
Coral++: Adding Object-Orientation to a Logic Database Language

Divesh Srivastava*
University of Wisconsin, Madison

Praveen Seshadri
University of Wisconsin, Madison

Abstract

Coral++ is a database programming language that in-
tegrates Coral [23] with the C++ type system. The
data model allows arbitrary C++ objects in database
facts, and the declarative query language extends
Coral with C++ expressions in rules. Coral++ also
supports an imperative rule-based sub-language that is
integrated with C++, providing support for updates.

The design and implementation of Coral++ incor-
porates several important decisions: the data model
is based on C++, and class definitions and method
invocations are handled entirely by the C++ com-
piler; the notion of classes is kept orthogonal to the re-

*The work of Haghu Hamakrishnan, Divesh Srivastava
and Praveen Seshadri was supported by a David and Lu-
tile Packard Foundation Fellowship in Science and Engineer-
ing, a Presidential Young Investigator Award with match-
ing grants from DEC, Tandem and Xerox, and NSF grant
IHI-9011563. The addresses of the authors are Computer
Sciences Department, University of Wisconsin, Madison, WI
53706, USA, and AT&T Bell Laboratories, 600 Mountain
Avenue, Murray Hill, NJ 07974, USA. The authors e-mail
addresses are {divesh,raghu,praveen}Bcs.wisc.edu and sudar-
shaBresearch.att.com.

tPart of the work of this author was done while the author
was at the University of Wisconsin.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Veery Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1993

Raghu Ramakrishnan
University of Wisconsin, Madison

S. Sudarshant
AT&T Bell Labs, Murray Hill

lated notion of class extents; and declarative Coral++
programs can be largely understood in terms of stan-
dard Horn clause logic with C++ method invocations
treated as external functions. The implementation
outline illustrates that extending an existing deduc-
tive system to incorporate object-oriented features in
the data model is feasible, and is orthogonal to the
techniques used for object storage and retrieval.

1 Introduction
In recent years considerable research has been done
in extending relational database languages, such as
SQL, which have proven inadequate for a variety
of emerging applications. Two main directions of
research in database programming languages have
been object-oriented database languages and deduc-
tive database languages, and the issue of combining
the two paradigms has received attention recently.

Object-oriented database languages, such as 0++ [l]
and 02 [7], among others, enhance the relational data
model by providing support for abstract data types,
encapsulation, object identifiers, methods, inheritance
and polymorphism. Such sophisticated features are
very useful for data modeling in many scientific, en-
gineering, and multimedia applications. Deductive

database languages, such as LDL [19], Coral [23] and
Glue-Nail! [21], among others, enhance the declarative
query language by providing a facility for generalized
recursive view definition, which is of considerable prac-
tical importance. However, data models for deductive
databases are typically structural, and do not have the
richness of object-oriented data models.

One of the contributions of this paper is to demon-
strate that the advantages of object-oriented database
languages and deductive database languages can in-
deed be combined in a clean and practical manner.
Our proposal, Coral++, has the following objectives:

158

l TO combine an object-oriented data model with a
deductive query language.

This permits the programmer to take advantage of
the features of both object-oriented database lan-
guages and deductive database languages in devel-
oping applications. The Coral++ query language
is significantly more expressive than the object-
oriented extensions of SQL ([8,6], for instance). A
non-operational semantics is however maintained,
and this makes Coral++ more amenable to au-
tomatic query optimization than imperative lan-
guages for object-oriented databases ([7, 11, for
instance) that have similar expressive power.

l To cleanly integrate a declarative language with
an imperative language.

Such an integration is extremely useful since sev-
eral operations such as updating the database
in response to changes in the real world, in-
put/output, etc., are imperative notions, whereas
one can easily express many complex queries
declaratively. A clean integration allows the pro-
grammer to do tasks in either the declarative style
or the imperative style, whichever is appropriate
to the task, and mix and match the two program-
ming styles with minimal impedance mismatch.

l To keep object storage and retrieval orthogonal
to the rest of the design, so that techniques devel-
oped for implementing object stores can be used
freely in conjunction with other optimizations in
the declarative query language.

1.1 Overview of the Coral++ Design
The central observation is as follows: Object-oriented
features such as abstract data types, encapsulation, in-
heritance and object-identity are essentially extensions
of the data model. We can achieve a clean integration
of these features into a deductive query language by
allowing the deductive language to draw values from
a richer set of domains, and by allowing the use of
the facilities of the deductive language to maintain,
manipulate and query collections of objects of a given
We.

In relational query languages such as SQL, values
in fields of tables have been restricted to be atomic
constants (e.g. integers or strings). In logic programs,
values can be Herbnand terms, which are essentially
structured values. In Coral++, values can additionally

be of any class definable in C++ [29]. (We chose C++
since it provides a well-understood and widely used
object-oriented type system.)

Coral++ provides support for maintaining extents
or collections of objects of a given type, either in a
simple manner that reflects the inclusions associated
with traditional IS-A hierarchies, or in a more sophis-
ticated way through the use of declarative rules. The
idea is to automatically invoke code that handles ex-
tent maintenance whenever objects are created or de-
stroyed, and provide constructs to use these extents in
Coral++. We also provide support for creating and
manipulating various types of collections: sets, multi-
sets, lists and arrays, whereas traditionally only sets
and multisets are provided.

Coral++ separates the querying of objects from the
creation, updating and deletion of objects, and pro-
vides separate sub-languages for these two purposes.
This methodology stems from the view that querying
is possible in a declarative language, whereas creation,
updates and deletion should be performed only using
an imperative language.

In summary, the proposal is simple, combines fea-
tures of C++ and Coral-two existing languages-
with minimal changes to either, and yields a power-
ful combination of the object-oriented and deductive
paradigms. The essential aspects of the integration
are not specific to our choice of C++ and Coral, and
the ideas can readily be used to combine other object-
oriented and deductive systems in a similar manner.

1.2 Related Proposals
The Coral++ data model and query language have
been influenced by other proposals for integrating
object-oriented data models and declarative query lan-
guages. Some of the important aspects of our design
are:

l Coral++ uses the type system of an exist-
ing object-oriented programming language (i.e.,
C++) as an object data model rather than invent-
ing yet another object data model (e.g., [28,8, 13,
9,10,17,2]) This approach benefits from the sup-
port for data abstraction, inheritance, polymor-
phism and parametrized types already available
in C++.

Other query languages that use the C++ type
system include CQL++ [S], ZQL[C++] [3] and
ObjectStore [20].

159

The Coral++ declarative query language sup-
ports the combination of Coral rules with C++
expressions in a clean fashion. This approach can
effectively utilize the Coral implementation and
the C++ compiler.

Noodle (171 and ObjectStore [20], for instance,
take the alternative approach of inventing new
syntax to query an object data model.

Coral++ is more expressive than most of the
other proposals ([28, 8, 6, 91). In particular, it
provides a facility for generalized recursive view
definition in the query language. It also supports
unordered relations (i.e., sets and multisets) and
ordered relations (lists and arrays), which are use-
ful in applications involving sequence data [27].

The Coral++ query language can be largely un-
derstood in terms of standard Horn clause logic,
unlike Noodle [17] which is based on HiLog [5] and
XSQL (131 which is based on F-logic [14]. Bottom-
up evaluation of HiLog and F-logic programs is
not as well understood as the evaluation of Horn
clause programs and is likely to be more expen-
sive.

Our proposal includes a detailed implementation
design that clearly demonstrates the practicality
of extending Coral (an existing deductive system)
with object-oriented features of C++ (a widely-
used object-oriented type system). An implemen-
tation based on the run-time system of the Coral
implementation (241 is already underway.

The rest of this paper is structured as follows. We
start with example programs written in Coral++ that
demonstrate several features of the data model and
query language. We describe the object-oriented fea-
tures of the Coral++ data model in Section 3. The
Coral++ declarative query language is presented in
Section 4 and the Coral++ imperative rule-based lan-
guage is described in Section 5. We discuss in detail
how Coral++ can be implemented using the existing
Coral run-time system in Section 6. Finally, in Sec-
tion 7, we compare our proposal with some of the re-
lated proposals in more detail.

2 Motivating Examples
Example 2.1 (A university database)
A university database maintains information about

various departments as well as information about stu-
dents and employees. Some Coral++ type declara-
tions for this database are given below:’

class department {

public:

employee *head ;

int budget ;

1;
class person {

public:

char *name ;

int age () ;

1;
class employee : public person {

public:

int salary ;

department *dept ;

employee *supervisor ;

void updateslary (int) ;

1;
class student : public person {

public:

department *dept ;

1;

Consider the query: “Find all departments where the
sum of the salaries of the employees has exceeded the
department budget?” If the collection of all employee

objects is maintained as a relation called employee, the
corresponding Coral++ program is:

budget-exceeded (D) : - sum-ofsalaries (D, S),

S > D+budget.

sum-ofAalaries (D, sum (< S >)) : - employee (E),

D = E+dept, S = E-salary.

Coral++ programs use a rule-based syntax, simi-
lar to Coral and logic programming languages. A dif-
ference is that Coral++ allows the use of C++ ex-
pressions (for instance, E-+dept) in rules to access at-
tributes and invoke methods. Each rule can be read
as an “if-then” statement in logic. For instance, the
meaning of the first rule is “if the sum of salaries in a
given department D is S and S is greater than the bud-
get of department D, then the budget of department
D has been exceeded”; the second rule gives a way of
computing the sum of the salaries of the employees in
a given department.

‘Coral++ type declarations have the same syntax as C++
class declarations.

160

Consider the query: “Find all students in depart-

ments where the head of the department is named
John.” The corresponding Coral++ program is:

jd>tudents (D, < S >) : - j-dept (D), student (S),

S-+dept = D.

j-dept (D) : - department (D), D+head+name = “John”

The second rule in the above program is used to find
out all departments where the head of the department
is named “John”, and the first rule collects all the
students in such departments.

These two queries can also be expressed in object-
oriented extensions of SQL, and are provided here to
primarily illustrate the difference in program specifi-
cation styles. 0

Example 2.2 (An engineering application)
An engineering database for a manufacturing com-
pany stores information about the various parts man-
ufactured, along with information about composition
of parts. Some Coral++ type declarations for this
database are given below.

class part {

private:

int functionality-test ;

int connection-test ;

public:

char *ptype ;
int tested ();

1;
class connection {

public:

pati *from ;

pati *to ;

char *ctype ;

1;

The following Coral++ program can be used to ex-
press the bill-of-materials problem: “Find all subparts
of a given pa&“. This problem is of considerable prac-
tical importance in inventory control, and other appli-
cations.

In database languages such as SQL, values in fields
of relational tables are unstructured, i.e., restricted to
be of a basic type supported by the system (e.g. in-
tegers or strings). In deductive database languages
such as LDL [19] and Coral [23], values can be Her-
brand tens, which are essentially structured values.
However, data modeling in many scientific and engi-
neering applications require support for more sophis-
ticated features such as abstract data types, encapsu-
lation, methods and inheritance. To support the data
modeling needs of such applications, the Coral++ data
model enhances the untyped Coral data model [23]
with the C++ class facility. Values in Coral++ can ad-
ditionally be of any type definable in C++, which can
be manipulated using only the corresponding methods,
supporting encapsulation. This allows a programmer
to effectively use a combination of C++ and Coral,
with minimal impedance mismatch.

subpart (Pl, P2) : - connection (C), Pl = C-+from,

P2 = C+to, C-xtype = “subpart”.

subpart (Pl, P3) : - connection (C). Pl = Chfrom,

P2 = C-to, C+ctype = “subpart”,

subpart (P2, P3).

alLsubparts (Pl, < P2 >) : - subpart (Pl, P2).

161

One of the goals of Coral++ was to integrate Coral
with an e&sting object data model, instead of invent-
ing yet another object data model. By using the C++
type system as an object model, our approach is able
to benefit from the support of data abstraction, in-
heritance, parameterized types, and polymorphism al-
ready available in C++. The choice of C++ was baaed
on practical implementation considerations (Coral is
implemented in C++), but we believe that our ap-
proach can also be applied to extending Coral with an
alternative object-oriented data model.

Consider the following query from [26]: “Find if a
given part is working, where a part is known to be
working either if it has been (successfully) tested or if
it is constructed from smaller parts, and all the smaller
parts are known to be working”. This citn be expressed
in Coral++ as follows:

working (P) : - part (P), P-tested () = 1.

working (P) : - connection (C), C-from = P,

C-xtype = “subpart”, not hasAuspect_part (P),

hassuspect-part (P) : - connection (C), C+from = P,

C-+to = Pl, C-ctype = “subpart”.

not working (Pl).

Neither of these two queries can be expressed in SQL
or its object-oriented extensions because of the recur-
sive definitions of subpart and working. 0

3 Coral++: Data Model

3.1 Overview of the Coral Data Model
The formal definitions of constants, variables, terms,
tuples, facts and relations are available in logic pro
gramming texts such as [15]. We informally describe
these features of the Coral data model. The follow-
ing facts could be interpreted as follows: the first fact
indicates that John is an employee in the “Toys for
Tots” department who has been with the company for
3 years and makes 35K. The second fact indicates that
Joan has worked for the same department for 2 years
and makes 30K.

works-for (john, “Toys for Tots”, 3, 35)

works-for (joan, “Toys for Tots”, 2. 30)

In order to express structured data, complex terms
are required. In Coral, function symbols are used as
record constructors, and such terms can be arbitrarily
nested. The following fact can be interpreted as: John
lives in Madison, and has a street address with a zip
of 53606.

address (john, residence (“M?dison”,

streetadd(“Oak Lane”, 3202), 53606))

Sets and multisets are allowed as values in Coral;
{peter, mary} is an example of a set representing the
children of John, (60, 35, 35, 30) is an example of a
multiset representing the salaries of employees in the
“Toys for Tots” department.

Coral permits variables within facts. A fact with a
variable in it represents a possibly infinite set of ground
facts. Such facts are often useful in knowledge repre-
sentation, natural language processing and could be
particularly useful in a database that stores (and pos-
sibly manipulates) rules. There is another, possibly
more important, use of variables - namely to specify
constraint facts [12, 221.

However, the Coral data model does not allow val-
ues of (arbitrary) user-defined types in facts. These
are extremely useful in several applications, especially
when the user-defined types have behavioral compo-
nents.

3.2 Overview of the C++ Type System
C++ allows the specification of user-defined types us-
ing the class definition facility. An implementation of a
C++ class is a combination of the attributes that spec-
ify the “structure” of the class along with the imple-
mentation of the methods that specify the “behavior”

of the class. Attributes and methods of a class may be
specified as either “public,” “private,” or Uprotected,”
providing different levels of encapsulation. Classes can
be organized in an inheritance hierarchy in C++, and
a class can have more than one subtype as well as
more than one supertype (i.e., C++ supports multiple
inheritance). The type declarations of Examples 2.1
and 2.2 illustrate some of these features.

By integrating the C++ object model with Coral,
the Coral++ user benefits ‘from having sophisticated
data modeling and manipulation capabilities.

3.3 Relations in Coral++
Coral supports relations that are multisets (i.e., un-
ordered collections) of tuples. Typically, current
database systems support only multisets of tuples, and
the utility of these collections can be seen from the
variety of applications written in SQL. However, for
many applications (see [25, 271, for instance) involving
sequence data and spatial data, for example, ordered
collections of lit-type and array-type are more natu-
ral. Hence, Coral++ also supports list-relations and
array-relations, in addition to multiset-relations.

Each of these relation types supports the operation
of iterating through the elements in the collection. The
difference is the primay mode of access to elements
in the collection. Multisets support unordered access,
lists support ordered access in the total order of the
list elements, and arrays support access in the array
index order. In addition, each collection type can have
value-based indexed modes of access, where the index
can be on specified attributes or patterns.

Example 3.1 (Stock market data)
A stock market database maintains daily information
about the stocks traded for each company. A small
fragment of such type information is shown below:

class DailyStocklnfo {

public:

double low ;

double high ;

double average () ;

int volume-traded ;

1;

Stock market information for individual companies
can be naturally represented as array relations, which
results in extremely efficient querying and manipula-

162

tion of such information, as is demonstrated in the
Mimsy system [27]. 0

4 Coral++: Query Language
The Coral++ query language is modular, declara-
tive and provides support for generalized recursive
view definition. It is based on the Coral query lan-
guage (231 which supports general Horn clauses with
complex terms, set-grouping, aggregation and nega-
tion. Coral++ extends the Coral query language by
allowing C++ expressions for accessing attributes and
invoking (side-effect free) methods of objects in pro-
gram rules.

Coral-l-+ incorporates several important design de-
cisions in the way the data model interacts with the
declarative query language:

l The notion of a class as an encapsulation of data
and methods is kept orthogonal to the related no-
tion of class extents. This is achieved by providing
the Coral++ programmer considerable flexibility
in explicitly defining and maintaining collections
of objects of a given class. We describe this in
more detail in Section 4.3.

l The C++ expression truth semantics is kept dis-
tinct from the Coral++ predicate truth seman-
tics. This is achieved by allowing C++ expres-
sions to appear only in the argument positions of
predicates (including evaluable predicates such as
=9 <=, etc.). This is discussed in more detail in
Section 4.4.

- --
l Declarative rules in Coral++ do not create new

objects (instances of C++ classes), although they
can create facts describing relationships between
existing objects. The rationale for this decision is
discussed in Section 4.5.

One of the major advantages of our proposal is that
evaluation of Coral++ programs is based on the exist-
ing Coral run-time system, which facilitates implemen-
tation considerably. More generally, it suggests that
optimization techniques developed for deductive and
for object-oriented database languages can be com-
bined cleanly. In this section, we first give an overview
of the Coral query language and the evaluation of
Coral queries, and then discuss the Coral++ design
decisions.

4.1 Overview of the Coral Query Lan-

wage
The formal definitions of constants, variables, terms,
atoms, literals, facts and rules are available in logic
programming texts such as [15]. We briefly describe
some of these features here. Rules in Coral take the
form:

head : - bodyl, bodyz, . . . , body,,.

where head is a positive literal, each bodyi is a (posi-
tive or negative) literal, and n 2 0. Informally, each
rule can be read as a statement of the form “if <body
is true> then <head is also true>“. (In particular, a
fact is just a rule with an empty body.) In the absence
of rules with negation, set-generation and aggregation,
the meaning of a program can be understood by read-
ing each of the rules in the program in this manner,
with the further understanding that the only true facts
are those that are either part of the input database or
that follow from a repeated use of program rules.

Coral supports and efficiently evaluates a class of
programs with negation that properly contains the
class of non-floundering left-teright modularly strat-
ified programs ([26]). Intuitively, this class is one in
which the subgoals and answers generated during pro-
gram evaluation involve no cycles through negation.
The keyword ‘not’ is used as a prefix to indicate a neg-
ative body literal. (A query in Example 2.2 illustrates
the use of negation.)

There are two ways in which sets and multisets
can be created using Coral rules, namely, multiset-
enumeration ({ }) and multi&-grouping (0). The
following illustrate the use of these constructs:

children Cohn, {mary, peter, Paul}).
p (X, <Y>) : - q (X, Y, Z).

This second rule uses facts for q to generate a mul-
tiset S of instantiations for the variables X, Y, and Z.
For each value z for X in this set it creates a fact p

(5, zy~x=~S), where zy is a multiset projection (i.e.,
it does not do duplicate elimination). Thus with facts
q (1,2,3), q (1,2,5) and q (1,3,4) we get the fact p (1,
{2,2,3)). The use of the multi&-grouping construct in
Coral is similar to the grouping construct in LDL, ex-
cept that it constructs a set (as opposed to a multiset)
in LDL.

Coral requires that the use of the multi&.-grouping
operator be left-teright modularly-stratified (in the

163

same way as negation). This ensures that all derivable
q facts with a given value z for X can be computed
before a fact p (z,-) is created.

Coral provides several standard operations on sets
and multisets as system-defined predicates. These in-
clude member, union, intersection, difference, multise-

tunion, cardinality, subset, and makeset. Coral also al-
lows several aggregate operations on sets and multi-
sets: these include count, min, max, sum, product, av-

erage and any. Some of the aggregate operations can
be combined directly with the multiset-generation op-
erations for increased efficiency (see [23] for further
details).

Modules provide a way, as the name suggests, to
modularize Coral code. In developing large applica-
tions, incremental program development and testing
is critical, and modules in Coral provide the basis for
this kind of programming. A module in Coral consists
of a collection of rules defining a collection of predi-
cates. A subset of these defined predicates are named
as exported predicates, and other modules can pose
queries over these predicates. The query forms per-
mitted for each exported predicate are also indicated
in the export declarations. Non-exported predicates
are not visible outside this module and this provides a
way of encapsulating the definition of Coral predicates.

4.2 Evaluating Coral Queries
The evaluation of a Coral module, given a query on
an exported predicate of a module, is determined by
the control annotations in the module, and the expert
user can control the evaluation in several ways. We
refer the interested reader to [23] for a discussion of
these annotations and their effect on module evalua-
tion. In the absence of any user-specified annotations,
the Coral system chooses from among a set of default
evaluation strategies.

For declarative modules, Coral evaluation, using
these default strategies, is guaranteed to be sound,
i.e., if the system returns a fact as an answer to a
query, that fact indeed follows from the semantics of
the declarative program. The evaluation is also “com-
plete” in a limited sense - as long as the execution
terminates, all answers to a query are actually gener-
ated. It is possible however, to write programs that
do not terminate; in some such cases (e.g., programs
without negation, set-grouping or aggregation) Coral
is still complete in that it enumerates all answers in
the limit.

During the evaluation of a rule T in module A, if we
generate a query on a predicate exported by module
B, a call is set up on module B. The answers to this
query are used iteratively in rule T; each time a new
answer to the query is required, rule T requests a new
answer from the interface to module B. The module
interface makes no assumptions about the evaluation
of the module. Module B may contain only database
facts, or may have Coral rules that are evaluated in
any of several different ways. The module may choose
to cache answers between calls, or choose to recompute
answers. All this is transparent to the calling module.
Similarly, the evaluation of the called module B makes
no assumptions about the evaluation of calling module
A. This orthogonality permits the free mixing of differ-
ent evaluation techniques in different modules in Coral
and is central to how different executions in different
modules are combined cleanly.

4.3 Class Extents in Coral++
Coral++ keeps the notion of a class (as an encapsu-
lation of data and methods) orthogonal to the related
notion of class extents (i.e., the collection of all objects
of the given class). Although maintaining class extents
is necessary for iterating over all objects of a given class
(as in Example 2.2), Coral++ does not automatically
maintain class extents since doing so is very expen-
sive, and one does not always need to iterate over all
objects of a given class.

Coral++ provides the programmer considerable
flexibility in explicitly defining and maintaining col-
lections of objects of a given class. Collections of ob-
jects can be maintained either in a simple manner that
reflects the inclusions associated with traditional IS-A
hierarchies, or in a more sophisticated way through the
use of declarative rules. Coral++ provides functions
that can be explicitly invoked from class constructors
and destructors, and that handle extent maintenance.
Such class extents are maintained as Coral++ rela-
tions, and can be used as literals in the bodies of
Coral++ rules. For example, the following literal can
be used to iterate over the extent of class part, in the
body of a Coral++ rule:

pati (P)

The variable P is successively bound to (pointers to)
objects in the extent. (See Example 2.2 for further
uses of class extents.)

164

4.4 C++ Expressions in Rules
By integrating the C++ object model with the Coral
data model, Coral++ allows facts to contain objects of
C++ classes. Such objects can be manipulated using
only the corresponding methods, supporting encapsu-
lation. This is achieved by allowing C++ expressions
in Coral++ rules to access attributes and invoke meth-
ods of objects. For example, one can iterate over all
tested parts using:

part (P). P-tested () = 1.

Such C++ expressions can appear only in the ar-
gument positions of predicates (including evaluable
predicates such as =, <=, etc.). This ensures that
the Coral++ predicate truth semantics is kept dis-
tinct from the C++ expression truth semantics. (The
C++ type system does not include a boolean type; any
arithmetic expression is considered false if its value is
zero, and true otherwise.) For instance, the following
are not legal Coral++, although the C++ conditional
expressions can each be used in the C++ if-statement:

part (P), P-tested ().

department (D), D+head+name.

4.5 Creating Objects in Coral++
Objects can be created using constructor methods
(specified along with the class definition), and deleted
using destructor methods (also specified along with
the class definition). Coral++ requires that objects
that are instances of C++ classes be explicitly created
only using C++; the database can be populated with
such objects only from C++. However, the Coral++
declarative language can create facts describing rela-
tionships between existing objects in the database.

Rules in Coral++ are deliberately restricted to
avoid creating new objects, s&e this is an issue that
is not yet well-understood despite work by Maier [16],
Kifer et al. [13], and others. A number of issues, no-
tably the resolution of conflicts when rules generate
distinct objects with the same object identifier, remain
unclear, especially in the presence of partially specified
objects (e.g. some fields are variables, in the Coral-l-+
context).

Similarly, updating and deleting objects that are in-
stances of C++ classes should be performed only us-
ing the imperative language. This methodology stems

from the view that the query language has to be declar-
ative, whereas creating, updating and deleting objects
are operational notions.

5 Coral++: Imperative Lan-

lw%e
The Coral++ declarative language cannot be used to
create objects that are instances of C++ classes, delete
such objects, or update such objects. We view these
as opemtdonal notions and hence provide an imper-
ative language for this purpose. This imperative lan-
guage consists of C++ augmented with new types and
constructs to effectively deal with collections. For in-
stance, it provides the Coral++ user with the ability
to iterate through collections. This can be extremely
useful in performing database updates, for instance,
where the order in which the updates are performed
in a collection may be critical. The imperative lan-
guage also supports imperative Coral++ rules, which
can be of the following forms, as in Coral:

head.

head := bodyl, bodyz, . . . , body,.

head + = bodyl, bodyz, . . . , body,,.

head - = bodyl, bodyz, . . . , body,,.

where each bodyi is a literal and head is an atom. An
imperative Coral++ rule can also be of the form:

head * = bodyl, bodyz, . . . , body,,.

where each bodyi is a literal and head is a C++ ex-
pression. This imperative Coral++ rule corresponds
to the invocation of arbitrary methods on objects; the
arguments to such a method could depend on the body
of the rule. The C++ control structures are used to
provide sophisticated control on the order in which im-
perative Coral++ rules are applied. Here we give an
example, and present details in the full version of the
paper.

Example 5.1 (Updates)
The following rule increments the salaries (using the
method updatesalary of class employee) of all employee
objects named “divesh” by 10%.

E+updateAalary (NewVal) * = employee (E),

E-name = “divesh”, Edsalary = OldVal,

NewVal = 1.1 * OldVal.

165

The body of the rule is treated as a query and eval-
uated to bind the variables E and NewVal. For each
E and NewVai pair, the method updateslary (. . .) is
invoked. (For this operation to make sense, the query
in the body must have at most one binding for NewVal

for each value of the variable E. However, ensuring thii
is left to the user, and Coral++ does not check this.)

With updates, often the order in which updates are
performed can affect the final outcome. Consider the
following rule which updates the salary of each em-
ployee to the salary of the employee’s supervisor.

E-*updatesalary (NewVaI) * = employee (E),
E+supenrisor+salary = NewVal.

Clearly, the order in which updates are performed
would affect the final salaries of the employees. All
such operations in Coral++ have deferred semantics,
described below.

First, the body of the rule is evaluated as a query
to obtain all answers to the query, in particular
bindings for all variables in the head of the im-
perative rule.

Next, the C++ expression specified in the head
of the imperative rule is evaluated for each query
answer.

One can also update a collection by adding elements
to them using Coral++ imperative rules.

muMeve (PI, P2) := connection (C), C-+from = Pl,
C+to = P2, C+ctype = “subpart”.

multihel (Pl. P2) + = connection (C), C+from = Pl,
C+to = P3, C-+ctype = “subpart”,
multiJevel (P3, P2).

Note that this is a sequence of two imperative rule
applications. It adds pairs of parts Pl and P2 to the
multi-level collection such that either P2 is a subpart
of Pl, or there is a part P3, which is a subpart of Pl
and of which P2 is a subpart. Note that it does not
compute the entire subpart collection, as is done by
the declarative rules in Example 2.2. •I

Example 5.2 (Deletions)
The Coral++ user can delete elements from collections
as follows.

multiJew (Pl, P2) - = connection (C), C+from = Pl.
c+to = P2, C+ctype = “subpart”.

If this rule is applied after the two rules in Exam-
ple 5.1, the effect is to remove all pairs of parts Pl
and P2 from the multi-level collection such that P2 is a
subpart of Pl. However, this does not delete the parts
referenced by Pl and P2 themselves; it only deletes the
record describing this relationship from the collection
multi-level.

Deleting objects in a collection can also be affected
by the order in which the delete operation is performed.
As with updates, we have a deferred semantics for
deletes. •I

6 Implementing Coral++
One of the fundamental design decisions of our pro-
posal is to use the run-time system of the Coral im-
plementation [24] as much as possible in the imple-
mentation of Coral++. Several design decisions are a
practical consequence of this:

The notation for class definitions in Coral++ is
the same as in C++. This allows the Coral++
class definitions to be handled by the C++ com-
piler directly.

All variables in Coral++ rules have to be coerced
to the appropriate type before invoking a method
or accessing an attribute. This permits Coral++
to avoid inferencing types at compile-time.

As a consequence of these design decisions, the eval-
uation of a Coral++ program augmented with class
definitions proceeds as follows. First, the class defini-
tions and the method definitions (if any) provided by
the user are compiled using the C++ compiler. These
are compiled along with the basic Coral++ system
to create an enhanced Coral++ system that “knows”
about these new classes. (See Section 6.1.) Second,
Coral++ program modules go through a translation
phase for handling attribute accesses and method in-
vocations. (See Section 6.2.) Fiially, the translated
programs are directly evaluated using the Coral++
interpreter. Figure 1 depicts the Coral++ program
compilation process pictorially.

6.1 Implementing Classes and Extents
We briefly describe the Coral run-time system with
a view to describing the implementation of Coral++.
The Coral system is implemented using C++ and all
Coral data types are represented as C++ classes. The
root of all data types is the virtual class CoralArg; spe-

cific types such as complex terms and multi&s are all

166

Enhanced Coral++
system

I user-defined cbses I L--I \
\ 1-7

.i
+

method definitions I

‘1
4 program specific

Coral++ system

Figure 1: Coral++ Program Compilation

subclasses of the class CoralArg. The class CoralArg

defines a set of virtual methods that must be de-
fined for each Coral data type; this includes methods
such as the method equals, which is used to compare
whether two instances of CoralArg are the same, and
the method print, which is used to display the value to
the Coral user.

Our approach for a practical implementation of
Coral++ classes is summarized as follows:

l User-defined classes in Coral++ have the same
syntax as C++ classes. All class definitions in-
cluding method definitions are completely han-
dled using the C++ compiler. Subtyping (includ-
ing multiple inheritance) in Coral++ is automat-
ically implemented using the inheritance mecha-
nism of C++.

l All user-defined Coral++ classes should be sub-
classes of the root class CoralArg. Because all val-
ues used in Coral++ rules at run-time are of a
type derived from CoralArg, Coral++ does not
have to perform any dynamic type inferencing and
type conversion to determine the methods that
need to be invoked during rule evaluation.

l We provide C++ macros that can be used to
maintain class extents. The user has to explic-
itly insert these macros into the definitions of the
constructor and destructor methods of each class
whose extent has to be maintained.

6.2 Program Evaluation in Coral++
Program evaluation in Coral++ requires modifying
the existing program evaluation strategy in Coral to

access named attributes and invoke methods of ob-
jects, instead of simply accessing relation field values
using position notation. Given a Coral++ program,
these requirements can be satisfied as follows:

l First, for each attribute access and method invo
cation in a Coral++ rule, the Coral++ preproces-
sor generates external (C++) predicates that per-
form the appropriate attribute access or method
invocation at run-time. This code can be sepa-
rately compiled and incrementally loaded.

This approach relegates the task of binding the
method name with the actual code to invoke the
method to the C++ compiler. The alternative
approach of invoking the C++ methods directly
from the Coral++ interpreter would involve du-
plicating some of the tasksof the C++ compiler
including maintaining symbol tables and virtual
function tables, which would be quite impracti-
Cd.

l Second, the program is translated to replace all
occurrences of method invocations and attribute
accesses by the appropriate external predicates.

Appropriate indexes are also created at this time
for providing associative access to relations con-
taming objects.

l Finally, the translated program is evaluated using
the Coral interpreter for evaluating rules, modules
and programs.

The evaluation of Coral++ modules can use the
query-directed rewriting optimizations as well as
the various optimizations of the existing Coral
run-time system.

167

The decision to relegate the task of determining
which code is to be evaluated at method invocation
to the C++ compiler results in the following practi-
cal design decision for methods invoked in Coral++
rules: All uses of rule variables must be coerced to
the appropriate type before accessing an attribute or
invoking a method. This must be done to avoid so-
phisticated type inferencing by Coral++, which would
involve considerable implementation effort.

7 Related Work
There are many proposals in the literature ([28, 4, 6,
8, 13, 9, 20, 10, 17, 3, 2, 11, 301, among others) for in-
tegrating object-oriented data models and declarative
query languages. Typically, these proposals support
features such as complex objects, data abstraction, in-
heritance and polymorphism in their data model, and
the ability to pose queries on collections of objects US-

ing a suitable query language. We presented a sum-
mary of the differences between our proposal and these
other proposals in Section 1.2. We now examine some
of the closely related proposals in more detail.

Proposals Based on C++

ZQL[C++] [3] and CQL++ [6] are the proposals most
closely related to Coral++ since they are also based
on the C++ object model.

The Coral++ query language is more expressive
than CQL++ or ZQL[C++], which are based on
SQL. However, each of these proposals is integrated
with a computationally complete imperative language:
CQL++ with 0++ [l], and Coral++ and ZQL[C++]
with C++.

CQL++ has a syntax similar to SQL syntax for class
definition. These classes do not have any facility for
data abstraction (i.e., all class members are public).
Further, accessing an attribute or invoking a method
in a CQL++ query uses the ‘dot notation’ of SQL, i.e.,
the user does not have to deal with explicit pointer
dereferencing. In Coral+i and ZQL[C++], class defi-
nitions can use all the features of C++ including data
abstraction, and C++ expressions can be used for ac-
cessing attributes and invoking methods in a query.

In Coral++ and CQL++, path expressions are
treated as values that can be arguments to boolean-
valued predicates. ZQL[C++], on the other hand, al-
lows C++ expressions to serve directly as predicates.
Since ZQL[C++] also allows SQL subqueries to appear
as predicates, it does not distinguish between the pred-

icate truth semantics and the C++ expression truth
semantics, unlike Coral++ and CQL++.

Proposals Based on Deductive Languages

The COMPLEX data model [9] is a structural, typed
data model that adds features such as object identity,
object sharing and inheritance to the relational model.
It does not support abstract data types, encapsulation,
or methods; consequently, the data model is not as rich
as the Coral++ data model. The query language of
COMPLEX is C-Datalog which can be automatically
translated to Datalog, and evaluated using an engine
for evaluating Datalog programs. This translation is
possible because of the lack of behavioral features and
polymorphism in the data model. It is not clear how
the translation approach generalizes once we introduce
behavioral features in the model.

LDL++ [2] is a deductive database system whose
type system extends that of LDL [19] with an ab-
stract data type facility that supports inheritance and
predicate-valued methods. However, it does not sup-
port object sharing or ADT extents, and its support
of encapsulation and object identity is limited. conse-
quently, the data model is not as rich as the Coral++
data model. Further, LDL++ methods can be defined
only using LDL++ rules; however, this can be done
more naturally than in Coral++.

Proposals Based on Non-Horn Logics

XSQL [13] extends SQL by adding path expressions
that may have variables that range over classes,
attributes and methods. This facilitates querying
schema information as well as instance-level informa-
tion in object-oriented databases, using a single declar-
ative query language. Noodle [17, 181 is a declara-
tive query language for the Sword declarative object-
oriented database. Unlike Coral++ and XSQL, Noo-
dle does not use path expressions to access attributes
and invoke methods on objects. Instead, Noodle uses a
syntax reminiscent of HiLog [S] for this purpose. Noo-
dle also has a number of built-in classes to facilitate
schema querying. Orlog [lo] combines the modeling
capabilities of object-oriented and semantic data mod-
els, and is similar to Noodle in that its logic-based lan-
guage for querying and implementing methods uses a
higher-order syntax with first order semantics.

In Coral++, methods and other aspects of data ab-
straction borrowed from C++ are viewed as being out-
side the scope of the deductive machinery, notably

168

the unification mechanism. A more comprehensive
treatment of features like path expressions (e.g., as
in XSQL [13]) may well enable more efficient (i.e., set-
oriented) processing of certain queries. We make no
attempt to give these features a logical semantics; we
simply borrow the C++ semantics, in order to enable
ease of implementation.

The semantic foundations of XSQL, i.e., F-logic [14],
Noodle, i.e., HiLog, and Orlog have features that are
difficult to support efficiently, at least in a bottom-
up implementation. In particular, variables can get
bound to predicate names only at run-time, and this
causes problems with analysis of strongly connected
components (SCCs) and can make semi-naive evalu-
ation inefficient. In contrast, one of the design mo-
tivations of Coral++ was to have a language that is
rich in expressive power and can be efficiently evalu-
ated within the framework of existing evaluation tech-
niques.

There are several other interesting proposals for
combining semantically rich data models with deduc-
tive databases that are less closely related to Coral++.
ConceptBase [ll] and Quixote [30] are two such sys-
tems. ConceptBase is based on the Telos knowledge
representation language, and allows the specification
of methods using deductive rules and integrity con-
straints. Quixote is a knowledge representation lan-
guage that allows subsumption constraints, knowledge
classification and inheritance and query processing for
partial information databases.

8 Conclusions
We described Coral++, an object-oriented extension
of Coral. The Coral++ data model extends the struc-
tural data model of Coral by integrating it with the
C++ type system. The Coral++ query language ex-
tends Coral by allowing C++ expressions for access-
ing attributes and invoking methods of objects. The
Coral++ query language is much more expressive than
object-oriented extensions proposed for SQL, while re-
maining declarative at the same time. Consequently,
a variety of rewriting and evaluation-time optimiza-
tions can be performed to improve efficiency; in par-
ticular, the optimizations performed for Coral pro-
grams are applicable to Coral++ programs as well.
The Coral++ imperative rule-based language can be
used to create, update and remove objects from the
database. It is cleanly integrated with C++, provid-
ing the user the ability to program in a combination

of programming styles, with minimal impedance mis-
match.

We proposed an implementation strategy for
Coral++ that effectively uses the existing Coral run-
time system [24] and the C++ compiler to implement
object-oriented features of the data model and query
language. This, in our view, is one of the strong points
of our proposal, and distinguishes it from many pro-
posals in the literature describing query languages for
object-oriented databases. The implementation strat-
egy is orthogonal to issues such as object clustering,
caching, indexing, storage management, etc. Although
we described the implementation using the C++ class
hierarchy, Coral++ does not depend on C++ imple-
mentation techniques for classes and class instances; it
could also be implemented on top of a typed, persis-
tent object store. We believe that Coral++ is a real-
istic and useful proposal for engineering, scientific and
multi-media applications that can benefit from object-
oriented data models and high-level data access and
manipulation capabilities.

Acknowledgements
We would like to, thank Naser Barghouti for his comments
on an earlier draft of the paper, and Shaul Dar for his
extensive comments and criticisms, which helped improve
the content and presentation of this paper considerably.

References

PI

PI

131

141

PI

R. Agrawal and N. H. Gehani. Ode (Object Database
and Environment): The language and the data model.
In Proceedings of the ACM SIGMOD Conference on
Management of Data, Portland, Oregon, June 1989.

N. Arni, K. Ong, S. Tsur, and C. Zaniolo. The
LDL++ system: Rationale, technology and applica-
tions. (Submitted), 1993.

J. A. Blakeley. ZQL[C++]: Integrating the C++ lan-
guage and an object query capability. In Proceed-
ings of the Workshop on Combining Declarative and
Object-Oriented Databases, pages 138-144, Washing-
ton, D.C., May 1993.

F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and
R. Zicari. Integrating object-oriented data modeling
with a rule-based programming paradigm. In Pro-
ceedings of the ACM SIGMOD Conference on Man-
agement of Data, pages 225-236, Atlantic City, New
Jersey, May 1990.

W. Chen, M. Kifer, and D. S. Warren. Hilog: A
first-order semantics for higher-order logic program-
ming constructs. In Proceedings of the North Amer-

169

WI

[71

PI

[Ql

PO1

Pll

P21

P31

P4

1151

WI

1171

WI

ican Conference on Logic Programming, pages lOQO-
1114, 1989.

S. Dar, N. H. Gehani, and H. V. Jagadish. C&L++:
An SQL for a C++ based object-oriented DBMS. In
Proceedings of the International Conference on Ex-
tending Database Technology, Vienna, Austria, Mar.
1992. (A fuII version is available as AT&T Bell Labs
Technical Memorandum 11252-91021926).

0. Deux. The 02 database programming language.
Communications of the ACM, Sept. 1991.

L. J. Gallagher. Object SQL: Language extensions
for object data management. In Proceedings of the
ISMM First International Conference on Information
and Knowledge Management, pages 17-26, Baltimore,
Maryland, Nov. 1992.

S. Greco, N. Leone, and P. RuIIo. COMPLEX:
An object-oriented logic programming system. IEEE
lhnsactions on Knowledge and Data Engineering,
4(4):344-359, Aug. 1992.

M. H. JamiI and L. V. S. Lakshmanan. ORLOG: A
logic for semantic object-oriented models. In Proceed-
ings of the ISMM First International Conference on
Information and Knowledge Management, pages 584-
592, Baltimore, Maryland, Nov. 1992.

M. Jarke, S. Eherer, R. Gahersdoerfer, M. Jeusfeld,
and M. Staudt. ConceptBase - a deductive object
base manager. (Submitted), 1993.

P. C. Kane&&is, G. M. Kuper, and P. Z. Revesz. Con-
straint query languages. In Proceedings of the Ninth
ACM Symposium on Principles of Database Systems,
pages 299-313, Nashville, Tennessee, Apr. 1990.

M. Kifer, W. Kim, and Y. Sagiv. Querying object-
oriented databases. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, pages 393-
402, San Diego, California, 1992.

M. Kifer and G. Lausen. F-logic, a higher-order lan-
guage for reasoning about objects, inheritance and
schemes. In Proceedings of the ACM SIGMOD Con-
ference on Management of Data, 1989.

J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, second edition, 1987.

D. Maier. A logic for objects. Technical Report Tech-
nical report CS/E86-012, Oregon Graduate Center,
Beaverton Oregon 97006-1999, November 1986.

I. S. Mumick and K. A. Ross. An architecture for
declarative object-oriented databases. In Proceedings
of the JZCSLP-92 Workshop on Deductive Databases,
pages 21-30, Washington, D.C., Nov. 1992.

I. S. Mumick and K. A. Ross. The influence of class
hierarchy choice on query language design. In Proceed-
ings of the Workshop on Combining Declamtive and

PQI

PO1

WI

P21

1231

P41

P51

P61

1271

I281

PQI

[301

Object-Oriented Databases, pages 152-154, Washing-
ton, D.C., May 1993.

S. Naqvi and S. Tsur. A Logical Language for Data
and Knowledge Bases. Principles of Computer Sci-
ence. Computer Science Press, New York, 1989.

J. Orenstein, S. Haradhvala, B. Margulies, and
D. Sakahara. Query processing in the ObjectStore
database system. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, pages 403-
412, San Diego, California, 1992.

G. Phipps, M. A. Derr, and K. A. Ross. Glue-NAIL!:
A deductive database system. In Proceedings of the
ACM SIGMOD Conference on Management of Data,
pages 308-317, 1991.

R. Ramakrishnan. Magic Templates: A spellbinding
approach to logic programs. In Proceedings of the Zn-
temational Conference on Logic Programming, pages
140-159, Seattle, Washington, August 1988.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan.
CORAL: Control, Relations and Logic. In Proceed-
ings of the International Conference on Very Large
Databases, 1992.

R. Ramakrishnan, D. Srivastava, S. Sudarshan, and
P. Seshadri. Implementation of the CORAL deduc-
tive database system. In Proceedings of the ACM SZG-
MOD Conference on Management of Data, 1993.

J. Richardson. Supporting lists in a data model (a
timely approach). In Proceedings of the International
Conference on Very Large Databases, pages 127-138,
Vancouver, Canada, 1992.

K. Ross. Modular Stratification and Magic Sets for
DATALOG programs with negation. In Proceedings of
the ACM Symposium on Principles of Database Sys-
tems, pages 161-171, 1990.

W. G. Roth. Mimsy: A system for analyzing time.’
series data in the stock market domain. Technical Re-
port (To appear), University of Wisconsin at Madison,
1993.

L. A. Rowe and M. R. Stonebraker. The POSTGRES
data model. In Proceedings of the Thirteenth Inter-
national Conference on Very Large Databases, pages
83-96, Brighton, England, Sept. 1987.

B. Stroustrup. The C++ Programming Language (2nd
Edition). Addison-Wesley, Reading, Massachusetts,
1991.

K. Yokota, H. Tsuda, and Y. Morita. Specific fea-
tures of a deductive object-oriented database lan-
guage QUIXOTE. In Proceedings of the Work-
shop on Combining Declarative and Object-Oriented
Databases, pages 89-99, Washington, D.C., May 1993.

170

