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Abstract 

Coral++ is a database programming language that in- 
tegrates Coral [23] with the C++ type system. The 
data model allows arbitrary C++ objects in database 
facts, and the declarative query language extends 
Coral with C++ expressions in rules. Coral++ also 
supports an imperative rule-based sub-language that is 
integrated with C++, providing support for updates. 

The design and implementation of Coral++ incor- 
porates several important decisions: the data model 
is based on C++, and class definitions and method 
invocations are handled entirely by the C++ com- 
piler; the notion of classes is kept orthogonal to the re- 
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lated notion of class extents; and declarative Coral++ 
programs can be largely understood in terms of stan- 
dard Horn clause logic with C++ method invocations 
treated as external functions. The implementation 
outline illustrates that extending an existing deduc- 
tive system to incorporate object-oriented features in 
the data model is feasible, and is orthogonal to the 
techniques used for object storage and retrieval. 

1 Introduction 
In recent years considerable research has been done 
in extending relational database languages, such as 
SQL, which have proven inadequate for a variety 
of emerging applications. Two main directions of 
research in database programming languages have 
been object-oriented database languages and deduc- 
tive database languages, and the issue of combining 
the two paradigms has received attention recently. 

Object-oriented database languages, such as 0++ [l] 
and 02 [7], among others, enhance the relational data 
model by providing support for abstract data types, 
encapsulation, object identifiers, methods, inheritance 
and polymorphism. Such sophisticated features are 
very useful for data modeling in many scientific, en- 
gineering, and multimedia applications. Deductive 

database languages, such as LDL [19], Coral [23] and 
Glue-Nail! [21], among others, enhance the declarative 
query language by providing a facility for generalized 
recursive view definition, which is of considerable prac- 
tical importance. However, data models for deductive 
databases are typically structural, and do not have the 
richness of object-oriented data models. 

One of the contributions of this paper is to demon- 
strate that the advantages of object-oriented database 
languages and deductive database languages can in- 
deed be combined in a clean and practical manner. 
Our proposal, Coral++, has the following objectives: 
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l TO combine an object-oriented data model with a 
deductive query language. 

This permits the programmer to take advantage of 
the features of both object-oriented database lan- 
guages and deductive database languages in devel- 
oping applications. The Coral++ query language 
is significantly more expressive than the object- 
oriented extensions of SQL ([8,6], for instance). A 
non-operational semantics is however maintained, 
and this makes Coral++ more amenable to au- 
tomatic query optimization than imperative lan- 
guages for object-oriented databases ([7, 11, for 
instance) that have similar expressive power. 

l To cleanly integrate a declarative language with 
an imperative language. 

Such an integration is extremely useful since sev- 
eral operations such as updating the database 
in response to changes in the real world, in- 
put/output, etc., are imperative notions, whereas 
one can easily express many complex queries 
declaratively. A clean integration allows the pro- 
grammer to do tasks in either the declarative style 
or the imperative style, whichever is appropriate 
to the task, and mix and match the two program- 
ming styles with minimal impedance mismatch. 

l To keep object storage and retrieval orthogonal 
to the rest of the design, so that techniques devel- 
oped for implementing object stores can be used 
freely in conjunction with other optimizations in 
the declarative query language. 

1.1 Overview of the Coral++ Design 
The central observation is as follows: Object-oriented 
features such as abstract data types, encapsulation, in- 
heritance and object-identity are essentially extensions 
of the data model. We can achieve a clean integration 
of these features into a deductive query language by 
allowing the deductive language to draw values from 
a richer set of domains, and by allowing the use of 
the facilities of the deductive language to maintain, 
manipulate and query collections of objects of a given 
We. 

In relational query languages such as SQL, values 
in fields of tables have been restricted to be atomic 
constants (e.g. integers or strings). In logic programs, 
values can be Herbnand terms, which are essentially 
structured values. In Coral++, values can additionally 

be of any class definable in C++ [29]. (We chose C++ 
since it provides a well-understood and widely used 
object-oriented type system.) 

Coral++ provides support for maintaining extents 
or collections of objects of a given type, either in a 
simple manner that reflects the inclusions associated 
with traditional IS-A hierarchies, or in a more sophis- 
ticated way through the use of declarative rules. The 
idea is to automatically invoke code that handles ex- 
tent maintenance whenever objects are created or de- 
stroyed, and provide constructs to use these extents in 
Coral++. We also provide support for creating and 
manipulating various types of collections: sets, multi- 
sets, lists and arrays, whereas traditionally only sets 
and multisets are provided. 

Coral++ separates the querying of objects from the 
creation, updating and deletion of objects, and pro- 
vides separate sub-languages for these two purposes. 
This methodology stems from the view that querying 
is possible in a declarative language, whereas creation, 
updates and deletion should be performed only using 
an imperative language. 

In summary, the proposal is simple, combines fea- 
tures of C++ and Coral-two existing languages- 
with minimal changes to either, and yields a power- 
ful combination of the object-oriented and deductive 
paradigms. The essential aspects of the integration 
are not specific to our choice of C++ and Coral, and 
the ideas can readily be used to combine other object- 
oriented and deductive systems in a similar manner. 

1.2 Related Proposals 
The Coral++ data model and query language have 
been influenced by other proposals for integrating 
object-oriented data models and declarative query lan- 
guages. Some of the important aspects of our design 
are: 

l Coral++ uses the type system of an exist- 
ing object-oriented programming language (i.e., 
C++) as an object data model rather than invent- 
ing yet another object data model (e.g., [28,8, 13, 
9,10,17,2]) This approach benefits from the sup- 
port for data abstraction, inheritance, polymor- 
phism and parametrized types already available 
in C++. 

Other query languages that use the C++ type 
system include CQL++ [S], ZQL[C++] [3] and 
ObjectStore [20]. 
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The Coral++ declarative query language sup- 
ports the combination of Coral rules with C++ 
expressions in a clean fashion. This approach can 
effectively utilize the Coral implementation and 
the C++ compiler. 

Noodle (171 and ObjectStore [20], for instance, 
take the alternative approach of inventing new 
syntax to query an object data model. 

Coral++ is more expressive than most of the 
other proposals ([28, 8, 6, 91). In particular, it 
provides a facility for generalized recursive view 
definition in the query language. It also supports 
unordered relations (i.e., sets and multisets) and 
ordered relations (lists and arrays), which are use- 
ful in applications involving sequence data [27]. 

The Coral++ query language can be largely un- 
derstood in terms of standard Horn clause logic, 
unlike Noodle [17] which is based on HiLog [5] and 
XSQL (131 which is based on F-logic [14]. Bottom- 
up evaluation of HiLog and F-logic programs is 
not as well understood as the evaluation of Horn 
clause programs and is likely to be more expen- 
sive. 

Our proposal includes a detailed implementation 
design that clearly demonstrates the practicality 
of extending Coral (an existing deductive system) 
with object-oriented features of C++ (a widely- 
used object-oriented type system). An implemen- 
tation based on the run-time system of the Coral 
implementation (241 is already underway. 

The rest of this paper is structured as follows. We 
start with example programs written in Coral++ that 
demonstrate several features of the data model and 
query language. We describe the object-oriented fea- 
tures of the Coral++ data model in Section 3. The 
Coral++ declarative query language is presented in 
Section 4 and the Coral++ imperative rule-based lan- 
guage is described in Section 5. We discuss in detail 
how Coral++ can be implemented using the existing 
Coral run-time system in Section 6. Finally, in Sec- 
tion 7, we compare our proposal with some of the re- 
lated proposals in more detail. 

2 Motivating Examples 
Example 2.1 (A university database) 
A university database maintains information about 

various departments as well as information about stu- 
dents and employees. Some Coral++ type declara- 
tions for this database are given below:’ 

class department { 

public: 

employee *head ; 

int budget ; 

1; 
class person { 

public: 

char *name ; 

int age ( ) ; 

1; 
class employee : public person { 

public: 

int salary ; 

department *dept ; 

employee *supervisor ; 

void updateslary (int) ; 

1; 
class student : public person { 

public: 

department *dept ; 

1; 

Consider the query: “Find all departments where the 
sum of the salaries of the employees has exceeded the 
department budget?” If the collection of all employee 

objects is maintained as a relation called employee, the 
corresponding Coral++ program is: 

budget-exceeded (D) : - sum-ofsalaries (D, S), 

S > D+budget. 

sum-ofAalaries (D, sum (< S >)) : - employee (E), 

D = E+dept, S = E-salary. 

Coral++ programs use a rule-based syntax, simi- 
lar to Coral and logic programming languages. A dif- 
ference is that Coral++ allows the use of C++ ex- 
pressions (for instance, E-+dept) in rules to access at- 
tributes and invoke methods. Each rule can be read 
as an “if-then” statement in logic. For instance, the 
meaning of the first rule is “if the sum of salaries in a 
given department D is S and S is greater than the bud- 
get of department D, then the budget of department 
D has been exceeded”; the second rule gives a way of 
computing the sum of the salaries of the employees in 
a given department. 

‘Coral++ type declarations have the same syntax as C++ 
class declarations. 
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Consider the query: “Find all students in depart- 

ments where the head of the department is named 
John.” The corresponding Coral++ program is: 

jd>tudents (D, < S >) : - j-dept (D), student (S), 

S-+dept = D. 

j-dept (D) : - department (D), D+head+name = “John” 

The second rule in the above program is used to find 
out all departments where the head of the department 
is named “John”, and the first rule collects all the 
students in such departments. 

These two queries can also be expressed in object- 
oriented extensions of SQL, and are provided here to 
primarily illustrate the difference in program specifi- 
cation styles. 0 

Example 2.2 (An engineering application) 
An engineering database for a manufacturing com- 
pany stores information about the various parts man- 
ufactured, along with information about composition 
of parts. Some Coral++ type declarations for this 
database are given below. 

class part { 

private: 

int functionality-test ; 

int connection-test ; 

public: 

char *ptype ; 
int tested ( ); 

1; 
class connection { 

public: 

pati *from ; 

pati *to ; 

char *ctype ; 

1; 

The following Coral++ program can be used to ex- 
press the bill-of-materials problem: “Find all subparts 
of a given pa&“. This problem is of considerable prac- 
tical importance in inventory control, and other appli- 
cations. 

In database languages such as SQL, values in fields 
of relational tables are unstructured, i.e., restricted to 
be of a basic type supported by the system (e.g. in- 
tegers or strings). In deductive database languages 
such as LDL [19] and Coral [23], values can be Her- 
brand tens, which are essentially structured values. 
However, data modeling in many scientific and engi- 
neering applications require support for more sophis- 
ticated features such as abstract data types, encapsu- 
lation, methods and inheritance. To support the data 
modeling needs of such applications, the Coral++ data 
model enhances the untyped Coral data model [23] 
with the C++ class facility. Values in Coral++ can ad- 
ditionally be of any type definable in C++, which can 
be manipulated using only the corresponding methods, 
supporting encapsulation. This allows a programmer 
to effectively use a combination of C++ and Coral, 
with minimal impedance mismatch. 

subpart (Pl, P2) : - connection (C), Pl = C-+from, 

P2 = C+to, C-xtype = “subpart”. 

subpart (Pl, P3) : - connection (C). Pl = Chfrom, 

P2 = C-to, C+ctype = “subpart”, 

subpart (P2, P3). 

alLsubparts (Pl, < P2 >) : - subpart (Pl, P2). 
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One of the goals of Coral++ was to integrate Coral 
with an e&sting object data model, instead of invent- 
ing yet another object data model. By using the C++ 
type system as an object model, our approach is able 
to benefit from the support of data abstraction, in- 
heritance, parameterized types, and polymorphism al- 
ready available in C++. The choice of C++ was baaed 
on practical implementation considerations (Coral is 
implemented in C++), but we believe that our ap- 
proach can also be applied to extending Coral with an 
alternative object-oriented data model. 

Consider the following query from [26]: “Find if a 
given part is working, where a part is known to be 
working either if it has been (successfully) tested or if 
it is constructed from smaller parts, and all the smaller 
parts are known to be working”. This citn be expressed 
in Coral++ as follows: 

working (P) : - part (P), P-tested ( ) = 1. 

working (P) : - connection (C), C-from = P, 

C-xtype = “subpart”, not hasAuspect_part (P), 

hassuspect-part (P) : - connection (C), C+from = P, 

C-+to = Pl, C-ctype = “subpart”. 

not working (Pl). 

Neither of these two queries can be expressed in SQL 
or its object-oriented extensions because of the recur- 
sive definitions of subpart and working. 0 

3 Coral++: Data Model 



3.1 Overview of the Coral Data Model 
The formal definitions of constants, variables, terms, 
tuples, facts and relations are available in logic pro 
gramming texts such as [15]. We informally describe 
these features of the Coral data model. The follow- 
ing facts could be interpreted as follows: the first fact 
indicates that John is an employee in the “Toys for 
Tots” department who has been with the company for 
3 years and makes 35K. The second fact indicates that 
Joan has worked for the same department for 2 years 
and makes 30K. 

works-for (john, “Toys for Tots”, 3, 35) 

works-for (joan, “Toys for Tots”, 2. 30) 

In order to express structured data, complex terms 
are required. In Coral, function symbols are used as 
record constructors, and such terms can be arbitrarily 
nested. The following fact can be interpreted as: John 
lives in Madison, and has a street address with a zip 
of 53606. 

address (john, residence (“M?dison”, 

streetadd( “Oak Lane”, 3202), 53606)) 

Sets and multisets are allowed as values in Coral; 
{peter, mary} is an example of a set representing the 
children of John, (60, 35, 35, 30) is an example of a 
multiset representing the salaries of employees in the 
“Toys for Tots” department. 

Coral permits variables within facts. A fact with a 
variable in it represents a possibly infinite set of ground 
facts. Such facts are often useful in knowledge repre- 
sentation, natural language processing and could be 
particularly useful in a database that stores (and pos- 
sibly manipulates) rules. There is another, possibly 
more important, use of variables - namely to specify 
constraint facts [12, 221. 

However, the Coral data model does not allow val- 
ues of (arbitrary) user-defined types in facts. These 
are extremely useful in several applications, especially 
when the user-defined types have behavioral compo- 
nents. 

3.2 Overview of the C++ Type System 
C++ allows the specification of user-defined types us- 
ing the class definition facility. An implementation of a 
C++ class is a combination of the attributes that spec- 
ify the “structure” of the class along with the imple- 
mentation of the methods that specify the “behavior” 

of the class. Attributes and methods of a class may be 
specified as either “public,” “private,” or Uprotected,” 
providing different levels of encapsulation. Classes can 
be organized in an inheritance hierarchy in C++, and 
a class can have more than one subtype as well as 
more than one supertype (i.e., C++ supports multiple 
inheritance). The type declarations of Examples 2.1 
and 2.2 illustrate some of these features. 

By integrating the C++ object model with Coral, 
the Coral++ user benefits ‘from having sophisticated 
data modeling and manipulation capabilities. 

3.3 Relations in Coral++ 
Coral supports relations that are multisets (i.e., un- 
ordered collections) of tuples. Typically, current 
database systems support only multisets of tuples, and 
the utility of these collections can be seen from the 
variety of applications written in SQL. However, for 
many applications (see [25, 271, for instance) involving 
sequence data and spatial data, for example, ordered 
collections of lit-type and array-type are more natu- 
ral. Hence, Coral++ also supports list-relations and 
array-relations, in addition to multiset-relations. 

Each of these relation types supports the operation 
of iterating through the elements in the collection. The 
difference is the primay mode of access to elements 
in the collection. Multisets support unordered access, 
lists support ordered access in the total order of the 
list elements, and arrays support access in the array 
index order. In addition, each collection type can have 
value-based indexed modes of access, where the index 
can be on specified attributes or patterns. 

Example 3.1 (Stock market data) 
A stock market database maintains daily information 
about the stocks traded for each company. A small 
fragment of such type information is shown below: 

class DailyStocklnfo { 

public: 

double low ; 

double high ; 

double average ( ) ; 

int volume-traded ; 

1; 

Stock market information for individual companies 
can be naturally represented as array relations, which 
results in extremely efficient querying and manipula- 
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tion of such information, as is demonstrated in the 
Mimsy system [27]. 0 

4 Coral++: Query Language 
The Coral++ query language is modular, declara- 
tive and provides support for generalized recursive 
view definition. It is based on the Coral query lan- 
guage (231 which supports general Horn clauses with 
complex terms, set-grouping, aggregation and nega- 
tion. Coral++ extends the Coral query language by 
allowing C++ expressions for accessing attributes and 
invoking (side-effect free) methods of objects in pro- 
gram rules. 

Coral-l-+ incorporates several important design de- 
cisions in the way the data model interacts with the 
declarative query language: 

l The notion of a class as an encapsulation of data 
and methods is kept orthogonal to the related no- 
tion of class extents. This is achieved by providing 
the Coral++ programmer considerable flexibility 
in explicitly defining and maintaining collections 
of objects of a given class. We describe this in 
more detail in Section 4.3. 

l The C++ expression truth semantics is kept dis- 
tinct from the Coral++ predicate truth seman- 
tics. This is achieved by allowing C++ expres- 
sions to appear only in the argument positions of 
predicates (including evaluable predicates such as 
=9 <=, etc.). This is discussed in more detail in 
Section 4.4. 

- -- 
l Declarative rules in Coral++ do not create new 

objects (instances of C++ classes), although they 
can create facts describing relationships between 
existing objects. The rationale for this decision is 
discussed in Section 4.5. 

One of the major advantages of our proposal is that 
evaluation of Coral++ programs is based on the exist- 
ing Coral run-time system, which facilitates implemen- 
tation considerably. More generally, it suggests that 
optimization techniques developed for deductive and 
for object-oriented database languages can be com- 
bined cleanly. In this section, we first give an overview 
of the Coral query language and the evaluation of 
Coral queries, and then discuss the Coral++ design 
decisions. 

4.1 Overview of the Coral Query Lan- 

wage 
The formal definitions of constants, variables, terms, 
atoms, literals, facts and rules are available in logic 
programming texts such as [15]. We briefly describe 
some of these features here. Rules in Coral take the 
form: 

head : - bodyl, bodyz, . . . , body,,. 

where head is a positive literal, each bodyi is a (posi- 
tive or negative) literal, and n 2 0. Informally, each 
rule can be read as a statement of the form “if <body 
is true> then <head is also true>“. (In particular, a 
fact is just a rule with an empty body.) In the absence 
of rules with negation, set-generation and aggregation, 
the meaning of a program can be understood by read- 
ing each of the rules in the program in this manner, 
with the further understanding that the only true facts 
are those that are either part of the input database or 
that follow from a repeated use of program rules. 

Coral supports and efficiently evaluates a class of 
programs with negation that properly contains the 
class of non-floundering left-teright modularly strat- 
ified programs ([26]). Intuitively, this class is one in 
which the subgoals and answers generated during pro- 
gram evaluation involve no cycles through negation. 
The keyword ‘not’ is used as a prefix to indicate a neg- 
ative body literal. (A query in Example 2.2 illustrates 
the use of negation.) 

There are two ways in which sets and multisets 
can be created using Coral rules, namely, multiset- 
enumeration ({ }) and multi&-grouping (0). The 
following illustrate the use of these constructs: 

children Cohn, {mary, peter, Paul}). 
p (X, <Y>) : - q (X, Y, Z). 

This second rule uses facts for q to generate a mul- 
tiset S of instantiations for the variables X, Y, and Z. 
For each value z for X in this set it creates a fact p 

(5, zy~x=~S), where zy is a multiset projection (i.e., 
it does not do duplicate elimination). Thus with facts 
q (1,2,3), q (1,2,5) and q (1,3,4) we get the fact p (1, 
{2,2,3)). The use of the multi&-grouping construct in 
Coral is similar to the grouping construct in LDL, ex- 
cept that it constructs a set (as opposed to a multiset) 
in LDL. 

Coral requires that the use of the multi&.-grouping 
operator be left-teright modularly-stratified (in the 
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same way as negation). This ensures that all derivable 
q facts with a given value z for X can be computed 
before a fact p (z,-) is created. 

Coral provides several standard operations on sets 
and multisets as system-defined predicates. These in- 
clude member, union, intersection, difference, multise- 

tunion, cardinality, subset, and makeset. Coral also al- 
lows several aggregate operations on sets and multi- 
sets: these include count, min, max, sum, product, av- 

erage and any. Some of the aggregate operations can 
be combined directly with the multiset-generation op- 
erations for increased efficiency (see [23] for further 
details). 

Modules provide a way, as the name suggests, to 
modularize Coral code. In developing large applica- 
tions, incremental program development and testing 
is critical, and modules in Coral provide the basis for 
this kind of programming. A module in Coral consists 
of a collection of rules defining a collection of predi- 
cates. A subset of these defined predicates are named 
as exported predicates, and other modules can pose 
queries over these predicates. The query forms per- 
mitted for each exported predicate are also indicated 
in the export declarations. Non-exported predicates 
are not visible outside this module and this provides a 
way of encapsulating the definition of Coral predicates. 

4.2 Evaluating Coral Queries 
The evaluation of a Coral module, given a query on 
an exported predicate of a module, is determined by 
the control annotations in the module, and the expert 
user can control the evaluation in several ways. We 
refer the interested reader to [23] for a discussion of 
these annotations and their effect on module evalua- 
tion. In the absence of any user-specified annotations, 
the Coral system chooses from among a set of default 
evaluation strategies. 

For declarative modules, Coral evaluation, using 
these default strategies, is guaranteed to be sound, 
i.e., if the system returns a fact as an answer to a 
query, that fact indeed follows from the semantics of 
the declarative program. The evaluation is also “com- 
plete” in a limited sense - as long as the execution 
terminates, all answers to a query are actually gener- 
ated. It is possible however, to write programs that 
do not terminate; in some such cases (e.g., programs 
without negation, set-grouping or aggregation) Coral 
is still complete in that it enumerates all answers in 
the limit. 

During the evaluation of a rule T in module A, if we 
generate a query on a predicate exported by module 
B, a call is set up on module B. The answers to this 
query are used iteratively in rule T; each time a new 
answer to the query is required, rule T requests a new 
answer from the interface to module B. The module 
interface makes no assumptions about the evaluation 
of the module. Module B may contain only database 
facts, or may have Coral rules that are evaluated in 
any of several different ways. The module may choose 
to cache answers between calls, or choose to recompute 
answers. All this is transparent to the calling module. 
Similarly, the evaluation of the called module B makes 
no assumptions about the evaluation of calling module 
A. This orthogonality permits the free mixing of differ- 
ent evaluation techniques in different modules in Coral 
and is central to how different executions in different 
modules are combined cleanly. 

4.3 Class Extents in Coral++ 
Coral++ keeps the notion of a class (as an encapsu- 
lation of data and methods) orthogonal to the related 
notion of class extents (i.e., the collection of all objects 
of the given class). Although maintaining class extents 
is necessary for iterating over all objects of a given class 
(as in Example 2.2), Coral++ does not automatically 
maintain class extents since doing so is very expen- 
sive, and one does not always need to iterate over all 
objects of a given class. 

Coral++ provides the programmer considerable 
flexibility in explicitly defining and maintaining col- 
lections of objects of a given class. Collections of ob- 
jects can be maintained either in a simple manner that 
reflects the inclusions associated with traditional IS-A 
hierarchies, or in a more sophisticated way through the 
use of declarative rules. Coral++ provides functions 
that can be explicitly invoked from class constructors 
and destructors, and that handle extent maintenance. 
Such class extents are maintained as Coral++ rela- 
tions, and can be used as literals in the bodies of 
Coral++ rules. For example, the following literal can 
be used to iterate over the extent of class part, in the 
body of a Coral++ rule: 

pati (P) 

The variable P is successively bound to (pointers to) 
objects in the extent. (See Example 2.2 for further 
uses of class extents.) 

164 



4.4 C++ Expressions in Rules 
By integrating the C++ object model with the Coral 
data model, Coral++ allows facts to contain objects of 
C++ classes. Such objects can be manipulated using 
only the corresponding methods, supporting encapsu- 
lation. This is achieved by allowing C++ expressions 
in Coral++ rules to access attributes and invoke meth- 
ods of objects. For example, one can iterate over all 
tested parts using: 

part (P). P-tested ( ) = 1. 

Such C++ expressions can appear only in the ar- 
gument positions of predicates (including evaluable 
predicates such as =, <=, etc.). This ensures that 
the Coral++ predicate truth semantics is kept dis- 
tinct from the C++ expression truth semantics. (The 
C++ type system does not include a boolean type; any 
arithmetic expression is considered false if its value is 
zero, and true otherwise.) For instance, the following 
are not legal Coral++, although the C++ conditional 
expressions can each be used in the C++ if-statement: 

part (P), P-tested ( ). 

department (D), D+head+name. 

4.5 Creating Objects in Coral++ 
Objects can be created using constructor methods 
(specified along with the class definition), and deleted 
using destructor methods (also specified along with 
the class definition). Coral++ requires that objects 
that are instances of C++ classes be explicitly created 
only using C++; the database can be populated with 
such objects only from C++. However, the Coral++ 
declarative language can create facts describing rela- 
tionships between existing objects in the database. 

Rules in Coral++ are deliberately restricted to 
avoid creating new objects, s&e this is an issue that 
is not yet well-understood despite work by Maier [16], 
Kifer et al. [13], and others. A number of issues, no- 
tably the resolution of conflicts when rules generate 
distinct objects with the same object identifier, remain 
unclear, especially in the presence of partially specified 
objects (e.g. some fields are variables, in the Coral-l-+ 
context). 

Similarly, updating and deleting objects that are in- 
stances of C++ classes should be performed only us- 
ing the imperative language. This methodology stems 

from the view that the query language has to be declar- 
ative, whereas creating, updating and deleting objects 
are operational notions. 

5 Coral++: Imperative Lan- 

lw%e 
The Coral++ declarative language cannot be used to 
create objects that are instances of C++ classes, delete 
such objects, or update such objects. We view these 
as opemtdonal notions and hence provide an imper- 
ative language for this purpose. This imperative lan- 
guage consists of C++ augmented with new types and 
constructs to effectively deal with collections. For in- 
stance, it provides the Coral++ user with the ability 
to iterate through collections. This can be extremely 
useful in performing database updates, for instance, 
where the order in which the updates are performed 
in a collection may be critical. The imperative lan- 
guage also supports imperative Coral++ rules, which 
can be of the following forms, as in Coral: 

head. 

head := bodyl, bodyz, . . . , body,. 

head + = bodyl, bodyz, . . . , body,,. 

head - = bodyl, bodyz, . . . , body,,. 

where each bodyi is a literal and head is an atom. An 
imperative Coral++ rule can also be of the form: 

head * = bodyl, bodyz, . . . , body,,. 

where each bodyi is a literal and head is a C++ ex- 
pression. This imperative Coral++ rule corresponds 
to the invocation of arbitrary methods on objects; the 
arguments to such a method could depend on the body 
of the rule. The C++ control structures are used to 
provide sophisticated control on the order in which im- 
perative Coral++ rules are applied. Here we give an 
example, and present details in the full version of the 
paper. 

Example 5.1 (Updates) 
The following rule increments the salaries (using the 
method updatesalary of class employee) of all employee 
objects named “divesh” by 10%. 

E+updateAalary (NewVal) * = employee (E), 

E-name = “divesh”, Edsalary = OldVal, 

NewVal = 1.1 * OldVal. 
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The body of the rule is treated as a query and eval- 
uated to bind the variables E and NewVal. For each 
E and NewVai pair, the method updateslary (. . . ) is 
invoked. (For this operation to make sense, the query 
in the body must have at most one binding for NewVal 

for each value of the variable E. However, ensuring thii 
is left to the user, and Coral++ does not check this.) 

With updates, often the order in which updates are 
performed can affect the final outcome. Consider the 
following rule which updates the salary of each em- 
ployee to the salary of the employee’s supervisor. 

E-*updatesalary (NewVaI) * = employee (E), 
E+supenrisor+salary = NewVal. 

Clearly, the order in which updates are performed 
would affect the final salaries of the employees. All 
such operations in Coral++ have deferred semantics, 
described below. 

First, the body of the rule is evaluated as a query 
to obtain all answers to the query, in particular 
bindings for all variables in the head of the im- 
perative rule. 

Next, the C++ expression specified in the head 
of the imperative rule is evaluated for each query 
answer. 

One can also update a collection by adding elements 
to them using Coral++ imperative rules. 

muMeve (PI, P2) := connection (C), C-+from = Pl, 
C+to = P2, C+ctype = “subpart”. 

multihel (Pl. P2) + = connection (C), C+from = Pl, 
C+to = P3, C-+ctype = “subpart”, 
multiJevel (P3, P2). 

Note that this is a sequence of two imperative rule 
applications. It adds pairs of parts Pl and P2 to the 
multi-level collection such that either P2 is a subpart 
of Pl, or there is a part P3, which is a subpart of Pl 
and of which P2 is a subpart. Note that it does not 
compute the entire subpart collection, as is done by 
the declarative rules in Example 2.2. •I 

Example 5.2 (Deletions) 
The Coral++ user can delete elements from collections 
as follows. 

multiJew (Pl, P2) - = connection (C), C+from = Pl. 
c+to = P2, C+ctype = “subpart”. 

If this rule is applied after the two rules in Exam- 
ple 5.1, the effect is to remove all pairs of parts Pl 
and P2 from the multi-level collection such that P2 is a 
subpart of Pl. However, this does not delete the parts 
referenced by Pl and P2 themselves; it only deletes the 
record describing this relationship from the collection 
multi-level. 

Deleting objects in a collection can also be affected 
by the order in which the delete operation is performed. 
As with updates, we have a deferred semantics for 
deletes. •I 

6 Implementing Coral++ 
One of the fundamental design decisions of our pro- 
posal is to use the run-time system of the Coral im- 
plementation [24] as much as possible in the imple- 
mentation of Coral++. Several design decisions are a 
practical consequence of this: 

The notation for class definitions in Coral++ is 
the same as in C++. This allows the Coral++ 
class definitions to be handled by the C++ com- 
piler directly. 

All variables in Coral++ rules have to be coerced 
to the appropriate type before invoking a method 
or accessing an attribute. This permits Coral++ 
to avoid inferencing types at compile-time. 

As a consequence of these design decisions, the eval- 
uation of a Coral++ program augmented with class 
definitions proceeds as follows. First, the class defini- 
tions and the method definitions (if any) provided by 
the user are compiled using the C++ compiler. These 
are compiled along with the basic Coral++ system 
to create an enhanced Coral++ system that “knows” 
about these new classes. (See Section 6.1.) Second, 
Coral++ program modules go through a translation 
phase for handling attribute accesses and method in- 
vocations. (See Section 6.2.) Fiially, the translated 
programs are directly evaluated using the Coral++ 
interpreter. Figure 1 depicts the Coral++ program 
compilation process pictorially. 

6.1 Implementing Classes and Extents 
We briefly describe the Coral run-time system with 
a view to describing the implementation of Coral++. 
The Coral system is implemented using C++ and all 
Coral data types are represented as C++ classes. The 
root of all data types is the virtual class CoralArg; spe- 

cific types such as complex terms and multi&s are all 
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Figure 1: Coral++ Program Compilation 

subclasses of the class CoralArg. The class CoralArg 

defines a set of virtual methods that must be de- 
fined for each Coral data type; this includes methods 
such as the method equals, which is used to compare 
whether two instances of CoralArg are the same, and 
the method print, which is used to display the value to 
the Coral user. 

Our approach for a practical implementation of 
Coral++ classes is summarized as follows: 

l User-defined classes in Coral++ have the same 
syntax as C++ classes. All class definitions in- 
cluding method definitions are completely han- 
dled using the C++ compiler. Subtyping (includ- 
ing multiple inheritance) in Coral++ is automat- 
ically implemented using the inheritance mecha- 
nism of C++. 

l All user-defined Coral++ classes should be sub- 
classes of the root class CoralArg. Because all val- 
ues used in Coral++ rules at run-time are of a 
type derived from CoralArg, Coral++ does not 
have to perform any dynamic type inferencing and 
type conversion to determine the methods that 
need to be invoked during rule evaluation. 

l We provide C++ macros that can be used to 
maintain class extents. The user has to explic- 
itly insert these macros into the definitions of the 
constructor and destructor methods of each class 
whose extent has to be maintained. 

6.2 Program Evaluation in Coral++ 
Program evaluation in Coral++ requires modifying 
the existing program evaluation strategy in Coral to 

access named attributes and invoke methods of ob- 
jects, instead of simply accessing relation field values 
using position notation. Given a Coral++ program, 
these requirements can be satisfied as follows: 

l First, for each attribute access and method invo 
cation in a Coral++ rule, the Coral++ preproces- 
sor generates external (C++) predicates that per- 
form the appropriate attribute access or method 
invocation at run-time. This code can be sepa- 
rately compiled and incrementally loaded. 

This approach relegates the task of binding the 
method name with the actual code to invoke the 
method to the C++ compiler. The alternative 
approach of invoking the C++ methods directly 
from the Coral++ interpreter would involve du- 
plicating some of the tasksof the C++ compiler 
including maintaining symbol tables and virtual 
function tables, which would be quite impracti- 
Cd. 

l Second, the program is translated to replace all 
occurrences of method invocations and attribute 
accesses by the appropriate external predicates. 

Appropriate indexes are also created at this time 
for providing associative access to relations con- 
taming objects. 

l Finally, the translated program is evaluated using 
the Coral interpreter for evaluating rules, modules 
and programs. 

The evaluation of Coral++ modules can use the 
query-directed rewriting optimizations as well as 
the various optimizations of the existing Coral 
run-time system. 
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The decision to relegate the task of determining 
which code is to be evaluated at method invocation 
to the C++ compiler results in the following practi- 
cal design decision for methods invoked in Coral++ 
rules: All uses of rule variables must be coerced to 
the appropriate type before accessing an attribute or 
invoking a method. This must be done to avoid so- 
phisticated type inferencing by Coral++, which would 
involve considerable implementation effort. 

7 Related Work 
There are many proposals in the literature ([28, 4, 6, 
8, 13, 9, 20, 10, 17, 3, 2, 11, 301, among others) for in- 
tegrating object-oriented data models and declarative 
query languages. Typically, these proposals support 
features such as complex objects, data abstraction, in- 
heritance and polymorphism in their data model, and 
the ability to pose queries on collections of objects US- 

ing a suitable query language. We presented a sum- 
mary of the differences between our proposal and these 
other proposals in Section 1.2. We now examine some 
of the closely related proposals in more detail. 

Proposals Based on C++ 

ZQL[C++] [3] and CQL++ [6] are the proposals most 
closely related to Coral++ since they are also based 
on the C++ object model. 

The Coral++ query language is more expressive 
than CQL++ or ZQL[C++], which are based on 
SQL. However, each of these proposals is integrated 
with a computationally complete imperative language: 
CQL++ with 0++ [l], and Coral++ and ZQL[C++] 
with C++. 

CQL++ has a syntax similar to SQL syntax for class 
definition. These classes do not have any facility for 
data abstraction (i.e., all class members are public). 
Further, accessing an attribute or invoking a method 
in a CQL++ query uses the ‘dot notation’ of SQL, i.e., 
the user does not have to deal with explicit pointer 
dereferencing. In Coral+i and ZQL[C++], class defi- 
nitions can use all the features of C++ including data 
abstraction, and C++ expressions can be used for ac- 
cessing attributes and invoking methods in a query. 

In Coral++ and CQL++, path expressions are 
treated as values that can be arguments to boolean- 
valued predicates. ZQL[C++], on the other hand, al- 
lows C++ expressions to serve directly as predicates. 
Since ZQL[C++] also allows SQL subqueries to appear 
as predicates, it does not distinguish between the pred- 

icate truth semantics and the C++ expression truth 
semantics, unlike Coral++ and CQL++. 

Proposals Based on Deductive Languages 

The COMPLEX data model [9] is a structural, typed 
data model that adds features such as object identity, 
object sharing and inheritance to the relational model. 
It does not support abstract data types, encapsulation, 
or methods; consequently, the data model is not as rich 
as the Coral++ data model. The query language of 
COMPLEX is C-Datalog which can be automatically 
translated to Datalog, and evaluated using an engine 
for evaluating Datalog programs. This translation is 
possible because of the lack of behavioral features and 
polymorphism in the data model. It is not clear how 
the translation approach generalizes once we introduce 
behavioral features in the model. 

LDL++ [2] is a deductive database system whose 
type system extends that of LDL [19] with an ab- 
stract data type facility that supports inheritance and 
predicate-valued methods. However, it does not sup- 
port object sharing or ADT extents, and its support 
of encapsulation and object identity is limited. conse- 
quently, the data model is not as rich as the Coral++ 
data model. Further, LDL++ methods can be defined 
only using LDL++ rules; however, this can be done 
more naturally than in Coral++. 

Proposals Based on Non-Horn Logics 

XSQL [13] extends SQL by adding path expressions 
that may have variables that range over classes, 
attributes and methods. This facilitates querying 
schema information as well as instance-level informa- 
tion in object-oriented databases, using a single declar- 
ative query language. Noodle [17, 181 is a declara- 
tive query language for the Sword declarative object- 
oriented database. Unlike Coral++ and XSQL, Noo- 
dle does not use path expressions to access attributes 
and invoke methods on objects. Instead, Noodle uses a 
syntax reminiscent of HiLog [S] for this purpose. Noo- 
dle also has a number of built-in classes to facilitate 
schema querying. Orlog [lo] combines the modeling 
capabilities of object-oriented and semantic data mod- 
els, and is similar to Noodle in that its logic-based lan- 
guage for querying and implementing methods uses a 
higher-order syntax with first order semantics. 

In Coral++, methods and other aspects of data ab- 
straction borrowed from C++ are viewed as being out- 
side the scope of the deductive machinery, notably 

168 



the unification mechanism. A more comprehensive 
treatment of features like path expressions (e.g., as 
in XSQL [13]) may well enable more efficient (i.e., set- 
oriented) processing of certain queries. We make no 
attempt to give these features a logical semantics; we 
simply borrow the C++ semantics, in order to enable 
ease of implementation. 

The semantic foundations of XSQL, i.e., F-logic [14], 
Noodle, i.e., HiLog, and Orlog have features that are 
difficult to support efficiently, at least in a bottom- 
up implementation. In particular, variables can get 
bound to predicate names only at run-time, and this 
causes problems with analysis of strongly connected 
components (SCCs) and can make semi-naive evalu- 
ation inefficient. In contrast, one of the design mo- 
tivations of Coral++ was to have a language that is 
rich in expressive power and can be efficiently evalu- 
ated within the framework of existing evaluation tech- 
niques. 

There are several other interesting proposals for 
combining semantically rich data models with deduc- 
tive databases that are less closely related to Coral++. 
ConceptBase [ll] and Quixote [30] are two such sys- 
tems. ConceptBase is based on the Telos knowledge 
representation language, and allows the specification 
of methods using deductive rules and integrity con- 
straints. Quixote is a knowledge representation lan- 
guage that allows subsumption constraints, knowledge 
classification and inheritance and query processing for 
partial information databases. 

8 Conclusions 
We described Coral++, an object-oriented extension 
of Coral. The Coral++ data model extends the struc- 
tural data model of Coral by integrating it with the 
C++ type system. The Coral++ query language ex- 
tends Coral by allowing C++ expressions for access- 
ing attributes and invoking methods of objects. The 
Coral++ query language is much more expressive than 
object-oriented extensions proposed for SQL, while re- 
maining declarative at the same time. Consequently, 
a variety of rewriting and evaluation-time optimiza- 
tions can be performed to improve efficiency; in par- 
ticular, the optimizations performed for Coral pro- 
grams are applicable to Coral++ programs as well. 
The Coral++ imperative rule-based language can be 
used to create, update and remove objects from the 
database. It is cleanly integrated with C++, provid- 
ing the user the ability to program in a combination 

of programming styles, with minimal impedance mis- 
match. 

We proposed an implementation strategy for 
Coral++ that effectively uses the existing Coral run- 
time system [24] and the C++ compiler to implement 
object-oriented features of the data model and query 
language. This, in our view, is one of the strong points 
of our proposal, and distinguishes it from many pro- 
posals in the literature describing query languages for 
object-oriented databases. The implementation strat- 
egy is orthogonal to issues such as object clustering, 
caching, indexing, storage management, etc. Although 
we described the implementation using the C++ class 
hierarchy, Coral++ does not depend on C++ imple- 
mentation techniques for classes and class instances; it 
could also be implemented on top of a typed, persis- 
tent object store. We believe that Coral++ is a real- 
istic and useful proposal for engineering, scientific and 
multi-media applications that can benefit from object- 
oriented data models and high-level data access and 
manipulation capabilities. 
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