0 is a mapping from the variables of r to constants, 

0 q$ E D (1 < i 5 m), 

0 hego. 

The above and the fact D = Pi+’ (0) imply that 
1 the database D is a model of Pit but not of ritl. 

Let D be the database consisting of facts from f> 
that have only constants from r0. Database D is also 
a model of PitI. 

4 
In proof, suppose that D is not a 

model of Pit . Thus, there is a rule F of Pi+’ and a 
substitution r, such that 

1. the head & of F satisfies hr $Z D, 

2. every positive subgoal q of F satisfies qr E D, and 

3. every negative subgoal S of i; satisfies ST @ D. 

By the definition of D, if g is a ground fact having 
only constants from D, then g E D if and only if 
g E 0; moreover, for every negative subgoal S, the 
constants appearing in ST are all from D, since rules 
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are safe (cf. [UllSS]). Therefore, items (l)-(3) hold 
even if we replace D with D, and so it follows that 
b is not a model of +-a contradiction, since D is a 
model of Pi+’ and i; is a rule of Pi+‘. Thus, we have 
shown that D is a model of Pi+‘. Furthermore, items 
(l)-(3) above imply that D is not a model of r. So, 
the lemma is proved. I 

Lemma 4.6 : Suppose that Pi E” Pj. Moreover, 
suppose that there is a database D that is a model 
of Pi+’ and is not a model of some rule t of PI+’ 
having a head predicate from stmtum i + 1. Then 
PI(D) e Pz(D) and, hence, PI $” P2. 

Proof: From the assumptions in the lemma, it 
follows that rule r can be applied to D to generate 
a new fact g that is not already in D. Note that 
g $ Pz( D), since Pi+‘(D) = D and strata higher 
than i+l do not include facts with the same predicate 
as that of g. If we show that rule P can still generate 
g even when PI is applied to D, it would follow that 
g E PI(D), and hence, PI(D) e Pz(D). To show 
that, recall that Pj Z“ Pi and D is a model of Pl+’ ; 
therefore, D is also a model of Pi. Thus, rule T can 
still generate g during the application of PI to D, 
since nothing is generated by rules of lower strata. I 

The algorithm of Figure 2 tests whether PI E” P2; 
its correctness follows from the above two lemmas and 
the following proposition. 

Proposition 4.7: PI(D) f Pz(D) if and only if 
there is some i and a database D, such that either 
pi CD) iZ p;(D) or P;(D) e P;(D). 

Note that in the algorithm, it does not matter what 
are the constants in S as long as their number is 
equal to the number of distinct variables in the given 
rule r. Also, if two databases over constants from S 
are isomorphic, it is sufficient to consider just one of 
them. 

Example 4.8: Let PI consist of the rules: 

Tl : lown(X, Y) :- own(X, Y). 

l-2 : lown(X, Y) :- lives(X, Z), inHouse(2, Y). 

T3 : Zown(X, U) :- own(X, Z), lives(Y, Z), 

lown(Y, V). 

r4 : buys(X, Y) :- likes(X, Y), -down(X, Y). 

Let P2 consist of the rules rl, r4 and the rule: 

r5 : lown(X,Y) :- Own(X, Z), inHouse(Z,Y). 

The EDB relation own describes an ownership 
relationship between persons and objects. The IDB 

procedure check(S) Pz); 
begin 

for every rule P of PI do 
begin 

Let S be a set of v distinct constants, 
where v is the number of variables in r; 
for every database D that includes 

only constants from S do 
if D is a model of P2 but not of r 
then return false; 

end; 
return true; 

end; 
begin /* main procedure */ 

for i := 1 to maz-stmtum do 
if not check(Pj, Pi) or not check(Pi, Pf) 
then return PI f” Pz; 

return PI E” P2; 
end. 

Figure 2: An algorithm for testing PI 2 P2. 

relation Iown represents a landlord’s perspective of 
the ownership relation. The programs PI and P2 are 
not uniformly equivalent. Specifically, consider the 
database Do : 

{likes(a, o), lives(b, h), own(b, o), own(a, h)} 

Rule r4 (of P2) and program 9 satisfy r4( DO) g 
Pl(Do), since lown(a,o) e rq(Do) and therefore 
bw(a,o) E 7-4(D0), while the converse is true for 
pl(Do). I 

To extend the algorithm to programs with built-in 
predicates (and constants), we need to check for the 
possibility that a database may become a counterex- 
ample by analyzing the built-in constraints. One con- 
ceptually simple (albeit not the most efficient) way of 
doing it is by using the algorithm of Figure 2, but with 
the following modifications. Let C be the set of con- 
stants appearing in either PI or P2. Instead of consid- 
ering every database over constants from S, we should 
consider every database over constants from S U C. 
Moreover, for each database we should consider ev- 
ery total order on the constants of the database, such 
that the order is consistent with any order that may 
implicitly be defined on C (e.g., if C is a set of in- 
tegers, then presumably the usual order on integers 
should apply to C). For each such database and total 
order defined on its constants, we should apply the 
given test of the check procedure; that is, we should 
test whether D is a model of P2 but not of r. The 
rest of the algorithm is the same as earlier. Thus, 
we get the following result; for the full details of the 
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proof and for a more efficient algorithm than the one 9th ACM Symp. on Principles of 
described above see [Levy93]. Database Systems, 1990, pp. 154-160. 

Theorem 4.9 : Uniform equivalence for datalog 
programs with safe, stmtified negation and built-in 
predicates is decidable. 

[GW93] 

5 Concluding Remarks 
We have presented an analysis of the notion of in- 
dependence and described algorithms for detecting 
independence of queries from updates. Our formula- 
tion of the problem gives us flexibility in the analysis. 
For example, we can distinguish between the case in 
which an updates is specified intensionally and the 
actual tuples to be inserted are computed at update 
time, and the case in which the set of tuples to be 
inserted is given a priori. Our framework and algo- 
rithms can also be extended to incorporate integrity 
constraints, as in Elkan [E190]. 

Gupta A., Widom J.: Local Verifica- 
tion of Global Integrity Constraints in 
Distributed Databases. Proceedings of 
the ACM SIGMOD International Con- 
ference on Management of Data, 1993, 
pp. 49-58. 

[KKRSO] Kanellakis, P.C., Kuper, G.M., and 
Revesz, P.Z.: Constraint query lan- 
guages. Pmt. 9th ACM Symp. on 
Principles of Database Systems, 1990, 
pp. 299-313. 

[K188] Klug, A.: On conjunctive queries con- 
taining inequalities. JACM, Vol. 35, 
No. 1, 1988, pp. 146-160. 

Posing the problem of independence as a prob- 
lem of equivalence suggests that further algorithms 
for independence can be found by trying to iden- 
tify additional sufficient conditions for equivalence. 
One possibility mentioned in this paper involves pro- 
gram transformations that increase the set of mod- 
els but preserve the set of minimal models. Conse- 
quently, these transformations increase the possibility 
of detecting equivalence by an algorithm for uniform 
equivalence. More powerful transformations can be 
obtained by considering, for example, only minimal 
derivations [LS92]. 

[Levy931 Levy, A.: Irrelevance reasoning in 
knowledge based systems. Forthcom- 
ing Ph.D thesis, Stanford University, 
1993. 

[LS92] Levy, A. and Sagiv, Y.: Constraints 
and redundancy in datalog. Proc. 11 th 
ACM Symp. on Principles of Database 
Systems, 1992, pp. 67-80. 

[LMSS93] 

In this paper, we have considered the problem 
of detecting independence assuming we have no 
knowledge of the EDB relations. An important 
problem, investigated in [BCL89] and [GW93] is 
detecting independence when some of the EDB 
relations are known and can be inspected efficiently. 
Combining our techniques with the ones described in 
those papers is an intersting area for future research. 

Levy, A.Y., Mumick, I.S, Sagiv, Y. and 
Shmueli, 0.: Query-Reachability and 
Satisfiability in Datalog. To appear in 
Pmt. 12th ACM Symp. on Principles 
of Database Systems,, 1993. 

[Sa88] Sagiv, Y.: Optimizing datalog pro- 
grams. In Foundations of Deductive 
Databases and Logic Progmmming, (J. 
Minker, ed.), Morgan Kaufmann Pub 
lishers, 1988, pp. 659-698. 

[Sh87] 
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