
Queries Independent of Updates

Alon Y. Levy*
Department of Computer Science

Stanford University
Stanford, California, 94305

levy@cs.stanford.edu

Abstract

This paper considers the problem of detecting indepen-
dence of a queries expressed by datalog programs from
updates. We provide new insight into the independence
problem by reducing it to the equivalence problem for dat-
alog programs (both for the case of insertion and deletion
updates). Equivalence, as well as independence, is unde-
cidable in general. However, algorithms for detecting sub-
classes of equivalence provide sufficient (and sometimes
also necessary) conditions for independence. We consider
two such subclasses. The first, query-reachability, general-
izes previous work on independence [BCL89, E190], which
dealt with nonrecursive programs with a single occurrence
of the updated predicate. Using recent results on query-
reachability [LS92, LMSS93], we generalize these earlier
independence tests to arbitrary recursive datalog queries
with dense-order constraints and negated EDB subgoals.
The second subclass is uniform equivalence (introduced
in [S&S]). We extend the results of [SaSSI to datalog
programs that include dense-order constraints and strati-
fied negation. Based on these extensions, we present new
cases in which independence is decidable and give algo-
rithms that are sound for the general case. Aside for their
use in detecting independence, the algorithms for detect-
ing uniform equivalence are also important for optimizing
datalog programs.

*The work of this author was.supported by NASA Grant
NCC2-537.

tPart of the work of this author was done while visiting
Stanford University, where it was supported by AR0 grant
DAAL03-91-G-0177, NSF grants IRI-90-16358 and IRI-91-
16646, and a grant of Mitsubishi Corp.

Permission to copy without fee all or part oJ this material
is granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
1s given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, OP to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

Yehoshua Sagivt
Department of Computer Science

Hebrew University
Jerusalem, Israel

sagiv@cs.huji.ac.il

1 Introduction

We consider the problem of detecting independence of
queries expressed by datalog programs from updates.
Detecting independence is important for several
reasons. It can be used in view maintenance to
identify that some views are independent of certain
updates. In transaction scheduling, we can provide
greater flexibility by identifying that one transaction
is independent of updates made by another. Finally,
we can use independence in query optimization by
ignoring parts of the database for which updates do
not affect a specific query.

In this paper, we provide new insight into the in-
dependence problem by reducing it to the equiva-
lence problem for datalog programs. Equivalence,
as well as independence, is undecidable in general.
However, algorithms for equivalence provide sufficient
(and sometimes also necessary) conditions for inde-
pendence. We consider two such conditions, query
reachability [LS92] and uniform equivalence [Sa88].

Earlier work by Blakeley et al. [BCL89] and
Elkan [El901 focussed on cases for which independence
is the same as query reachability. Essentially, these
are the cases where the updated predicate has a single
occurrence in the query. Blakeley et al. [BCL89]
considered only conjunctive queries. Elkan [El901
considered a more general framework, but gave
an algorithm only for nonrecursive rules without
negation; that algorithm is complete only for the case
of a single occurrence of the updated predicate. Elkan
also gave a proof method for recursive rules, but its
power is limited.

Query reachability has recently been shown decid-
able even for recursive datalog programs with dense-
order constraints and negated EDB subgoals [LS92,
LMSS93]. We show how query-reachability algo-
rithms generalize the previous results on indepen-
dence.

In order to use uniform equivalence for detecting in-
dependence, we extend the algorithm given in [SaSSI
to datalog programs with built-in predicates and

171

stratified negation. As a result, we show new decid-
able cases of independence; for example, if the update
is an insertion, and both the query and the update are
given by datalog program with no recursion or nega-
tion, then independence is decidable (note that the
updated predicate may have multiple occurrences).
Our algorithms also provide sufficient conditions for
independence in the general case. Aside from their
usage in detecting independence, the algorithms we
present for uniform equivalence are important for op-
timizing datalog programs.

Finally, we also characterize new cases for which in-
dependence of insertions is the same as independence
of deletions. Since the former is, in many cases, eas-
ier to detect, these characterizations are of practical
importance.

2 Preliminaries
2.1 Datalog Programs
Datalog programs are collections of safe horn-rules
with no function symbols (i.e., only constants and
variables are allowed). We allow the built-in predicates’
<, > , =, #, 5, and > that represent a dense order.
Programs may also have stratified negation. Both
negation and built-in predicates must be used safely
(cf. [Ull88]).

We distinguish between two sets of predicates
in a given program: the extensional predicates
(EDB predicates), which are those that appear only
in bodies of rules, and the intensional predicates
(IDB predicates), h’ 1 w lc 1 are the predicates appearing
in heads of rules. The EDB predicates refer to
the database relations while the IDB predicates
are defined by the program. We usually denote
the EDB predicates as el, . . . , e, and the IDB
predicates as il, . * ..,tn. The input to a datalog
program is an extensional database (EDB) consisting
of relations El, . . . , E,,, for the EDB predicates
el,...,e,, respectively. Alternatively, the EDB may
also be viewed as a set of ground atoms (or facts)
for the EDB predicates. Given a datalog program
P and an EDB El,.. . , E,,, as input, a bottom-up
evaluation is one in which we start with the ground
EDB facts and apply the rules to derive facts for
the IDB predicates. We continue applying the rules
until no new facts are generated. We distinguish one
IDB predicate as the query (or goal) predicate, and
the output (or answer) of program P for the input
El,..., E,,,, denoted P(E1, . . , Em), is the set of all
ground facts generated for the query predicate in the
bottom-up evaluation. The query predicate is usually
denoted as q. Note that the bottom-up evaluation
computes relations for all the IDB predicates, and

‘The phrase “built-in predicates” refers in this paper just
to those listed above.

11,. . , , I,, usually denote the relations for the IDB
predicates il, . ..,bl, ’ respectively.

We say that the query predicate is monotonic (anti-
monotonic) in the input if whenever D1 I, Dz then
P(D1) _> P(Dz) (P(D1) c P(Dz)). Note that a
datalog program without negation is monotonic.

2.2 Containment and Equivalence

Independence of queries from updates can be ex-
pressed as an equivalence of two programs: one pro-
gram that computes the answer to the query before
the update and a second program that computes the
answer after the update.

Definition 2.1: (Containment) A datalog pro-
gram PI contains a program P2, written P2 5 PI,
if for all EDBs El, . . . , E,,,, the output of PI contains
that of P2, i.e., P,(El,. . ., Em) G P,(El,. . ., E,). I

Two programs PI and P-J are equivalent, written
PI G P2, if P2 C PI and PI E P2. Containment
of datalog programs is undecidable [Sh87], even for
programs without built-in predicates or negation.

A sufficient condition for containment is uniform
containment, which was introduced and shown to
be decidable in [Sa$8] for programs without built-
in predicates or negation. In defining uniform con-
tainment, we assume that the input to a program P
consists of EDB relation El, . . . , E, as well as initial
IDB relations I:, . . . ,I: for the IDB predicates. The
output of program P for El,. . . , E,, If,. . , Ii, writ-
ten P(El,, . . , E,,,, IF,. . . , I,“), is computed as earlier
by applying rules bottom-up until no new facts are
generated. When dealing with uniform containment
(equivalence), we assume that the output is not just
the relation for the query prediccl.,c: but rather all the
IDB relations 11, . . . ,I, computed for the IDB pred-
icates il, . ’ ..,&a, respectively. An output II, . . . , I,
contains another output Ii,. . . , IA if I; c Ij (1 5
j 5 n). A program PI uniformly contains P2, writ-
ten P2 C” PI, if for all EDBs El, . . , E, and for all
initialIDBs IF,...,IE,

P,(l$,..., &,I; ,...(I:)cP,(El ,...I E,,I; ,...I I:):,.

Uniform containment can also be explained in
model-theoretic terms [Sa88]. For programs without
negations, the uniform containment P2 c” PI holds
if and only if M(Pl) 2 iId(where M(Pi) denotes
the set of all models of Pi. Furthermore, for programs
having only EDB predicates in bodies of rules,
uniform containment is the same as containment.
Note that a program with no recursion (and no
negation) can be transformed into this form by
unfolding the rules.

Query reachability is another notion that provides
a sufficient condition for equivalence of programs.

172

Definition 2.2: (Query Reachability) Let p be
a predicate (either EDB or IDB) of a program P.
The .predicate p is query reachable with respect to
P if there is a derivation d of a fact for the query
predicate from some EDB D, such that predicate p is
used in d. 1

Algorithms for deciding query reachability are
discussed in [LS92, LMSS93] for cases that include
built-in predicates and negation.

2.3 Updates

Given a Datalog program P, which we call the
query program, we consider updates to the EDB
predicates of P, denoted el, . . . , e,. In an update, we
either remove or add ground facts to the extensional
database. To simplify notation, we assume that
updates are always done on the relation El for the
predicate el . To specify the set of facts that is
updated in El, we assume we have another datalog
program, called the update progmm and denoted as
P”. The query predicate of P” is u and its arity is
equal to that of el. The relation computed for u will
be the set of facts updated in el.

We assume that the IDB predicates of P” are
different from those of P. The EDB predicates of
Pa, however, could be EDB predicates of P as well
as predicates not appearing in P. To distinguish
the two sets of EDB predicates, from now on the
phrase “EDB predicates” refers exclusively to the
EDB predicates el, . . . , e, of the query program P;
the other extensional relations that may appear in
the update program are referred to as base predicates,
denoted by bl, . . . , bl. We denote the output of the
update program P* as P“ (El, . . . , E,,,, B1, . . . , BI),
even if P“ does not use all (or any) of the EDB
predicates. Sometimes we refer to its output as U.

An update is either an insertion or a deletion and
it applies to the relation El for the EDB predicate el .
The tuples to be inserted into or deleted from El are
those in the relation computed for U. A large class of
updates consists of those not depending on the EDB
relations, as captured by the following definition:

Definition 2.3: (Oblivious Update) An update
specified by an update program P” is oblivious with
respect to a query program P if P” has only base
predicates (and no EDB predicates). An update is
nonoblivious if the update program P“ has some EDB
predicates (and possibly some base predicates). I

To define independence, suppose we are given a
query program P and an update program P’. The
program P is independent of the given update if the
update does not change the answer to the query pred-
icate. More precisely, program P is independent of

the given update if for all EDB relations E1 : . . , E,,,
and for all base relations B1, . . . , B1,

P(.&, E2, . . . ,&)=P(E;,&,...,En)

where E[is the result of applying the update to E1;
that is, Ei = El U U if the update is an insertion
and E{ = El - II if the update is a deletion, where
U=P”(El ,..., Em,B1 ,..., BI).

We use the following notation. In+(P, P”) means
that program P is independent of the insertion
specified by the update program P”. Similarly,
In-(P, P”) means that program P is independent
of the deletion specified by the update program P”.

Several properties of independence are shown by
Elkan [E190]. In particular, he showed the following.

Lemma 2.4: Consider a query program P and
an update progmm P“. If P” is monotonic in the
EDB predicates and P is either monotonic or anti-
monotonic in the EDB predicates, then

In-(P, P”) * In+(P, P”).

Similarly to the above lemma, we can also prove
the following.

Lemma 2.5: Consider a query program P and an
update program P”. If P” is anti-monotonic in the
EDB predicates and P is either monotonic or anti-
monotonic in the EDB predicates, then

In+(P, P”) * In- (P, P”).

Proof: Consider an EDB El,. . , E,, denoted as E,
and relations B1, . . . , B,, denoted as B, for the base
predicates. The tuples of the update are given by
U = P”(,!?,@. A deletion update transforms the
EDB E into the EDB El - U, . . . , E,,, denoted ss
I?. We have to show the following.

P(lY) = P(lq

So, consider the EDB ,!? with the relations fi for
the base predicates. Let U’ = P”(l? , B). Since P”
is anti-monotonic in the EDB, U C U’.

We now apply the insertion update specified by
U’ = P(,??, fi) to ,?? yielding the following EDB.

(El - U) U U’, E2,. . . , E,,

Since In+(P, P”) is assumed, we get the following.

P(l?) = P((El - U) u U’, E2,. . . , En) (1)

Moreover, U E U’ implies the following.

El - U c El C (El - U) U U’ (2)

173

If P is monotonic in the EDB, then (2) implies

P(k) c P(E) c P((E1- U) UU’,Ez,. . .,E”)

and, so, from (1) we get the following.

P(F) = P(E)

Similarly, if P is anti-monotonic in the EDB,
then (2) implies

P(E’-) 1 P(E) _> P((Ex- U) UU’,E2,. . .,En)

and, so, from (1) we get the following.

P(l?) = P(E)

Note that if an update is oblivious, then it is both
monotonic and anti-monotonic. Therefore, the above
two lemmas imply the following corollary.

Corollary 2.6: Consider a query progmm P and
an update progmm P”. If the update is oblivious
(i.e., EDB predicates of P do not appear in P”), and
P is either monotonic or anti-monotonic in the up-
dated EDB predicates, then the following equivalence
holds:

In- (P, P”) u In+(P, P”).

The importance of Lemma 2.5 and Corollary 2.6,
as we will see in the next section, lies in the fact
that testing In+ (P, P”) is usually easier than testing
In-(P, P”).

3 Detecting Independence
To develop algorithms for detecting independence, we
will show that the problem can be reformulated as
a problem of detecting equivalence of datalog pro-
grams. Like independence, detecting equivalence of
datalog programs is in general undecidable; however,
algorithms that provide sufficient conditions for de-
tecting equivalence can also serve as sufficient con-
ditions for independence. In contrast, previous work
reduced the independence problem to satisfiability.
The following example illustrates the difference be-

’ tween the approaches.

Example 3.1: Consider the following program PI.
An atom canDrive(X, Y, A) is true if person X can
drive car Y and A is the age of X. According to the
rule for canDrive, person X can drive car Y if X is
a driver and there is someone of the age 18 or older
in the same car. An adult driver, as computed by the
IDB predicate ad&Driver, is anyone who can drive
a car and is of the age 18 or older.

canDrive(X, Y, A) :- inCar(X, Y, A), driver(X),

inCar(Z,Y, B), B 2 18.

adultDriver :- canDrive(X, Y, A), A 2 18.

Let the update program consist of the rule

ul(X, Y, A) :- inCar(X, Y, A), ldriver(X),

A < 18.

and suppose that the deletion defined by ui is applied
to inCar; that is, non-drivers under the age of 18 are
removed from inCar.

Let the query predicate be adultDriver and note
that adultDriver is equivalent to the following
conjunction, denoted as C.

inCar(X, Y, A) A driver(X) A inCar(Z, Y, B) A

A>18~B218

An algorithm for detecting independence based on
satisfiability (e.g., [E190, BCL89]) checks whether
an updated fact may appear in any derivation of
the query. In our example, an updated fact may
appear in a derivation of adultDriver if either
the conjunction

CA Tdriver(X) A A < 18

or the conjunction

C A ydriver(Z) A B < 18

is satisfiable. Since none of the above is satisfiable,
the algorithm would conclude that the query is
independent of the update.

Now consider the following update program

142(X, Y, A) :- inCar(X, Y, A), ldriver(X).

and suppose that the deletion defined by u2 is applied
to inCar. In this case, the conjunction

C A -driver(Z)

is satisfiable and the algorithm would not detect
independence. However, to see that the update
is independent, observe that after the update, PI
computes for adultDriver the same relation as the
one computed by the following program, P2, before
the update.

canDrive(X, Y, A) :- inCar(X, Y, A), driver(X),

inCar(Z,Y, B), B 2 18,

driver(Z).

adultDriver :- canDrive(X, Y, A), A 2 18.

Since PI and P2 are equivalent (when the query pred-
icate is adultDriver), the deletion update defined by
‘112 is independent of the query predicate. I

174

3.1 Independence and Equivalence

As stated above, the independence problem can be
formulated as a problem of detecting equivalence of
datalog programs. To show that, we construct a
new program that computes the new value of the
query predicate q from the old value of the EDB
(i.e., the value before the update). One program, P+,
is constructed for the case of insertion, and another
program, P- , is constructed for the case of deletion.
Each of P+ and P- consists of three parts:

The rules of P, after all occurrences of the
predicate name el have been replaced by a new
predicate name s.

The rules of the update program P”.

Rules for the new predicate s.

P+ and P- differ only in the third part. In the
case of insertion, the predicate s in P+ is intended
to represent the relation El after the update, and
therefore the rules for s are:

s(X1,. . . , Xk) :- el(X1,. . . , Xk).

S(Xl,~~~,&) :- “(Xl,. . .) Xk).

In the case of deletion, the predicate s in P- is
intended to represent the deletion update to El, and
the rule for defining it is

s(X1,. . .,Xk) :- el(X1, Xk), 7u(Xl,. . .,Xk).

The following propositions are immediate corollaries
of the definition of independence.

Proposition 3.2: In+(P, P”) _ P E Pt.

Proposition 3.3: In- (P, P”) _ P E P- .

Proof: Both propositions follow from the observa-
tion that the relation computed for s is the updated
relation for El. Therefore, since ei is replaced by s in
the rules of the program, the new program will com-
pute the relation for q after the update. Clearly, the
independence holds if and only if the new program is
equivalent to the original program. 1

Example 3.4: Consider the following program PO

with q as the query predicate:

i-1 : P(XY Y) :-- p(X,Y), -a(X,Y).
i-2 : p(X, Y) :- el(X,Y), 7e(X).

7-3 : P(X,Y) :- el(X,Y), X > 1.

7-4 : p(X,Y) :- e(X), e(W), p(W,Y), W > X.

Let the update program P“ consist of the rule:

r” : 4x, Y) :- b(X,Y), x 5 1.

The program for the insertion update P+ would
be:

ri : 4x7 Y) :- p(X, Y), lS(X,Y).

4 : P(X, Y) :- s(X,Y), Te(X).

4 : P(X,Y) :- s(X,Y), x > 1.

ri : P(X, Y) :- e(X), e(W), p(W,Y), W > X.

ri : SW, Y) :- el(X, Y).

‘6 ’ : s(X,Y) :- u(X,Y).

9 ’ : u(X,Y) :- b(X,Y), x 5 1.

This program is equivalent to the original one, PO,

and indeed In+ (PO, P”) does hold. I

In Section 4, we describe algorithms for deciding
uniform equivalence for datalog programs with built-
in predicates and stratified negation. Based on
these algorithms, we get the following decidability
results for independence. Note that in the following
theorem, the updated predicate may have multiple
occurrences, and so, this theorem generalizes earlier
results on decidability of independence.

Theorem 3.5 : Independence is decidable in the
following cases:

1. In+(P,P”) (In-(P,PU)) is decidable if both P+

(P-) and P have only built-in and EDB predicates

(that may appear positively or negatively) in
bodies of rules.2

2. Both In+(P, P”) and In-(P, P”) are decidable if
P has only built-in and EDB predicates (that may
appear positively or negatively) in bodies of rules,
and P” has only rules of the form

Ql,.~.,&) :- el(X1,. . .,Xk), c.

where c is a conjunction of built-in predicates.

The theorem follows from the observation that for
these classes of programs, uniform equivalence is also
a necessary condition for equivalence. The algorithms
of Section 4 also apply to arbitrary programs P,

P+ and P-, but only as a sufficient condition for
independence.

3.2 Independence and Satisfiability
Detecting independence based on satisfiability is
based on the observation that if none of the updated
facts can be part of a derivation of the query, then
clearly, the query is independent of the update. This
is made precise by the following lemma, based on
query reachability.

2We prefer to describe this case in terms of P and P+,
rather than P and ‘P”, since it is clearer. Note that if P
and P” are nonrecursive then in some, but not all cases, P+
and P can be converted by unfolding into forms satisfying this
condition.

175

Lemma 3.6: Suppose that neither P nor P” has
negation. If predicate u is not query reachable in P+,

then both In+(P, P”) and In-(P, P”) are true.

Query reachability is decidable for all datalog pro-
grams with built-in predicates and negation applied
to EDB (and base) predicates [LS92, LMSS93]. If
negation is also applied to IDB predicates, then a
generalization of the algorithm of [LMSS93] is a suf-
ficient test for query reachability. Thus, the above
lemma provides a considerable generalization of pre-
vious algorithms for detecting independence.

It should be realized that the independence tests
of Elkan [El901 and of Blakely et al. [BCL89] are just
query reachability tests. Both essentially character-
ized special c-s in which independence is equiva-
lent to query reachability. The result of Blakely et
al. [BCL89] applies just to conjunctive queries with
no repeated predicates. The work of Elkan [El901
entails that, in the case of recursive rules, indepen-
dence is equivalent to queiy reachability provided
that the updated predicate has a single occurrence; he
also required that an insertion update be monotonic.
For testing independence, Elkan [El901 gave a query-
reachability algorithm for the case of nonrecursive,
negation-free rules, and suggested a proof method for
the recursive case; there is no characterization of the
power of that proof method, but it should be noted
that it cannot capture all cases detected by the algo-
rithms of [LS92, LMSS93].

Example 3.7: The following example shows how
query reachability can be used for detecting inde-
pendence in the case of a recursive datalog program.
Consider the following rules:

r1 : goodPath(X, Y) :- badPoint(

PaWX, Y),
goodPoint(

r2 : PaWf, Y) :- link(X, Y).

r3 : path@, Y) :- fink(X, Z), path(Z, Y).

r.j : fink(X, Y) :- step(X, Y).

r5 : link(X, Y) :- bigStep(X, Y).

The predicates step and bigStep describe single
links between points in a space. The predicate
path denotes the paths that can be constructed by
composing single links. The predicate goodPat h
denotes paths that go from bad points to good ones.
Furthermore, the following constraint are given on
the EDB relations:
badPoint + 100 < I < 200.
step(r, y) * 2 < y.

goodPoint 3 150 < z < 170.
bigStep(+, y) 3 I < 100 h y > 200.

Figure 1 show the query-tree representing all
possible derivation of the query goodPath(X, Y).
The query-tree shows that ground facts of the relation
step which do not satisfy 100 < x and y < 170 cannot.
be part of a derivation of the query. Similarly, facts
of the relation bigStep cannot be part of derivations
of hhe query. Consequently, the query goodPath will
be independent of removing or adding facts of that
form. I

4 Uniform Equivalence

In this section, we describe algorithms for deciding
uniform equivalence of programs that have built-in
predicates and stratified negation. This extends a
previous algorithm [Sa88] that dealt with datalog
programs without built-in predicates or negations.

As shown in [SaSSI, uniform containment (and
equivalence) can be given model-theoretic character-
ization, namely, the uniform containment P2 s” PI

holds if and only if M(P1) c M(P,), where M(Pi)

denotes the set of all models of Pi. We note that
M(P1) E M(P2) holds if and only if M(P1) C M(r)
for every rule r E P2, since a database D is a model of
P2 if and only if it is a model of every rule r E P2. Our
algorithms will decide whether M(P1) c M(P2) by
checking whether M(P1) C M(r) for every r E P2.

We first discuss programs with only built-in predi-
cates.

4.1 Uniform Containment with Built-in
Predicates

When the programs have no interpreted predicates,
the following algorithm (from [SaSSI) will decide
whether a given rule r is uniformly contained in a
program P. Given a rule r of the form

P :- 91, . ..> %a.

where p is the head of the rule and 91,. . . , q,, are its
subgoals, we use a substitution 0 that maps every
variable in the body of r to a distinct symbol that
does not appear in P or r. We then apply the
program P to the atoms 918,. . . , q,fl. In [SaSSI
it is shown that the program P generates pB from
f&e,. . .,qnc9 if and only if M(P) 5 M(r).

However, there is a problem in applying this
algorithm to programs with interpreted predicates.
First, the constants used in the input to P, i.e.,
those that appear in qlf?, . . . , q,,B, are arbitrary, and
therefore, order relations are not defined on them.
Consequently, the interpreted subgoals in the rules
(that may involve <, 5, etc.) can not be evaluated.
Moreover, some of the derivations of p0 by P depend
on the symbols satisfying the interpreted constraints,
and so these cannot be discarded.

176

goodPath(z, y) (100 < x < y < 170,y > 150)

badPoint ------- goodPoint

I
step(x, Y) step 2,~) I (100 < I < z < 170)

{loo < 2 < y < 170,y > 150)

Figure 1: Detecting independence using query reachability

We address this problem by associating a con-
straint with every fact involved in the evaluation of
P. The constraints for a given fact f represent the
conditions on qlfl, . . . , q,,O under which f is derivable.
We manipulate these constraints as we evaluate P.
Formally, let r be the rule:

P :- 91, ‘*a, $3, cr. (3)

We denote the set of variables in r by Y. The subgoal
c7 is the conjunction of the subgoals of interpreted
predicates in r. We assume that all subgoals in r
have distinct variables in every argument position.
Note that this requirement can always be fulfilled by
introducing appropriate subgoals in rules using the =
predicate. As in the original algorithm, we define a
mapping 0 that maps each variable in r to a distinct
symbol not appearing in P or r. Instead of evaluating
P with the ground atoms q10,. . . , qntl, we evaluate P
with facts that are pairs of the form (q, c), where q is
ground atom and c is a constraint on the symbols in
YB. The input to P will be the pairs (q#,c,O), for
i = 1, 2, . . . , 72.

An application of a rule 4 :- gr , . . . , gl, c proceeds
as follows. Let (or, cl), . . . , (al, c’) be pairs generated
previously, such that there is a substitution r for
which gir = ai (1 5 i 5 6). Let ch be the conjunction
C’A . . . A c1 A CT. ‘If ch is satisfiable, we derive the
pair (hr, ch). In words, the constraint of the new fact
generated is the conjunction of the constraints on the
facts used in the derivation and the constraints of the
rule that was applied in that derivation. We apply the
rules of P until no new pairs are generated. Note that
there are only a finite number of possible constraints

for the generated facts and,, therefore, the bottom-up
evaluation must terminate.

Finally, let (PO, cl), . . . , (PO, c,) be all the pairs
generated for p0 in the evaluation of P; recall that p
is the head of Rule (3) and 0 is the substitution used
to convert the variables of that rule to new symbols.
The containment M(P) C M(r) holds if and only if
c, b Cl v . ..vcm. where c, is the conjunction of
interpreted predicates from the body of Rule (3).

Example 4.1: Let PI be the program:

f-1 : P(X,Y) :- 0, Z), P(Z,Y).

f-2 : q(X,Y) :- e(X,Y).

Let P2 be the program:

31 : P(X,Y) :- P(X,Z), P(Z,Y).

32 : P(X,Y) :- e(X,Y), X 5 Y.

33 : q(X,Y) :- e(X,Y), Y 5 X.

s4 : q(X,Y) :- p(X,Y).

For a variable X of r, we denote the constant X0
by 20. True denotes the constraint satisfied by
all tuples. To check the uniform containment of
r1, the input to P;r would be (e(ze, ze), True) and
(p(zo, yo), True). Rule s2 will derive (p(xo, ZO), x0 <
ze) and rule si will then derive (p(xo, yo), x0 5
~0). Since p(xo, ys) was only generated under the
constraint x0 < ZO, we say that rule ri is not
uniformly contained in P2.

To check the uniform containment of rule r2, we
begin with (e(xs,ye), True). Rule sa will then

177

derive (q(zo, yo), yo 5 20). Rule s2 will derive
(p(z0, ye), 20 5 ys) and rule s4 will use that to derive
(q(xo,~o), ~0 I YO). Since q(zo,m) w= derived
for both possible orderings of 20 and ye, rule ~2 is
uniformly contained in P2. I

The correctness of the algorithm is established by
the following theorem.

Theorem 4.2 M(P) C M(r) w cr b clV.. .Vc,.

The theorem is proved by showing the following.
Let r be the rule p :- ql,...,qmrcr and Y be the
variables appearing in r. If Y ?r is a valid instantiation
of the rule r that satisfies c,, then pn is derivable
from the database containing the atoms q17r, . . . , q,,”
and the program P if and only if Yn satisfies one of
Cl,. . .,c,.

Our bottom-up evaluation of a program with a
database containing facts tha are pairs is reminiscent
of the procedure used by Kanellakis et al. [KKRSO].
In their procedure, an EDB fact may be a generalized
tuple specified in the form of a constraint on the
arguments of its predicate. However, there is a key
difference between the two methods. In [KKRSO],
every tuple is a constraint only on the arguments
of the predicate involved. In our procedure, the
constraint appearing in a pair is a constraint on all
the constants that appear in the database, i.e., all
the constants of Ye, where Y is the set of variables
of rule r. Thus, the constraint of a pair may
have constants that do not appear in the atom of
that pair. The following example illustrates why
this difference between ,the methods is important for
detecting uniform containment.

Example 4.3: Consider rules T and s, and let ‘P
consist of rule s.

r : p(X,Y) :- !?l(X,Y), Q2(& v.

s : P(X,Y) :- Ql(X,Y), Q2(K V), u I v.

To show M(P) E M(r), we begin with the pairs
(ql(m,~~), True) and (duo,v~), True), and apply
S. If we use the procedure of [KKRSO], the
result is the pair (p(zo, ye), True), which has no
recording of the fact that its derivation required
that ~0 5 ~0. Consequently, we will conclude
erroneously that M(P) E M(r) holds. In contrast,
when our procedure applies rule s to the pairs
(ql(zo,yo), True) and (q2(uo,v0), True), the result
is the pair (p(to, yo), us 5 VO), making it clear that
s does not contain P, because True k ug 5 vg. 1

The complexity of the algorithm depends on the
number of pairs generated during the evaluation of
P. In the worst case, it may be exponential in

the number of variables of r. A key component in
the efficiency of the algorithm is the complexity of
checking whether c, b cl V. . .Vc, holds. In [Levy931
we describe how to reduce this problem to a linear
programming problem. The result is an algorithm
that decides the entailment in time that is polynomial
in the size of the disjunction and exponential in the
number of f’s that appear in cr, cl,. . , cm.

An interesting special case is containment of con-
junctive queries with built-in predicates. Klug [K188]
showed that if all constraints are left-semiinterval or
all constraints are right-semiinterval, then contain-
ment of conjunctive queries can be decided by finding
a homomorphism from one query to the other. For
general conjunctive queries, he pointed out that it
could be done by finding a homomorphism for every
possible ordering of the variables and constants in the
queries (recently, van der Meyden [vdM92] has shown
that the containment problem of conjunctive queries
with order constraints is II;-complete). In our algo-
rithm, the complexity depends only on the number
of orderings that are actually generated during the
evaluation of P. More precisely, our algorithm gen-
erates partial rather than complete orderings of the
variables and constants in the queries. Essentially, it
lumps together complete orderings that need not be
distinguished from each other in order to test contain-
ment. Therefore, our algorithm is likely to be better
in practice, albeit not in the worst case (of course, our
algorithm also applies to more than just conjunctive
queries).

4.1.1 Beyond Uniform Containment
For testing uniform containment of PI in P,, it
is enough to check the containment separately for
each rule of PI. Consequently, uniform containment
completely ignores possible interactions between the
rules, interactions that may imply containment of PI
in P2. Consider the following example.

Example 4.4 : Consider the following programs
whose query predicate is p. Let PI be:

rl : p(X) :- q(X), X < 5.

r2 : q(X) :- e(X), X > 0.

And let P2 be the program:

r3 : P(X) :- q(X), X < 6, X > 0.

r4 : q(X) :- e(X), X > 0.

The program PI is contained in P2, because
whenever 0 < X < 5, the atom p(X) will be derived
from P2 if e(X) is in the database. However, r1
is not uniformly contained in P2 (and, therefore,
Pi g” P2). For example, the model consisting of

is a model of P2 but not a

178

The weakness of uniform containment stems from
the fact that it considers all models while for proving
(ordinary) containment it is sufficient to consider just
minimal models.3 We may, however, try to transform
Pi into an equivalent program P’ with a larger set
of models (but, of course, the same set of minimal
models, since equivalence must be preserved). One
way of doing it is by propagating constraints from one
rule to another. The query tree of [LS92] is a tool for
doing just that; for the type of constraints considered
in this paper the propagation is complete, i.e., each
rule ends up having the tightest possible constraint
among its variables. In our example, the result of
constraint propagation is the following program P’.

4 : P(X) :- q(X), x < 5, x > 0.

7-a : cl(X) :- e(X), X > 0.

Now we can show that PI s“ P2, and since PI E P’,
it follows that PI c” P2.

4.2 Uniform Equivalence with Stratified
Negation

In this section, we describe how to test uniform
equivalence of datalog programs with safe, strati-
fied negation. We begin with the case of stratified
programs with neither constants nor built-in predi-
cates. By definition, two programs Pi and P2 are
uniformly equivalent, denoted PI 2‘ Pz, if for ev-
ery database D (that may have both EDB and IDB
facts), PI(D) = Pa(D). Note that applying a strati-
fied program to a database that may also have IDB
facts is done stratum by stratum, as in the usual case;
in other words, P(D) is the perfect model of the pro-
gram P and the database D (cf. [UllSS]).

Suppose that that PI and P2 are not uniformly
equivalent. Hence, there is a database Do such that
PI (DO) # Pz(Do); Da is called a counterexample.
We may assume that PI (DO) g P2(DO) (the case
P2 (DO) e PI (Do) is handled similarly).

We assume that both PI and P2 have the same
set of EDB predicates and the same set of IDB
predicates, and moreover, there is a partition of the
predicates into strata that is a stratification for both
PI and P2. In particular, we assume that the lowest
stratum consists of just the EDB predicates and we
refer to it as the zeroth stratum. We denote by Pi
the program consisting of those rules of PI with head
predicates that belong to the first i strata; similarly
for Pj. Note that Pf is an empty program (i.e., it
has no rules). By definition, P:(D) = D for every
database D; similarly for P:.

31n our formalism, a set of relations for the EDB and IDB
predicates is a minimal model if the IDB part is a minimal
model once the EDB facts are added to the program as rules
with empty bodies.

We now assume that for some given i, Pi 2 Pi
and we will show how to test whether P;+’ 2’ Pi+‘.
The algorithm is based on the following two lemmas.

Lemma 4.5: Suppose that there is an i, such that
p; su Pi. If there is a counter-example database Do,
such that P;+’ (DO) e PitI(then there is some
rule r of PI+’ with a head predicate from stratum i+l
and a database D, such that

1. D is a model of Pj+’ but not a model of r.

2. The number of distinct constants in D is no more
than the number of distinct variables in r.

Proof: Let D’ = Pi(Do); note that D’ = Pi(D’). By
the assumption in the lemma, Pf’(Do) = Pi(Da) and,
hence, D’ is also a counterexample, i.e., P;+‘(D’) e
PitI(Now let D = Pi+‘(D’). Observe that D
and D’ have the same set of facts for predicates of
the first i strata, since D’ = Pi(D’). In addition,
observe that D: C 0. These observations imply that
P;+‘(D’) s P,+‘(D). Thus, P,‘+‘(D) g P;+‘(D),
because Pi+’
P;+‘(D).

(D’) e Pi+‘(D’) and Pi+‘(D’) =

So, we have shown that P:+‘(D) e Pi+‘(D) and
D is a model of Pi+l. Therefore, there is a rule r in
p;:+1 of the form

h :- ql, . . . , q,,,, lsl,. . . , 7s1

and a substitution 0, such that

l the predicate of h is from stratum i + 1,

l 0 is a mapping from the variables of r to constants,

0 q$ E D (1 < i 5 m),

0 hego.

The above and the fact D = Pi+’ (0) imply that
1 the database D is a model of Pit but not of ritl.

Let D be the database consisting of facts from f>
that have only constants from r0. Database D is also
a model of PitI.

4
In proof, suppose that D is not a

model of Pit . Thus, there is a rule F of Pi+’ and a
substitution r, such that

1. the head & of F satisfies hr $Z D,

2. every positive subgoal q of F satisfies qr E D, and

3. every negative subgoal S of i; satisfies ST @ D.

By the definition of D, if g is a ground fact having
only constants from D, then g E D if and only if
g E 0; moreover, for every negative subgoal S, the
constants appearing in ST are all from D, since rules

179

are safe (cf. [UllSS]). Therefore, items (l)-(3) hold
even if we replace D with D, and so it follows that
b is not a model of +-a contradiction, since D is a
model of Pi+’ and i; is a rule of Pi+‘. Thus, we have
shown that D is a model of Pi+‘. Furthermore, items
(l)-(3) above imply that D is not a model of r. So,
the lemma is proved. I

Lemma 4.6 : Suppose that Pi E” Pj. Moreover,
suppose that there is a database D that is a model
of Pi+’ and is not a model of some rule t of PI+’
having a head predicate from stmtum i + 1. Then
PI(D) e Pz(D) and, hence, PI $” P2.

Proof: From the assumptions in the lemma, it
follows that rule r can be applied to D to generate
a new fact g that is not already in D. Note that
g $ Pz(D), since Pi+‘(D) = D and strata higher
than i+l do not include facts with the same predicate
as that of g. If we show that rule P can still generate
g even when PI is applied to D, it would follow that
g E PI(D), and hence, PI(D) e Pz(D). To show
that, recall that Pj Z“ Pi and D is a model of Pl+’ ;
therefore, D is also a model of Pi. Thus, rule T can
still generate g during the application of PI to D,
since nothing is generated by rules of lower strata. I

The algorithm of Figure 2 tests whether PI E” P2;
its correctness follows from the above two lemmas and
the following proposition.

Proposition 4.7: PI(D) f Pz(D) if and only if
there is some i and a database D, such that either
pi CD) iZ p;(D) or P;(D) e P;(D).

Note that in the algorithm, it does not matter what
are the constants in S as long as their number is
equal to the number of distinct variables in the given
rule r. Also, if two databases over constants from S
are isomorphic, it is sufficient to consider just one of
them.

Example 4.8: Let PI consist of the rules:

Tl : lown(X, Y) :- own(X, Y).

l-2 : lown(X, Y) :- lives(X, Z), inHouse(2, Y).

T3 : Zown(X, U) :- own(X, Z), lives(Y, Z),

lown(Y, V).

r4 : buys(X, Y) :- likes(X, Y), -down(X, Y).

Let P2 consist of the rules rl, r4 and the rule:

r5 : lown(X,Y) :- Own(X, Z), inHouse(Z,Y).

The EDB relation own describes an ownership
relationship between persons and objects. The IDB

procedure check(S) Pz);
begin

for every rule P of PI do
begin

Let S be a set of v distinct constants,
where v is the number of variables in r;
for every database D that includes

only constants from S do
if D is a model of P2 but not of r
then return false;

end;
return true;

end;
begin /* main procedure */

for i := 1 to maz-stmtum do
if not check(Pj, Pi) or not check(Pi, Pf)
then return PI f” Pz;

return PI E” P2;
end.

Figure 2: An algorithm for testing PI 2 P2.

relation Iown represents a landlord’s perspective of
the ownership relation. The programs PI and P2 are
not uniformly equivalent. Specifically, consider the
database Do :

{likes(a, o), lives(b, h), own(b, o), own(a, h)}

Rule r4 (of P2) and program 9 satisfy r4(DO) g
Pl(Do), since lown(a,o) e rq(Do) and therefore
bw(a,o) E 7-4(D0), while the converse is true for
pl(Do). I

To extend the algorithm to programs with built-in
predicates (and constants), we need to check for the
possibility that a database may become a counterex-
ample by analyzing the built-in constraints. One con-
ceptually simple (albeit not the most efficient) way of
doing it is by using the algorithm of Figure 2, but with
the following modifications. Let C be the set of con-
stants appearing in either PI or P2. Instead of consid-
ering every database over constants from S, we should
consider every database over constants from S U C.
Moreover, for each database we should consider ev-
ery total order on the constants of the database, such
that the order is consistent with any order that may
implicitly be defined on C (e.g., if C is a set of in-
tegers, then presumably the usual order on integers
should apply to C). For each such database and total
order defined on its constants, we should apply the
given test of the check procedure; that is, we should
test whether D is a model of P2 but not of r. The
rest of the algorithm is the same as earlier. Thus,
we get the following result; for the full details of the

180

proof and for a more efficient algorithm than the one 9th ACM Symp. on Principles of
described above see [Levy93]. Database Systems, 1990, pp. 154-160.

Theorem 4.9 : Uniform equivalence for datalog
programs with safe, stmtified negation and built-in
predicates is decidable.

[GW93]

5 Concluding Remarks
We have presented an analysis of the notion of in-
dependence and described algorithms for detecting
independence of queries from updates. Our formula-
tion of the problem gives us flexibility in the analysis.
For example, we can distinguish between the case in
which an updates is specified intensionally and the
actual tuples to be inserted are computed at update
time, and the case in which the set of tuples to be
inserted is given a priori. Our framework and algo-
rithms can also be extended to incorporate integrity
constraints, as in Elkan [E190].

Gupta A., Widom J.: Local Verifica-
tion of Global Integrity Constraints in
Distributed Databases. Proceedings of
the ACM SIGMOD International Con-
ference on Management of Data, 1993,
pp. 49-58.

[KKRSO] Kanellakis, P.C., Kuper, G.M., and
Revesz, P.Z.: Constraint query lan-
guages. Pmt. 9th ACM Symp. on
Principles of Database Systems, 1990,
pp. 299-313.

[K188] Klug, A.: On conjunctive queries con-
taining inequalities. JACM, Vol. 35,
No. 1, 1988, pp. 146-160.

Posing the problem of independence as a prob-
lem of equivalence suggests that further algorithms
for independence can be found by trying to iden-
tify additional sufficient conditions for equivalence.
One possibility mentioned in this paper involves pro-
gram transformations that increase the set of mod-
els but preserve the set of minimal models. Conse-
quently, these transformations increase the possibility
of detecting equivalence by an algorithm for uniform
equivalence. More powerful transformations can be
obtained by considering, for example, only minimal
derivations [LS92].

[Levy931 Levy, A.: Irrelevance reasoning in
knowledge based systems. Forthcom-
ing Ph.D thesis, Stanford University,
1993.

[LS92] Levy, A. and Sagiv, Y.: Constraints
and redundancy in datalog. Proc. 11 th
ACM Symp. on Principles of Database
Systems, 1992, pp. 67-80.

[LMSS93]

In this paper, we have considered the problem
of detecting independence assuming we have no
knowledge of the EDB relations. An important
problem, investigated in [BCL89] and [GW93] is
detecting independence when some of the EDB
relations are known and can be inspected efficiently.
Combining our techniques with the ones described in
those papers is an intersting area for future research.

Levy, A.Y., Mumick, I.S, Sagiv, Y. and
Shmueli, 0.: Query-Reachability and
Satisfiability in Datalog. To appear in
Pmt. 12th ACM Symp. on Principles
of Database Systems,, 1993.

[Sa88] Sagiv, Y.: Optimizing datalog pro-
grams. In Foundations of Deductive
Databases and Logic Progmmming, (J.
Minker, ed.), Morgan Kaufmann Pub
lishers, 1988, pp. 659-698.

[Sh87]
6 Acknowledgments
The authors thank Ashish Gupta for many helpful
discussions and Jose Blakeley for very useful com-
ments regarding the presentation of the material.

Shmueli, 0.: Decidability and ex-
pressiveness aspects of logic queries.
Proc. 6th ACM Symp. on Principles of
Database Systems, 1987, pp. 237-249.

[U1188]

References

[BCL89]

Ullman, J. D.: Principles of Database
and Knowledge-Base Systems, Volume
1. Computer Science Press, 1988.

Blakeley, J. A., N. Coburn, Larson,
P. A.: Updating derived relations:
detecting irrelevant and autonomously
computable updates. Tmnsactions of
Database Systems, Vol 14, No. 3, pp.
369-400, 1989

[vdM92] van der Meyden R.: The Complex-
ity of Querying Indefinite Data about
Linearly Ordered Domains. Proc. 11 th
ACM Symp. on Principles of Database
Systems, 1992, pp. 331-345.

[El901 Elkan, C.: Independence of Logic
Database Queries and Updates. Proc.

181

